
Computing and Informatics, Vol. 27, 2008, 315–339

MINING RECENT FREQUENT ITEMSETS IN SLIDING
WINDOWS OVER DATA STREAMS

Congying Han

Department of Mathematics

Shanghai Jiaotong University

Shanghai 200240, China

&

School of Information Science and Engineering

Shandong University of Science and Technology

Qingdao, Shandong Province 266510, China

e-mail: congyh@sdust.edu.cn

Lijun Xu

China Foreign Exchange Trade System

Shanghai 200240, China

Guoping He

School of Information Science and Engineering

Shandong University of Science and Technology

Qingdao, Shandong Province 266510, China

e-mail: hegp@263.net

Manuscript received 21 November 2006; revised 28 September 2007

Communicated by Hélène Kirchner

Abstract. This paper considers the problem of mining recent frequent itemsets

over data streams. As the data grows without limit at a rapid rate, it is hard to
track the new changes of frequent itemsets over data streams. We propose an effi-
cient one-pass algorithm in sliding windows over data streams with an error bound
guarantee. This algorithm does not need to refer to obsolete transactions when

316 C. Han, L. Xu, G. He

they are removed from the sliding window. It exploits a compact data structure to

maintain potentially frequent itemsets so that it can output recent frequent itemsets
at any time. Flexible queries for continuous transactions in the sliding window can
be answered with an error bound guarantee.

Keywords: Data mining, frequent itemset, significant itemset, sliding window,
data stream, prefix tree

Mathematics Subject Classification 2000: 68P20, 68U35, 68P30, 68P10

1 INTRODUCTION

Frequent itemset mining [2] has been studied extensively in the last decade. It has
become one of the important subjects of data mining. Algorithms for frequent item-
set mining form the basis for algorithms for a number of other mining problems,
including association rule mining, sequential pattern mining, structured pattern
mining, iceberg cube computation, associative classification and so on. Algorithms
for frequent itemset mining have typically been developed for datasets stored in
persistent storage and involve multiple passes over the dataset. Recently, there has
been much interest in data arriving in the form of continuous and infinite data
streams [3], which arise in several application domains like high-speed networking,
financial services, e-commerce and sensor networks. Data streams possess distinct
computational characteristics, such as unknown or unbounded length, possibly very
fast arrival rate, inability to backtrack over previously arrived items (only one se-
quential pass over the data is permitted), and a lack of system control over the order
in which the data arrive. As data streams are of unbounded length, it is intractable
to store the entire data into main memory. However, for many applications, it is
important to retain the ability to execute queries that refer to past data. To support
such queries is a major challenge of data stream processing. On the other hand, in
most applications very old data is considered less useful than more recent data. For
the sake of analysis of data streams, we need to identify the recent changes. And the
sliding window model [4, 6–10] is one commonly used approach, in which only the
last N elements to arrive in the stream are considered useful for answering queries,
where N is the size of the window.

In this paper we consider mining recent frequent itemsets in sliding windows
over data streams and estimate their true frequencies, while making only one pass
over the data. In our design, we actively maintain potentially frequent itemsets in
a compact data structure. Compared with existing algorithms, our algorithm has
two contributions as follows:

1. It is a real one-pass algorithm. The obsolete transactions are not required when
they are removed from the sliding window.

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 317

2. Flexible queries based on continuous transactions in the sliding window can be
answered with an error bound guarantee.

2 DEFINITIONS

The problem of mining frequent itemsets in sliding windows over data streams is
stated as follows:

Definition 1. Let I = {i1, i2, . . . , im} be a set of distinct literals, called items.
A subset of items is denoted as an itemset. An itemset with k items is called
a k-itemset. A transaction t = (TID, e) is a tuple where TID is a transaction-id
and e is an itemset. A data stream S is a sequence of transactions, S = {t1, t2, . . .}.
We denote |S| as the number of transactions in the current data of S.

Definition 2. The frequency of an itemset e is the number of transactions in the
current data of S that contain e. The support value of an itemset e is the frequency
of e divided by the total number of transactions in the current data of S, i.e.,
se = |{t|t ∈ S

∧

t ⊇ e}|/|S|. An itemset is frequent if it satisfies the support
threshold (θ). We denote FI as the set of frequent itemsets, i.e., FI = {e|se ≥ θ}.

Definition 3. A sliding window over a data stream is a bag of last N elements of
the stream. There are two variants of sliding windows based on whether N is fixed
(fixed-sized sliding windows) or variable (variable-sized sliding windows). Fixed-
sized windows are constrained to perform the insertions and deletions in pairs, except
in the beginning when exactly N elements are inserted without a deletion. Variable-
sized windows have no constraint.

Fixed-sized and variable-sized windows model several variants of sliding win-
dows. For example, tuple-based windows correspond to fixed-sized windows, and
time-based windows correspond to variable-sized windows.

