6,681 research outputs found

    Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water

    Full text link
    Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to three simple molecular systems that exhibit different aspects of the failure of a naive application of spherical truncations -- water confined between hydrophobic walls, water confined between atomically-corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.Comment: Submitted to PNA

    How Atomic Level Interactions Drive Membrane Fusion: Insights From Molecular Dynamics Simulations

    Get PDF
    This project is focused on identifying the role of key players in the membrane fusion process at the atomic level with the use of molecular dynamics simulations. Membrane fusion of apposed bilayers is one of the most fundamental and frequently occurring biological phenomena in living organisms. It is an essential step in several cellular processes such as neuronal exocytosis, sperm fusion with oocytes and intracellular fusion of organelles to name a few. Membrane fusion is a frequent process in a living organism but is still not fully understood at the atomic level in terms of the role of various factors that play a crucial part in completion of membrane fusion. Two major factors that have been identified and studied experimentally are the protein Synaptotagmin and SNAREs. In addition, Ca2+ is known to play a crucial role in this process, however the exact mechanism of action is still unknown. Prime objective of this study is to understand these interactions and the role of Ca2 + in the process at the atomic level by carrying out molecular dynamics simulations. One of the primary calculations to perform is potential of mean force (PMF) between SYT and bilayer to analyze the effect of Ca2+ on their relative affinities. 1-octanol-water partition coefficient (log Kow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. Adaptive biasing force method is applied to calculate 1-octanol partition coefficients of n-alkanes and extended to other complex systems like ionic liquids, energetic materials and chemical warfare agents. Molecular dynamics simulations show that both domains of SYT-1, C2A and C2B, once calcium bound, insert into the lipid bilayer composed of anionic phospholipids. In contrast, no insertion is observed when the domains do not have bound calcium or when the bilayer is not charged negative. Electrostatic interactions play an important role in this insertion process. Effect of calcium binding to the C2A and C2B domain on the overall electrostatics of the protein was studied by generating the ESP maps. Negative potential on the Calcium binding pocket transforms into positive potential once calcium is attached to those sites. Interaction of this positive potential surface with the negatively charged bilayer acts as a driving force for protein insertion into the bilayer. In addition, adaptive biasing force method has emerged as a powerful tool for prediction of 1-octanol water partition coefficients and is successfully implemented and optimized for n-alkanes and extended to the systems of ionic liquids, energetic materials and chemical warfare agents for which 1-octanol water partition coefficient is either not known or is difficult to measure via experimental methods

    Martini 3 : a general purpose force field for coarse-grained molecular dynamics

    Get PDF
    The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 (http://cgmartini.nl), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.Peer reviewe

    COMPUTATIONAL MODELING OF BACTERIAL OUTER MEMBRANES AND DEVELOPMENT OF HIGH-THROUGHPUT SCREENING PLATFORM FOR ANTIBIOTICS

    Get PDF
    Antibiotic resistance is a major health challenge because it limits the treatment options for common infectious diseases and will cause 10 million deaths each year after 2050. There is an urgent need to reduce the misuse of antibiotics and seek new classes of antibiotics that induce less or no resistance. Despite the push for new therapeutics, there has been a precipitous decline in the number of newly approved antibacterial drugs due to a limited understanding of how bacteria adapt to the chemical stress stimuli. The development of antimicrobial resistance is especially true for Gram-negative bacteria that develop resistance to antibiotics readily due to their unique highly charged outer membrane. Structurally, the Gram-negative bacteria is highly asymmetric bilayer that comprises of an inner leaflet of phospholipids and an outer leaflet of lipopolysaccharides. Embedded in the bilayer are outer membrane proteins (OMPs) that form pores to allow passage of nutrients and other small molecules through the cell wall. In addition to the outer membrane, the Gram-negative bacteria have a thin peptidoglycan layer and an inner phospholipid membrane that surrounds the cytosol. All potential small molecule antibiotic molecule have to navigate through all three layers of the Gram-negative bacterial cell wall before targeting the cellular functions. There is, however, limited understanding of the chemical specificity, structure, and functional aspects of each layer in the cell wall. To enhance our understanding of the bacterial cell wall, we first developed molecular models of ten commensal or human pathogenic bacterial species: Pseudomonas aeruginosa, Escherichia coli, Helicobacter pylori, Porphyromonas gingivalis, Bacteroides fragilis, Bordetella pertussis, Chlamydia trachomatis, Campylobacter jejuni, Neisseria meningitidis, and Salmonella minnesota. Second, we studied the self-assembly of OMPs that in some cases form trimers in the outer membranes to perform their function. In the third step, we combined the outer membrane models and the OMPs to build a computational screening platform to quantify the transport properties of molecules across a bacterial outer membrane. The goal of the computational platform is to provide high-throughput screening of vast libraries of small molecules that have the potential of being active antibacterial agents against Gram-negative bacteria. A computational platform has merit to producing reliable first-round screening of molecules at a fraction of the cost in the otherwise expensive drug-discovery pipeline

    Martini 3 Coarse-Grained Force Field for Carbohydrates

    Get PDF
    The Martini 3 force field is a full re-parametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance it allows for more accurate description of condensed phase systems. In the present work we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme that decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals are developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the poly-glucoses dextran (water soluble) and cellulose (water insoluble, but soluble in ionic-liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids, being able to reproduce membrane properties and to induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach
    corecore