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Chapter 1: Introduction & Overview 

 

Lipid bilayer 
 

Lipid bilayer is an essential and universally occurring component in living organisms as a part of 

cellular membranes. The role of a bilayer is critical as it provides a definite boundary to cell 

which acts as a barrier to various biological molecules from getting in and out of the cell without 

the use of proper regulatory factors. In a way lipid bilayer compartmentalizes various biological 

components, keeping them separate from each other owing to the impermeable membrane 

structure. Lipid bilayer is made of two distinct monolayers packed together as sheet which is 

around 4-5 nanometers in thickness and comprises of various lipids. Water and other ions can 

pass through the membrane with the help of certain facilitators in the form of membrane proteins 

which are embedded in the bilayers and are specific to the type of molecule that needs to 

permeate through. Lipid bilayers frequently interact with various proteins during the cell 

signaling process which is a constant area of study and research. Cytoplasmic proteins are 

recruited to various cellular membranes during cell signaling and membrane trafficking. These 

proteins are collectively known as peripheral proteins which contain one or more modular 

domains specialized in lipid binding [3]. 
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Figure 1: Lipid bilayer composed of POPC phospholipid. Headgroup phosphorus atoms are shown as golden 

spheres and nitrogen atoms as blue spheres. Lipid tails are colored in cyan. 
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Figure 2: POPC lipid bilayer (grey) interacting with C2A domain of protein synaptotagmin (SYT). 

Membrane penetrating amino acid residues are shown in red. 

 

Phospholipids are the building blocks lipid bilayer and are derived from fatty acids with the 

replacement of fatty acid by a phosphate group. They have a hydrophilic head on one end and a 

hydrophobic tail on the other which make phospholipids arrange in a bilayer like structure where 

the water-soluble phosphate ends on the outside and the carbon based hydrophobic tails on the 

inside. Depending on the lipid concentration and composition structures other than the bilayer 

can also be formed such as vesicles, micelles and lipid rafts. Phospholipids can be categorized 

into different types based on their headgroup and tail composition. Some common lipid head 

groups are phoasphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE) 
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and phosphatidylglycerol (PG). Common fatty acid chains that make a phospholipid are 

palmitoyl, oleoyl, myristoyl and laureoyl varying on the basis of number of non-polar carbons 

and degree of saturation. 

 

Chemical structures of three phospholipid head groups are shown below,  
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Figure 3: Chemical structure of phospholipid headgroups. 
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Membrane fusion 
 

Membrane fusion of apposed bilayers is one of the most fundamental and frequently occurring 

biological phenomena in living organisms. It is an essential step in several cellular processes 

such as neuronal exocytosis, sperm fusion with oocytes and intracellular fusion of organelles to 

name a few. The process occurs at sub-millisecond time scale and involves the release of 

neurotransmitter from the synaptic vesicle into the pre-synaptic plasma membrane once the 

vesicle and target membrane merge and fuse with each other. All fusion reactions embody an 

elementary process that includes membrane contact, membrane merger, and the opening of an 

aqueous fusion pore[4]. Fusion can either be heterotypic which occurs when a membrane fuses 

with a dissimilar type of membrane body such as, a vesicle with a plasma membrane as in 

synaptic vesicle exocytosis or homotypic which involves similar compartments such as fusion of 

two vesicles in endosome–endosome fusion process [5]. Membrane fusion process is 

energetically unfavorable which means in thermodynamics terms that energy needs to be 

supplied through external factors in order to complete the process which is due to the existence 

of various high energy barriers. One of the main energy barriers is to bring the two membrane 

bodies in close contact with each other in order to provide a starting point for fusion process. 

This requires protein clearance where different proteins between the two membranes must be 

cleared also known as ‘sieving’ process followed by overcoming the electrostatic energy barriers 

formed by negative charge on the membrane surfaces which causes repulsion between the 

membranes. This is followed by the barriers related to curvature deformations during 

hemifusion-stalk and fusion-pore formation and expansion [6].  
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Various factors have been identified that lower these energy barriers thereby facilitating the 

fusion process [7, 8]. One such factor is the SNARE (soluble NSF attachment protein receptor) 

family of proteins. SNARE proteins are known to bring the vesicle and target membrane in a 

close proximity by forming a tight zipper like complex between the vesicle bound v-SNARE 

protein, synaptobrevin ( VAMP) and target membrane bound t-SNARE proteins, syntaxin and 

SNAP-25 which is proposed to result in membrane fusion [9-12].   

Ca
2+

 is known to regulate this event in a precise manner although the exact mechanism at the 

molecular level is still unknown. Another protein which has been identified to play a significant 

role in membrane fusion is synaptotagmin-1 (SYT-1).  SYT-1 function is directly linked to the 

SNARE complex and has shown to have a direct effect on the kinetics of exocytosis [13].  

 

 

 

 

Figure 4: Schematic of membrane fusion of two vesicles. Two vesicles in close contact (left), hemifusion stage 

(middle) and fused vesicles (right). 
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Main objective of this research is to identify and understand the role of such factors in membrane 

fusion by studying the phenomena at the atomic detail with the use of molecular simulation. This 

study intends to provide a better understanding of the fusion process with applications in medical 

arena especially in the field of targeted drug delivery. Two major factors that have been 

identified and studied experimentally are the protein Synaptotagmin and SNAREs. In addition, 

Ca
2+

 is known to play a crucial role in this process, however the exact mechanism of action is 

still unknown. Role of Ca
2+

 in the interactions between SYT and bilayer membranes is also 

studied. 

 

Octanol-water partition coefficients 
 

Partition coefficient, in general, is defined as the ratio of solute concentration in two partially 

miscible solvents at equilibrium. This occurs when a compound has a tendency to distribute itself 

between two solvents which are immiscible with each other and are able to dissolve the solute to 

a partial extent. It provides a measure of difference of the compound solubility in two immiscible 

phases.  

 

The two solvents to be chosen for calculation of partition coefficient strictly depends on the 

problem at hand. For example, in problems related to organic chemistry, it was found out that 
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use of solvents with a big polarity difference facilitate the distribution and purification of desired 

products [14]. For biologically relevant problems, 1-octanol was chosen to be the most efficient 

solvent as it mimics the biological environment owing to the unique structure represented by a 

hydrophilic head and a hydrophobic tail. This structure resembles the lipid bilayers and cell 

membranes which are at the center of partitioning of biological molecules. In conjunction with 

water, the specific parameter is termed as 1-octanol water partition coefficient which is defined 

as the ratio of solute concentration in the 1-octanol phase to that in the water phase when the two 

solvents are at equilibrium.  

Mathematically it is expressed as, 

     
      

      
 

Equation 1 

 

Where, KOW is the octanol water partition coefficient, C
1-Oct

 is the concentration of solute in 1-

octanol phase and C
Water 

is the concentration of solute in water when the two phases are at 

equilibrium.  

Solute that stays preferentially in water is termed as hydrophilic and if the concentration is 

higher in 1-octanol phase, then it is termed as hydrophobic. 

The octanol–water partition coefficient, first introduced by Hansch and Fujita[15], is perhaps the 

most important quantity for the prediction of pharmacological and environmental properties for 

trace solutes[16].  KOW has been used extensively for the prediction of a wide variety properties 
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for drug molecules and trace pollutants; examples include bioactivity[17], bioaccumulation 

potential[18-20], skin permeability[21, 22] and soil–water partitioning[23, 24]. 

 

Figure 5: Schematic of 1-octanol. Carbon atoms are shown in cyan, hydrogen in white and oxygen in red. 

 

This work describes the application of the adaptive force bias method, combined with molecular 

dynamics simulations (ABF-MD), for the direct calculation of 1–octanol–water partition 

coefficients.  The ABF methodology [25-29] offers a number of potential advantages over 

existing methods for the calculation of free energies of transfer, perhaps the most important of 

which is that the ABF method eliminates the need for reference solutes and therefore provides a 

robust method for determination of the absolute free energies of transfer.   
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CHAPTER 2: Simulation Methodologies 
  

 

Molecular dynamics  
 

Molecular dynamics is a computational method used to simulate the system of interest and 

generate system properties at the microscopic level. The output is in the form of atomic level 

coordinates and velocities which is converted to macroscopic level properties such as pressure, 

energy etc. with the use of statistical mechanics.  

Theoretically, this method is based on Newton’s second law of motion which states that 

acceleration of an object is directly proportional to the force applied on the object in the direction 

of motion and inversely proportional to the mass of object. System under study may contain a 

given number of atoms and initial force on each atom from which the acceleration can be 

determined. Equations of motion are then integrated which yield information about the position, 

velocity and acceleration of each atom in the system as a function of time. This allows the 

system to evolve as a function of time and from this system trajectory, various properties can be 

determined. 

Molecular dynamics simulations can be computationally expensive but with the significant 

advancements in the field of computational power it is getting easier to simulate a wide variety 

of systems. Molecular dynamics based simulations serve as an essential tool to understand the 

physical properties of biological macromolecules [30].  The first molecular dynamics simulation 

of a biologically relevant molecule was published in the year 1977 [31]. Increment in 
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computational power can be understood from the fact that the original simulation was less than 

10 picosecond in length compared to the current scale of 10-100 nanosecond which is around 

1000 times faster but require 1/50
th

 of the time for a particular system [30].  

In this work, molecular dynamics simulations have been employed to study a range of biological 

as well as other systems by the generation of equilibrium properties. NAMD software engine has 

been employed throughout this study to run molecular dynamics simulations. VMD is employed 

for system and trajectory visualization followed by relevant analysis. 

NAMD has been developed by Schulten and coworkers to enable high performance computing 

of large biomolecular systems. It is a parallel molecular dynamics code which has the capability 

to employ computers in parallel thereby increasing the computational efficiency [32].  

Potential energy used to describe interactions between various atoms in the system forms the 

backbone of anu molecular dynamics simulation and defines the accuracy of the calculation. This 

potential energy function on a whole is termed as “force field”.  

General force field potential function comprises of interactions of the bonded type and non-

bonded type between atoms. Bonded interactions are further classified as bond, angle or dihedral 

interactions where the atoms are attached together by a covalent bond. Non-bonded interactions 

are of two types: one accounting for the electrostatic interactions between atoms and second for 

the van der Waal’s forces. 

In NAMD, these interactions are described by the following functions, 
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Bonded Interactions 

a) Bond : This term describes interactions between atom pairs which are separated by a covalent 

bond and is represented as a harmonic potential function, 

 

          
             

 

 

 

Equation 2 

 

where,  k
bond

 is the bond force constant, ri and r0 are the measured and equilibrium bond    

distance. 

b) Angle : This terms defines interactions between three atoms connected by covalent bonds 

using the harmonic function, 

           
     

         
 

 

 

Equation 3 

where, k
angle

 is the angle force constant, θi and θ0 are the measured and equilibrium angle. 

 

c) Dihedral : This term describes the interactions between two atoms separated by three 

covalent bonds using a cosine series, 
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Equation 4 

  

where φ is the dihedral angle and γ is the phase angle, n is the multiplicity of torsions. 

 

 

 

Adaptive biasing force  
 

Standard methodologies for the determination of free energy differences, such as free energy 

perturbation and thermodynamic integration, are based on perturbation theory, where the free 

energy difference between two systems A and B can be written as 

                                             

Equation 5 

Since this average is slowly convergent for all but the smallest transformations, it is expedient to 

split a single large perturbation into a series of smaller perturbations where the overall interaction 

of the solute with the solvent is represented by 

              

Equation 6 
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where λ varies between 0 and 1, with 1 corresponding to state B and 0 to state A.  This 

methodology was demonstrated in the seminal work of Jorgenson and Ravimohan where free 

energy of solvation of methanol relative to ethane was determined [33], and has been used 

extensively over the last 30 years with various modifications, for example to avoid “end–point 

catastrophe,” for the determination of relative free energies of solvation for numerous low 

molecular weight compounds.    

Despite the widespread use of free energy perturbation, it is not the ideal methodology for the 

calculation of partition coefficients.   First and foremost is the fact that the calculated free 

energies are relative to a reference solute, which in turn produces a partition coefficient relative 

to that of the reference solute.  To determine the absolute value of the partition coefficient 

requires knowledge of the experimental partition coefficient for the reference solute.  

Furthermore, an accurate molecular model or “force field” is required for both the reference 

solute and the solute of interest.  In principle it is possible to perform a perturbation from a ghost 

(non–interacting) particle to a fully interacting one [34], but a large number of intermediate 

states may be required to achieve convergence.  Another method for the calculation of absolute 

free energies of transfer and partition coefficients is Gibbs ensemble Monte Carlo 

(GEMC)[35],[36].  In GEMC, two condensed phases are simulated concurrently and attempts are 

made periodically to “swap” the solute of interest between phases.  The free energy of transfer is 

determined simply as the ratio of the number density of the solute in each phase[37]. 
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Equation 7 

This method works well for small solutes where reasonable acceptance rates for the transfer of 

solute molecules between phases may be achieved, but becomes impractical for larger molecules 

as the acceptance rate for molecule exchange goes to 0. 

The ABF methodology[25-29] offers a number of potential advantages over existing methods for 

the calculation of free energies of transfer, perhaps the most important of which is that the ABF 

method eliminates the need for reference solutes and therefore provides a robust method for 

determination of the absolute free energies of transfer.  Non-equilibrium methods based on 

Jarzynski’s equality [38, 39], sometimes referred to as “fast growth” methods, in principle could 

also be used to determine partition coefficients without the need for reference solutes. However, 

calculations of fluoro-methane transfer across a water-hexane interface have shown the fast 

growth method produces poor results for these types of calculations, with a systemic bias and 

large statistical uncertainty compared to ABF.  For this particular calculation of solute transfer 

across a liquid-liquid interface, the fast growth method fails because of the difficultly in 

achieving adiabatic switching of the external force applied along the reaction coordinate. 

Adaptive biasing force (ABF) method is a technique developed by Darve et al. [25]
,
[26, 27]to 

calculate the free energy difference of certain chemical or biological processes along generalized 

reaction coordinates in the system of interest. This method is a combination of probability 

density and constraint force methods,  and is based on the thermodynamic integration of average 
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force acting on coordinates, which is unconstrained.[25] As a part of ABF algorithm, an external 

biasing force, estimated locally from the sampled conformations of the system, is applied at each 

step to facilitate the system in overcoming significant energy barriers along the reaction 

coordinate. This allows the system to evolve freely without constraints, enabling the simulation 

to visit multiple states separated by high free energy barriers and improving sampling long the 

reaction coordinate. The theoretical foundation of this method is based on Equation 5, which is a 

modified version of the expression proposed by Darve and Pohorille[25, 26]  for the effective 

force (F
u
) acting on the reaction coordinate (ξ), 

  
    

   

   
 
 

 
 

 

  

  

   

  

   

   

   
 

Equation 8 

where mk are generalized masses associated with generalized coordinates represented by xk. 

 

The average of this applied force is equal and opposite to the mean force acting on   and cancels 

the free energy derivative computed for small intervals of reaction coordinate    so that the 

system can evolve and overcome free energy barriers.  

 

 
  

  
        

    

Equation 9 

The Helmholtz free energy A at constant temperature T, constant volume V and number of 

particles N is given by: 
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Equation 10 

where Z is the canonical partition function and    is the Boltzmann’s constant.  

The free energy as a function of the reaction coordinate can be written as: 

 

                     
                             

      
 

Equation 11 

where   is the thermal de Broglie wavelength and p is the conjugate momenta of position 

coordinate x. 

It is more convenient to compute the free energy difference        between state A and B for a 

system. The states A and B are based on the reaction coordinate which is a function of the 

particle position. 

         
     

  

  

  

    

Equation 12 

The first derivative of the free energy is related to the partial derivative of the Hamiltonian of the 

system with the reaction coordinate and therefore based on Equation 12 can be related to the 

constraint force acting along the reaction coordinate 

 

         
     

  

  

  

       
     

  
  

  

  

         
   

  

  

    

Equation 13 
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Further details of the ABF method and formulation including the implementation in NAMD [32] 

molecular dynamics package can be found in these publications [25-29] [40-42]. The Helmholtz 

free energy A obtained from NVT ensemble simulations is in close approximation to the Gibbs 

free energy G in condensed phase.[43]  The Gibbs free energy difference is used to compute the 

free energy of hydration and partition function. 
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CHAPTER 3: Prediction Of 1-Octanol/Water Partition 

Coefficient For N-Alkanes Using Adaptive Biasing Force 

Method 
 

*This work has been published in literature [44] 

Background 
 

The octanol–water partition coefficient, first introduced by Hansch and Fujita[15], is perhaps the 

most important quantity for the prediction of pharmacological and environmental properties for 

trace solutes[16].  Numerous experimental methods have been developed for the determination 

of log  Kow.  These include the shake flask [14, 45-47], slow–stir [48],  reverse phase high 

performance liquid chromatography (HPLC) [49-51], generator column [52] and voltammetry 

[53, 54]. The shake flask method is widely used due to its simplicity, however, this method is 

unreliable for solutes with poor water solubility (log Kow  >5) due to the formation of 1–octanol 

emulsions in the aqueous phase[16, 55].  Other methods, such as generator column and HPLC 

avoid the problem of octanol microemulsion formation, but are generally limited to neutral 

species and hydrophobic solutes[56].  More recently, voltametric methods have been developed 

for the determination of log Kow for zwitterionic and charged species, such as drug molecules 

and surfactants, which due to their amphiphilic nature tend to partition at the octanol–water 

interface, making traditional shake–flask experiments unreliable [53]
,
[57]

,
[58]. 

Motivated by the acute need for octanol–water partition coefficients, which are required for the 

development of many consumer products, computational methods known as Quantitative 
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Structure Property Relationships (QSPR) have been developed in an attempt to relate known 

molecular properties, such as structure, functional groups, dipole moment, etc, with various 

physical properties, such as aqueous solubility, vapor pressure, and octanol–water partition 

coefficient[59-66]. There are numerous variants of QSPR, but in general, a large number of 

“descriptors” are fit to reproduce a specific physical property (vapor–pressure log Kow, etc) for 

molecules in the “training set”.  Training sets may contain anywhere from a few hundred to tens 

of thousands of molecules, and in general, the larger the training set, the better the predictive 

capability.  Overall, most QSPR do an excellent job of predicting physical properties for 

molecules with similar molecular structure as those in the training set.  However, for molecules 

that differ significantly from those used in the optimization of the QSPR, the predictions may be 

unreliable [67, 68].  In particular, the use of QSPR for energetic materials and molecules with 

amphiphilic character has been particularly problematic [69-73]. 

Computer simulations using atom–based potential functions provide another computational route 

to the prediction of octanol–water partition coefficients.   Recognizing that the partition 

coefficient is related to the Gibbs free energy of transfer between 1-octanol and water phases 

       
  

       
 

Equation 14 

it is possible to determine log Kow directly as long as a suitable methodology exists for the 

determination of    .    
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Despite the widespread use of free energy perturbation, it is not the ideal methodology for the 

calculation of partition coefficients.   First and foremost is the fact that the calculated free 

energies are relative to a reference solute, which in turn produces a partition coefficient relative 

to that of the reference solute.  To determine the absolute value of the partition coefficient 

requires knowledge of the experimental partition coefficient for the reference solute.  

Furthermore, an accurate molecular model or “force field” is required for both the reference 

solute and the solute of interest.  In principle it is possible to perform a perturbation from a ghost 

(non–interacting) particle to a fully interacting one[34], but a large number of intermediate states 

may be required to achieve convergence.  Another method for the calculation of absolute free 

energies of transfer and partition coefficients is Gibbs ensemble Monte Carlo (GEMC)[35],[36].  

In GEMC, two condensed phases are simulated concurrently and attempts are made periodically 

to “swap” the solute of interest between phases.  The free energy of transfer is determined simply 

as the ratio of the number density of the solute in each phase[37]. 

               
      
        

  

Equation 15 

This method works well for small solutes where reasonable acceptance rates for the transfer of 

solute molecules between phases may be achieved, but becomes impractical for larger molecules 

as the acceptance rate for molecule exchange goes to 0. 

This work describes the application of the adaptive force bias method, combined with molecular 

dynamics simulations (ABF-MD), for the direct calculation of 1–octanol–water partition 
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coefficients.  The ABF methodology[25-29] offers a number of potential advantages over 

existing methods for the calculation of free energies of transfer, perhaps the most important of 

which is that the ABF method eliminates the need for reference solutes and therefore provides a 

robust method for determination of the absolute free energies of transfer.  Non-equilibrium 

methods based on Jarzynski’s equality[38, 39], sometimes referred to as “fast growth” methods, 

in principle could also be used to determine partition coefficients without the need for reference 

solutes. However, calculations of fluoro-methane transfer across a water-hexane interface have 

shown the fast growth method produces poor results for these types of calculations, with a 

systemic bias and large statistical uncertainty compared to ABF.  For this particular calculation 

of solute transfer across a liquid-liquid interface, the fast growth method fails because of the 

difficultly in achieving adiabatic switching of the external force applied along the reaction 

coordinate.    As will be shown later in this work, the ABF method is able to provide accurate 

values of hydration and solvation free energies with a computational effort  comparable to 

calculations performed with traditional thermodynamic integration.  The methodology presented 

here will work for nearly any solute, and the predicted free energies are insensitive to the choice 

of simulation parameters. 

 

Simulation Details 
 

In this work the adaptive biasing force method was used to determine the free energies of 

solvation for n–alkane solutes from C1 to C8 (methane to octane) in 1–octanol and water, and 
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these data were used to determine the octanol–water partition coefficient log Kow. Adaptive 

biasing force (ABF) method is a technique developed by Darve et al. [25]
,
[26, 27]to calculate the 

free energy difference of certain chemical or biological processes along generalized reaction 

coordinates in the system of interest. This method is a combination of probability density and 

constraint force methods,  and is based on the thermodynamic integration of average force acting 

on coordinates, which is unconstrained. As a part of ABF algorithm, an external biasing force, 

estimated locally from the sampled conformations of the system, is applied at each step to 

facilitate the system in overcoming significant energy barriers along the reaction coordinate. This 

allows the system to evolve freely without constraints, enabling the simulation to visit multiple 

states separated by high free energy barriers and improving sampling long the reaction 

coordinate. 

The TraPPE force field was used for n–alkanes[74] and 1–octanol[75], while the SPC/E[76] and 

TIP4P[77] force fields were used for water.   

Two approaches for the calculation of 1–octanol–water partition coefficients were evaluated.  