3 RELATED WORK

Chang et al. [5] utilized an information decay model to differentiate the information
of recent transactions from the information of old transactions. Essentially, this
approach reflects the new change of data streams by giving large weights to recent
transactions. Manku et al. [11] presented an algorithm, Lossy Counting, to discover
approximate frequent itemsets over whole data streams through one pass of the
data. This algorithm is derived from an algorithm for finding frequent items. In
this algorithm newly generated transactions are stored in one buffer of main memory
and are batch-processed later. Based on the work by Karp et al.[15] on computing
frequent items, Jin et al. [14] proposed another one-pass algorithm, STREAM, to
compute approximate frequent itemsets over entire data streams. Unlike Lossy
Counting, STREAM processes incoming transactions one by one. For [5, 11, 14],

318 C. Han, L. Xu, G. He

the support count is computed from the entire data set between the landmark and
the current time instead of recent data.

Chang et al. [6] proposed a sliding window method of finding recent frequent
itemsets over a data stream based on the estimation mechanism of the Lossy Count-
ing algorithm [11]. They [7] proposed another data stream mining algorithm for
recent frequent itemsets by sliding window method. The algorithm estimates the
frequency of an itemset that is not currently monitored by the frequencies of its
subsets that are currently monitored. Chi et al. [8] monitored potentially frequent
closed itemsets as well as the itemsets that form the boundary between the poten-
tially frequent closed itemsets and the rest of the itemsets. The set of frequent closed
itemsets is a concise representation of the set of frequent itemsets. Each frequent
itemset and its support value can be determined from the set of frequent closed
itemsets without accessing the data. Cheng et al. [12] proposed a progressively
increasing minimum support function, which increases the error parameter at the
expense of only slightly degraded accuracy, but significantly improves the mining
efficiency and saves memory usage. [6–8, 12] have one common shortcoming, i.e.,
they still refer to obsolete transactions when these transactions are removed from
the sliding window. Thus the scalability is heavily limited as they have to maintain
all the data in the sliding window.

Giannella et al. [10] maintained FP-stream on a tilted-time window, a variant
of FP-tree, to mine time-sensitive frequent itemsets at multiple time granularities.
This algorithm computes recent change at a fine granularity and long term changes
at a coarse granularity. It uses a time-based sliding window and the content of
the result is limited by the definition of the window. Lin et al. [13] introduced an
efficient algorithm for mining frequent itemsets over data streams under the time-
sensitive sliding-window model. They designed the data structures for mining and
discounting the support counts of the frequent itemsets when the window slides.
The algorithm does not store obsolete transactions. However, the errors in the
support counts which are essential to generate interesting association rules can not
be precisely estimated.

4 ALGORITHM DESCRIPTION

In this section, we propose one novel stream mining algorithm, FWSM, which can
discover frequent itemsets over a fixed-sized window. In Section 4.1, we discuss the
basic estimation mechanism. In Section 4.2, the design of the sliding window is dis-
cussed in detail. The sliding window is divided into disjoint blocks and potentially
frequent itemsets of each block are maintained. Through these maintained itemsets,
we can generate frequent itemsets over the whole sliding window with an error bound
guarantee. In Section 4.3, we introduce how to discover potentially frequent itemsets
of each block. In Section 4.4, we present an efficient data structure, CP-tree, to store
potentially frequent itemsets. In Section 4.5, we outline the general description of

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 319

our algorithm. In Section 4.6, we discuss how to deal with the case of variable-
sized windows.

4.1 Estimation Mechanism

Obviously, a recent infrequent itemset may be frequent in the future. So the fre-
quency of each itemset should be recorded so as to compute frequent itemsets accu-
rately. However, the method is impractical due to the prohibitive number of itemsets
occurring in data streams. In order to reduce the number of monitored itemsets,
some itemsets whose support values are far less than the support threshold are not
necessarily recorded as they cannot be frequent in the near future. In order to
tell these itemsets from potentially frequent itemsets, we introduce the definition of
significant itemsets.

Definition 4. Given the error parameter ε(ε ≤ θ), the set of ε-significant itemsets,
SI , is a set of itemsets such that (for an itemset e, let ve denote its estimated support
value):

1. If se ≥ ε, then e ∈ SI .

2. ∀e ∈ SI , se − ε ≤ ve ≤ se.

Obviously, SI may contain some itemsets whose support values are less than ε.
So more than one set may satisfies the above two properties. The set of all of the
itemsets occurring in the stream is a special case of a set of 1-significant itemsets if
we assume their estimated support values are zero.

SI can be used to solve the frequent itemsets problem. Let AFI = e | e ∈ SI∧
ve ≥ θ − ε. AFI has the following property:

Property 1. If se ≥ θ, then e ∈ AFI .

Proof. se ≥ θ > ε, then e ∈ SI . According to Definition 4, ve ≥ se − ε ≥ θ − ε is
satisfied, hence e ∈ AFI . 2

Property 2. ∀e ∈ AFI , then se − ε ≤ ve ≤ se.

Proof. As AFI ⊆ SI , the property is easily concluded. 2

Property 3. ∀e ∈ AFI , then se ≥ θ − ε.

Proof. ∀e ∈ AFI , then e ∈ SI and ve ≥ θ − ε are satisfied. According to Defini-
tion 4, we can obtain that se ≥ θ − ε. 2

Obviously, AFI is a superset of frequent itemsets. AFI contains all frequent
itemsets and some infrequent itemsets with support values between θ − ε and θ.

