8,653 research outputs found

    The effects of pH on the self-association of phycobiliprotein from Anacystis nidulans R₂

    Get PDF
    Call number: LD2668 .T4 BICH 1988 V55Master of ScienceBiochemistry and Molecular Biophysics Interdepartmental Progra

    Separation of protein X from the dihydrolipoyl transacetylase component of the mammalian pyruvate dehydrogenase complex and the study of protein X

    Get PDF
    Call number: LD2668 .T4 BICH 1989 P69Master of ScienceBiochemistry and Molecular Biophysics Interdepartmental Progra

    Computational Molecular Biophysics of Membrane Reactions

    Get PDF
    Proteins are nanoscale molecules that perform functions essential for biological life. Membranes surrounding cells, for example, contain receptor proteins that mediate communication between the cell and the external milieu, membrane transporters that transport ions and larger compounds across the membranes, and enzymes that catalyze chemical reactions. Likewise, soluble proteins found in interior of the cell include motor proteins that move other proteins around, enzymes that bind to and repair breaks in the DNA, and proteins that help control the cellular clock. Mutations in genes that encode proteins can cause disease, as is the case of cystic fibrosis, a disease that associates with mutation of a chloride channel called the cystic fibrosis transmembrane conductance regulator.1 The essential functions they perform in the cell makes proteins essential drug targets for modern bio-medical applications. An important example here is the programmed death ligand-1 (PD-L1), which is a valuable target for modern immunotherapy.2-4 Predicting how a protein responds to a drug molecule, or using the protein as inspiration for biotechnological applications, require knowledge of how that protein works. As proteins are dynamic entities and protein dynamics are essential for function,5-8 describing the mechanism of action of a protein requires knowledge about the protein motions in fluid environments. Theoretical biophysics provides valuable tools to characterize protein reaction mechanisms and protein motions at the atomic level of detail. This Habilitation Thesis presents research on using theoretical biophysics approaches to decipher how proteins work. The focus of the research is on membrane proteins and reactions that occur at lipid membrane interfaces. The central question I address is the role of dynamic hydrogen (H) bonds in protein function and membrane interactions. The methods used include quantum mechanical (QM) computations of small molecules, combined quantum mechanics/molecular mechanics (QM/MM) of chemical reactions in protein environments, classical mechanical computations of large protein and membrane systems, and bridging numerical simulations to bioinformatics. In my research group we developed algorithms to identify H-bond networks in proteins and membrane environments, and to characterize the dynamics of these networks. To extend the applicability of numerical computations to bio-systems that bind drug-like compounds, we derive parameters for a potential energy function widely used in the field. The main research topics and specific questions addressed are summarized below together with a discussion of the computational approaches used

    Theoretical Molecular Biophysics

    Full text link

    A conserved filamentous assembly underlies the structure of the meiotic chromosome axis.

    Get PDF
    The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control
    corecore