The first, denoted as “indirect transfer,” (IT) involved the calculation of the free energy of 

solvation for the water and octanol phases separately.  These free energies were combined 

according to Equation (11)  

                

Equation 16 

where ΔGHYD is the free energy of hydration in water and ΔGSOLV is the free energy of solvation 

in 1–octanol for the considered solute, to provide the overall free energy of transfer from water 
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to 1–octanol phase.  In the second approach, termed “direct transfer,” (DT) the free energy of 

transfer from water to octanol phases is determined directly in a simulation containing both a 

water and 1-octanol phase in contact.  From the free energy of transfer, it is possible to determine  

the 1–octanol–water partition coefficient according to Equation 1. 

Four different configurations were generated for the required calculations: separate 

water|vacuum (S1) and 1–octanol|vacuum (S2) systems for the indirect transfer (IT) approach , 

and two types of combined water/1–octanol systems for the direct transfer (DT) approach; one 

with an extended cell size in the z-direction (S3) compared to the other one (S4)  For systems S1 

and S2, a rectangular simulation cell was used, with dimensions 30 Å x 30 Å x 60 Å, with the 

condensed phase occupying a region approximately 30 Å x 30 Å x 30 Å. For system S3, a 

rectangular simulation cell was used with dimensions 30 Å x 30 Å x 200 Å , which included a 30 

Å x 30 Å x 50 Å water phase, and a 30 Å x 30 Å x 100 Å 1-octanol phase. This cell was 

extended to 200 Å in the z–direction with a 50 Å vacuum region, which was necessary to prevent 

interactions of the solute with the condensed phases through periodic boundary conditions.  

System S4 consisted of a 30 Å x 30 Å x 30 Å water region in contact with a 30 Å x 30 Å x 30 Å 

1-octanol phase.    A schematic for the direct transfer approach is shown in Figure 6 for the 

calculation of ΔG for the transfer of n-butane from water to 1-octanol.   
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Figure 6: Schematic of the system used for the calculation of ΔG via the method of direct transfer (system S3). The 

solute n-butane was placed initially at the center of water box.  During the simulation, the solute diffused from the 

water rich phase to the 1-octanol rich phase. A, B, C, D, E, F, G, H, and I correspond to the midpoint of the 9 ABF 

windows along the reaction coordinate. The corresponding average free energy for each of the 9 windows is shown 

as filled circles on the PMF profile. Arrow shows the direction of solute transfer from water into 1–octanol 
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The free energies corresponding to nine different locations (windows) along the reaction 

coordinate are shown to illustrate the relationship between the free energy profile and solute 

location.  The number of molecules in each box was selected to reproduce the density of water or 

1–octanol predicted by NPT simulations at 1 atm and 298 K for a specific potential truncation 

(10 or 14 Å). For calculations where Lennard–Jones interactions were truncated at 10 Å, 1–

octanol and water systems S1, S2, S4 contained 99 and 893 molecules, respectively. For systems 

utilizing a 14 Å cut–off, 102 and 896 1-octanol and water molecules were used, respectively.  

System S4 contained 339 1-octanol and 1500 water molecules.  It should be noted that the 

TraPPE force field was developed using an analytical tail correction for Lennard–Jones 

interactions, and therefore it is expected that the predictions of simulations using a truncated 

potential will differ slightly from the original parameterization.  In this case, the predicted 

densities for 1–octanol at 298 K and 1 atm were 0.795 ( rcut = 10 Å )  and 0.814 ( rcut = 14 Å ), 

which are in reasonable agreement with the experimental value of 0.826, but slightly less than 

predicted by the TraPPE force field when used with analytical tail corrections for the Lennard–

Jones interactions.  

The reaction coordinate for the determination of free energy changes was defined as the distance 

between the center of mass of the solute (COMS) under study and center of mass of the 

condensed phase (COMCP).  In the initial system setup, the COMS was placed at approximately 

the COMCP.  Over the course of simulation, the reaction coordinate spanned a distance of 45.0 

Å for system S3, 25.0 Å for systems S1, S2 and S4 from the center of mass of the condensed 

phase to the center of the vacuum region, or center of mass of the 1–octanol phase. To reduce the 
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statistical error of the calculations, the reaction pathway was divided into five equally sized non–

overlapping windows of 5.0 Å for systems S1, S2 and S4. For system S3, the reaction coordinate 

was split into 12 windows, where the 10 Å section through the interface was split into 5 windows 

2 Å wide and remainder of the reaction coordinate was split into 7 windows, each 5.0 Å wide.   

Smaller windows were chosen for the interfacial region to enhance sampling and improve the 

statistical quality of the PMF, which changes rapidly in this section of the reaction coordinate.  

To generate the initial configurations for each window, a 15,000 ps steered molecular dynamics 

simulation was performed where the solute was pulled with a constant velocity of 0.005 Å/fs 

along the reaction coordinate.   Coordinates from the trajectory of this simulation were saved 

periodically to generate the initial coordinate files for each window. For the ABF calculations, 

force statistics were stored in bins of width 0.2 Å.  The biasing force was applied after 500 

samples were collected in each bin. To keep the solute within the specified window, a harmonic 

force with a magnitude of 10.0 kcal/mol/Å was applied on the upper and lower boundary of the 

window along the z–axis of the simulation cell. 

Molecular dynamics simulations were performed with NAMD version 2.7b3[78]. Initial 

configurations for each system were generated with Packmol [79].  Energy minimization was 

performed on all systems for 500 steps using the steepest decent technique. Systems were 

equilibrated over a time period of 2.0 ns in isobaric–isothermal ensemble at 1.0 atm and 298 K, 

followed by the ABF-MD calculation in NVT ensemble.  For all calculations, the temperature 

was maintained at 298.0 K using Langevin dynamics.  For initial NPT simulations, used to 

determine the density of each system, constant pressure was maintained at 1.0 atm using the 
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Nose–hoover algorithm[80]
,
[81]. A timestep of 2.0 fs was used for the integration of Newton's 

equation of motion. Periodic boundary conditions were used in all the three spatial coordinates. 

Long range electrostatic interactions were calculated with particle–mesh Ewald algorithm[82, 

83]. A switching function was applied for all Lennard–Jones interactions at 8.5 Å for the 10.0 Å   

cut–off and at 12.5 Å for 14.0 Å cut–off. Data were analyzed using visual molecular dynamics 

[84].   Statistical errors were estimated from the standard deviation of the predicted free energies 

generated from 5-10 unique sets of simulations. 

 

Results and Discussion 
 

Free energy of hydration 

 

The free energy of hydration for n–alkanes has been studied extensively both experimentally[14] 

and with atom–based simulations.[33]
,
[34]

,
[85]

,
[86]  The wealth of data available makes this an 

ideal system for validation of the adaptive force bias methodology.  Hydration free energies were 

determined for each solute at 298 K by transferring the solute from the center of the condensed 

water phase to a vacuum region.  The potential of mean force (PMF) for each solute as a function 

of distance is plotted in Figure 7.   
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Figure 7: Hydration free energy profile generated with ABF-MD method for n-alkane transfer from water to vacuum 

(system S1).  Dashed line denotes the location of the interface.  Data shown are from calculations performed with a 

14 Å LJ cutoff. 

 

These data correspond to simulations of the TraPPE–UA force field for n–alkanes and the SPC/E 

force field for water.  As the solute moves through the water region, the PMF is flat until the 

solute is within 5 Å of the interface, at which point the PMF drops rapidly to a minimum, and 

then increases as the solute moves from the water phase to the vacuum region.  The free energy 

of transfer is determined from the difference in the measured PMF near the centers of each 

region.  The fact that the PMF is invariant over 5 Å of the initial and final sections of the reaction 

coordinate suggests the simulation cell is large enough that the measured free energy of transfer 

was not affected by the proximity of the interface.  
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Table 1: Hydration free energies ΔGHYD for n–alkanes predicted by TraPPE-UA force field 

Solute 

ΔGHYD (kcal/mol) 
TI–method 

[34] 

Experiment 

[86, 87] 10.0 Å LJ cut–

off 

14.0 Å LJ cut–

off 

Methane 2.4 ± 0.2 2.3 ± 0.1 2.3 ± 0.1 1.98 

Ethane 2.4 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 1.81 

Propane 2.6 ± 0.1 2.3 ± 0.1 2.4 ± 0.1 2.02 

Butane 3.0 ± 0.1 2.8 ± 0.1 2.8 ± 0.1 2.18 

Pentane 3.4 ± 0.1 3.1 ± 0.1 3.1 ± 0.1 2.36 

Hexane 3.7 ± 0.2 3.3 ± 0.1 3.4 ± 0.1 2.58 

Heptane 3.7 ± 0.1 3.7 ± 0.1 3.7 ± 0.1 2.65 

Octane 3.9 ± 0.1 4.0 ± 0.2 4.2 ± 0.2 2.93 

 

 

Values of the hydration free energy are presented in Table 1 for n–alkanes C1–C8.  Because the 

TraPPE force field was originally developed for use with analytical tail corrections for the 

Lennard–Jones potential, the effect of potential truncation on the free energies of solvation were 

also calculated.  The data show that the difference between ΔGHYD from truncation of the 

Lennard–Jones potential at 10 Å and 14 Å is within the statistical error of the calculation, which 

is 0.2–0.3 kcal/mol.  While the choice of Lennard–Jones cut–off has a significant impact on the 

prediction of vapor–liquid coexistence, these data show that the free energy of hydration is 

relatively insensitive.  For comparison, the recent calculations of Garrido et al., who used 

thermodynamic integration to determine hydration free energies of alkanes[34], are included.  

The predictions of the ABF-MD calculations are in excellent agreement with prior 

thermodynamic integration calculations, as shown in Figure 8. 
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Figure 8: Hydration free energy for n–alkanes as predicted by adaptive biasing force molecular dynamics 

simulations with an LJ cut–off of 14.0 Å (red diamonds); thermodynamic integration (green squares);  experiment 

(black circles). 

 

The close agreement of the ΔGHYD  predicted by both studies is also of interest because Garrido 

et al used the MSPC/E water model [88], while the SPC/E force field was used for water in this 

work [76].  To further investigate the effect of water models on the predicted free energies of 

hydration, additional calculations were performed with the TIP4P force field[77].  The results of 

these calculations for ΔGHYD are listed in Table 2, and show that the choice of water force field 

has no effect on the predicted hydration free energies for n–alkanes.   
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Table 2: Comparison of log Kow for n–alkanes predicted using SPC/E and TIP4P water models.  Data are shown for 

simulations using a 14.0 Å LJ cut–off. 

Solute 
ΔGHYD (kcal/mol) Log KOW 

TIP4P SPC/E Experiment TIP4P SPC/E Experiment[14] 

Methane 2.4 ± 0.05 2.3 ± 0.1 1.98 1.2 ± 0.1 1.2 ± 0.2 1.1 

Butane 2.6 ± 0.1 2.8 ± 0.1 2.18 3.0 ± 0.1 3.2 ± 0.2 3.9 

Hexane 3.2 ± 0.15 3.3 ± 0.1 2.58 
4.2 ± 

0.15 
4.4 ± 0.3 4.7 

Octane 4.2 ± 0.25 4.0 ± 0.2 2.93 6.0 ± 0.1 5.9 ± 0.3 5.2 

 

 

This is to be expected, since the sole interaction between water and n-alkanes in the chosen force 

fields is through Lennard-Jones interactions, and the Lennard-Jones parameters for SPC/E and 

SPC/E TIP4P SPC/E TIP4P=3.153 

Å). 

 

   

 

Free energy of solvation 

 

The free energies of solvation for n–alkanes in 1–octanol were determined using a methodology 

similar to that used for the hydration free energy calculations.  The potential of mean force for 

each solute as a function of distance along the reaction coordinate is presented in Figure 9.  
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Figure 9: Solvation free energy profile generated with ABF method for n-alkane transfer from 1–octanol to vacuum 

(system S2).  Dashed line denotes the location of the interface.  Data shown are from calculations performed with a 

14 Å LJ cutoff. 

 

 These data correspond to the TraPPE–UA force field for both the n–alkane solute and the 1–

octanol solvent.  From these data, the free energy of solvation was calculated for all solutes and 

is plotted as a function of chain length in Figure 10.  For n–alkanes C1–C7, the data are in close 

agreement with previous calculations performed using thermodynamic integration, see Table 3.  

 ΔGSOLV for n–octane predicted from ABF–MD simulations is about 0.6 kcal/mol lower than 

prior calculations performed with thermodynamic integration[34], and shows improved 

agreement with experimental data[89].  The effect of Lennard–Jones cut–off was also 

determined from simulations using a 10 Å and 14 Å cut–off and these data are listed in Table 4.  
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Although Lennard–Jones interactions are more dominant in this system compared to calculations 

of hydration free energy, the effect of potential truncation is still within the error of the 

calculation, which is ~0.3 kcal/mol. 

 

 

 

Table 3: Solvation free energies (ΔGSOLV) for n–alkanes in 1–octanol predicted using TraPPE-UA force field. 

       Solute 

ΔGSOLV (kcal/mol) 
TI–

method[34] 

 

Experiment[89] 10.0 Å LJ 

cut–off 

14.0 Å LJ 

cut–off 

GEMC[36]  

Methane 0.5 ± 0.05 0.7 ± 0.1 0.5 ± 0.1 0.44 0.5 

Ethane –0.4 ± 0.05 –0.5 ± 0.1 –0.4 ± 0.2 –0.54 –0.6 

Propane –0.9 ± 0.1 –1.2 ± 0.15 –1.0 ± 0.2 –1.18 –1.2 

Butane –1.7 ± 0.2 –1.6 ± 0.15 –1.4 ± 0.2 –1.82 –1.8 

Pentane –1.9 ± 0.1 –2.1 ± 0.15 –2.2 ± 0.2 – –2.3 

Hexane –2.3 ± 0.05 –2.7 ± 0.1 –2.7 ± 0.2 – –3.3 

Heptane –3.0 ± 0.1 –3.4 ± 0.2 –3.2 ± 0.2 – –4.1 

Octane –3.4 ± 0.25 –4.0 ± 0.1 –3.4 ± 0.2 – –4.6 

 

Finally, the difference between the free energy of solvation in wet and dry octanol was 

determined.   This is of particular interest for calculations of the partition coefficient since 

significant amounts of water are soluble in the 1–octanol phase.  ΔGSOLV

1–octanol phase with the mole fraction of water of 0.255, which corresponds to the experimental 

value.   
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Figure 10: Solvation free energy for transfer of n–alkanes from vacuum into 1–octanol predicted by adaptive biasing 

force molecular dynamics using a Lennard-Jones cut off of 14 Å for the TraPPE-UA force field (red diamonds); 

thermodynamic integration  green squares); GEMC (blue triangles); experiment (black circles). 

 

We note that this value likely does not correspond to the equilibrium value that would be 

predicted from simulations[35], but is expected to provide an upper bound on the maximum 

difference in ΔGSOLV between wet and dry 1-octanol.  ΔGSOLV predicted by ABF–MD 

calculations are listed in Table 4.  The data show that the presence of water leads to a slight 

decrease in the predicted ΔGSOLV –0.3 kcal/mol, which is consistent with prior 

calculations [89, 90], and in this case is within the statistical error of the calculation.  Therefore 

the use of dry octanol for the calculation of ΔGSOLV  and partition coefficients is justified, at least 
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in the case of non–polar molecules, given the small change in ΔGSOLV  relative to the uncertainty 

of the calculation. 

 

 

 

Table 4: Effect of water saturation of the octanol phase on the free energies of solvation and partition coefficients for 

n–alkanes.  Data shown are for simulations using a 14.0 Å LJ cut–off. 

 

Solute 
ΔGSOLV (kcal/mol) Log KOW 

wet dry Experiment wet dry Experiment[14] 

Methane 0.8 ± 0.2 0.7 ± 0.1 0.5 1.1 ± 0.2 1.2 ± 0.2 1.1 

Butane –1.4 ± 0.2 –1.6 ± 0.2 –1.8 2.8 ± 0.2 3.2 ± 0.2 3.9 

Hexane –2.5 ± 0.3 –2.7 ± 0.3 –3.3 4.2 ± 0.3 4.4 ± 0.3 4.7 

Octane –3.6 ± 0.3 –4.0 ± 0.4 –4.6 5.7 ± 0.2 5.9 ± 0.3 5.2 

 

 

Partition coefficients 

 

From knowledge of ΔGSOLV and ΔGHYD it is possible to calculate the octanol–water partition 

coefficient log Kow via Equation 1. 1-Octanol–water partition coefficients predicted by 

combining previously calculated free energy of solvation/hydration data are reported in Table 5 

and plotted in Figure 11.  These data show close agreement with previous calculations performed 

with thermodynamic integration [34]. 
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Table 5: Octanol–water partition coefficients (log KOW) predicted by the TraPPE-UA force field for n–alkanes. 

Solute 

Indirect Transfer 
Direct Transfer 

(30 A box) 
 

Direct 

Transfer 
TI–

method[34] 
Experiment[14] 

   

10.0 Å 

LJ cut–

off 

14.0 Å 

LJ cut–

off 

10.0 Å 

LJ cut–

off 

14.0 Å 

LJ cut–

off 

 (100 A box)    

Methane 1.4 ± 0.3 1.2 ± 0.2 1.6 ± 0.3 1.4 ± 0.3  - 1.3 1.1    

Ethane 2.1 ± 0.2 1.9 ± 0.2 1.9 ± 0.2 2.0 ± 0.2  2.0 ± 0.2 1.8 1.8    

Propane 2.6 ± 0.3 2.5 ± 0.3 2.7 ± 0.3 2.8 ± 0.3  - 2.5 2.4    

Butane 3.3 ± 0.3 3.2 ± 0.2 3.0 ± 0.2 3.5 ± 0.3  3.1 ± 0.1 3.1 2.9    

Pentane 3.8 ± 0.2 3.8 ± 0.2 3.9 ± 0.2 4.1 ± 0.2  - 3.9 3.4    

Hexane 4.5 ± 0.2 4.4 ± 0.3 4.6 ± 0.2 4.8 ± 0.2  4.4 ± 0.3 4.3 3.9    

Heptane 4.9 ± 0.3 5.2 ± 0.3 5.3 ± 0.3 5.3 ± 0.3  - 5.1 4.7    

Octane 5.4 ± 0.3 5.9 ± 0.3 5.8 ± 0.2 5.7 ± 0.2  5.8 ± 0.2 5.6 5.2  
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Figure 11: Octanol–water partition coefficient for n–alkanes predicted by adaptive force bias molecular dynamics 

simulations using a 14 Å LJ cutoff: direct transfer for 30 Å (red diamond) and 100 Å (orange triangles) 1-octanol 

box; indirect transfer (blue triangles); thermodynamic integration (green squares); experiment (black circles). 

 

 

In addition to the indirect transfer method, log Kow was determined by using the ABF 

methodology to transfer a solute directly from 1–octanol to water phase.  Prior molecular 

dynamics simulations have shown the 1-octanol-water interface is approximately 25 Å wide, 

which is due to the amphiphilic nature of 1-octanol [91]. 1-Octanol molecules tend to align 

perpendicular to the interface, which allows their hydroxyl groups to form hydrogen bonds with 

water.   The structure of 1-octanol in the interfacial region differs significantly from that of bulk 
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1-octanol, and it is not clear how the presence of the interface or the local microstructure affects 

the potential of mean force felt by the solute.    

In order to answer these questions, a series of ABF-MD calculations were performed for the 

solutes ethane, n-butane, n-hexane and n-octane using a system containing water and 1-octanol 

phases of 30 Å x 30 Å x 50 Å and 30 Å x 30 Å x 100 Å, respectively.  A 50 Å vacuum region 

was added to the simulation cell to eliminate interactions through periodic boundary conditions.    

These systems were large enough to ensure that the endpoints of the reaction coordinate were in 

regions where bulk conditions (density, local structure, etc) were observed.  Initial calculations 

were performed with a 75 Å reaction coordinate, starting from the center of the 1-octanol phase 

and ending in the center of the water phase.  From the density profiles shown in Figure 7, the 

final and initial states were clearly deep enough within each respective phase to be considered in 

bulk solution.   
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Figure 12: Density profiles for system S3. The density has been normalized by average bulk density of each 

component: water (green), 1-octanol CH2 (black), 1-octanol oxygen (red). Dashed blue line represents position of 

the interface. 

 

From simulations of n-octane transfer, Figure 12, it was found that the PMF was invariant over the 

last 30 Å of the reaction coordinate (-30 to 0 Å in Figure 12), and subsequent calculations for 

ethane, butane and hexane were performed using a 45 Å reaction coordinate to reduce the 

computational expense of the calculation.  It is important to note that while the local density of 

oxygen atoms in the 1-octanol phase varied significantly along the last 30 Å of the reaction 

coordinate, this had no effect on the calculated PMF.  The PMF profiles for ethane, butane and 
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hexane are plotted as a function of reaction coordinate in Figure 13.  For each solute, the free 

energies of the final and initial states were determined by averaging over the first and last 10 A 

of each PMF profile.   The resulting log Kow values are plotted in Figure 11 and listed in Table 5.  

These values agree within the statistical uncertainty of the calculation with results produced 

using the indirect transfer method, and data from the literature determined from thermodynamic 

integration [34]. 

 

Figure 13: Free energy profile generated with ABF method for ethane (red), butane (orange), hexane (green) and 

octane (blue) transfer in system S3 from water to 1–octanol (dry) phase.  Data shown are from calculations 

performed with a 14 Å LJ cutoff. Dashed black line marks the location of the interface.  
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To understand how the local solvation environment affects the observed PMF and optimize the 

computational time required to produce reliable free energies of transfer, calculations were 

repeated using an interfacial system where both the octanol and water phases were 30 Å x 30 Å x 

30 Å.  Each solute was transferred from the center of mass of the water phase to the center of 

mass of the 1-octanol phase.  The PMF profiles for the solutes methane to octane are presented in 

Figure 14.  The predicted free energies of transfer are listed in Table 7 in comparison to the prior 

indirect transfer calculations, and direct transfer calculations for the large system (S3).  In all 

cases, the agreement between the three methods, as well as prior calculations performed with 

thermodynamic integration is excellent [34].  This is despite the fact that the reaction coordinate 

is only slightly larger than the width of the interface, which raises a concern that the solute may 

not actually be in a “bulk” phase at the endpoints of the reaction coordinate.  

 



44 
 

 
 

 

Figure 14: Free energy profile generated with ABF method for n-alkane transfer from water to 1–octanol (dry) phase 

in system S4.  Data shown are from calculations performed with a 14 Å LJ cutoff. 