320 C. Han, L. Xu, G. He

4.2 Sliding Window

An efficient data stream mining algorithm must be one pass algorithm due to the
characteristics of data streams. When some transactions are moved out of the
sliding window, the algorithm cannot access them again. It is essential to control
the accuracy of the algorithm when the window moves forward. In our design, the
sliding window is divided into a collection of disjoint equal-sized blocks. Figure 1
shows such a sliding window.

Active Under Construction

Time

N

Expired

Fig. 1. A Fixed-sized sliding window

The status of any block is evolved according to the following order: under con-
struction (some transactions belonging to the current window and other transactions
are not generated), active (all of transactions belonging to the current window), ex-
pired (at least one transaction is older than the last N transactions). Obviously,
only the blocks at both ends are affected when the window moves forward. In this
way, the change is limited to a part of the window instead of the whole window.

The design of the window is as follows: The size of the block is k/εB, where
k is an integer and εB = ε− k/N . We can adjust k to change the size of the block.
We assume there are β/εB transactions being processed in main memory. β may
change according to the available memory as long as k ≥ β. Each block is uniquely
identified by an integer starting from 1. Large blocks with large labels contain recent
transactions. FS(N) is defined as a collection of synopses over the window, each
of which maintains εB-significant itemsets of one block. When the recent frequent
itemsets are required, the synopses are merged to compute the answer. When the
block is under construction, the significant itemsets are updated as the coming of
new transactions. How to discover these significant itemsets will be discussed in this
section. If the block becomes active, the significant itemsets with estimated support
values are stored and not updated again. When the block finally becomes expired,
the corresponding synopsis is useless and discarded.

The correctness of the design of the window is given as follows. Lemma 1
gives the basic approach to generate globally significant itemsets by using locally
significant itemsets. Lemma 2 shows how to get significant itemsets with a larger
error parameter from significant itemsets with a smaller error parameter. Theorem 3
shows how to merge significant itemsets of each block to compute frequent itemsets
over the whole sliding window.

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 321

Lemma 1. Let SI1, SI2, . . . , SIm be sets of significant itemsets over disjoint data-
sets D1, D2, . . .Dm with error parameters ε1, ε2, . . . , εm, respectively. We can com-
pute a set of ε-significant itemsets SI over the dataset D with SI = SI1 ∪ SI2 ∪
. . . ∪ SIm, D = D1 ∪D2 ∪ . . . ∪Dm and ε = (|D1|ε1 + |D2|ε2 + . . .+ |Dm|εm)/|D|.

Proof. For an itemset e, let (se)i(1 ≤ i ≤ m) be the real support value in Di, (te)i
the estimated support value in Di, se be the real support value in D and te be the
estimated support value in D.

1. If se ≥ ε, there must exist at least one dataset Di(1 ≤ i ≤ m), (se)i ≥ εi. Thus
e ∈ SIi and e ∈ SI .

2. There are two possible cases:

(a) e ∈ SIi
(se)i − εi ≤ (te)i ≤ (se)i.

(b) e /∈ SIi. We assume (te)i is 0. Clearly, (se)i < εi, otherwise, e ∈ SIi. Thus

(se)i − εi ≤ 0 = (te)i ≤ (se)i.

So the following can be got:

(se)i
|Di|

|D|
− εi

|Di|

|D|
≤ (te)i

|Di|

|D|
≤ (se)i

|Di|

|D|
.

Then for D,

(se)1|D1| + (se)2|D2|+ . . .+ (se)m|Dm|

|D|
−

ε1|D1| + ε2|D2|+ . . .+ εm|Dm|

|D|

≤
(te)1|D1| + (te)2|D2|+ . . .+ (te)m|Dm|

|D|

≤
(se)1|D1| + (se)2|D2| + . . .+ (se)m|Dm|

|D|
.

Let

te =
(te)1|D1| + (te)2|D2|+ . . .+ (te)m|Dm|

|D|
.

As

se =
(se)1|D1| + (se)2|D2|+ . . .+ (se)m|Dm|

|D|
,

the following can be concluded:

se − ε ≤ te ≤ se.

So SI is a set of ε-significant itemsets of D. 2

322 C. Han, L. Xu, G. He

It seems that we can easily generate significant itemsets over the whole window
based on the above Lemma 1. However, in most cases only a part of the expired
block is included into the window. Lemma 1 cannot apply for such cases.

Lemma 2. Let SI1 be a set of ε1-significant itemsets. If ε1 < ε2, then SI1 is also
a set of ε2-significant itemsets.

Proof. The key of controlling the accuracy lies in the algorithm how to deal with
the obsolete transactions.

1. If se ≥ ε2, then se ≥ ε2 > ε1, i.e. e ∈ SI1.

2. ∀e ∈ SI1, se − ε1 ≤ te ≤ se. As ε1 < ε2, se − ε2 ≤ te ≤ se.

So SI1 is a set of ε2-significant itemsets. 2

Theorem 1. FS(N) generates ε-significant itemsets.

Proof. The key of controlling the accuracy lies in the algorithm how to deal with
the obsolete transactions. The transactions in the window can be divided into two
segments: D1 and D2. D1 consists of the transactions belonging to the expired
block. D2 consists of the transactions belonging to the active blocks or the block
under construction. D2 contains at most N transactions. These transactions are
included in one block under construction and several active blocks. We can generate
a set of εB-significant itemsets of D2 from FS(N) according to Lemma 1.