 

Number integrals were calculated for CH2 (octane)-CH2(1-octanol) interactions and CH2(octane)-

O(1-octanol) interactions and used to analyze the effect of system size on the local solvation 

structure in the 1-octanol phase.  Data for system S3 (100 Å 1-octanol phase ) were determined 

from the first ABF window, which corresponds to the center of the 1-octanol phase.   Data for 

system S4 (30 Å 1-octanol phase) were also determined from the first ABF window, which 

corresponds to the center of the 1-octanol phase, but is on the edge of the interfacial region 
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where 1-octanol is aligned perpendicular to the interface.  The CH2(octane)-O(1-octanol) number 

integral is presented in Figure 15, and shows only slight differences between the number of 

oxygen atoms interacting with the solute.  The CH2 (octane)-CH2(1-octanol) number integrals for 

systems S3 and S4 are presented in Figure 15 and are indistinguishable.   
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Figure 15: Top panel: Number integrals for interactions between CH2 (octane) and O (1-octanol).  Bottom panel: 

Number integrals for interactions between CH2(octane) and CH2(1-octanol).   System S3 (black line), system S4 (red 

line). 
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 These data show that although the microstructure of the 1-octanol phase in the S3 system may 

differ from that of bulk 1-octanol, the local solvation environment around the solute is 

indistinguishable from that of the bulk phase.  Since the solute experiences the same local 

solvation environment in the small system S4 as it does in bulk 1-octanol, the PMF experienced 

by the solute must also be identical.  These results are consistent with Gibbs ensemble Monte 

Carlo calculations that were used to investigate the effect of water saturation on the 

microstructure of 1-octanol and its effect on the free energy of transfer for non-polar and polar 

solutes[36].  While water saturation was found to have a significant impact on the microstructure 

of 1-octanol, the local solvation environment around non-polar solutes, such as n-alkanes, was 

unchanged compared to dry 1-octanol.  Similarly, water saturation was not found to have a 

measurable effect on the free energy of solvation for n-alkanes C1-C4.   

 

Convergence and error analysis 
 

In this section, a detailed study is presented for n–pentane to determine the effect of various 

simulation parameters on the accuracy and precision of the ABF method. It is assumed that 

similar behavior will be observed for the other solutes studied in this work.  The most basic 

measure of sampling quality is the number of times the solute visits are particular location along 

the reaction coordinate.   A plot of the number of samples observed during the ABF-MD 

simulations at each point along the reaction coordinate is presented in Figure 16 for the transfer of 

n–pentane from water to vacuum (system S1) and from 1–octanol to vacuum (system S2).  This 



48 
 

 
 

plot verifies that uniform sampling occurred along the complete reaction pathway for both 

systems S1 and S2.  

 

Figure 16: Distribution of samples along the reaction coordinate from 8 ns ABF–MD simulations for the transfer of 

n-pentane from water to vacuum (red) and from 1-octanol to vacuum (black).  Distribution was constructed by 

combining data from the 5 individual simulations. 

 

The evolution of sampling along the reaction coordinate was also studied for the n–pentane 

system for 0< t < 1.0 ns, and the resulting histograms are presented in Figure 17.  At 0.02 ns, only 

a few locations along the reaction coordinate were sampled.  As expected, though, the number of 

samples and the uniformity of sampling increased with increased runtime.  By 0.3 ns, all 
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locations along the reaction coordinate had be visited multiple times, although not uniformly.  

The uniformity of sampling may be quantified using the max-min ratio, which is defined as the 

largest number of samples observed for a particular location on the reaction coordinate, divided 

by the smallest number of samples observed.  At 0.02 ns, the max-min ratio is ∞ since some 

locations have not yet been visited by the simulation.  As shown in Figure 18, the max-min ratio 

drops rapidly from over 50 ( at 0.10 ns) , to a value of approximately 1.35 after 1.0 ns, which 

suggests a uniform sampling of the reaction coordinate was achieved rapidly. 
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Figure 17: Evolution of sampling histogram from 0.02 ns to 1.0 ns during 1.0 ns ABF-MD simulation. 
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Sampling efficiency, defined as the ratio of total number of samples collected in a particular 

window to the total number of simulation steps, was evaluated and is tabulated for the n–pentane 

for all the three systems S1, S2 and S3 are in Table 6. The max-min ratio, is also presented for 

each window.  The data shows that for all cases, a high sampling efficiency, between 88–90 %, 

was observed. Loss of samples occurs when the solute occasionally crosses the window barrier 

and during the simulation. For each window, the max-min ratio was between 1.18 and 1.52, 

illustrating convergence of the calculation. 

 

Figure 18: Evolution of max-min ratio during 1ns ABF MD simulation. 
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Table 6: Sampling efficiency and max-min ratio at the end of ABF simulations. Data shown are for the case of n-

pentane transfer from 1–octanol to vacuum (system S1), n-pentane transfer from water to vacuum (system S2) and 

of n-pentane transfer from water to 1–octanol (system S3). 

 

                                 System S1                                        System S2                                       System S3       

Window 
Range 

(Å) 

Total 

Samples 

accrued 

Sampling 

Efficiency 

(%) 

MaxMin 

Ratio 

Total 

Samples 

accrued/ 

4*106 

Sampling 

Efficiency 

(%) 

MaxMin 

Ratio 

Total 

Samples 

accrued/ 

6*106 

Sampling 

Efficiency 

(%) 

Max 

Min 

Ratio 

1 0 – 5 3579870 89.50 1.36 3539980 88.50 1.24 5301322 88.36 1.52 

2 5 – 10 3563272 89.08 1.41 3464591 86.61 1.37 5339307 88.99 1.45 

3 10 – 15 3586021 89.65 1.18 3602301 90.06 1.28 5350243 89.17 1.48 

4 15 – 20 3572167 89.30 1.19 3591461 89.79 1.20 5409373 90.16 1.43 

5 20 – 25 3543811 88.60 1.22 3556602 88.92 1.21 5355089 89.25 1.50 

 

 

 

Conclusions 
 

This work illustrates the application of the adaptive force bias methodology, originally 

developed for determination the potential of mean force in biological systems, to the direct 

calculation of absolute free energies of hydration, solvation, and 1-octanol-water partition 

coefficients.  Two different approaches were used to calculate the free energy difference for the 

transfer of a solute from water to 1–octanol phase; one where the 1–octanol and water phases do 

not interact with each other (IT method) and the other where the 1-octanol and water phases are 

in direct contact (DT Method).  Calculations were performed with two different values of LJ cut–

G and log Kow values generated through ABF 

method using both DT and IT approach were consistent with each other and with prior 
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calculations performed with traditional thermodynamic integration[34] and Gibbs ensemble 

Monte Carlo (GEMC)[36].  Direct transfer calculations performed on large systems were used to 

further validate the proposed methodology, and illustrated how the potential of mean force felt 

by the solute, at least for n-alkanes, were remarkably insensitive to the structure of the solvent.  

Investigation of the local microstructure around the solute provides an explanation for this: 

regardless of the solution microstructure, identical local solvation environments were observed 

around solutes both near the interface and in the bulk region. 

In this particular application, the ABF method displayed rapid convergence, with the max-min 

ratio approaching an ideal value of 1 after only 1 ns of simulation.  While still computationally 

more expensive for a given statistical uncertainty than GEMC, the ABF-MD method is more 

effective than GEMC for the calculation of log Kow for larger solutes that cannot be transferred 

easily between condensed phases using configurational-bias Monte Carlo.  Of the two methods 

described in this work, indirect transfer, although requiring two separate systems, is more robust 

than the direct transfer method for the calculation of partition coefficients.  The air-water 

interface in each of the indirect transfer calculations is approximately half the width of the 

octanol-water interface, which reduces the sensitivity of the calculation to system size.  

Additionally, half of the reaction coordinate in the indirect transfer calculations is in the vacuum 

region, ensuring excellent sampling of phase space, and providing opportunities for further 

optimization.  Direct transfer calculations require a system that is large enough that the solute is 

able to achieve a local solvation environment that is the same is it would in a bulk 1-octanol 

phase.  For n-alkanes this can be done in a system as small as 30 Å in length, but for polar 
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molecules, such as alcohols, a significantly larger simulation cell would be required to ensure the 

presence of the interface did not affect the solvation structure around the solute at each endpoint 

of the reaction coordinate.  Like all free energy methods, the optimal simulation parameters, such 

as system size, length of the reaction coordinate, windows size, etc, are expected to vary 

depending on the solute of interest. 
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CHAPTER 4: Computational Prediction Of Ionic Liquid 1-

Octanol/Water Partition Coefficient 

 

*This work has been published in literature [92] 

Background 
 

Ionic liquids (ILs) are being touted as “panacea” solvents with recognized applications extending 

from cellulosic dissolution to overcome recalcitrance problems in biomass processing,[93] to 

liquid-phase exfoliation of grapheme [94], carbon capture[95] and battery electrolytes [96]. 

Salient features for the superlative behaviour exhibited by this class of fluid include non-

volatility and high thermal stability. The multitude of cations and anions which can generate ILs 

provides seemingly infinite permutations for developing designer or task-specific ILs. And while 

ILs are often associated with negligible vapour pressures and so should not contribute to 

atmospheric pollution, they certainly do raise serious eco-toxicological concerns. Of course, the 

potential pathways defining the environmental fate of any compound include volatility, sorption, 

hydrolysis, and degradation. The aspects involved in this process include the complexity of water 

systems, soils, and various organisms. A classic, fundamental, and quantifiable index describing 

solute hydrophobicity related to partition behaviour is the 1-octanol/water partition coefficient 

(Kow), the ratio of the concentration of the solute in the 1-octanol phase to that in a juxtaposed 

aqueous phase at equilibrium. Besides playing a role in understanding the environmental fate of 
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a compound, the relative magnitude of Kow serves as a rough guideline for predicting “enzyme 

compatible” media for non-aqueous biocatalysis[97]. Experimentally, this quantity may be 

determined using the shake flask (or tube) method followed by concentration determination 

using UV–vis spectroscopy or high-performance liquid chromatography (HPLC). Often, these 

techniques report a combined partition coefficient based on the presence of dissociated/un-

dissociated ions. To date, the determination of Kow among ILs has been limited to imidazolium-

based ILs due to the ability to detect the imidazolium ring by UV–vis.[98] 

Theoretically, linear free energy relation correlations (LFER) based on Abraham’s general 

solvation model[99] and COSMO–RS[100] have been used to predict partition coefficients of 

ILs. A major disadvantage of these methods is the requirement of an extensive training set of 

experimentally-determined Kow to parameterize the coefficients for solvation free energy 

correlation. Partition coefficients are computed based on the difference in Gibbs free energy of 

solute transfer between two phases. To this effect, free energy computations such as free energy 

perturbation (FEP) theory[101] and thermodynamic integration[102] (TI) have been employed.  

 The free energy calculations using FEP are dependent on the creation of a thermodynamic 

cycle involving a reference solute. In principle, it is possible to perform a perturbation from a 

ghost (non-interacting) particle to a fully-interacting one, but a large number of intermediate 

states may be required to achieve convergence. Another method for the calculation of absolute 

free energies of transfer and partition coefficients is Gibbs ensemble Monte Carlo (GEMC). In 

GEMC, two condensed phases are simulated concurrently and attempts are made periodically to 

“swap” the solute of interest between the phases. However, this too suffers, in this case from low 

acceptance rates for large molecules exchanging phases. This work furthers the adaptive bias 
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force method (ABF) of Darve et al. [103-105] to calculate the free energy difference of 

chemical/biological process along a reaction coordinate. This method has been used previously 

to accurately predict the free energies of solvation and partition coefficients of homologous 

alkane series.[106] An advantage of the ABF method is that no reference solute is needed. Non–

equilibrium methods based on Jarzynski’s equality, sometimes referred to as “fast growth” 

methods, can in principle be applied to determine partition coefficients without the need for 

reference solutes. However, calculations of fluoromethane transfer across a water/hexane 

interface have shown the fast growth method produces poor results for these types of 

calculations, with a systemic bias and large statistical uncertainty compared to ABF.[27] Another 

significant feature of the ABF method is the use of unconstrained reaction coordinates thereby 

assisting in unbiased and uniform sampling of the defined region. Building off these advantages, 

the current work represents the first study using ABF–MD for directly calculating 1-

octanol/water partition coefficients for imidazolium-based ILs.  

 

Simulation Details 
 

 The heart of any FEP or TI using Monte Carlo or MD is the intermolecular potential used to 

describe the pairwise interactions. In this work, an all-atom force field developed by Lopes et al. 

was used to model the imidazolium cation and anion interactions.[107] The TraPPE–UA model 

for alcohols[108] was used in turn to model 1-octanol. The SPC/E model was used to model 

water explicitly.[109] The ABF method[110] adopted in NAMD[111] was used to determine the 

free energies of solvation for imidazolium ILs in 1-octanol and water, and these data used to 
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determine log Kow values. As part of the ABF algorithm, an external biasing force (F
U
), 

estimated locally from the sampled conformations of the system and updated continuously, was 

applied at each step to facilitate the system in overcoming significant energy barriers that may be 

present along the reaction coordinate. This force was applied to a (cation + anion) pair of the 

ionic liquid “solute” as shown in Fig. 1. This allows the system to evolve freely without any 

constraints, enabling the simulation to visit multiple states separated by high energy barriers, 

resulting in an improved sampling of the reaction coordinate. Two different configurations were 

generated for the required calculations; an individual water/vacuum system (S1), 1-

octanol/vacuum system (S2) for the indirect transfer (IT) approach as seen in Fig. 1a,b. For 

systems S1 and S2, a rectangular simulation cell was used, with dimensions of 30 × 30 × 60 Å, 

with the condensed phase occupying a region 30 × 30 × 30 Å. The number of molecules in each 

box was selected to reproduce the density of water or 1-octanol predicted by isothermal–isobaric 

NPT simulations at 1 atm and 298 K for a specific potential truncation (14 Å).  For systems 

utilizing a 14 Å cut-off, 102 1-octanol and 896 water molecules were used, respectively.  

 



59 
 

 
 

 

Figure 19: Schematic diagram for the “indirect transfer method”. (a) 1-Octanol and (b) water boxes containing 

[bmim][NTf2] solute are shown. Six windows of 5 Å bin width each in the Z-direction were used to compute the 

potential of mean force using ABF–MD simulations. The arrow suggests the direction of solute transfer with a force 

F along the Z reaction coordinate. Right: Average free energy of solvation profiles generated with ABF–MD for six 

ILs transferred from a 1-octanol-rich phase to vacuum (top) and from a water-rich phase to vacuum. 

 

Results & Discussion 

 

Potential of mean force  
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The profiles of the potential of mean force (PMF) for each solute in 1-octanol and water as a 

function of distance along the reaction coordinate are presented in panels (a) and (b) of Figure 19, 

respectively. The PMF for each solute shown is based on an average profile obtained from three 

to five independent simulations. Unlike in the case for alkanes, the PMF profiles are flat at the 

interface which is attributed to the balance between the entropic factor and the solute solvent 

interactions. ILs comprising six different anions paired with the 1-butyl-3-methylimidazolium 

([bmim]
+
) cation were studied in this work. The free energy of hydration/solvation was 

computed based on the difference in the free energy of the first window (solute in water-rich 

phase) and the last window (solute in vacuum phase). The rank order for the ILs based on the 

free energies of hydration ranging from maximum to minimum affinity towards water was found 

to be [CH3COO]
–
 > [BF4]

–
 ≥ [TfO]

–
 ≥ [PF6]

–
 > [dca]

–
 > [NTf2]

–
. This ranking can be loosely 

correlated with the order of the association strength[112] of the anions reflected in the ability of 

the anion to interact with its solvated cation partner.  

 

Partition Coefficients 
 

The partition coefficients of several imidazolium ILs have been reported over the past decade, 

however.[98, 100] Theoretically, Kow can be computed using, 

RT303.2
log

solvhyd GG
Kow


  

Equation 17 

Figure 20 presents computed log Kow values alongside experimental ones. For [CH3COO]
–
, the 
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predictions are in excellent accord with experimental data. For [TfO]
–
 and [PF6]

–
, the ABF 

method appears to over-predict the IL hydrophilicity by ca. 0.80 and 0.2 log units, respectively. 

In the case of [NTf2]
–
, the predictions lie within the experimentally observed range. 

 

 

 

Figure 20: Comparison between 1-octanol/water partition coefficients determined for [bmim][X] ILs using ABF–

MD simulations and eqn. 1 and experimental values for various anions. X = anion. 

  

 

Overall, ABF–MD simulation predictions suggest a slightly more hydrophilic nature than 

experimental observations, with the exception of [CH3COO]
–
, [BF4]

–
, and [dca]

–
, in which case 

the experimental log Kow can be considered to fall within computational uncertainty. The 

deviation from experiment for the remaining three ILs may arise in part from the united-atom 
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model being used for 1-octanol and the choice of the water model. It must be stated, however, 

that there are relatively few experimental data and considerable scatter in cases where log Kow 

has been determined by multiple groups for a given IL [98, 113]. Computational studies have 

shown that a water saturated 1-octanol phase (i.e., “wet” octanol) is a more favourable phase for 

computing partition coefficients of polar solutes [36, 114], a logical consideration given that this 

reflects how Kow is actually determined experimentally.  

With this in mind, we performed additional simulations in a box consisting of 35 waters and 102 

1-octanol molecules, based on the reported water saturation in 1-octanol of 20–29 mol%.[115] 

The corresponding log Kow determined using wet octanol is given in Figure 20. The ΔGsolv for wet 

octanol is greater in magnitude than ΔGsolv for dry octanol in the case of these polar solutes. The 

presence of additional hydrogen bonding sites in the form of water molecules in wet 1-octanol 

provides a larger energy barrier for the solute to transverse from the condensed phase region into 

vacuum. The increased ΔGsolv magnitude in the case of wet 1-octanol results in a reduction in log 

Kow, bringing the values more in line with experiment. 
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Figure 21: Distribution of sampling along the reaction coordinate showing results for [bmim][TfO] transfer from 

water to vacuum (red) and 1-octanol to vacuum (black). b) Temporal evolution of the MaxMin ratio.   
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Sampling efficiency of ABF method 
 

A hallmark of the ABF method is that sampling of the phase space along a chosen reaction 

coordinate occurs in a uniform and homogenous manner irrespective of high-energy barriers 

present along the pathway. To validate the sampling behaviour in these ABF simulations, a test 

case of [bmim][TfO] was chosen for which the number of samples accumulated at the end of the 

simulation were plotted as a function of the reaction coordinate. The resulting plot shows the 

transfer of [bmim][TfO] from water to vacuum and from 1-octanol to vacuum (Figure 21). In both 

cases, uniform sampling is observed along the complete reaction pathway. The evolution in 

sampling was also studied for [bmim][TfO] transfer from 1-octanol and water to vacuum phase. 

Histograms collected during the course of simulation as a function of the reaction coordinate 

indicated that the sampling became uniform around 8 ns, indicating the convergence of ABF run. 

The MaxMin ratio is another parameter commonly used to determine the convergence of ABF 

simulations. It is defined as the ratio of the maximum-to-minimum number of samples collected 

in a specific region along the reaction coordinate. This ratio is infinite at the start of the 

simulation but attains a measurable value as the simulation progresses and all locations are 

sampled at least once. In this case, the MaxMin value eventually decays to near unity after 8 ns 



65 
 

 
 

of runtime, suggesting that all the locations have been equally visited and marking the 

convergence of the ABF run.  In the case of alkanes, the convergence was achieved faster as the 

maxmin ratio reached unity in one nanosecond [106].   

 

 

 

Conclusion 
 

In summary, ABF–MD simulations were used to expediently predict 1-octanol/water partition 

coefficients for imidazolium- based ILs for which measurable Kow values are known. The use of 

wet 1-octanol in the simulations gives a more realistic estimate for ΔGsolv, providing more 

satisfactory estimates for log Kow. This computational strategy is as powerful as it is general, 

suggesting its extension to ILs for which Kow is not known or is difficult to measure 

experimentally due to lack of a reliable chromophore (e.g., ammonium, pyrrolidinium, or 

phosphonium ILs).   These encouraging results suggest prospects for this computational tool in 

the a priori prediction of log Kow values of ionic liquids broadly with possible screening 

implications as well (e.g., prediction of CO2-philic ionic liquids).   
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CHAPTER 5: 1-Octanol-Water and Air-Water Partition 

Coefficients for Nitro-Aromatic Compounds from Molecular 

Dynamics Simulations. 
 

*This work has been accepted and is currently under publication in Physical Chemistry Chemical Physics 

(PCCP) journal 

 

Background 
 

The prediction of environmental fate of energetic materials requires knowledge of physical 

property data, such as vapor pressures, aqueous solubility, 1-octanol-water partition coefficients 

and Henry’s law constants.  Common energetic materials such as trinitrotoluene (TNT), 

cyclotrimethylenetrinitramine (RDX) and sym-cyclotetramethylene-tetramitramine (HMX) have 

been studied extensively and numerous physical property data are available.  For TNT, 1-

octanol-water partition coefficients[116], Henry’s law constants, vapor pressures  and aqueous 

solubility have all been determined experimentally by a number of groups[117-121].  Vapor 

pressures have also been determined for RDX and HMX.  In cases where multiple data sets exist, 

however, significant differences have been observed between some of the data sets.  For 

example, reported values of the aqueous solubility for TNT may vary by as much as a factor of 

2[122]. For new formulations, physical property data are sparse.  In the case of two materials of 

interest in this work, 2,4-dinitroanisole (DNAN) and N-methyl-p-nitroaniline (MNA), 

experimental aqueous solubility, octanol-water partition coefficients and Henry’s law constants 

have only recently been published[123, 124].  For emerging energetic materials the crystal 
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structures and melting points are usually known, but little else is known about thermodynamic or 

transport properties.  

The lack of consistent physical property, and the acute need for such data that may be used to 

provide some prediction of the environmental fate of a particular compound, drives the 

development of methodologies for the prediction of relevant physicochemical properties.   The 

most common of these methods is Quantitative Structure Property Relationship (QSPR)[65, 125-

130].  There are numerous variants of QSPR, but in essence, a large number of “descriptors” are 

fit to reproduce a specific physical property (vapor-pressure log Kow, etc) for molecules in the 

training set.  Training sets may contain anywhere from a few hundred to tens of thousands of 

molecules, and in general, the larger the training set, the better the predictive capability. Overall, 

most QSPR do an excellent job of predicting physical properties for molecules with similar 

molecular structure as those in the training set.  However, for molecules that differ significantly 

from those used in the optimization of the QSPR there is a concern that the predictions of QSPR 

may not be representative of experimental data[67, 131]. In particular, the use of QSPR for 

energetic materials has been particularly problematic[73]. 