If D1 is empty, FS(N) generates εB-significant itemsets according to its defini-
tion and Lemma 1. As εB < ε, FS(N) generates ε-significant itemsets according to
Lemma 2.

If D1 is not empty, the transactions of D1 are included in the latest expired
block. We record this block as B1, the set of εB-significant itemsets of B1 as SI(B1)
and the number of transaction in D1 as x, where 1 ≤ x ≤ k/εB − 1. Note that as
some obsolete transactions in B1 have been moved out of the window, we cannot
guarantee that SI(B1) is still a set of εB-significant itemsets of D1.

There are two cases as follows:

If x > k, we assume that we can generate a set of ε1-significant itemsets of D1

from SI(B1). (SI(D1) denotes the set of ε1-significant. For an itemset e, let
se(D1), se(B1), te(D1), te(B1) denote its real support value in D1, its real support
value in B1, respectively.)

1. SI(D1) = SI(B1).

2. ∀e ∈ SI(D1).

te(D1) =

kte(B1)
εBx

if kte(B1)
εBx

< 1

1 if kte(B1)
εBx

≥ 1

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 323

Obviously, we can maximize the value of ε1 if we assume that no deleted trans-
action contains any significant itemset. In this case,

se(D1) =

kse(B1)
εBx

if kse(B1)
εBx

< 1

1 if kse(B1)
εBx

≥ 1.

Then we prove that SI(D1) is a set of k/x-significant itemsets ofD1 when x > k.

1. For an itemset e with se(D1) ≥ k/x, there are two possible cases:

(a) kse(B1)
εBx

< 1. Then se(D1) =
kse(B1)
εBx

, i.e. se(B1) = se(D1)
εBx
k

≥ k
x
× εBx

k
≥ εB.

So e ∈ SI(B1) and e ∈ SI(D1).

(b) kse(B1)
εBx

≥ 1. Then se(B1) ≥
εBx
k

≥ εB. So e ∈ SI(B1) and e ∈ SI(D1).

2. ∀e ∈ SI(D1), se(B1) − εB ≤ te(B1) ≤ se(B1) as SI(D1) = SI(B1). So

kse(B1)

εBx
−

k

x
≤

kte(B1)

εBx
≤

kse(B1)

εBx
.

There are three possible cases:

1. kse(B1)
εBx

< 1. Then se(D1) = kse(B1)
εBx

and te(D1) = kte(B1)
εBx

. So se(D1) −
k
x
≤

te(D1) ≤ se(D1).

2. kse(B1)
εBx

≥ 1 and kte(B1)
εBx

< 1. Then se(D1) = 1 and te(D1) =
kte(B1)
εBx

. So se(D1) −
k
x
= 1− k

x
≤ kse(B1)

εBx
− k

x
≤ te(D1) ≤ 1 = se(D1).

3. kte(B1)
εBx

≥ 1. Then se(D1) = 1 and te(D1) = 1.se(D1)−
k
x
= 1− k

x
≤ 1 = te(D1) ≤

1 = se(D1).

So SI(D1) is a set of k/x-significant itemsets of D1 when x > k.
If x ≤ k, we assume that the significant itemsets of D1 is a set of all possible

itemsets whose estimated support values are zero. It is easy to prove that this set
is a set of 1-significant itemsets.

According to Lemma 1, the error parameter for the window εw is given by:

εw ≤

k

x
×x+(N−x)×εB

N
if x > k

k×1+(N−x)×εB
N

if x ≤ k
<

k +N × εB
N

=
k +N × (ε− k/N)

N
= ε.

According to Lemma 2, FS(N) generates ε-significant itemsets. 2

Note we do not perform any operation for D1 when merging the result when
x ≤ k. This is because their support values are zero and cannot influence the
final result. In this case, only the synopses of the active blocks or the block under
construction are used to generate recent frequent itemsets. Otherwise, the synopsis
of the expired block B1 is also adopted besides the above mentioned synopses.

324 C. Han, L. Xu, G. He

4.3 Local mining over each block

From Theorem 3, if we can maintain εB-significant itemsets of each block, we can
generate ε-significant itemsets and compute frequent itemsets over the whole sliding
window. Any stream mining algorithm that generates significant itemsets can apply
to our algorithm. We use the estimationmechanism of Lossy Counting algorithm [11]
to process the data of each block. Lossy Counting takes two user-defined input
parameters, namely: the support threshold θ and the error parameter ε. It computes
ε-significant itemsets through one pass of the data. The significant itemsets are
maintained in a data structure TRI consisting of a set of triples 〈e, fre, err〉, where
e is an itemset, fre is the frequency of e and err is the maximum possible error
of fre. The incoming transactions are first stored together and divided into equal-
sized sections. Each section includes 1/ε transaction and is uniquely numbered by
an integer, starting from 1. The current section identifier is labelled by α, i.e.,
α = |S|ε. There are β sections being processed in main memory, where β ≥ 1.
Notice β may change according to the available memory. TRI is updated as follows:

1. For each triple (e, fre, err) in TRI, fre is first updated according to the incoming
transactions. Then the triples that satisfy fre+ err < α are removed.

2. Let f be the frequency of an itemset e in the incoming transactions. If f ≥ β
and e does not occur in TRI, a new triple (e, f, α− β) is inserted into TRI.

When the recent frequent itemsets are required, the algorithm outputs the item-
sets in the TRI with fre ≥ (θ− ε)|S|. The result contains all frequent itemsets and
some infrequent itemsets with support values between θ − ε and θ.

Lossy Counting regards a local significant itemset in the incoming transactions as
a global significant itemset in the current data of the window, which may introduce
some insignificant itemsets. There are two ways to relieve this problem:

1. To increase the number of transactions being processed each time. This in-
creases the possibility that a local significant itemset becomes a global signif-
icant itemset; but this requires trade-offs among space requirement, accuracy
and sensitivity of its mining result.

2. To record the exact frequency of each item. A local significant itemset including
a global insignificant item will not be inserted into TRI.

4.4 CP-Tree for Synopses

A compact data structure is required to store the set of significant itemsets in main
memory. Most frequent itemsets mining algorithms often use a prefix tree for this
purpose. In the prefix tree each node records an item. It is easy to identify an item-
set via the path from the root node in the prefix tree. Although the prefix tree
has distinct advantages, it is a bottleneck as far as space requirement is concerned
because it always uses a great number of pointers. Thus we design a novel imple-
mentation, CP-tree (Concise Prefix tree). All sibling nodes are placed in an array in

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 325

a CP-tree. We use one CP-tree to maintain all synopses in order to save space when
some synopses contain identical itemsets or similar itemsets. Besides the item, each
node records a list of pairs 〈bid, fre〉, where bid is the identifier of a block, fre is
the estimated frequency of the corresponding itemset in the block. Figure 2 gives
a sample of the CP-tree.

ID f e

3 24 2

5 77 5

abc

 a b c d

 b c c

 c

Fig. 2. CP-tree

4.5 Incremental Update

In this section, we present the algorithm in more details. The incoming transaction
can not be processed immediately until its number is accumulated to β/εB. The
size of each block is k/εB(β ≤ k). Let γ be the label of the block under construction
and α be the current section label for the block γ, which means the algorithm has
processed α/εB transactions in the block γ.

The pseudo-code of the algorithm is given in Algorithm 1. Note that step 3 is
only performed when the recent frequent itemsets are required.

Algorithm 1. FW SW algorithm Input:

1. the support threshold θ and the error parameter ε;

2. the size of the sliding window N and the size of the block k/εB;

3. the incoming transactions;

4. the CP-tree.

Output:
the updated CP-tree.

1. Mine the incoming transactions by means of modifying Apriori algorithm [2].
For each mined itemset e with frequency free,

(a) If e ∈ the CP-tree,

326 C. Han, L. Xu, G. He

i If there exists an entry 〈γ, fre, err〉 in the list of e, increase the frequency
by free. If fre+err < α, delete this entry and stop mining the supersets
of e.

ii If γ is not in the list

A If free ≥ β, add the entry 〈γ, free, α− β〉 into the list.
B If free < β, stop mining the supersets of e.

(b) If e /∈ the CP-tree,

i If free ≥ β, insert e into the CP-tree and add the entry 〈γ, free, α − β〉
into the list of e.

ii If free < β, stop mining the supersets of e.

2. Traverse the CP-tree (depth-first search). For each itemset e encountered,

(a) If e is not updated in step (1) and an entry 〈γ, fre, err〉 satisfying fre+err <
α exists in its list, then remove the entry.

(b) Remove the entry of the expired block if the number of its transactions in
the current window is not more than k.

(c) If the list is empty, remove e and its subtree in the CP-tree.

3. If the recent frequent itemsets in the current window is required, merge the
related synopses and output itemsets whose support values are not less than
θ − ε.

4.6 Discussion

We use fixed-sized sliding windows so far and shall discuss how to deal with the
case of variable-sized windows in brief. Without loss of generality, let the minimal
size of the window be N1. We divide the window into a collection of disjoint blocks.
Let VS(N) be a collection of synopses over the window, each of which maintains
εB-significant itemsets of one block, where εB = ε − k/N1. Unlike fixed-sized win-
dows, the sizes of blocks are not equal. The sizes of blocks are set according to the
following rules:

1. The size of the block with the largest label is k/εB, where k is an integer. The
number of blocks of size k/εB cannot be more than 2N1

k/εB
+ 2. If there are more

than 2N1

k/εB
+2 blocks of size k/εB, merge the synopses of the oldest two into one

synopsis of one block of size 2k
εB

according to Lemma 1.

2. The number of blocks of size 2lk
εB

(l ≥ 1) cannot be more than N1

k/εB
+ 2 . If there

are more than N1

k/εB
+ 2 blocks of size 2lk

εB
, merge the synopses of the oldest two

into one synopsis of one block of size 2l+1k
εB

.

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 327

According to the above design, we can conclude:

N ≥
2l−1k

εB
×

N1

k/εB
+

2l−2k

εB
×

N1

k/εB
+ · · ·+

k

εB
×

2N1

k/εB

= 2l−1N1 + 2l−2N1 + · · ·+ 2N1 = 2lN1.

Theorem 2. VS(N) generates ε-significant itemsets.

Proof. The transactions in the window can be divided into two divisions: D1

and D2. D1 consists of the transactions belonging to one expired block. D2 consists
of the transactions belonging to the active blocks or the block under construction.
We can generate a set of εB-significant itemsets of D2 from VS(N) according to
Lemma 1.