Computer simulations using atom–based potential functions provide another computational route 

to the prediction of partition coefficients (air-water, 1-octanol-water), albeit at significantly 

greater computational cost that QSPR.  Recognizing that the partition coefficient (log Kow) is 

related to the Gibbs free energy of transfer between 1-octanol and water phases, 
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Equation 18 

it is possible to determine log Kow directly as long as a suitable methodology exists for the 

determination of    .   

Indeed, a variety of methods have been used to determine the free energy of transfer for a solute 

between octanol and water from computer simulation.  Garrido et al, have used molecular 

dynamics simulations combined with thermodynamic integration to determine partition 

coefficients for a wide variety of compounds, including alkanes, alcohols, aromatics, ketones and 

chlorobenzenes[34, 132, 133], and have shown that calculations of hydration free energies may 

be used to optimize force field parameters[134].  Expanded ensemble techniques have been used 

to determine partition coefficients for a number of compounds, including the energetic material 

N-methyl-p-nitroaniline[135].  Chen and Siepmann used Gibbs ensemble Monte Carlo to 

determine free energies of transfer for short alkanes and alcohols[35].  Finally, our group has 

used adaptive biasing force molecular dynamics (ABF-MD) simulations to determine log Kow for 

n-alkanes[136], as well as a number of ionic liquids[92]. 

In this work, united-atom force fields, based on the Transferable Potentials for Phase Equilibria 

(TraPPE-UA), are developed for eleven nitro-aromatic compounds, which include 2,4-

dinitrotoluene (24-DNT), 2,6-dinitrotoluene (2,6-DNT), 3-nitrotoluene(3-NT), 4-nitrotoluene(4-

NT), 1,3-dinitrobenzene (1,3-DNB), 1,4-dinitrobenzene (1,4-DNB), 2,4-dinitroanisole (DNAN), 

1,3,5-trinitrobenzene (TNB), 2-nitroanisole (2-NAN), 4-nitroanisole (4-NAN) and n-methyl-p-
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nitroaniline (MNA).  1-octanol-water and air-water partition coefficients are predicted for the 

optimized TraPPE-UA force field with adaptive biasing force molecular dynamics simulations, 

and compared to available experimental data.  Two additional models are presented for energetic 

materials with five membered rings for which no experimental data are available in the open 

literature: 3,5-dinitropyrazole (DNP) and 3-nitro-1,2,4-triazole-5-one (NTO). 

The development of reliable models has been challenging for molecules containing nitro 

functional groups.  Calculations performed with the Optimized Potentials for Liquid Simulations 

all-atom (OPLS-AA) force field suggest that ab initio methods tend to produce partial charges 

that are too large, leading to large over-predictions of hydration free energies[137, 138].  Similar 

problems were observed in this work for dinitro and trinitro aromatic compounds, which 

necessitated the empirical optimization of partial charges to reproduce 1-octanol-water partition 

coefficients.  The charge optimization procedure and other relevant details of the optimized force 

fields are discussed in detail in the next section. 

 

Force Field 
 

In the TraPPE-UA force field, non-bonded interactions between sites are described by pairwise-

additive Lennard-Jones potentials and point charges: 
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Equation 19 

where rij,    ,    , and qi, are the separation, LJ well depth, LJ collision diameter, and partial 

charges, respectively, for the pair of interaction sites i and j.     is the permittivity of vacuum.  

Non-polar hydrogen atoms, i.e. hydrogen atoms bonded to carbon atoms, were combined with 

carbon to form a single united-atom interaction site.  Interaction sites were placed on the nuclei 

of their respective atoms.  Lennard-Jones parameters for various functional groups were taken 

from analogous compounds in the TraPPE force field[74, 139-141], and are listed in the 

supplementary information. Interactions between unlike atoms were determined using Lorentz-

Berthelot combining rules: 

    
     

 
 

Equation 20 

          

Equation 21 

Initial estimates of partial charge distributions were determined from a CHELPG analysis of 

electrostatic potential energy surfaces derived from ab initio calculations at the HF/6-31+G(d,p) 

level of theory and basis set.  All electronic structure calculations were performed with Gaussian 

09[142].  Compounds were optimized in the gas phase from numerous initial conformations to 

ensure a global minimum had been reached.  Partial charges predicted by ab initio calculations 
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for atoms in certain functional groups, e.g. –NO2, -OCH3, -NHCH3, varied slightly (0.02-0.4 e) 

from molecule to molecule.  To simplify the models, the partial charges for these functional 

groups were averaged from the results produced by ab initio calculations for DNAN and MNA.  

Partial charges for the alpha carbons were set so that the functional group plus alpha carbon 

formed a neutral charge group. This methodology of using neutral charge groups was chosen to 

allow one to potentially construct models for new compounds without having to perform 

additional ab initio calculations.  Calculation of air-water and 1-octanol-water partition 

coefficients revealed that partial charges predicted by a single combination of theory level and 

basis set did not produce uniformly accurate results for all nitro-aromatic compounds, 

necessitating an empirical optimization approach.  For mono-nitro compounds, reliable results 

were obtained with partial charges determined directly from the aforementioned ab initio 

calculations.  Using these charges for dinitro compounds, however, produced 1-octanol-water 

partition coefficients that were approximately 1.0 log unit too low, suggesting the model was too 

hydrophilic.  From simulations of 1,3-dinitrobenzene, it was determined that a scaling factor of 

0.9 should be applied to partial charges derived from ab initio data for all dinitro compounds.   

For trinitro compounds, the ab initio derived charges produced log Kow values that were 7 log 

units too low (too hydrophilic).  To obtain good agreement with experimental data for 

trinitrobenzene, partial charges determined from HF/6-31+G(d,p) ab initio calculations had to be 

scaled by a factor of 0.5.   

Similar empirical scaling factors have been applied to partial charge distributions by others to 

improve the agreement of simulation with experiment for the prediction of 1-octanol-water 
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partition coefficients and/or hydration free energies. Garrido et al have recently proposed a 

modification of the TraPPE-UA force field for substituted alky-aromatics by scaling partial 

charges determined from a natural population analysis applied to density functional calculations 

by a factor of 0.5 [134].  This factor was determined through calculations of the hydration free 

energy for benzene and was found to produce hydration free energies that were within 0.2 

kcal/mol of experimental values.  This strategy was also applied successfully to determine 

hexane-water and octanol-water partition coefficients for polychlorinated biphenyls[132].  

 

 

Figure 22: Electrostatic potential energy surfaces mapped to the total electron density for nitrobenzene, 1,4-

dinitrobenzene and 1,3,5-trinitrobenzene. 

 

Ab initio HF/6-31+G(d,p) calculations verify qualitatively trends in the partial charges 

determined through the empirical optimization process.  A CHELPG analysis of the ab initio 

calculations predicts partial charges for oxygen in the nitro group of -0.48 (mononitro), -0.46 

(dinitro) and -0.43 (trinitro) compared to the optimized empirical partial charges of -0.48 

(mononitro),   -0.432 (dinitro) and -0.24 (trinitro).  The electrostatic potential energy surface 

mapped to the total electron density, shown in Figure 22, for nitrobenzene, 1,4-dinitrobezene and 

1,3,5-trinitrobenzene illustrates this phenomena.  The addition of nitro groups around the 
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aromatic ring leads to increased delocalization of charge.  A similar phenomenon was observed 

for the OPLS-AA force field for fluorobenzenes, where the magnitude of the partial charge on 

fluorine atoms was reduced as the number of fluorine-hydrogen substitutions increased [143].   

While the TraPPE-UA force field typically uses rigid bond lengths, molecules were treated as 

fully flexible to simplify their implementation in molecular dynamics codes. Bond stretching and 

bond angle bending were both controlled by a harmonic potential 

      
  
 
      

  

Equation 22 

where kθ is the force constant that describes the stiffness of the angle (or bond), θ is the bond 

angle (or bond length) at a specific instant in time and θ0 is the equilibrium bond angle (or bond 

length). The force constant kθ was determined by fitting above equation to a scan of the potential 

energy surface, determined from ab initio calculations, with respect to bond angle (or length). 

Relaxed potential energy scans, using Hartree-Fock theory with the 6-31+G(d,p) basis set[144, 

145], were performed by varying the bond length or angle of interest and reoptimizing all 

remaining degrees of freedom. 

Interactions between atoms that are three bond lengths apart were governed by a torsional 

potential in the form of a cosine series  

                      

 

   

 

Equation 23 
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where   is the dihedral angle, δ is the phase angle and ci are constants fit to reproduce ab initio 

derived potential energy surfaces.  Rotational barriers for each dihedral of interest were 

determined from relaxed potential energy scans performed with Hartree-Fock theory and the 6-

31+G(d,p) basis set. 

 

Simulation Details 
 

The adaptive biasing force method [25, 26, 28, 146, 147] was used to determine the free energies 

of hydration and solvation (in 1-octanol) for each of the solutes of interest.  The hydration and 

solvation free energies were calculated from two independent simulations, where the solute was 

transferred from the water or 1-octanol phase to a vacuum phase.  The resulting free energies 

were combined according to Equation 7 to provide the net free energy of transfer from water to 

1-octanol 

                

Equation 24 

where ΔGHYD is the free energy of hydration in water and ΔGSOLV is the free energy of solvation 

in 1–octanol for the solute of interest.  With knowledge of the free energy of transfer from water 

to 1-octanol phases, log Kow was calculated via: 
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Equation 25 

For free energy of hydration calculations, a rectangular simulation cell was constructed with 

dimensions 30 Ǻ x 30 Ǻ x 100 Ǻ, where the condensed water phase occupied a region 

approximately 30 Ǻ x 30 Ǻ x 50 Ǻ.  For the solvation free energy, the condensed 1-octanol phase 

occupied a region approximately 30 Ǻ x 30 Ǻ x 100 Ǻ
3
 and an overall box size of 30 Ǻ x 30 Ǻ x 

150 Ǻ   The large vacuum region on the end of the simulation cell was used to prevent the solute 

from interacting with the solvent through periodic boundary conditions.  The TraPPE-UA force 

field was used for 1-octanol[75] while water was modeled with the SPC/E[76] force field. 

Reaction coordinate for the determination of free energy changes was defined as the distance 

between the center of mass of the solute (COMS) under study and center of mass of the 

condensed phase (COMCP).  Over the course of simulation, the reaction coordinate spanned a 

distance of 45.0 Ǻ from approximately 25 Ǻ deep into the condensed phase.  Prior calculations 

have shown this is deep enough into the condensed phase that the structure of the solvent around 

the solute is not affected by the presence of an interface[136].  To reduce the statistical error of 

the calculations, the reaction coordinate was divided into nine equally sized non–overlapping 

windows of 5.0 Ǻ. To generate the initial configurations for each window, a single steered 

molecular dynamics (SMD) simulation was performed were the solute was pulled along the 

reaction pathway from 0.0 Ǻ to 45.0 Ǻ.  Coordinates from the trajectory of this simulation were 

saved at suitable intervals to generate initial coordinate files for each of the nine windows. 

Windows were sub–divided into bins with a width of 0.05 Ǻ to collect the force statistics and the 
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biasing force was applied after 500 samples were collected in each bin. To keep the solute within 

the specified window, a harmonic force with a magnitude of 10.0 kcal mol
–1

Ǻ
–1

 was applied on 

the upper and lower boundary of the window. 

 

 

 

 

 

Table 7: Predictions of the TraPPE-UA force field for free energies of hydration, solvation in 1-octanol, log Kow and 

log H for nitro-aromatic compounds. 

Compound HYD  

(kcal/mol) 

SOLV 

(kcal/mol) 

Log Kow Log H Log Kow 

(expt)[123, 

124, 148, 149] 

Log H 

(expt)[123, 

124, 150] 
3-nitrotoluene -3.50 ±0.3 -6.50±0.3  2.22±0.4 -2.57±0.2 2.45 -3.42 

4-nitrotoluene -3.74±0.2 -6.67±0.3 2.15±0.2 -2.60±0.1 2.42 -3.64 

2-nitroanisole -4.72±0.2 -7.35±0.2 1.93±0.3 -3.46±0.2 1.80 NA 

4-nitroanisole -4.59±0.2 -7.35±0.2 2.03±0.1 -3.37±0.1 2.03 NA 

N-methyl-p-nitroaniline -4.51±0.2 -7.72±0.4 2.35±0.3 -3.31±0.2 2.10 -3.61 

2,4-dinitroanisole -8.21±0.1 -10.4±0.1 1.60±0.1 -6.02±0.1 1.61 -3.26 

1,3-dinitrobenzene -7.65±0.2 -9.60±0.4 1.44±0.3 -5.61±0.1 1.49 -5.70 

1,4-dinitrobenzene -7.84±0.2 -9.19±0.3 1.23±0.3 -5.75±0.1 1.45 NA 

2,4-dinitrotoluene -7.46±0.2 -10.54±0.2 2.26±0.2 -5.47±0.2 1.98 -5.66 

2,6-dinitrotoluene -7.41±0.2 -10.08±0.2 1.95±0.2 -5.44±0.2 2.02 NA 

1,3,5-trinitrobenzene -3.05±0.2 -4.77±0.2 1.26±0.3 -2.24±0.2 1.18 NA 

3-nitro-1,2,4-triazole-5-

one 

-15.37±0.2 -15.6±0.4 0.21±0.4 -11.26±0.2 NA NA 

3,5-dinitropyrozole -12.34±0.2 -13.2±0.3 0.63±0.3 -9.05±0.2 NA NA 

 

Molecular dynamics simulations were performed with NAMD version 2.9[32].  Initial 

configurations for the water and octanol phases were generated with Packmol [79].  These 

systems were minimized, and equilibrated for 10 ns in isobaric–isothermal ensemble at 1.0 atm 

and 298 K.  The equilibrated condensed phases were used for ABF-MD calculations, which were 



77 
 

 
 

performed in the NVT ensemble.  For all calculations, the temperature was maintained at 298.0 

K using Langevin dynamics; for simulations in the NPT ensemble, the pressure was maintained 

at 1.01 bar using the Nose–Hoover algorithm[80].  Each window was simulated for 8 ns using a 

2.0 fs time step.  Periodic boundary conditions were used in all the three spatial coordinates. 

Long-range electrostatic interactions were calculated with particle–mesh Ewald algorithm[82].  

Lennard-Jones interactions were truncated at 14 Ǻ and a switching function was applied at 12.5 

Ǻ. Although the Lennard-Jones parameters for the TraPPE force field were developed using 

analytical tail corrections, prior free energy calculations by our group have shown the potential 

truncation has a negligible effect on predicted free energies of transfer[136].  Data were analyzed 

using VMD [151].   Statistical uncertainties were estimated from the standard deviation of the 

free energies predicted from 5-10 unique sets simulations, where a simulation set consisted of the 

9 simulations required to determine a single free energy of transfer for a particular solute. 

 

Results and Discussion 

 

Hydration free energy 

 

Hydration free energies were determined for each solute at 298 K by transferring the solute from 

the vacuum region to approximately 25 Ǻ deep into the water phase.  The potential of mean force 

(PMF) as a function of solute position is presented for representative solutes in Figure 23.  

Additional PMF data for the remaining solutes may be found in the supplementary information.  

A minimum in the PMF was observed at the location of the water-air interface, indicating 
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favorable interactions between the water and the solute, while a barrier of 3 kcal/mol for mono-

nitro compounds and 2 kcal/mol for di-nitro compounds, was observed for the transfer of the 

solute from the interface to the bulk solvent.  This barrier is related to the increased solvent 

density away from the interface, and the free energy of cavity formation, which requires the 

disruption of water hydrogen bonds.    The PMF was invariant with position when the solute was 

greater than 10 Ǻ from the interface, verifying the water box was large enough and the reaction 

coordinate long enough to ensure reliable free energies of transfer could be calculated.  This 

invariance of the PMF with respect to location suggests that for positions on the reaction 

coordinate from -10 to -20 Ǻ that the solvent structure around the solute is the same as what 

would be expected for a solute in a bulk water, i.e. the presence of the interface did not affect 

local solvent structure around the solute. The free energy of hydration was determined by taking 

the difference between the average value of the PMF in the water phase from -20 to -10 Ǻ and 

the vacuum region from 10-20 Ǻ along the reaction coordinate.  These data are listed in Table 7. 
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Figure 23: Potential of mean force as a function of reaction coordinate for the hydration of selected nitro-aromatic 

compounds. Zero of the reaction coordinate represents the location of the water-vacuum interface. 

 

Solvation free energy 
 

The free energies of solvation in 1-octanol at 298 K for the twelve energetic materials of interest 

were determined with a methodology similar to that used for the hydration free energy 

calculations.  The potential of mean force for representative solutes as a function of distance 

along the reaction coordinate is presented in Figure 3. Free energies of solvation were calculated 

by taking the difference between the average values of the PMF in the vacuum and condensed 

phase regions.  These data are listed in Table 7. For each solute, the PMF drops monotonically to 

a minimum value at the interface, and remains constant as the solute moves from the 1-octanol-

air interface into the bulk 1-octanol phase.  Prior calculations have shown for n-alkanes that the 

free energy barrier for the transfer of a solute from the interface to bulk solvent phase is 
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approximately 1 kcal/mol[136].  This suggests the free energy of cavity formation is balanced by 

favorable electrostatic interactions between 1-octanol and the solute.   

 

 

Figure 24: Potential of mean force as a function of reaction coordinate for the solvation of selected nitro-aromatic 

compounds in 1-octanol.  Zero of the x-axis corresponds to the location of the 1-octanol-vacuum interface. 

 

Partition coefficient 
 

The free energies of hydration and solvation were combined to determine the free energy of 

transfer for each solute from water to 1-octanol phase, which is directly related to log Kow via 

Equation 8.   The predicted partition coefficients are listed in Table 7, and plotted vs. 

experimental data in Figure 25.  Overall, excellent agreement with experimental data is observed; 

an average absolute deviation between simulation and experiment of 0.19 log units was observed 
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for the eleven nitro-aromatic compounds.  The TraPPE-UA force field produced consistent 

results within a particular class of compounds, such as mono-nitro, di-nitro, etc., validating the 

approach used for optimization of partial charge distributions.  For DNP and NTO, no 

experimental data were available for comparison.  Previous COSMO-RS calculations predict a 

log Kow for DNP of 0.371[152], which is in reasonable agreement with log Kow = 0.63±0.2 

predicted by the TraPPE-UA force field. A larger difference is observed between simulation and 

COSMO-RS predictions for NTO.  The TraPPE-UA force field predicts log Kow = 0.21±0.4, 

while COSMO-RS predicts log Kow -1.19[152].  The predictions of the TraPPE-UA force field 

are improved, compared to prior COSMO-RS calculations for DNAN and MNA.  TraPPE-UA 

predicts log Kow for DNAN and MNA to within 0.1 and 0.3 log units of experimental data, 

respectively, while the predictions of COSMO-RS are 0.3 log units too large for DNAN and 1.3 

log units too low for MNA[152] 
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Figure 25: Log Kow predicted by the TraPPE-UA force field vs. experimental data for the 11 nitro-aromatic 

compounds studied in this work.  Data are coded as follows: mononitro compounds (red circles), dinitro compounds 

(green squares) and trinitro compounds (blue diamonds). 

 

 

 

 

Dimensionless Henry’s law constants can be related to the free energy of hydration via 

     
     
       

 

Equation 26 
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where R =1.986x10
-3

 kcal/mol is the universal gas constant, and T = 298 K is the temperature.  

Henry’s law constants are plotted against experimental data in Figure 26 for six nitro-aromatic 

compounds for which reliable experimental data could be located.   

Henry’s law constants are available for some of the other compounds, but the data are not peer 

reviewed, and in many cases are actually predictions from QSPR tools, such as SPARC[65, 129, 

130], masquerading as experimental data.  The predictions of simulation for log H were in close 

agreement with experiment for 5 of the 6 compounds, with an average absolute deviation of 0.5 

log units.  However, significant discrepancies were observed for DNAN with respect to the 

experimental Henry’s law constants[123].  For DNAN, the predictions of simulation were 

consistent with other dinitro compounds; the hydration free energies for 1,3-DNB, 1,4-DNB, 2,4-

DNT, 2,6-DNT and DNAN were all predicted to be between -5.4 and -6.0 kcal/mol.  DNAN 

contains a methoxy group which is expected to enhance interactions with water compared to 

dinitro-benzenes and dinitro-toluenes.  Indeed, the predicted free energy of hydration for DNAN 

is -6.02 vs. -5.47 kcal/mol for 2,4-DNT.  In comparison to experimental data for other dinitro 

compounds, such as 1,3-DNB (log H = -5.7) and 2,4-DNT (log H = -5.66), the experimental 

value for DNAN (log H = -3.26) is low by approximately by 2.4 log units.  Therefore it is 

unclear if the source of the error is a failure of the model, or an inconsistency in the experimental 

data. 
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Figure 26: Log H predicted by the TraPPE-UA force field vs. experimental data for six nitro-aromatic compounds.  

Data are coded as follows: mononitro compounds (red circles), dinitro compounds (green squares). 

 

 

Radial distribution functions were calculated for DNAN and 4-NAN in water and 1-octanol to 

highlight differences in the local solvent structure around mono and dinitro compounds.  These 

data are presented in Figure 27.   Both DNAN and 4-NAN display weak, non-specific 

interactions with water.  Minimal hydrogen bonding was observed between water and nitro 

group oxygens for both DNAN and 4-NAN.  For DNAN, the presence of the ortho nitro group 

blocks water access to the methoxy group, while for 4-NAN, a small amount of hydrogen 

bonding was observed between water and the methoxy group.  

In 1-octanol, greater local solvent structure was observed.  The radial distribution function for 

hydrogen atoms (in the hydroxyl group) interacting with nitro group oxygen atoms displays a 

peak at 1.8 Ǻ for both DNAN and 4-NAN.   The peak height for 4-NAN is approximately twice 
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that of DNAN due to the 10% larger partial charges on the nitro group.   In water, the presence of 

the ortho nitro group in DNAN blocks solvent access to the methoxy oxygen; however, in 1-

octanol the ortho nitro group enhances interactions of the methoxy oxygen with the solvent.  This 

is due to the increased strength of hydrogen bond interactions between 1-octanol hydroxyl 

groups and nitro oxygens compared to the corresponding water interactions.  
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Figure 27: Radial distribution functions for DNAN (black) and 4-NAN (red) in water (left panel) and 1-octanol (right panel).  

Labels denote interaction sites on the solvent (water or 1-octanol), followed by interaction sites on the solute. 