IfD1 is empty, the conclusion is obvious. Otherwise, we record the corresponding
expired block of D1 as B1, the size of the block is 2lk/εB(l ≥ 0) and the number of
transaction in D1 as x, where 1 ≤ x ≤ 2lk/εB − 1.

Using similar method in Theorem 1, we can generate a set of (2lk/x)-significant
itemsets of D1 from the synopsis of the block B1 when x > 2lk.

According to Lemma 1, the error parameter for the window εw is given by:

εW ≤

2lk×x+(N−x)×εB
N

if x > 2lk
2lk×1+(N−x)×εB

N
if x ≤ 2lk

<
2lk +N × εB

N
=

2lk +N × (ε− k/N1)

N

= ε + k
2l −N/N1

N
≤ ε.

So VS(N) generates ε-significant itemsets. 2

5 EXPERIMENT RESULTS

We performed extensive experiments to evaluate the performance of our algorithm
and we present results in this section. We first compared our algorithm (FWSM)
with the Lossy Counting algorithm [11] and estWin algorithm [7], respectively.
Then we tested the adaptability of FWSM by changing the data distribution of
the dataset.

The experiments were performed on a Pentium 1.2G processor with 1G memory,
running Windows 2000 (SP4). Our algorithm is implemented in C++ and compiled
by using Microsoft Visual C++ 6.0. In the implementation of three algorithms, we
used the same data structures and subroutines in order to minimize the performance
differences caused by minor differences.

Two data sets, T20 and Kosarak, are used in the experiments. The T20 data
set is generated by the IBM data generator [1]. For T20, the average size of trans-
actions, the average size of the maximal potential frequent itemsets and the number
of items are 20, 4, and 1 000, respectively. The Kosarak data set is a real-world data

328 C. Han, L. Xu, G. He

set (http://fimi.cs.helsinki.fi/data/), which is derived from the click-stream
data of a Hungarian on-line news portal. The data sets were broken into batches of
10K size transactions and provided to our program through standard input.

For FWSM, the whole procedure can be divided into two different phases:
(1) Window initialization phase, which is activated when the number of transac-
tions generated so far is not more than the size of the sliding window. (2) Window
sliding phase, which is activated when the window is full of generated transac-
tions.

1. Comparison between Lossy Counting and FW SM based

on different block size

To observe the influence of different block sizes on algorithm, we take 2×104, 5×104

and 10 × 104 as an example. Meanwhile, the size of the window is fixed 5 × 105.
In this case, this window contains 25, 10 and 5 blocks, respectively. As mentioned
above, three versions of our algorithm(FWSM) are used. Since L = k

εB
(we set L

to be the size of a block), εB = ε− k
N

and εB = N
N+L

ε, then the values of εB can be
shown in Table 1. (For T20, θ = ε = 0.0025. For Kosarak, θ = ε = 0.002.)

Block size 20 000 50 000 100 000

T20 0.0024 0.00227 0.00208

Kosarak 0.00192 0.00182 0.00167

Table 1. εB for different block size

The experimental results of the execution time and the space requirement are
plotted in Figure 3 and 4, respectively. We collected the total number of seconds
and the size of storage space required in KB per 10× 5 transactions. These results
basically keep stable as the window moves forward. The above experimental results
provide evidence that two algorithm can handle long data streams both. As FWSM
may keep multiple triples for one significant itemset, it needs more memory and
time than Lossy Counting does.

In order to evaluate the effects of different block size on the result accuracy, two
measures are introduced.

1. Precision. It is defined as the ratio of the number of the real frequent itemsets
computed by Aprior algorithm to the number of the frequent itemsets computed
by our algorithm.

2. ASE(Average Support Error). It is defined as follows:

∑

e∈FI

se − te
|S|

.

The two above statistics are collected at the end of per 80K transactions and
shown in Figures 4 and 5. It is observed that the Lossy Counting algorithm
can only guarantee the result accuracy in the initialization phase, but not in the

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 329

window sliding phase. The accuracy reduces rapidly as the window moves in
the window sliding phase. The reason for this is that Lossy Counting computes
results based on the whole data instead of the recent data. So the Lossy Counting
algorithm can not be used to mine the recent frequent itemsets.

In addition, on the one hand, the result accuracy of FWSM degrades with the
increase of the number of blocks in the window initialization phase. As each block
has its own local significant itemsets and the result is computed based on all local
significant itemsets, more infrequent itemsets with support values between θ and
θ − ε may be inserted into the required result as the increase of the number of
blocks. On the other hand, FWSM with large number of blocks basically has better
result accuracy than the algorithm with small number in the window sliding phase.
If the window just includes some transactions in the oldest block, in FWSM, we
either use the significant itemsets of this block to simulate the significant itemsets
of these transactions or neglect these transactions (see the proof of Theorem 3). So
the algorithm has bigger error with larger size of blocks.

2. Comparison between FW SM and estWin algorithm

We now compare FWSM with estWin algorithm as follows. We use the same data
structure in these two algorithms. In FWSW, block size is set to be 5 × 104 and
window size is fixed 5× 105. Meanwhile, the number of transactions in buffer is not
greater than 104. The results on data set T20 are shown in Figures 6 through 9,
where θ = ε = 0.0025.

From the experimental results, FWSM execution time is far less than estWin,
especially in window sliding phase. Although estWin’s space requirement and ac-
curacy are superior to those of FWSM, its precision is inferior to that of FWSM.
Compared with FWSM, estWin is not purely memory resident program due to its
extra I/O operation. If estWin is used to process high speed data streams, not all
data can be dealt with. In other words, estWin algorithm’s improvement in space
and accuracy is at the cost of execution time.

3. Adapting to change

In reality, seasonal variations may cause the underlying data distribution to change
in time. A simple-minded way to simulate some of this shifting effect is to perio-
dically, randomly permute some item names of T20. To do this, we use an item
mapping table. The table initially maps all item names to themselves. However,
for every 106 transactions, 30 % entries of the table are shifted through random
permutations. In the experiments, the block size is set to be 5 × 104 and the
window size is fixed to 5 × 105. Meanwhile, the number of transactions in buffer
is not greater than 104. The results are shown in Figures 10 through 14, where
θ = ε = 0.0025. These results fluctuate in a relatively large every 106 transactions.
Stability is regained soon. In general, the results of the algorithm tend to stabilize
despite the random permutations.

330 C. Han, L. Xu, G. He

100000 300000 500000 700000 900000 1100000
160

170

180

190

200

210

220

230

240

250

260 Lossy Counting FW_SM(20000)
 FW_SM(50000) FW_SM(100000)

E
xe

cu
tio

n
T

im
e

(s
)

Length

T20

100000 300000 500000 700000 900000

80
85
90
95

100
105
110
115
120
125
130
135
140
145 Lossy Counting FW_SM(20000)

 FW_SM(20000) FW_SM(100000)

E
xe

cu
tio

n
T

im
e

(s
)

Length

Kosarak

Fig. 3. Execution time

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 331

100000 300000 500000 700000 900000 1100000

0

200

400

600

800

1000

Sp
ac

e
R

eq
ui

re
m

en
t (

K
)

 Lossy Counting FW_SM(20000)
 FW_SM(50000) FW_SM(100000)

Length

T20

100000 300000 500000 700000 900000

0

200

400

600

800

1000

1200

1400
 Lossy Counting FW_SM(20000)
 FW_SM(50000) FW_SM(100000)

Sp
ac

e
R

eq
ui

re
m

en
t (

K
)

Length

Kosarak

Fig. 4. Space requirement

332 C. Han, L. Xu, G. He

80000 240000 400000 560000 720000 880000 1040000

88

90

92

94

96

98

100 Lossy Counting FW_SM(20000)
 FW_SM(50000) FW_SM(100000)

Pr
ec

is
io

n
(%

)

Length

T20

80000 240000 400000 560000 720000 880000 1040000

45

50

55

60

65

70

75

80

85

90

95

100

Pr
ec

is
io

n
(%

)

 Lossy Counting FW_SM(20000)
 FW_SM(50000) FW_SM(100000)

Length

Kosarak

Fig. 5. Precision

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 333

80000 280000 480000 680000 880000 1080000

0
1
2
3
4
5
6
7
8
9

10
11
12 Lossy Counting FW_SM(20000)

 FW_SM(50000) FW_SM(100000)

A
SE

 (
10

-5
)

Length

T20

0 200000 400000 600000 800000 1000000

10

20

30

40

50
 Lossy Counting FW_SM(20000)
 FW_SM(50000) FW_SM(100000)

A
SE

 (
10

-4
)

Length

Kosarak

Fig. 6. Average support error

334 C. Han, L. Xu, G. He

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

E
xe

cu
tio

n
T

im
e

(s
)

 estWin
 FW_SM

Fig. 7. Execution time

0

100

200

300

400

500

600

Sp
ac

e
R

eq
ui

re
m

en
t (

K
)

 estWin
 FW_SM

Fig. 8. Space requirement

92

93

94

95

96

97

98

99

100

Pr
ec

is
io

n
 (

%
)

 estWin
 FW_SW

Fig. 9. Precision

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 335

1

2

3

4

5

6

7

8

A
SE

 (
10

-5
)

 estWin
 FW_SW

Fig. 10. Average support error

10 15 20 25 30 35 40 45 50

150

200

250

300

350

E
xe

cu
tio

n
T

im
e

(s
)

Length (10
5
)

FW_SM

Fig. 11. Execution Time

10 15 20 25 30 35 40 45 50

350

400

450

500

550

600
 FW_SM

Sp
ac

e
R

eq
ui

re
m

en
t (

K
)

Length (10
5
)

Fig. 12. Space Requirement

336 C. Han, L. Xu, G. He

100 150 200 250 300 350 400 450 500

75

80

85

90

95

100 FW_SM

Pr
ec

is
io

n
(%

)

Length (10
4
)

Fig. 13. Precision

100 150 200 250 300 350 400 450 500

2

3

4

5

6

7

8

9

10
 FW_SM

A
SE

 (
10

-5
)

Length (10
4
)

Fig. 14. Average support error

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 337

6 CONCLUSION

We mainly discuss how to discover recent frequent itemsets in sliding windows over
data streams. An efficient algorithm is presented in detail. Significant itemsets are
maintained in a CP-tree, which is incrementally updated with incoming transactions.
Compared with previous algorithms, this algorithm doesn’t keep the data in the
window, which considerably increase the scalability of the algorithm. Moreover, it
can figure out answers with an error bound guarantee for continuous transactions
in the window. The extensive experiment results demonstrate the effectiveness and
efficiency of our approach.