 

 

While participating in hydrogen bonding with the ortho nitro group, the 1-octanol hydroxyl 

group is also in close proximity to the methoxy group oxygen, which accounts for the peak 

observed at approximately 4 Ǻ. 
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Figure 28: Snapshots from molecular dynamics simulations illustrating the formation of 1-octanol cages around 

DNAN.  Images are from the same molecular configuration and have been rotated to provide alternate views of the 

1-octanol chains.  Alkyl tails of 1-octanol have been shown in licorice mode for clarity. 

 

 

Strong 1-octanol hydroxyl interactions with the nitro group also influence the local solvation 

structure around DNAN and 4-NAN.  Through a combination of hydrogen bond interactions 
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between the nitro group (oxygen) and 1-octanol (hydrogen), and electrostatic interactions 

between nitrogen and 1-octanol (oxygen), 1-octanol is able to form hydrogen bonded cages 

around DNAN, examples of which are shown in Figure 28.  The peak observed at 4 Ǻ for the RDF 

corresponding to the hydroxyl group interacting with the aromatic carbons of DNAN is not due 

to any specific interactions between them, but is instead a by-product of the solvent 

reorganization to accommodate the solute.  1-octanol assumes a slightly different structure 

around 4-NAN.  Hydrogen bonded 1-octanol chains tend to wrap around parts of the aromatic 

ring, but no structures spanning the entire aromatic ring were observed during the simulations. 

 

Conclusions 
 

A force field based on the TraPPE-UA parameter set was developed for eleven nitro aromatic 

compounds, as well as two energetic materials based on five membered rings.  Compounds 

containing the nitro functional group are known to be a particularly difficult case regarding the 

prediction of accurate free energies of hydration[137]. The difficulty in accurately estimating the 

free energies of hydration in nitro aromatic compounds is increased due to the increased 

delocalization of charge as nitro groups are added to the molecule.  During the force field 

optimization process, it was determined that a single model chemistry or level of quantum theory 

and basis set would not work for all nitro aromatic compounds.  While quantum chemistry 

correctly predicts an increased delocalization of charge as nitro groups are added, the magnitude 

of the predicted charges was too large, which resulted in an over prediction of the free energies 
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of hydration for dinitro compounds.  Scaling factors of 0.9 for dinitro compounds and 0.5 for 

trinitro compounds were found to produce uniformly accurate results for molecules within a 

particular class of compounds. 

These optimized potentials were used to predict free energies of hydration, solvation and transfer 

from 1-octanol to water for nitro aromatics.  From the free energies of transfer, log Kow and log 

H were predicted for each compound.  Log Kow values were reproduced to within 0.19 log units 

(AAD) of experimental data.  Log H values were more varied, with an AAD of 0.5 log units.  

With respect to the prediction of Henry’s law constants, data for 5 of the 6 compounds were in 

close agreement with experimental data, with DNAN showing significant deviations from 

experiment.  Experimentally, DNAN exhibits an anomalously low free energy of hydration that 

is inconsistent with values published for other dinitro compounds.   Resolving this perplexing 

situation will likely require additional experiments and simulations. 

In addition to free energies of transfer, structural data was extracted from the simulation to show 

differences between the interactions of mono-nitro and dinitro compounds with the solvent.  For 

both DNAN and 4-NAN in water, the radial distribution functions were unremarkable, 

suggesting weak interactions with the solvent.  Much stronger interactions were observed for 

DNAN and 4-NAN in 1-octanol.  The nitro group was able to participate in hydrogen bonding 

with the hydroxyl group of 1-octanol.  For dinitro compounds, 1-octanol was able to interact 

with both nitro groups to form chains around the aromatic rings.  For mono-nitro compounds, 

extensive chain and ring formation was observed between 1-octanol molecules, but these chains 

tended to cover only 1/3 to 1/2 of the aromatic ring. 
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CHAPTER 6: Chemical Warfare Agents 
 

Introduction 
 

Nerve agents are a subset of a broad group of compounds known as “chemical warfare agents,” a 

term that generally refers to any chemical that may be used to kill or seriously injure humans.  

Nerve agents are based on organo-phosphate chemistry and were discovered during research on 

synthetic insecticides in the 1930’s at I.G. Farbenindustrie (Germany).  The compounds N,N-

dimethylphosphor-amidocyanidate (tabun) and isopropylmethylphosphonofluoridate (sarin) were 

first synthesized at this time, while the third of the G-agents, Pinacolyl 

methylphosphonofluoridate (soman) was synthesized independently in 1944 by the Nobel 

laureate Richard Kuhn[153].  Research on organo-phosphate based pesticides continued through 

the 1950’s in England, Germany and Sweden, and in the process the extremely toxic  ethyl ((2-

[bis(propan-2-yl)amino]ethyl)sulfanyl) (methyl)phosphinate (VX) was discovered[154]. 

Nerve agents have been called the “poor man’s nuclear bomb,” capable inflicting mass 

casualties, while being relatively cheap easy to manufacture using equipment and raw materials 

designed for civilian applications.  A variety of chemical warfare agents, including mustard gas 

and tabun, where used by Iraq with varying degrees of effectiveness during the 8 year war with 

Iran[155].  While of limited utility as a battlefield weapon, concern is increasing regarding the 

potential use of nerve agents by terrorist organizations.  These concerns have lead to significant  

research efforts focused on development of improved materials (metal oxides[156-159], nano–
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materials [160-167] and biosensors [168, 169])  for detection and filtration of chemical warfare 

agents (CWA), as well as understanding the environmental fate of such compounds.  

 

The toxic nature of nerve agents makes them ideal candidates for study using computational 

methods, such as quantum chemical calculations or molecular dynamics simulations.  Ab initio 

calculations have been used to determine the lowest energy conformers for trimethyl phosphate 

(TMP)[170], DMMP[171-173], sarin[174], soman[174] and tabun[175].  The interactions of 

organophosphorous compounds with metal oxides[176-178] and clays[179] have been studied 

extensively using both density functional theory and quantum mechanics calculations.  In 

addition to ab initio calculations, atom-based force fields have been developed for DMMP[180, 

181], DIFP[182] (diisopropyl fluorophosphate) sarin[181], soman[181].  These models have 

been used in molecular dynamics simulations to determine the liquid phase structure of 

concentrated solutions of DMMP and sarin in water and have shown that both DMMP and DIFP 

provide a reasonable approximation of sarin’s interactions with water[183].  Molecular dynamics 

simulations have also provided important insight into the interactions between DMMP and 

polyelectrolyte membranes [184, 185], which have potential applications as proactive barriers 

from nerve agents. 

In general, the partitioning of trace solutes in the environment is governed by the 1-octanol/water 

partition coefficient (log Kow) and Henry’s Law constant (log H)[16].  Ideally, such data would 

be collected experimentally, however, in the case of highly toxic materials, e.g. nerve agents, 

experiments are difficult to perform and costly.  As a result, experimental data for these 

compounds are scarce and in some cases contradictory when multiple data sets exist.  The G and 
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V agents hydrolyze readily, which further complicates the accurate determination of partition 

coefficients from experiment[186].  

In this work, adaptive biasing force molecular dynamics simulations (ABF-MD)[25, 105, 146]  

are used in conjunction with the Transferable Potentials for Phase Equilibria (TraPPE) force 

fields for DMMP[181], sarin[181], soman[181] and VX, shown in Figure 29, to predict their 

Henry’s Law constant and 1–octanol/water partition coefficients.  ABF-MD eliminates the need 

for reference solutes, which are required in free energy perturbation, since the entire solute is 

transferred intact from condensed phase to vacuum, providing the absolute free energy of 

hydration/solvation[44, 92].  A new united-atom force field for VX is developed that is 

consistent with the TraPPE force field.  Molecular dynamics simulations are used to determine 

the local structure of water around each agent, and these data are used to explain observed trends 

in Log Kow and the Henry’s constant. 

 

 

 

Figure 29:  Schematic representation of the simulant (a) DMMP and the three nerve agents (b) Sarin, (c) Soman and 

(d) VX. 
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Force Field 
 

Lennard-Jones parameters and partial charges for the DMMP, sarin and soman were taken from 

TraPPE united–atom (UA) force field[181].  The TraPPE–UA force field for alcohols[108] was 

used to model the 1-octanol and the SPC/E force field was used for water[187]. The combination 

of force fields has been shown in previous calculations to provide reliable estimates of partition 

coefficients for n-alkanes[44].   

 

A similar united–atom approach was used for VX; hydrogen atoms bonded to carbon atoms were 

combined to form a single interaction site (pseudo–atom)[37]. Hydrogen atoms for polar 

interaction sites that carried a partial charge were modelled explicitly.  Lennard–Jones 

parameters for the various interaction sites in VX were taken from previously parametrized 

compounds that contained analogous functional groups.  For instance, Lennard–Jones parameters 

for the methyl carbons were obtained from methyl groups in alkanes[37], phosphorous and 
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oxygen parameters were transferred from DMMP[188], the nitrogen parameter from the tertiary 

amine force field[189], and finally parameters for sulphur were taken from the LJ parameters of 

sulphides[190]. Point charges were determined for the lowest energy conformer from  a 

CHELPG population analysis of HF/6-31g+(d,p) quantum calculations performed using 

GAUSSIAN 09[191]. For all molecules, interactions between the atoms of different types were 

determined with the Lorentz–Berthelot combining rules[192]. Bond stretching and bond angle 

bending were controlled with a harmonic potential. The dihedral angle rotation was governed by 

a cosine series functional form. The total energy of the molecule U(r) is given by the summation 

of all these individual contributions as shown in Equation 1. 

 

 

 

 

Equation 27 

Parameters governing the rotation around various dihedral angles were optimized to reproduce 

rotational barriers predicted by HF/6-31+g(d,p) quantum mechanics calculations.  Potential 

energy scans were performed in intervals of 20
o
 for each dihedral of interest with GAUSSIAN 

09.  In the TraPPE force field, 1-4 interactions are not usually included in the calculation of 

rotational barriers, i.e. the total dihedral potential is accounted for by the cosine series.  However, 

to ensure compatibility with typical molecular dynamics software, the optimized dihedral 
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parameters for the cosine series in this work follow the CHARMM methodology and include 

contributions from 1-4 Lennard-Jones and Coulombic interactions.   

The rotational barriers predicted by QM and MM calculations for DMMP show close agreement 

for DMMP and sarin.  For VX, the locations of the global minima predicted by QM and MM 

calculations are in agreement, but it was not possible to simultaneously reproduce all of the local 

minima predicted by QM calculations. These discrepancies arise from the inability of the cosine 

series to simultaneously reproduce the multidimensional potential energy surface (seven dihedral 

angles for VX). Increasing force constants in the cosine series beyond 3 kcal mol
–1

 made the 

molecule rigid. The periodicity n was truncated at 3 to reflect the three–fold nature of the 

potential energy surface for the rotation of two sp
3
 hybridized centres.  In the fitting process, 

more emphasis was placed on the reproduction of the global and local minima, while lesser 

importance was given towards reproduction of geometries whose energetics were greater than 10 

kT, since it is unlikely such structures would ever be observed during simulations below the 

normal boiling point of these compounds. Changing the magnitude of force constants and 

increasing n–fold terms of the cosine series functional form was found to improve the energetics 

of a certain dihedral angle while worsening the energetics of another.  Therefore the optimized 

dihedral parameters represent a compromise to provide the best overall reproduction of the 

conformational behaviour for each molecule.   

 

Simulation Details 
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The adaptive biasing force (ABF) method is a technique developed by Darve et al.[103, 104, 

193] for the  calculation of free energy differences of certain chemical or biological processes 

along generalized reaction coordinates in the system of interest. This method is a combination of 

probability density and constraint force methods,  and is based on the thermodynamic integration 

of average force acting on coordinates, which is unconstrained.[103] As a part of ABF algorithm, 

an external biasing force, estimated locally from configurations sampled by the simulation, is 

applied at each step to facilitate the system in overcoming energy barriers that may be present 

along the reaction coordinate. This allows the system to evolve freely, without constraints, and 

enables the simulation to visit states separated by large free energy barriers.   

In this work the adaptive force bias method as implemented in adopted in NAMD[111] version 

2.7b3 was used to determine the free energies of solvation for a simulant (DMMP) and three 

chemical warfare agents (sarin, soman and VX) in 1-octanol and water; these data were used to 

determine the 1-octanol/water partition coefficient log Kow. An “indirect transfer,” process is 

used where the free energy of transfer from water to 1-octanol is determined from two separate 

calculations; transfer of the solute from 1-octanol to vacuum (      ) and transfer from  water 

to vacuum (     ). The free energies of hydration and solvation were combined according to 

Equation (8)  

                

Equation 28 
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where ΔG
HYD

 is the free energy of hydration in water and ΔG
SOLV

 is the free energy of solvation 

in 1–octanol for the considered solute, to provide the overall free energy of transfer from water 

to 1–octanol phase.   From the free energy of transfer, it is possible to determine the 1-

octanol/water partition coefficient according to 

       
  

       
 

Equation 29 

Two different configurations were generated for the required calculations; a water/vacuum 

system (S1) and 1-octanol/vacuum system (S2) as shown in Figure 2.  For calculations involving 

DMMP, sarin and soman, a rectangular simulation cell was used, with dimensions 30 Å x 30 Å x 

90 Å, with the condensed phase occupying a region 30 Å x 30 Å x 30 Å.  For VX, the 

dimensions of the simulation cell were 40 Å x 40 Å x 100 Å, with the condensed phase 

occupying a region 40 Å x 40 Å x 40 Å.  The vacuum region is necessary to prevent interactions 

of the solute with the condensed phases through periodic boundary conditions. 
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Figure 30: Schematic diagram for the “Indirect–transfer method” of solute from condensed phase to vacuum.  5 

windows of 5 Å bin width each in the z direction were used to compute the potential of mean force. 

 

The reaction coordinate for the determination of free energy changes was defined as the distance 

between the center of mass of the solute (COMS)  and center of mass of the condensed phase 

(COMCP). This reaction coordinate is the same as   in equations (3) to (7). In the initial system 

setup, the COMS are placed approximately at the COMCP.  For DMMP, sarin and soman, the 

reaction coordinate spanned a distance of 30.0 Å from the center of mass of the condensed phase 

to the center of the vacuum region.   For VX, the reaction coordinate was extended to 40 Å.  To 
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reduce the statistical uncertainty of the calculations, the reaction pathway was divided into five 

equally sized non–overlapping windows 5.0 Å wide. To generate the initial configurations for 

each window, a single 5 ns ABF run was performed spanning the complete reaction pathway 

from 0.0 Å to 30.0 Å. Coordinates from the trajectory of this simulation were saved at suitable 

intervals to provide an initial configuration for each window.  Windows were sub–divided into 

bins with width of 0.05 Å for the collection of force statistics. The biasing force applied after 500 

samples were collected in each bin. To keep the solute within the specified window, a harmonic 

potential with a magnitude of 10.0 kcal mol
–1

Å
–1

 was applied on the upper and lower boundary 

of the window along the z–axis.  

Molecular dynamics simulations were performed with NAMD version 2.7b3. Initial 

configurations for each system were generated with Packmol[79].  Energy minimization was 

performed on all systems for 500 steps using the steepest decent technique. Systems were 

equilibrated over a time period of 2.0 ns in isobaric–isothermal ensemble at 1.0 atm and 298 K, 

followed by the ABF calculation in NVT ensemble.  For all calculations, the temperature was 

maintained at 298.0 K using Langevin dynamics. A timestep of 2.0 fs was used for the 

integration of Newton's equation of motion. Periodic boundary conditions were used in all the 

three spatial coordinates. Long range electrostatic interactions were calculated with particle–

mesh Ewald algorithm[82]. Lennard-Jones interactions were truncated at 14 Å and a switching 

function was applied at 12.5 Å.   Data visualization and analysis was performed with VMD[151]. 

Statistical errors were estimated from the standard deviation of the predicted free energies 

generated from three to five unique sets of simulations.  Initial validation of the VX force field 
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was performed with NPT molecular dynamics simulations performed for 5 ns on a 128 molecule 

system.  The predicted densities at 298, 308 and 323 K were 1044.67 kg/m
3
, 1035.89 kg/m

3
 and 

1022.73 kg/m
3
, which were within 3.5% of experimental data. 

 

Results and Discussion 
 

Hydration free energy 
 

The profiles for the potential of mean force for each solute in water as a function of distance 

along the reaction coordinate are presented in Figure 30. Profiles are flat in the bulk water phase 

and drop to zero at 13-14 Å as the water-vacuum interface reached. This minimum is a result of 

reduced density at the interface compared to the bulk water phase, which reduces the free energy 

cost of accommodating the solute. However, apart from entropic reasons, another factor that has 

an effect on the profile is the interactions between water and solute. These interactions are  more 

favourable compared to those in the vacuum phase, hence the profile rises to a maximum  after 

crossing the interface and reaching the bulk vacuum region. For the case of solvation free energy 

profile, shown in Figure 30, there is a balance between the entropic factor and the interactions 

between the solute and 1-octanol resulting in a flat profile for the free energy of solvation at the 

interface. 

The free energy of hydration was computed based on the difference in the free energy of the first 

window (solute in water rich phase) and the last window (solute in vacuum phase). These free 
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energy differences are listed in Table 1 for DMMP, sarin, soman and VX.  For all solutes, with 

the exception of DMMP, the free energy of hydration was within 1 kcal mol
–1

 of experiment.   

 

Henry’s law constant 
 

The dimensionless Henry’s law constant was determined using the relative free energy difference  

of moving the solute from the water rich phase to the vacuum phase. 

 

Table 8: Comparison of the free energy of hydration, 1-octanol/water partition coefficient and Henry’s law constant 

predicted using ABF–MD simulations at 298 K and experiment. 

 

 

The predicted Henry’s law constant of –6.96 for VX is in excellent agreement with experimental 

 

 

ΔG
HYD 

(kcal mol
–

1
) 

Expt. 

ΔG
HYD 

(kcal mol
–

1
) 

Sim. 

ΔG
SOLV 

(kcal mol
–

1
) 

Sim. 

log H 

Expt. 

log H 

Sim. 

log Kow 

Expt. 

log Kow 

(dry 

octanol) 

Sim. 

log Kow 

(wet 

octanol) 

Sim. 

DMM

P 

–5.82[194] 

–7.67[195] 
–7.63 ± 0.3 –7.51 ± 0.3 

–4.27[194, 196] 

–5.63[195] 
–5.57 

–0.61[186] 

–1.30[195] 

 

–0.07 ± 

0.3 

 

–0.27± 0.3 

Sarin –4.67 –5.58 ± 0.2 –6.68 ± 0.2 
–3.42[197] 

–4.63[194, 196] 
–4.03 

0.30[194, 198] 

0.72[196] 

0.45[198] 

0.299[186] 

0.15[199, 200] 

0.85 ± 0.2 

 

 

1.20± 0.2 

Soman 
–5.07 

–5.29 
–4.75 ± 0.2 –8.15 ± 0.3 

–3.72[194] 

–3.88[201] 
–3.48 

1.02[199, 200] 

1.78[194, 196] 

1.824[186] 

2.49 ±  0.4 
 

2.70± 0.4 

VX 

–9.34 

–9.45 ± 0.3 
–14.45 

±0.2 
–6.85[194] 

–4.05[201] 

–6.96 
0.675[186] 

2.09[194] 

1.992[202] 

2.22 

2.36[199, 200] 

3.66 ± 0.4 

 

 

3.80± 0.4 

     - 
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value of –6.85[194], highlighting the transferability of the TraPPE force field.  For DMMP, the 

predicted Henry’s law constant of –5.57 is  in excellent agreement with the value  determined 

using vapour pressure and water solubility as described in the DMMP consortium report[195].   

However, other measurements of the Henry’s law constant give log H = –4.27.  Given the 

disagreement between experimental data sources, it is difficult to rigorously evaluate the quality 

of the force field.     The data of Ref [194, 196]suggest that the free energy of hydration is over-

predicted slightly by the TraPPE DMMP force field.    Improved free energies of hydration could 

be achieved through a slight reduction in the partial charges, but this would lead to errors in the 

predictions of other thermodynamic properties, such as liquid densities, heats of vaporization or 

the normal boiling point, which were used in the original optimization of the model[181]. In the 

case of sarin, the predicted Henry’s law constant of -4.03 lies in between the experimentally 

reported range of –3.42 and –4.63. For soman, the free energy of hydration is slightly under–

predicted in comparison to experiment, –3.48 (simulation) vs. –3.72[194] to –3.88[201] 

(experiment). 
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Figure 31:  a) Average free energy of hydration profile generated with ABF–MD for solute transfer from water 

phase to vacuum phase. b) Average free energy of solvation profile generated with ABF–MD for solute transfer 

from 1-octanol to vacuum phase. 

 

Solvation free energy 
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The free energy of solvation was computed similar to the free energy of hydration and are shown 

in Table 1.  Singer et al. computed the octanol–air partition coefficient (Koa)[196] using the 

following equation 

HK

RTK
K ow

OA

1000
  

Equation 30 

The experimental free energy of solvation can be determined for comparison to the simulation 

data.  For sarin, simulations predict ∆G
SOLV

 =–6.68 kcal mol
–1

, which is within 10% of the 

experimental value of 7.29 kcal/mol estimated from reference [46] using Equation 11. In the case 

of soman, the value of –8.15 kcal mol
–1

 predicted by simulation is within 5% of experiment.  For 

DMMP, however, the free energy of solvation is over-estimated by approximately 2.5 kcal/mol.  

No experimental data was found for VX. 

 

Partition coefficient 
 

From knowledge of G
SOLV

 and G
HYD

, it is possible to calculate the log Kow. Table 8 lists the 

computed log Kow for the simulant and three nerve agents. For VX, although the Henry’s law 

constant was in good agreement with experiment, the log Kow is over-predicted by 2.0 log units. 

There is, however, significant scatter in the experimental data, with some data compilations 

reporting a number of 0.675[203] while others suggesting a value of 2.09[194].  For sarin, the 

predicted partition coefficient is within 0.12 log units of experiment. A negative value for the log 



105 
 

 
 

Kow of DMMP suggests this compound prefers the water phase over 1-octanol. In this case, the 

model predicts correctly a negative value for log Kow, but there are quantitative differences of 

0.5 to 1.2 log units between simulation and experiment.  Given the large scatter in the 

experimental data, the agreement between simulation and experiment is reasonable. The negative 

enthalpy of mixing for DMMP in water[182] further corroborates the hydrophilic nature of 

DMMP.  