Acknowledgments

This work was supported by the National Natural Science Foundation of China
(10571109) and the Educational Foundation of Shandong Province (J06P14,
2006GG3210009).

REFERENCES

[1] Arasu—Manku, G. S.: Approximate Quantiles and Frequency Counts over Sliding
Windows. Proceedings of PODS 2004.

[2] Agrawal, R.—Srikant, R.: Fast Algorithms for Mining Association Rules. Pro-
ceedings of VLDB, 1994.

[3] Babcock—Babu, S.—Datar, M.—Motwani, R.—Widom, J.: Models and Is-
sues in Data Stream Systems. Proceedings of ACM Symp. on Principles of Database

Systems, 2002.

[4] Babcock—Datar, M.—Motwani, R.: Sampling from a Moving Window over
Streaming Data. Proceedings of 13th Annual ACM-SIAM Symp. on Discrete Algo-
rithms, 2002.

[5] Chang, J.H.—Lee, W. S.: Finding Recent Frequent Itemsets Adaptively over On-
line Data Streams. Proceedings of KDD 2003.

[6] Chang, J.H.—Lee, W. S.: A Sliding Window Method for Finding Recently Fre-

quent Itemsets over Online Data Streams. Journal of Information Science and Engi-
neering, Vol. 20, 2004, No. 4, pp. 753–762.

[7] Chang, J.H.—Lee, W. S.: estWin: Online Data StreamMining of Recent Frequent
Itemsets by Sliding Window Method. Journal of Information Science, Vol. 31, 2005,
No. 2, pp. 79-60.

[8] Chi, Y.—Wang, H.—Yu, P. S.—Muntz, R.R.: Moment: Maintaining Closed
Frequent Itemsets over a Stream Sliding Window. Proceedings of the 4th IEEE Int’l
Conf. on Data Mining, 2004.

[9] Datar, M.—Gionis, A.—Indyk, P.—Motwani, R.: Maintaining Stream Statis-
tics over Sliding Windows. Proceedings of the 13th Annual ACM-SIAM Symp. On
Discrete Algorithms, 2002.

338 C. Han, L. Xu, G. He

[10] Giannella, C.—Han, J.—Pei, J.—Yan, X.—Yu, P. S.: Mining Frequent Pat-

terns in Data Streams at Multiple Time Granularities. In H. Kargupta, A. Joshi,
K. Sivakumar, and Y. Yesha (eds.), Next Generation Data Mining, AAAI/MIT, 2003.

[11] Manku, G. S.—Motwani, R.: Approximate Frequency Counts over Data Streams.

Proceedings of VLDB, 2002.

[12] Cheng, J.—Ke, Y.—Ng, W.: Maintaining Frequent Itemsets over High-Speed
Data Streams. In Proceedings of the 10th Pacific-Asia Conference on Knowledge Dis-

covery and Data Mining, PAKDD 2006.

[13] Lin, C.H.—Chiu, D.Y.—Wu, Y.H.—Chen, A. L. P.: Mining Frequent Item-
sets from Data Streams with a Time-Sensitive Sliding Window. SIAM International
Conference on Data Mining, SDM-2005.

[14] Jin, R.—Agrawal, G.: An Algorithm for In-Core Frequent Itemset Mining on
Streaming Data. In proceedings of the 5th IEEE Iternational Conference on Data
Mining, 2005.

[15] Karp, R.M.—Shenker, S.: A Sample Algorithm for Finding Frequent Elments
in Streama and Bags. Journal of ACM Transactions on Database Systems, Vol. 28,
2003, pp. 51–55.

Congying Han received master degree in optimal control and
operations research at Shandong University of Science and Tech-
nology in 2002, currently is a Ph.D. student at the Shang-
hai Jiaotong University, Department of Mathematics, and now
works in School of Information Science and Engineering, Shan-
dong University of Science and Technology. Her main areas of
interest are data mining, pattern recognition, parallel comput-
ing, optimization algorithm and machine learning.

Lijun Xu received the Ph.D. degree in computer application at
Shanghai JiaoTong University in Shanghai in 2006, currently is
a technical professional at China Foreign Exchange Trade Sys-
tem. His main areas of interest are data mining, data warehouse
and pattern recognition.

Mining Recent Frequent Itemsets in Sliding Windows over Data Streams 339

Guoping He graduated from Institute of Applied Mathematics,

Chinese Academy of Sciences and received his M. Sc. and Ph.D.
degrees from Chinese Academy of Sciences in 1988 and 1995 re-
spectively. He was appointed professor by Shandong University
of Science and Technology in 1996 and was engaged as profes-
sor and doctor advisor by Shanghai Jiaotong University in 2000.
He was once the visiting professor at Hong Kong University of
Science and Technology in 1999. He is the author and co-author
of numerous scientific papers. His research interest includes data
mining, pattern recognition, non-linear optimization and parallel
algorithm.