The interaction of DMMP with water has been studied extensively using matrix–isolation IR 

spectroscopy with ab initio computation[204], molecular dynamicss[182, 205] and NMR[206]. 

In the vapor phase, ab initio calculations have predicted a strong hydrogen bond of –7.7 kcal 

mol
–1

 between water and oxygen O=(P) of DMMP. In the aqueous phase, two water molecules 

bind to the sp
2
 hybridized oxygen of DMMP at higher water concentrations. Vishnyakov et al. 

have used molecular simulation to study the interactions of DMMP with water.  These 

calculations show significant clustering of DMMP for low water concentrations, suggesting a 

dominance of hydrophobic interactions with low life times of the DMMP-water complex. This 

could also account for the lower value of the 1-octanol/water coefficient predicted for DMMP in 

comparison to experiment. In the case of soman, log Kow was over-predicted by 0.8 log units.   

This over-prediction of the partition coefficient using the TraPPE force field was observed for all 

solutes, which given the close agreement between simulation and experiment for the free energy 

of hydration suggests the force fields are over-predicting the free energy of solvation.  
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Impact of water saturation 

In experiments for the determination of octanol-water partition coefficients, the octanol phase is 

typically saturated with water.  While the use of a wet octanol phase has a negligible effect on 

the partition coefficients predicted by simulation for non-polar molecules[36, 114, 207], water 

saturation may have a significant impact on predicted log Kow values for polar molecules[208].  

To investigate this, additional simulations were performed for wet octanol, where the simulation 

box 1-octanol phase contained 25.5 mole% water. In general, the addition of water slightly 

increased log Kow for each solute, except for DMMP, where log Kow was reduced from -0.1 to -

0.27.  In each case, log Kow values predicted with wet octanol were withing the statistical 

uncertainty of the corresponding calculations performed with dry octanol, showing that the 

presence of water in 1-octanol was a limited effect on the partitioning of these solutes.   
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Figure 32: 6 Left Panel: Radial Distribution functions of the octanol (a) and water (b) interacting with the oxygen 

O2 of DMMP (black), Sarin (red), Soman (orange) and VX (green) at 298 K. Middle Panel: The corresponding 

number integrals respectively. Right Panel 

 

 

 The microstructure of the chemical warfare agents interacting with water and 1-octanol was 

investigated using the pair-wise radial distribution functions. For each of the compounds 

investigated in the present study, there is an oxygen (O2) doubly bonded to phosphorous and an 

oxygen singly bound to phosphorous and carbon. The oxygen O2 (double bonded to the 

phosphorous atom) interacts strongly with the hydroxyl oxygen of 1-octanol. A peak at 2.7 Å for 

the O2 interaction with oxygen of the 1-octanol suggests strong hydrogen bonding interactions 

between the 1-octanol hydrogen and O2 of the chemical warfare agent. However, the magnitude 

of this peak decreases as one goes from VX to DMMP, providing certain insights into the 
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hydrophobic nature of VX in comparison to DMMP. Looking at the number integrals, at 3 Å, the 

average number of hydrogen bonding interactions drop from 2 for VX to 1.3 for DMMP, see 

middle panel of Figure 32. This suggests that in comparison to VX, sarin and soman dmmp is less 

solvated by 1-octanol. Although, one would attribute the hydrophobic nature of any compound to 

the carbon-carbon interactions of the alkyl groups in cwa and 1-octanol, here it’s the relative 

increased affinity of VX for the polar group (hydroxyl group) of the 1-octanol that maybe 

responsible for its hydrophobic nature. A similar instance is seen for the polar affinity of the 

other two nerve agents with 1-octanol. This affinity for the hydroxyl group of 1-octanol is 

reduced in the case of DMMP. While other polar groups exist in the nerve agents, O2 interactions 

with 1-octanol is are the most pronounced. A similar scenario is present in the case of the cwa 

interacting with water. DMMP O2 interacts more strongly with water in comparison to sarin, 

soman and VX, indicating the more hydrophilic nature of DMMP, see Figure 32 (left panel). The 

magnitude of the peak at 2.7 Å decreases from 1.7 to 1.5 for DMMP to VX, suggesting that this 

subtle difference in magnitude would provide clues to the hydrophilic nature of DMMP in 

comparison to the hydrophobic nature of the other three nerve agents. As seen from the snapshot, 

Figure 4b, right panel, the O2 of DMMP has more water molecules interacting than the other 

three nerve agents. 

ABF convergence 
 

ABF method embodies a prominent feature of sampling the phase space along the chosen 

reaction coordinate in a uniform and homogenous manner irrespective of the high energy barriers 

present along the pathway. To check the sampling behaviour of ABF simulations for systems 
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used in this study, a test case of VX was chosen for which, number of samples accumulated at 

the end of simulation were plotted as a function of reaction coordinate. The resulting plot is 

shown in Figure 31 for the transfer of VX from water to vacuum and from 1-octanol to vacuum. 

Uniform sampling is observed along the complete reaction pathway for both the cases.  

Evolution of sampling was also studied for the test case of VX transfer from 1-octanol to vacuum 

phase to check the convergence of ABF method. Sampling histograms were generated at various 

intervals during the course of simulation as a function of the reaction coordinate. In the early 

stages of simulation (0.02 ns), only a few locations have been sampled while the others remain 

unvisited. As time proceeds, the sampling becomes uniform and attains uniformity around 6.0 ns 

indicating the convergence of ABF run. Maxmin ratio is another parameter that is used to mark 

the convergence of ABF based simulation. It is defined as the ratio of maximum number of 

samples to minimum number of samples collected in a specific region along the reaction 

coordinate. This ratio is equal to ∞ for the VX test case at a point when simulation has run for 

0.02 ns as the minimum number of samples count to zero. Evolution of maxmin ratio with time 

is shown in Figure 33. Ratio attains a measurable value as simulation progresses and all the 

locations are visited at least once. Maxmin value eventually drops down and comes close to 1.0 

after 8 ns of runtime which means that all the locations have been visited for almost equal 

number of times marking the convergence of ABF run.  
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Figure 33: a) Distribution of sampling along the reaction coordinates. Results are for the case of VX transfer from water to 

vacuum (red) and 1–octanol to vacuum (black). b) Evolution of the maxmin ratio during 10 ns of ABF-MD simulation. 

 

 

Bioaccumalation analysis 
 

The 1-octanol/water partition coefficients for the solutes suggest that the three nerve agents are 

neither hydrophobic (log Kow > 6) nor hydrophilic (log Kow < 0). However the simulant DMMP 

is hydrophilic in nature with log Kow = –0.1. This raises certain questions towards the choice of 
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DMMP as a simulant as it is hydrophilic in comparison to all the nerve agents which tend to be 

hydrophobic. Figure 34 is mobility and multimedia chart[209][209] designed by Gillett in 1983 to 

characterize compounds based on their comparative mobility due to volatilization. As seen in this 

figure 5, DMMP falls in the same zone D as that of the other nerve agents. In terms of predicting 

the environmental fate of the nerve agents, DMMP is able to mimic the behaviours of nerve 

agents. The simulant DMMP and the three nerve agent’s fall in the zone D which is 

characterized by direct effects to the water column, leading to leaching, plant uptake and 

drinking water toxicologic effects. Although the partition coefficient and Henry’s law constant 

predictions by our models are in fair agreement, the model predictions also fall in the zone D. 

VX on the other hand falls on the border of Zone D and B as predicted by our model. However 

quantity A which is measure of the sum of Henry’s law constant and log Kow and determines the 

tendency of the solute to the leave the aqueous phase equals to –3.26 and is  < –1 for VX, still 

making this compound a concern for contamination of the water column and bioaccumulation. 

Soman being on the boundary of zone D and B provides additional concerns of bioaccumulation.  
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Figure 34: Mobility and multimedia exposure chart. Zone A has heavy multimedia, multispecies and 

bioaccumulation concerns. Zone B has heavy concerns regarding bioaccumulation.  Zone C has concerns regarding 

atmospheric problems.  Zone D has heavy concern for dire direct effects on water column. Zone E and Zone F are 

low ecotoxicology concern due to very low mobility. Filled circles are simulation predictions while experiment is 

denoted by filled squares. 

 

 

 

Conclusions 
 

Adaptive Biasing Force–Molecular Dynamics simulations have been used to predict the 1-

octanol/water partition coefficient and Henry’s law constant for nerve gas agents using the 

TraPPE force field.  New dihedral parameters consistent with molecular dynamics simulation 

engines, such as CHARMM and NAMD are introduced, as is a new force field for VX.  In 
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general, the TraPPE force field provides reasonable estimates of Log H and Log Kow for each 

compound.  Although the free energy of solvation and hydration for DMMP are over-predicted 

by the present model, the predicted partition coefficient has the correct sign and is within 0.5 log 

units of experiment.   The liquid density predictions for VX at three different temperatures were 

within 3.5% of experiment. Finally analysis of the microstructure suggests that the relative 

difference in the degree of solvation of these chemical warfare agents in 1-octanol and water 

may be responsible for hydrophilic or-phobic nature. 
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CHAPTER 7: Biomolecular Simulations with the Transferable 

Potentials for Phase Equilibria: Extension to Phospholipids. 

 

Background 
 

At the heart of any molecular simulation is the force field used to describe interaction between 

atoms in molecules.  A central question regarding force fields is that of transferability, i.e. what 

is the predictive capability of a force field when used to calculate properties at temperatures and 

pressures far removed from those used in the original parameterization?  Is it possible to 

optimize parameters to a particular set of target data and obtain reliable results for other 

properties that were not used in the optimization process?  This idea of transferability may be 

carried even further; to what extent may parameterized functional groups or atoms be reused in 

other molecules and still provide accurate results?   

Traditional approaches to the parameterization of non-bonded interactions for biomolecular force 

fields involve the optimization of parameters to reproduce condensed phase properties, such as 

liquid densities and heats of vaporization at ambient conditions[210-213].  Additional input from 

quantum mechanical calculations, such as binding energies with water [212, 214] or rare gas 

atoms [215, 216] may be used to further optimize partial charge distributions and Lennard-Jones 

parameters.  Free energies of solvation in water and other solvents, such as hexane, cyclohexane 

or 1-octanol, have also been used as a target parameters in the optimization process [134, 213, 

217]. 



115 
 

 
 

On the other end of the spectrum are force fields for the prediction of vapor-liquid equilibria [74, 

218-221].  These force fields typically make use of quantum chemical calculations for the 

determination of partial charge distributions, while Lennard-Jones parameters are optimized to 

reproduce complete vapor liquid coexistence curves from the normal boiling point to the critical 

point.  Additional data, such as vapor pressures [222, 223] or mixture phase equilibria may also 

be used in the optimization process [224, 225].  By optimizing non-bonded parameters over a 

broad range of temperatures and pressures, these force fields are capable of making reliable 

predictions for fluid physical properties over a broad range of temperatures, pressures, phases 

(gas, liquid and solid), for pure fluids and complex mixtures.   

In recent years generalized versions of biomolecular force fields have been published[226, 227], 

and these have been used to provide valuable insight for a broad array of chemical in addition to 

biological systems.  On the other hand, there has been little cross-over for force fields developed 

for the prediction of vapor-liquid equilibria into the realm of biomolecular computation.   In the 

past this was due to limitations of the parameter sets, however, in recent years parameter sets 

have expanded to the point where the simulation of biological systems is now a possibility. 

Lipid bilayers composed of phospholipids are crucial to sustaining life; forming the boundaries 

of cells and acting as scaffolds to support a variety of proteins.  Because of their central 

importance in understanding life processes, lipid bilayers have been studied extensively, both 

through experiments and computer simulations.  Early attempts to simulate lipid bilayers relied 

on “ad-hoc” force fields, with parameters derived from analogous compounds and combined to 

form the lipids of interest.  An example of this is the well-known “Berger” force field for 
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phosphatidylcholine, which was derived by combining bonded interactions from GROMOS with 

non-bonded interactions from the OPLS-UA (united-atom) force field[228] and partial charges 

from the work of Chiu et al.[229].  This model included new parameters for the alkyl tail, which 

were optimized to reproduce the heat of vaporization of pentadecane.  Additional united-atom 

force fields for phoshatidylcholine lipids have appeared in the literature based on the GROMOS 

force field, of which there are numerous variants.   Chiu et al. combined partial charge 

distributions from a prior work[229], with Lennard-Jones parameters optimized by fitting to 

reproduce liquid densities and heats of vaporization of model compounds to produce the  43A1-

S3 parameter set for lipids [230].  While providing a good reproduction of bilayer properties, 

such as area per lipid, the 43A1-S3 force field introduced subtle inconsistencies in the non-

bonded parameters used for lipids and other compounds.  A self-consistent GROMOS lipid force 

field for DPPC based on the G53A6 parameter set, referred to as G53A6L, appeared shortly 

thereafter[231].  Additional models have been proposed for phosphatidylglycerol (PG) lipids by 

Kukol[232], who combined the G53A6 Lennard-Jones parameters with partial charges from 

Zhao et al. [233].  

Development of lipid force fields based on the AMBER parameter set followed a path similar to 

GROMOS.  Parameters from the Generalized Amber Force Field (GAFF) were combined with 

RESP derived partial charges[234] to produce a model for POPC.  However, simulations in the 

tensionless NPT ensemble led to bilayer condensation, with area per lipid values approximately 

20% below experiment.  For this parameter set, an applied surface tension of 30 mN/m was 

required to reproduce the experimental area per lipid[235].   LIPID11 uses a modular approach, 
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analogous to proteins, to build lipid force fields from GAFF, although the resulting models 

require simulation using constant area, or with a non-zero surface tension to prevent 

condensation above the gel phase transition temperature[236].  The tendency for bilayer 

condensation was eliminated by refitting of the Lennard-Jones parameters for carbon and 

hydrogen atoms in the alkyl tails to reproduce the heat of vaporization and liquid density for 

pentadecane[237].  This parameterization is known as GAFFlipid. 

Like GAFF, CHARMM is an all atom force field for the simulation of nucleic acids, proteins, 

carbohydrates, and lipids.  The CHARMM lipid force field has a long history and has undergone 

continuous revision as computer hardware advances have provided access to larger systems and 

longer run times.  While lipid bilayer simulations were performed with the C22 parameters set 

for approximately 1 ns[238, 239], the latest C36 parameter set was validated with simulations of 

over 100 ns[240].  For simulations of DPPC with the C22 parameters, NPT simulations of 

approximately 1 ns showed good agreement with experimental area per lipid values.  However, 

later simulations of DPPC bilayers in the NPγT ensemble revealed that for γ=0 the C22 

parameter set produced area per lipid values that were approximately 14% lower that 

experimental values[241].  The C27 parameterization involved the optimization of Lennard-

Jones parameters for the alkyl tails, and torsional potentials for the phosphate head group[242].  

Despite these improvements, the C27 parameter set still exhibited a tendency towards 

condensation at temperatures above the gel phase transition temperature when used in tensionless 

NPT simulations[243].  Through reoptimization of the partial charges for the phospholipid head 

group using the RESP method, Sonne et al. produced a variant of the C27 force field was 
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capable of predicting an area per lipid for DPPC within 6% of experimental values when run in 

the NPT ensemble[244].  The C36 parameter set included significant reparameterization of 

torsional potentials, partial charge distributions and Lennard-Jones parameters for both the lipid 

head group and the alkyl tails.  Extensive NPT simulations have shown that this latest 

parameterization reproduces closely a broad range of experimental data, including area per 

lipid[240].  The C36 parameter set also provides the foundation for another lipid force field 

known as Slipids (Stockholm Lipids)[245, 246]. 

 Given the extensive data that exist in the literature, phospholipid bilayers are the ideal system to 

assess the reliability of intermolecular potentials developed for vapor-liquid equilibria 

calculations when used in biological systems.  In this work, the Transferable Potentials for Phase 

Equilibra (TraPPE) [74, 75, 139-141, 247-250] are extended to phospholipids that contain 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and 

phosphatidlglycerol (PG) functionalities.  To highlight the transferable nature of the TraPPE 

force field, Lennard-Jones parameters developed for the prediction of low molecular weight 

organic molecule vapor-liquid equilibria are used without modification.  Partial charges are 

determined from a CHELPG analysis of HF/6-31+G(d,p) ab inito calculations, while torsional 

parameters are refit to match the rotational barriers predicted by the CHARMM C36 lipid force 

field.  A variety of quantities, including the area per lipid, volume per lipid, bilayer thickness, 

electron density and x-ray form factors are calculated from molecular dynamics simulations in 

the tensionless NPT ensemble and are shown to be in close agreement with experimental data. 
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Force Field 
 

Non-bonded interactions in the TraPPE force field are described by the pairwise-additive 12-6 

Lennard-Jones potentials and Coulombic interactions of partial charges 

          
   

   
 

  

  
   

   
 

 

  
    

       
 

Equation 31 

where rij , ij , ij , qi, and qj are the separation, LJ well depth, pseudo-atom diameter and partial 

charges, respectively, for the pair of interaction sites i and j and     is the permittivity of vacuum. 

A united-atom representation is used for all CHx groups; i.e. hydrogen atoms bonded to carbon 

atoms are not represented explicitly and are instead combined with the carbon atoms to form a 

single interaction action site or “pseudo-atom”. Lennard-Jones parameters for each interaction 

site were taken from previous TraPPE publications and used without modification.  

 

Partial charges were determined from ab inito calculations performed on complete head groups, 

but without the hydrocarbon tails.   Previous calculations have shown splitting of the head group 

into fragments may result in partial charge distributions that lead to area per lipid values that are 

significantly lower than experimental values.  Consistent with the TraPPE force field, CHX 

groups in the hydrocarbon tail were given a partial charge of 0.  For zwitterionic lipids (PC, PE), 

structures were optimized using Hartree-Fock theory with the 6-31G(d,p) basis set, while for 

charged lipids (PS, PG) the 6-31+G(d,p) basis set was used.  Partial charges were extracted from 

the electrostatic potential energy surfaces using the CHELPG (charges from electrostatic 
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potentials using a grid based method) methodology.  Charges on symmetrical or identical 

interaction sites were averaged to simplify the model.   All quantum calculations were performed 

with Gaussian 09. 

 

Each phospholipid was modeled as a fully flexible molecule, with conformational behavior 

controlled by a combination of harmonic potentials for bond stretching and angle bending 

         
  

Equation 32 

where U corresponds to the bond stretching or bending energy, and x and xo and the 

instantaneous (bond length or angle) and equilibrium (bond length or angle), respectively.  

Traditionally, the TraPPE force field uses fixed bond lengths; however, in this work flexible 

bonds were used to simplify the implementation of the force field in molecular dynamics.   

Values of the bond stretching constants were taken from the CHARMM C36 force field. 

 

Rotations around dihedral angles are described with a cosine series 

                       

 

   

 

Equation 33 

where ki are force constants, i is the periodicity or multiplicity,   is the dihedral angle and   the 

phase shift.  
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In prior implementations of the TraPPE force field, 1-4 Lennard-Jones and electrostatic 

interactions were not calculated explicitly.  Instead, the cosine series was used to represent to 

total energy for barriers to rotation.  This strategy was also used in the original OPLS united-

atom force field.  However, this poses problems for the use of TraPPE in most molecular 

dynamics simulation engines, which follow the conventions of biomolecular force fields, such as 

CHARMM and AMBER and explicitly include 1-4 Lennard-Jones and electrostatic interactions 

as part of the calculation of rotational barriers.  Naively combining the CHARMM torsional 

potentials with the TraPPE Lennard-Jones and partial charges produced rotational barriers with 

significant errors compared to quantum chemical calculations.  For example, the combing the 

CHARMM dihedral potential for the n-alkane tail with the TraPPE non-bonded parameters 

resulted in a significant over-prediction of trans relative to cis conformations. 

 

Resolving this issue required the optimization of new parameters for the dihedral potential that 

took into account explicit 1-4 Lennard-Jones and Coulombic interactions.  Lipid molecules were 

split into a series of model compounds, which are shown in Figure 35.  Choline and 

dimethylphosphate were used to parameterize the torsions in lipid head group; ethylacetate for 

glycerol linker; hexane and hexene for the tail region.  Dihedral parameters derived from these 

compounds were further optimized in calculations of rotational barriers in (M)EGLY and 

(M)PGLY.  The use of larger model compounds for the optimization of dihedral parameters was 

found to be crucial to reproducing experimental order parameter data, including the phenomena 

of order parameter splitting near the head group.  The branched region in (M)EGLY formed by 

atoms C1-C2-C3-O31 and C1-C2-O21-C21 contains multiple redundant dihedrals, the 
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parameters for which were fit simultaneously.  For each dihedral of interest, rotational barriers 

were determined from relaxed potential energy scans performed with the CHARMM software, 

version 34.  For the lipids containing the phosphatidylcholine head group, parameters were 

optimized to reproduce rotational barriers given by the CHARMM 36 force field [240].  The 

CHARMM C36 force field was selected as the target data over quantum calculations since these 

parameters have already been optimized to reproduce QM data, and represent the current ``state 

of the art'' for all atom lipid simulations.  Additional rotational barriers found in 

phosphatidylserine and phosphatidylglycerol were optimized to reproduce data extracted from 

relaxed potential energy scans from MP2/6-31+G(d,p) quantum chemical calculations. 

 

 

 

In Figure 36, a comparison 

between selected rotational 

barriers predicted with the 

optimized TraPPE parameters 

and the CHARMM C36 force 

field is presented.  Overall, the 

data show close agreement with 

predictions of the C36 parameter 

set.   Subtle differences were 

Figure 35: Schematic of model compounds used in this study for torsion 

fitting is shown. a) Choline, b) dimethylphosphate (DMP), c) 2-hexene, d) 

hexane, e)  esterified glycerol-phosphate analogue ((M)PGLY) and f) )  

esterified glycerol analogue ((M)EGLY). 
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observed for some of the rotational barriers in (M)EGLY and (M)PGLY.  For the O12-C21-C22-

C23 dihedral in (M)EGLY, the TraPPE force field over-predicts the magnitude of the barrier at 

90 degrees by approximately 0.8 kcal/mol, while for the C1-C2-C3-O31 dihedral, the locations 

of minima are shifted by 2-3 degrees compared to the C36 parameter set.  These small 

differences arise due to limitations in the united-atom representation, which does not provide as 

much fine-grained control over 1-4 Lennard-Jones interactions as an all-atom representation.   
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Figure 36: Energy scans of torsions from lipid headgroup predicted with TraPPE force field (red circle) and 

compared with C36 parameter set (black). a) N-C12-C11-O12, b) C1-C2-C3-O31, c) O11-C1-C2-C3, d) CT2-CT2-

CT2-CT3, e) O12-P-O11-C1, f) O21-C21-C22-C23, g) C28-C29=C210-C211 and h) O13-P-O11-C1. 
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Simulation Details 
 

The TraPPE force field was developed for nine lipids (DPPC, DMPC, DLPC, DOPC, DLPE, 

DOPS, DLPG, DMPG and DOPG), covering four different head groups and four different acyl 

chains.  Calculations were performed on bilayers containing 128 lipids, solvated by 

approximately 50 water per lipid for zwitter ionic lipids, and 90 waters per lipid for charged 

lipids.  Additional waters were included for charged lipids to provide sufficient hydration of ions 

used for charge neutralization, and minimize the interactions of the bilayer with itself through 

periodic boundary conditions.  128 Na
+
 were added to the PS and PG systems to maintain charge 

neutrality.  Interactions between water molecules were governed by the SPC/E force field.  

Simulations were performed with NAMD 2.9 in the isothermal-isobaric ensemble.  Lennard-

Jones interactions were truncated at 12 A, with a smooth switching function starting at 10 A.  

Electrostatic interactions were calculated using the Particle Mesh Ewald (PME).  Temperature 

was controlled using Langevin dynamics with a damping coefficient of 5.0 ps
-1

. The pressure 

was maintained at 1 atm with the Nose-Hoover Langevin piston, with an oscillation period of 

100 fs and piston decay period of 50 fs.  The cell volume was allowed to fluctuate independently 

in the x-y plane and the z coordinate access.  
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All the systems were initially minimized to the lowest energy state, followed by slow heating to 

a temperature of 323 K for DPPC, 308 K for DLPE and 303 K for all other lipids. All the 

temperatures were chosen to be above the gel phase transition temperatures of the respective 

lipids.  Systems were simulated for 100 ns, using a time step of 2.0 fs. 

Results and Discussion 

Area per lipid 

The area per lipid is a key structural property of lipid bilayers and is governed by a complex 

interplay of interactions between lipids and water.  Of particular importance are interactions 

between water and oxygen atoms in the glycerol linker region.  If these interactions are too weak, 

bilayers exhibit a tendency in tensionless NPT simulations to condense to area per lipid values 

indicative of the gel phase.  This was illustrated clearly in simulations of DPPC bilayers using 

the GROMOS 53A6 parameter set with two sets of charges, GROMOS96, and those taken from 

Chiu et al[229, 231].  Simulations using the GROMOS96 charge set produced an area per lipid 

of 42.6 A
2
, while those using the Chiu charges produced an area per lipid of 63.1 A

2
.  The 

CHARMM C27 force field for DPPC also displayed a propensity to condense at temperatures 

above the gel-phase transition temperature.  Application of new partial charges determined from 

a RESP fit of RHF/6-31G(d) ab initio data to the C27 parameter set produced a model capable of 

reproducing the experimental area per lipid[244].  For both the GROMOS and CHARMM C27 
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Figure 37: Evolution of area per lipid (black) with simulation run time lipids studied in this work. Average value of 

APL predicted by TraPPE is shown (green-dotted) and compared with experiment (red), C36 (blue) and GROMACS 

(orange) data. 

 

force fields, the revised partial charge distributions feature significant increases in the magnitude 

of the partial charges for oxygen atoms in the fatty acid section of the lipid tails[231, 244, 251].   

 

Because of the importance of water interactions with the lipid-head group, the choice of water 

model can have a significant impact on the predicted values of the area per lipid.  Care must be 

taken to ensure the derived partial charge distribution for the lipids of interest is compatible with 
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the chosen water model.   In this work, partial charges were derived from a CHELPG analysis of 

HF/6-31G(d,p) and HF/6-31+G(d,p) ab initio calculations, which has been found by our group to 

produce accurate free energies of hydration for solutes modeled by the TraPPE-UA force field in 

SPC/E water.  Evolution of area per lipid is plotted as a function of simulation run time and 

shown in Figure 37.  Area per lipid values predicted by the TraPPE-UA force field are plotted vs. 

experiment in Figure 38, and numerical data are listed in Table 9. 

Figure 38: Area per lipid predicted by the TraPPE-UA force field for lipid bilayers composed of 

phosphatidylcholine (red circles), phosphatidylethanolamine (orange squares), phosphatidylserine (blue 

triangles) and phosphatidylglycerol (green triangles). 
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For lipids that contain the phosphatidylcholine head group (DPPC, DMPC, DLPC, DOPC, 

POPC), the TraPPE-UA force field predicted area per lipid values with an absolute average 

deviation of 1.02 A
2
, which is of similar accuracy as the most accurate all atom force fields, 

CHARMM C36[240], and SLipids[245].  For POPE, TraPPE predicts an area per lipid of 62.3 

A
2
, which compares favorably to the experimental value of 59-60 A

2
.   

  

To understand the effect of water model on the predicted area per lipid, additional calculations 

were performed for DPPC 

using the TIP3P force field.  

The use of TIP3P produced a 

slight increase in the predicted 

area per lipid to 68.3 A
2
, 

compared to 63.6 A
2
 for 

simulations using SPC/E.  

Density profiles (Figure 39) 

show slightly deeper 

penetration of TIP3P water into the 

lipid bilayer compared to SPC/E.  

Radial distribution functions for water interacting with oxygens in the fatty acid group of the 

lipid tails (Figure 40) show a measureable increase in the first peak for TIP3P water compared to 

Figure 39: Density profile along the bilayer normal for water 

(black) and glycerol (orange) components. Solid and dotted 

lines represent SPCE and TIP3 systems respectively. 
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SPC/E, illustrating how stronger 

water-lipid interactions lead to an 

increase in hydration of the 

phospholipid head group and greater 

area per lipid. 

 

 

  

Simulation of systems containing 

charged lipids, such as those containing 

phosphatidylserine or phosphatidylglycerol is even more complex, since they require a 

neutralizing cation, such as Na
+
 or K

+
.  Numerous simulations have shown that cations may bind 

to phospholipid head groups of zwitterionic lipids, leading to significant reductions in the 

predicted area per lipid.  For example, simulations of POPC or DPPC showed that the addition of 

Na
+
 or K

+
 caused a reduction in the area per lipid by 10-15%[252-254].  Therefore, like in the 

case of water, it is important that the parameterization of the cations be consistent with the 

phospholipid model. Calculations were performed on phosphatidylserine (PS) and 

phosphatidylglycerol (PG) containing lipids with either 128 Na
+
 or K

+ 
added as counter ions.  In 

addition, two sets of force field parameters were evaluated for Na
+
 (CHARMM [1]  and Aqvist 

[2]). Simulations were initially performed with Na
+ 

ions.  After 100 ns of equilibration, Na
+
 was 

replaced with K
+
 and an additional 20 ns of simulation was performed.  Simulations performed 

for PG lipids using Na
+
 with the CHARMM parameters produced area per lipid values that were 

Figure 40: Radial distribution function for interaction of water 

oxygen atoms with oxygen atoms of glycerol region in DPPC 

lipid bilayer. 
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4-5 A
2
 lower than experimental values.  Replacing Na

+
 with K

+
 ion lead to immediate expansion 

of the bilayer, with area per lipid values in close agreement with experimental data. One of the 

prime reasons  for this shift in area per lipid values is the larger size to charge ratio of potassium 

ion compared to sodium. This increase in size weakens the interactions between cation and lipid 

oxygens (in phosphate and glycerol regions) which may cause the lipid bilayer expansion. Radial 

distribution functions for cations 

interacting with O2L (phosphate 

oxygen) and OBL (glycerol oxygen) 

show that potassium ion has a 

weaker interaction with oxygen 

atoms compared to sodium ion 

(Figure 41).  

 

 

 

 

 

 

 

 

Figure 41: Radial distribution functions for interaction of 

cations: sodium (black) and potassium (red) with phosphate 

(O2L) and glycerol (OBL) oxygen atoms of DLPG lipid 

bilayer. 
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Additional calculations performed using the Na
+
 parameters from Aqvist [2] (Na

+ AQVIST
) also 

produced improved values of the area per lipid compared to the CHARMM parameters (Na
+ 

CHARMM
). Sodium parameters from Aqvist have a larger sigma and a lower epsilon value which 

may potentially lead to weakened interactions between the ion and phosphate oxygen atom of 

lipid. To check this, non-bonded potential energy comprising of Lennard Jones and electrostatic 

contributions was plotted as a function of separation distance between sodium ion and phosphate 

oxygen atom (shown in Figure 42).  

The depth of the Lennard Jones potential well is a measure of how strongly the two particles 

attract each other. Comparison shows that Na
+ CHARMM

 has a more favorable interaction with the 

lipid oxygen atoms compared to Na
+ AQVIST

. Radial distribution function for interactions between 

Na
+ CHARMM

 / Na
+ AQVIST

 ions and oxygen atoms of DLPG lipid (shown in Figure 43) show that 

Na
+ CHARMM

 interacts more strongly with lipid atoms compared to Na
+ AQVIST

 which may well 

result in a lower area per lipid value when working with CHARMM parameters.  
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Figure 42: Non bonded potential energy as a function of distance between sodium ion and phosphate oxygen in 

DLPG lipid bilayer. Profile with Na
+ CHARMM

 [1] parameters is shown in black and one with Na
+ AQVIST

 [2]parameters 

is shown on red. 
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Figure 43: Radial distribution function profile for interaction of sodium ion (black:  Na
+ 

CHARMM
 [1]; red: Na

+ AQVIST
 [2]) with O2L (phosphate oxygen), OSLP (phosphate oxygen), 

OBL (glycerol oxygen) and PL (phosphorus) 
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Evolution of area per lipid for simulation of DLPG lipid bilayer with Na
+ CHARMM 

and Na
+ AQVIST

 

is shown in Figure 44. Profile shows that for Na
+ AQVIST 

area per lipid is increased by 2-3 A
2
 

compared to Na
+ CHARMM

 case illustrating how ion parameters may play a significant role in 

correct prediction of physical properties of anionic phospholipid bilayers.  

 

Figure 44: Evolution of area per lipid as a function of simulation run. Results are shown for DLPG lipid bilayer with 

Na
+ CHARMM

 [1] (black) and Na
+ AQVIST

 [2] (red) parameters. 
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Volume per Lipid 

 

As discussed by Anezo et al. [255], area per lipid is highly sensitive to a force field model and 

other simulation parameters such as the treatment of long range electrostatics and therefore 

cannot be considered a good metric of force field quality. Another parameter that is frequently 

used an an alternate to area per lipid for the analysis of bilayer structure is the volume per lipid 

(VPL), useful for relating the lateral structure of the bilayer to transverse structure [256].  

VPL is less sensitive to methodological changes [255] and also exhibits faster convergence when 

compared to APL, making it a desirable target parameter when running simulations for short 

time period. Unlike area per lipid, the volume per lipid is well-defined experimentally [256, 257] 

because of which a more concrete comparison can be made with the simulation output. In a 

simulation set up, VPL can calculated with the following relation, 

 

                                           

Equation 34 

The total volume of the simulation box was calculated by multiplying the length of box in the x, 

y and z direction averaged over time. Volume occupied by one water molecule was then 

determined. Since SPCE water model is used in this study, 892 SPCE water molecules were 

packed in a simulation box with a density of 0.99 g/cc and system was simulated for 12.0 ns at 
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two different temperatures of 323.0 K and 303.0 K at a constant pressure of 1.013 bar. The 

volume per lipid for DPPC was equal to 1230.4 Å
3 

which compares well with the experimental 

value of 1229 Å
3 

[256]. VPL values for all the other lipids are in excellent agreement with the  

 

 

Figure 45: Volume per lipid predicted by TraPPE force field compared to experimental data for PC (red squares), 

PG (green circles) and PS (blue diamond) lipid bilayers. 

experimental data and are listed in Table 9.  VPL for DOPS was found to be 1251 Å
3
, which is 

1% higher than the experimental value [258]. VPL values for PG headgroup based lipid bilayers 

are within 1% of the experimental data as well. Values of volume per lipid as predicted by 

TraPPE parameters are plotted with the experimental data and shown in Figure 45. 
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Bilayer Thickness 

 

Bilayer thickness is another parameter, used to quantify the membrane structure; membrane 

simulations are known to converge when the membrane thickness becomes stable and fluctuates 

around an average value [251]. Nagle et al. [256] have defined several types of bilayer thickness, 

such as head to head bilayer thickness (DHH) hydrophobic thickness (DC), partial headgroup 

thickness (DH1) and others. The above three parameters are related to each other through the 

following equation, 

 

                        

Equation 35 

 

Full thickness of the bilayer region, also known as Luzzati thickness (DB) [256] is defined as 

  

                       

Equation 36 

The calculated values of DHH and DB are listed in Table 9 for all the lipids with their respective 

experimental values where available. DHH values predicted by TraPPE for DPPC, DMPC, DLPC 

and DOPC are in excellent agreement with the experimental data with a 1-3 % deviation. For PG 

and PS lipid bilayers, an over-prediction of 6-8 % from experimental data is observed which 
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Table 9: Area per lipid, volume per lipid, and bilayer thickness as predicted by TraPPE-UA force field. 

 Area Per 

Lipid  

(ALIPID) Å
2
 

Volume Per 

Lipid 

 (VLIPID) Å
3
 

Bilayer 

Thickness 

(DHH) Å 

Luzzati 

Thickness 

(DB) Å 

Area 

Compressibilty 

Modulus (Ka) 

mN/m 

DPPC 

Experiment 63.1 1229 38.0 39.0 231 ± 20 

TraPPE 63.6 ± 0.6 1231 ± 0.8 37.5 ± 0.2 38.7 ± 0.3 371 ± 40 

CHARMM36 

[240] 

62.9 - - - - 

GAFFlipid 

[237] 

61.2 1265.4 37.6 - 274 ± 22 

SLipids [245] 62.4 1201 37.7  238 ± 35 

GROMOS 

54A7 [259] 

64.8 - 35.1 38.0 414 

Berger [228] 65.5 1226 34.7 37.3 - 

43A1-S3 [230] 63.7 1209 35.7 38.0 - 

DMPC 

Experiment 60.6 1101 35.3 36.3 234 ± 23 

TraPPE 61.4 ± 0.5 1106 ± 0.6 34.5 ± 0.1 36.0 ± 0.2 383 ± 20 

CHARMM36 

[240] 

60.8 - - - - 

GAFFlipid 

[237] 

59.9 1117.8 33.6 - 299 ± 75 

SLipids [245] 60.8 1060 34.5 - 250 ± 29 

GROMOS 

53A6 [260] 

61.6 1077 32.7 34.9 475 

Berger [228] 62.6 1112 32.3 35.5 - 

43A1-S3 [230] 62.1 1086 32.6 35.0 - 

DLPC 

Experiment 63.2 991 30.8 31.4 - 

TraPPE 62.8 ± 0.4 996 ± 0.9 30.5 ± 0.3 31.7 ± 0.2 468 ± 86 

CHARMM36 

[240] 

64.4 - - - - 

GAFFlipid 

[237] 

59.9 1008.8 31.6 - 291 ± 64 

SLipids [245] 62.4 951 30.1 - 268 ± 24 

GROMOS 

53A6 [260] 

63.2 969 28.5 30.7 461 

Berger [228] 65.4 1013 27.8 31.0 - 

43A1-S3 [230] 
63.0 977 28.5 31.0 - 
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 Area Per 

Lipid  

(ALIPID) Å
2
 

Volume Per 

Lipid 

 (VLIPID) Å
3
 

Bilayer 

Thickness 

(DHH) Å 

Luzzati 

Thickness 

(DB) Å 

Area 

Compressibilty 

Modulus (Ka) 

mN/m 

DOPC 

Experiment 67.4 1303 36.7 38.7 254 

TraPPE 68.8 ± 0.5 1310 ± 0.7 37.1 ± 0.1 38.1 ± 0.3 406 ± 27 

CHARMM36 

[240] 

69.0 - - - - 

GAFFlipid 

[237] 

66.8 1327.4 37.6 - 314 ± 39 

SLipids [245] 68.0 1262 36.6 - 256 ± 29 

GROMOS 

53A6 [260] 

64.9 1284 36.3 38.9 389 

Berger [228] 66.3 1343 37.2 40.4 - 

43A1-S3 [230] 66.0 1291 36.6 39.1 - 

POPC 

Experiment 68.3 1256 37 39.1 180-330 

TraPPE 66.3 ± 0.6 1264 ± 1.0 37.1 ± 0.3 38.1 ± 0.2 300 ± 16 

CHARMM36 

[240] 

64.7 - - - - 

GAFFlipid 

[237] 

63.7 1277 37.6 - 391 ± 81 

SLipids [245] 64.6 1213        36.5 38.5 298 ± 30 

GROMOS 

53A6 [260] 

63.8 1232 34.6 38.7 404 

POPE 

Experiment 59 – 60  1180 39.5 - 233 

TraPPE 62.3 ± 0.4 1228 ± 0.9 37.0 ± 0.1 39.5 ± 0.3 264 ± 24 

CHARMM36 

[240] 

59.2 - - - - 

GAFFlipid 

[237] 

55.6 1185 43.4 - 484 ± 34 

SLipids [245] 56.3 1153 41.1 41.6 282 ± 29 

DOPS 

Experiment  64.1 1228 39.0 38.3 - 

TraPPE 67.2 ± 0.5 1251 ± 1.1 38.0 ± 0.2 37.8 ± 0.2 378 ± 56 

SLipids[261] 
64.1 1222 38.1 38.5 261 ± 27 
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 Area Per 

Lipid  

(ALIPID) Å
2
 

Volume Per 

Lipid 

 (VLIPID) Å
3
 

Bilayer 

Thickness 

(DHH) Å 

Luzzati 

Thickness 

(DB) Å 

Area 

Compressibilty 

Modulus (Ka) 

mN/m 

DLPG 

Experiment 

[262] 

65.6 953.6             29.1 29.1 - 

TraPPE( Na
+ 

CHARMM
) 

60.2 ± 0.9 938.4 ± 1.2 30.8 ± 0.2 31.1 ± 0.2 121 ± 20 

TraPPE( Na
+ 

AQVIST
) 

64.5 ± 0.4 - - - - 

TraPPE( K
+ 

CHARMM
) 

66.3 ± 0.5 - - - - 

SLipids[261] 64.2 922 27.0 29.0 165 ± 30 

DMPG 

Experiment 

[262] 

65.1 1057.4 32.5 32.5 - 

TraPPE( Na
+ 

CHARMM
) 

60.8 ± 0.5 1045.9 ± 1.3 34.5 ± 0.1 34.4 ± 0.2 103 ± 15 

TraPPE( Na
+ 

AQVIST
) 

64.6 ± 0.3 - - - - 

TraPPE( K
+ 

CHARMM
) 

66.1 ± 0.4 - - - - 

SLipids[261] 63.3 1030 31.8 32.4 161 ± 35 

CHARMM 

[263] 

58.5 - - - - 

DOPG 

Experiment 

[262] 

70.8 1265 35.7 35.7 - 

TraPPE( Na
+ 

CHARMM
) 

69.3 ± 0.5 1252.5 ± 1.1  35.9 ± 0.2 34.9 ± 0.1 200 ± 37 

TraPPE( Na
+ 

AQVIST
) 

71.5 ± 0.3   - - - - 

TraPPE( K
+ 

CHARMM
) 

72.1 ± 0.4 - - - - 

SLipids[261] 70.8 1232 34.5 35.0 241 ± 36 
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may possibly be due to higher ordering of the lipid tails and lower area per lipid values. 

Evolution of bilayer thickness (DHH) with simulation is shown for all the lipids studied in this 

work in Figure 46. Values of bilayer thickness as predicted by TraPPE parameters are plotted with 

the experimental data and shown in Figure 47. 

 

 

Figure 46: Evolution of bilayer thickness (black) with simulation run time lipids studied in this work. Average value 

of bilayer thickness (DHH) predicted by TraPPE is shown (green-dotted) and compared with experiment (red), C36 

(blue) and GROMACS (orange) data. 
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Figure 47: Bilayer thickness predicted by TraPPE force field and compared to experimental data for PC (red), PG 

(green) and PS (blue) lipid bilayers. 

 

 

Electron Density 

 

Apart from order parameter, the electron density profile is another quantity that provides 

qualitative structural information about the lipid bilayer and can be used to distinguish between 

bilayer fluid and gel phases [264, 265]. Sharp peaks in the headgroup region, contributed by the 

phosphate moiety, and a narrow deep trough in the central region of bilayer is indicative of 

bilayer in gel-phase. On the other hand, broad peaks and shallow trough indicative of a fluid 
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phase. The electron density in this work was calculated by following the binning procedure 

which involves division of simulation box into small 1.0 Å, bins along the bilayer normal 

followed by calculating the number of electrons in each bin and then dividing it by the total 

volume of that bin. This procedure is averaged over the total number of frames considered. It is 

however important to note that for simulations running in the constant temperature-pressure 

(NPT) ensemble with periodic boundary conditions, it is common for the bilayer center to move 

and fluctuate in the direction of bilayer normal, a feature which results in artificial broadening of 

real space profiles [266]. To avoid this occurrence, lipid bilayer was re-centered in each frame 

before averaging over all frames and calculation of electron density data. In Figure 48, total 

electron density and individual component density for DPPC bilayer is plotted along the bilayer 

normal and compared to the experimental data. Individual component densities for the all the 

studied lipid bilayers is shown in Figure 49. Components of interest are the glycerol region (CG), 

phosphate region (PCN) and CH2 + CH3 groups in lipid tails. An good agreement with the 
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Figure 48: [TOP] Total electron density profile for DPPC bilayer produced by TraPPE force field. Experimental data 

(black), simulation (red). [BOTTOM]: Individual component density profile for DPPC bilayer produced by TraPPE 

force field. Simulation (dotted) and experiment (solid) are shown for components: glycerol (orange), 

phosphate+choline (blue), methylene (red), terminal methyl (green) and water (black). 

 

 

 experimental data is observed for PCN, CG and water groups of DPPC bilayer. CH2 and CH3 

profiles in the component density plot for DPPC are broader with a higher electron density 
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compared to experiment near the bilayer center. This observation can be attributed to a more 

fluidic nature of the lipid tails possibly due to the lack of hydrogen atoms. The peaks in the total 

electron density profile are due to the phosphate region in both the upper and lower leaflet; the 

lowest point in the profile (trough region) signifies the center of the bilayer. In addition to 

qualitative information, electron density provides a useful quantitative parameter, the head-to-

head bilayer thickness (DHH) The head-to-head bilayer thickness was already calculated in the 

previous section using a different method, but can also be evaluated using the electron density 

profile by measuring the distance between the phosphorus peaks in the upper and lower leaflet. 

DHH value for DPPC measured by this method is equal to 38.2 Å, and agrees well with the 

experimental as well as previously calculated values listed in Table 9 . 
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Figure 49: Individual component density profile for bilayers produced by TraPPE force field is shown for 

components: glycerol (orange), phosphate+choline (blue), methylene (red), terminal methyl (green) and water 

(black). 
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Order Parameter 

 

The deuterium order parameter provides a means to quantify ordering of the acyl tails, measuring 

the orientation of the deuterium-carbon (C-D) bonds with respect to the bilayer normal.   Order 

parameters are of particular interest for validation of molecular mechanics force fields because 

they can be measured directly from deuterium NMR experiments [267, 268], and unlike 

quantities such as area per lipid[269], the experimental data do not require models for 

interpretation[267].   

 

In molecular dynamics simulations, the order parameter is calculated via  

     
        

 
  

                                                                                                                                                                                       Equation 37 

 

where   is the angle formed by the C-D vector and the bilayer normal, and the angular brackets 

denote an ensemble average [270].   United-atom force fields, such as the ones developed in this 

work, lack hydrogen atoms to form the required Ci-Hi vectors.  Therefore hydrogen atoms were 

added to the lipid tails post-simulation assuming ideal tetrahedral geometry.  For saturated lipids, 

such as DPPC, equivalent results for the order parameter may be determined by using the vector 

joining Ci-1 – Ci+1 carbons [270, 271]; the determination of order parameters for unsaturated lipid 

tails, however, requires the generation of pseudo-hydrogen atoms. 
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Calculated values of order parameter are plotted as a function of the carbon number with their 

respective experimental values [267, 272] in Figure 50 for DPPC, DMPC and DLPC and POPC.  

For DPPC and POPC, data from the CHARMM C36 force field are provided for comparison 

[240]. Overall, close agreement was observed between the predictions of the TraPPE force field 

and experimental data, with the TraPPE force field correctly reproducing all major features of 

the order parameter, such as the location of the kink in the sn-2 chain of POPC and C2 splitting 

in the sn-2 chain.   Compared to experimental data and the C36 force field, TraPPE predicts a 

slightly less ordering, which may be due to limitations in the united-atom representation.   

 

Order parameter splitting at C2 position of sn-2 chain is a known feature for both saturated and 

unsaturated lipids. While not observed in older lipid force fields, such as the CHARMM c27 

parameter set[240], nearly all modern all-atom force fields now show evidence of this 

phenomena [240, 245, 273].  Reproduction of experimentally observed C2 splitting is the result 

of optimization of the torsional potentials governing dihedral rotations in the glycerol region.  

Similar splitting was observed for all PC containing lipids. For DLPC, DMPC and DPPC, the 

lower splitting value was in excellent agreement with the experimental data, while the higher 

value is under-predicted by the TraPPE force field. For POPC, both values of split order 

parameter are an exact match to experimental data. To the best of our knowledge, this is the first 

united atom force field that is able to reproduce C2 splitting of the order parameter in the sn-2 

chain.  Experimentally, the SCD value for sn-1 at C2 must be higher than that for the sn-2 chain 

[268].  These results are also reproduced by the TraPPE-UA force field.  Order parameters for 
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both sn-1 and sn-2 chains were calculated for DLPG, DMPG, DOPC, DOPS and were included 

in supplementary information since no experimental data were available for comparison.  

 

Figure 50: Deuterium order parameters as predicted by TraPPE parameters are shown for sn-1 (open square) and sn-

2 (open circle) for DPPC, DMPC, DLPC and POPC bilayers and compared with C36 (green circle) and 

experimental data (red triangle). 
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X-Ray Form Factors 

 

Electron density profiles can be easily extracted from molecular dynamics simulations but 

comparing them with the experimental data may not be such a good idea as experimental 

electron density profiles are generated based on certain assumptions and models which may 

likely result in an inaccurate comparison to simulation data [245, 274]. Order parameters also are 

a good measure order within the bilayer but do not shed light on the overall bilayer structure. 

One of the most rigorous methods for validation of simulation results is to compare with 

experimentally determined x-ray structure or form Factors [275]. They provide a direct 

comparison to the experimental data and is a much more robust way of comparison than with 

electron density. Mathematically, X-Ray form factor is the Fourier transform of the electron 

density profile in Z-direction. 

In this work, structure factor for all the lipids was determined with SIMtoEXP package [266] by 

initially generating the number density data along the bilayer normal followed by calculation of 

structure factors. Experimentally determined form factors are obtained on a relative scale while 

simulation based form factors are generated on an absolute scale. This fact makes it important to 

scale the experimental data using a scaling factor in order to make it comparable with the 

simulation output. Experimental structure factor values were scaled by a factor between 0.8-1.0 

in order to fit the simulated F(q), a procedure adapted in other lipid force field studies as well 

[244]. Form factors predicted by simulation for DMPC, DPPC, POPC and DLPC are shown in 

Figure 51 and are found to be in excellent agreement with available experimental data [258, 276]. 

The location where form factor is zero matches well with the experimental data and peak 
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magnitudes is also in good agreement indicating the correct reproduction of bilayer structure by 

simulation with this force field.  

 

 

Figure 51: Form factors predicted by NPT molecular dynamics simulations (black solid line) for DPPC, DMPC and 

DLPC and compared with experimental data for unilamella vesicles (red square) and oriented samples (red circles). 

 

Form factor plots for anionic PG lipids are shown in Figure 52. Location of peak heights and 

minima predicted by TraPPE force field is in good agreement with experimental data illustrating 

the correct structure of bilayer in a direction parallel to bilayer normal. 
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Figure 52: Form factors predicted by NPT molecular dynamics simulations (black solid line) for DLPG, DMPG and 

DOPG; compared with experimental (red circles) data. 
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CHAPTER 8: Effect Of Ca2+ On The Interactions Between 

Synaptotagmin-1 Protein With Membrane Bilayers 
 

Background 
 

Membrane fusion of apposed bilayers is one of the most fundamental and frequently occurring 

biological phenomena in living organisms. It is an essential step in several cellular processes 

such as neuronal exocytosis, sperm fusion with oocytes and intracellular fusion of organelles to 

name a few. Of these, neuronal exocytosis holds critical significance pertaining to its role in 

interneuronal communication. The process occurs at sub-millisecond time scale and involves the 

release of neurotransmitter from the synaptic vesicle into the pre-synaptic plasma membrane 

once the vesicle and target membrane merge and fuse with each other [277-279]. Ca
2+

 is known 

to regulate this event in a precise manner although the exact mechanism at the molecular level is 

still unknown. In addition to Ca
2+

, several proteins like SNAREs and Synaptotagmin-1(SYT-1) 

are thought to play a key role in the neurotransmitter release machinery. SNARE proteins are 

known to bring the vesicle and target membrane in a close proximity by forming a tight zipper 

like complex between the vesicle bound v-SNARE protein, synaptobrevin ( VAMP) and target 

membrane bound t-SNARE proteins, syntaxin and SNAP-25 which is proposed to result in 

membrane fusion [9-12]. SYT-1 is a synaptic vesicle localized protein and acts as a Ca
2+

 sensor 

for this process [280-283]. 

Synaptotagmin-1 protein is composed of N-terminal single membrane spanning domain, a small 

intraluminal domain and two tandem C-terminal domains, C2A and C2B [284, 285] which are 
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connected by a linker. C2A and C2B adopt similar eight-stranded beta-sandwich structures 

connected by three flexible loops [286-288]. Both C2A and C2B domains possess Ca
2+

 binding 

pockets comprising of conserved aspartic acid residues and capable of binding three and two 

Ca
2+

 ions, respectively [286-290]. Post Ca
2+

 binding, SYT-1 is known to regulate membrane 

fusion, however, the mechanism is not clear, as yet.  

 

Several theories have been proposed over the years on the pathway that SYT-1 follows upon 

binding of Ca
2+

 leading to fusion. The tandem C2 domains can interact and bind to the SNARE 

complex and also to individual proteins syntaxin-1 and SNAP-25 once Ca
2+

 ions are bound in 

their respective pockets [291-294]. These SYT-1-SNARE interactions have been identified as a 

requirement for Ca
2+

 to regulate the fusion process [295]. In addition to SNAREs, SYT-1 binds 

bilayer membranes composed of anionic phospholipids by partially inserting the hydrophobic 

residues located at the tip of C2 [296, 297]. Insertion has been attributed to changes in 

electrostatic potential on the surface of SYT-1 upon binding of Ca
2+

 which changes the negative 

potential on calcium binding loops into a positive potential [298]. This electrostatic switch 

promotes the interaction of SYT-1 with acidic phospholipid headgroups [299].  

 

A proposed model, by Martens et al. [300] on SYT-1's role in membrane fusion is based on the 

penetration of SYT-1 into the plasma membrane resulting in induction of localized positive 

curvature on the initially flat membrane surface. This curvature reduces the distance between the 

plasma membrane and the synaptic vesicle and also lowers the energy barrier required for fusion 

process [300]. Another theory states that either individual or tandem C2 domains attach to both 
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plasma membrane as well as the vesicle and drive them close to each other thereby facilitating in 

the fusion [301, 302]. Tremendous experimental work has been done over the past decade to 

understand the exact role of SYT-1 in membrane fusion with a focus on the way it interacts with 

the lipid bilayer. However, one of the major constraints in vitro processes is the inability to track 

the process in real time at the atomic level. 

 

In this work, molecular dynamics simulations were performed to study the interactions between 

the SYT-1 and lipid bilayers. Simulations were used to determine the role of Ca
2+

 and acidic 

lipids on the insertion of SYT-1 into the bilayer. Experimentally, interaction of two C2 domains 

of SYT-1, C2A and C2B, with the lipid bilayers have been studied, both in tandem as well as 

individually [288, 291]. To reduce system size and complexity, the two domains were studied 

individually in this work. To understand the significance of electrostatics in SYT-1 - bilayer 

interactions, analysis of interaction energies was performed. Results show that both C2A and 

C2B domains when bound to Ca
2+

, insert into lipid bilayers composed of anionic phospholipids. 

However, no insertion was observed for cases where either the domain is Ca
2+ 

- free or the 

bilayer is carrying a neutral charge. Electrostatic energy plotted as a function of separation 

indicates presence of repulsive forces between the bilayer and approaching SYT-1 domain 

surface in the absence of Ca
2+

. Electrostatic potential(ESP) maps of Ca
2+

-bound and Ca
2+

-free 

C2A and C2B domains were generated using Adaptive Poisson Boltzmann Solver(APBS) [303]. 

Results indicate that Ca
2+

 binding to SYT-1 causes a significant alteration in ESP near the Ca
2+

 

binding pocket. Potential of mean force was calculated to understand the effect of Ca
2+

 on the 

interactions between SYT-1 and lipid bilayers.         
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Simulation Details 
 

Lipid bilayer structures, both homogeneous and heterogeneous, were generated using 

CHARMM-GUI [304]. Homogeneous bilayers contain pure POPC lipid. The heterogeneous 

bilayer were composed of POPS and POPC lipid in a 35:65 ratio. All the bilayers were 

approximately 68 X 68 X 60 Ǻ in size and contained a total of 120 lipids with 60 lipids each in 

the upper and lower leaflet.. The initial structures have Ca
2+

 ions bound in their designated 

pockets. To work with C2A and C2B domain lacking bound calcium, Ca
2+

 ions were removed 

from the original PDB file. Hydrogen atoms were added to the initial protein structure using 

PSFGEN in VMD (Visual molecular dynamics) [151]. Systems S1 to S8 (Table 10) were 

prepared to check the insertion capability of the C2A and C2B domain in the bilayer and were 

built by aligning the bilayer perpendicular to the z-axis followed by placing the protein tip at a 

distance of approximately 2.0 Ǻ from the bilayer surface. The protein was aligned in such a way  

that the tip residues known to penetrate the bilayer (173, 234 in C2A and 304, 367 in C2B) were 

facing the bilayer surface. For interaction force and energy calculations, the protein was placed 

in a similar alignment as systems S1 to S8 but at an initial distance of 40.0 Ǻ from the bilayer.  
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Protein and bilayer systems were packed together and aligned using the PACKMOL [79] 

package. System was solvated with water using VMD. A 20.0 Ǻ layer of water was added in the 

z-direction to prevent the interaction of top surface of protein with the bilayer through periodic 

boundaries.. System was then neutralized for charge by adding Na
+
 and Cl

-
 ions using VMD. 

 

 

 

Table 10: Systems studied in this work. 

   Bilayer composition  

System SYT-1 Domain Bound Ca
2+

 %PC %PS # of water molecules 

S1 C2B 2 65 35 6735 

S2 C2A 3 65 35 7650 

S3 C2B 0 65 35 7833 

S4 C2A 0 65 35 7928 

S5 C2B 2 100 0 7463 

S6 C2A 3 100 0 7850 

S7 C2B 0 100 0 6468 

S8 C2A 0 100 0 6908 
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Simulations were performed with NAMD 2.6 [32] using CHARMM27 force field [305]. 

CHARMM32 was also used specifically for building and simulation of POPS lipid. The TIP3P 

model [77] was used for water modeling. Isobaric-Isothermal (NPT) ensemble was used for all 

simulations. System was minimized for energy followed by heating the system to 300 K. 

Constant pressure was maintained by using the Langevin piston Nose-Hoover method [80, 306]. 

Temperature was controlled using Langevin dynamics with a damping coefficient of 1.0 ps
-1

. 

Electrostatic forces were calculated using particle mesh Ewald (PME) method [82]. Lennard 

jones interactions were truncated at 12.0 Ǻ. Steered molecular dynamics simulations were 

performed using the SMD plugin in NAMD. Data analysis and visualization was done with 

VMD [151]. Potential of mean force calculations were done using adaptive biasing force 

technique [25, 26, 146, 307], a method based on unconstrained molecular dynamics. Distance 

between centers of mass of the inserting residues (M173/F234) and the phosphorus atoms in 

upper bilayer leaflet was chosen as the reaction coordinate (RC). RC spanned a distance of 21.0 

Ǻ and was divided into seven equal windows of 3.0 Ǻ each to improve the sampling of phase 

space. Simulations in each window were carried out for 4.0 ns. Average force were collected in 

0.1 Ǻ wide bins and the adaptive force was applied after 0.02 ns of runtime. 

 

Results and Discussion 

 

Effect of Calcium ions  
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Experimental studies on the SYT-1 protein have emphasized on its role of being a Ca
2+

 sensor 

[288, 290, 308] and that upon binding calcium, the two domains (C2A and C2B) insert or 

penetrate into the surface of lipid bilayer composed of anionic phospholipids. The first step in 

understanding this phenomena and the importance of Calcium in this process is to verify if Ca
2+

 

bound protein (SYT-1) inserts itself in the lipid bilayer. To reduce computational expense and to 

avoid the complexity of inter-domain interactions, the two C2 domains of SYT-1, C2A and C2B 

were studied individually. 

 

Table 11: Summary of results for C2A domain interacting with lipid bilayers. 

   Distance from bilayer surface 

 Bilayer Composition Residue M173 Residue F234 

Bound Ca
2+

 % PC % PS Initial Final Initial Final 

0 100 0 + 3.714 + 5.636 + 2.283 + 3.369 

2 100 0 + 4.262 +2.352 + 2.793 + 1.129 

0 65 35 +3.292 + 4.576 + 3.245 + 4.465 

2 65 35 + 4.164 + 2.690 - 2.042 -1.912 

 

 The first simulation system (S1) contained of all the factors thought to be necessary for protein 

insertion into the lipid bilayer i.e individual C2B domain with bound Ca
2+

 ions at their respective 

pockets and the anionic bilayer with 35% PS (phosphatidylserine) and 65% PC 

(phosphatidylcholine) headgroup lipids. C2B was placed close to the bilayer in a way so that the 

basic residues, 304 and 367, which are known to be the ones to penetrate the bilayer, are at a 

distance of ~ 3.0 Angstrom from the bilayer surface (Figure 53). After 10.0 ns, the two residues 

(304 and 367) were observed to penetrate into the bilayer surface to a depth of 3.0 Ǻ (Figure 54). 

Comparison of initial and final system shows that in 10.0 ns the C2B domain had moved ~ 4.0 Ǻ 
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towards the bilayer. Similar calculation was performed with the C2A domain bound to three Ca
2+

 

ions. Simulations show that after 10.0 ns, the two tip residues had inserted into the bilayer (Figure 

55, Figure 56). Data for systems S1 and S2 show that both C2A and C2B domains are capable of 

inserting into the lipid bilayer when bound to Ca
2+

 and the bilayer carries a significant anionic 

charge.  

 

Figure 53: Initial configuration showing Ca
2+

-bound C2A domain of SYT-1 close to anionic lipid bilayer (at t= 0 

ns). Nitrogen atoms in lipid headgroup are shown as Blue spheres. Residues known to penetrate the bilayer (shown 

in Red) are placed at a distance of 2.0 from the bilayer surface. Ca
2+

 ions are shown as green spheres. 

 

 

 

Having shown that SYT-1 was able to insert into the bilayer, the next step was to understand the 

role of Ca
2+

 in this process. For this study, systems S3 and S4 were constructed which resembled 
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systems S1 and S2 except that the bound Ca
2+

 ions were removed from their designated pockets 

in the C2A and C2B domains.  

 

 

 

 

 

Table 12: Summary of results for C2B domain interacting with lipid bilayers. 

   Distance from bilayer surface 

 Bilayer Composition Residue V304 Residue I367 

Bound Ca
2+

 % PC % PS Initial Final Initial Final 

0 100 0 + 5.107 + 4.472 + 1.593 + 2.443 

3 100 0 + 3.827 +2.942 + 3.457 + 2.624 

0 65 35 +2.091 + 3.971 + 3.172 + 3.486 

3 65 35 + 3.123 + 2.588 + 3.123 -3.071 

 

After 4.0 ns of production run it was observed that none of the identified residues (173 / 234 in 

C2A and 304 / 367 in C2B) penetrated the bilayer surface. The initial and final distance between 

the residues and bilayer surface are tabulated in Table 11and Table 12. 
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Figure 54: System configuration after 10.0 ns  showing Ca2+-bound C2A domain of SYT-1 close to anionic lipid 

bilayer . Nitrogen atoms in lipid headgroup are shown as Blue spheres. Residues known to penetrate the bilayer 

(shown in Red) have practically inserted into the bilayer. Ca
2+

 ions are shown as green spheres. 

 

 



164 
 

 
 

 

Figure 55: Initial configuration showing Ca
2+

-bound C2B domain of SYT-1 close to anionic lipid bilayer (at t= 0 

ns). Nitrogen atoms in lipid headgroup are shown as Blue spheres. Residues known to penetrate the bilayer (shown 

in Orange) are placed at a distance of 2.0 Ǻ from the bilayer surface. Ca
2+

 ions are shown as green spheres.  

 

 

 

Figure 56: System configuration after 10.0 ns showing Ca2+-bound C2B domain of SYT-1 close to anionic lipid 

bilayer. Nitrogen atoms in lipid headgroup are shown as Blue spheres. Residues known to penetrate the bilayer 

(shown in Orange) have practically inserted into the bilayer. Ca
2+

 ions are shown as green spheres. 
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Effect of bilayer composition 
 

To understand the significance of anionic phospholipids in the SYT-Bilayer insertion process, 

four new systems (S5-S8) were generated (Table 10) similar to S1-S4 in every aspect except that 

the bilayer was composed of pure POPC lipids. For both Ca
2+

 bound and Ca
2+

 free cases, C2A 

and C2B were unable to insert in the neutral lipid bilayer lacking anionic phospholipids. The 

result did not change for the case when Ca
2+ 

was bound to the protein. These set of results 

underline the idea that both C2A and C2B domains of SYT-1 are capable of insertion into the 

lipid bilayer but require bound Ca
2+

 at their respective sites as well as the presence of anionic 

phospholipids in the bilayer. Failing to meet any of these criterions disables the insertion of 

protein SYT-1 into the bilayer. The need for Ca
2+

 ions in protein and anionic lipids in bilayer for 

insertion step suggests that electrostatic interactions are the dominating factor in this process.  

 

Protein docking 
 

Stability of SYT-1 – bilayer complex was studied by docking the Ca
2+

 bound C2B domain into 

the lipid bilayer and simulating the system for 15.0 ns. C2B was docked in a manner such that 

the distance between center of mass of inserting residues (V304, I367) and phosphorus atoms in 

the upper leaflet is ~ -6.0 Ǻ (negative sign means that residues are located below the bilayer 

surface plane). After 15.0 ns of simulation, the distance between Ca
2+

 ions and bilayer surface 
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was measured and plotted as a function of run time as shown inError! Reference source not 

found.  In addition, distance between the center of mass of protein and bilayer surface was 

measured and plotted. Resulting profiles show that the distance does not change significantly 

with run time suggesting that Ca
2+

 ions and the whole C2B domain remain stable and in complex 

with respect to the bilayer.  

 

 

Figure 57: Docked SYT-1 in bilayer.  Variation in distance between Ca2+ ions and SYT-1 (black) ; bilayer and  

(red) w.r.t. run time. 

 

 

Steered Molecular Dynamics (SMD) was used to quantify the interactions between SYT-1 nad 

lipids and the effect of Ca
2+

 on these interactions.  Using SMD, the inserted protein was pulled 

away from the lipid bilayer with a constant velocity and the force required for this pull was 
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plotted as a function of timestep. Similar calculation was performed for the initial configuration 

case where SYT-1 is next to the bilayer but has not yet inserted into the bilayer. The force curves 

for these two simulations were plotted together for comparison. As can be seen from Figure 58, 

force required to pull the inserted protein out of the bilayer, denoted by the peak in each curve, is 

significantly higher than that required to pull the bilayer-free protein. This makes sense as 

favorable interactions between the protein and lipid headgroup increase once SYT-1 inserts itself 

into the bilayer.  

 

Figure 58: Applied force vs. run time for pulling the C2B domain away from acidic bilayer. Profile for bilayer 

bound and bilayer free SYT-1 is shown in red and black respectively. 
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To understand the importance of bound Ca
2+

 to SYT-1 protein, another experiment was carried 

out where the aim was to look at the behavior of inserted SYT-1 after Ca
2+

 is removed from the 

binding site. Initial configuration chosen for this experiment was that of inserted Ca
2+

-bound 

C2B domain in the anionic lipid bilayer. Both the Ca
2+

 ions were removed from their respective 

pockets in this initial configuration without disturbing any other atom in the system. 4 Sodium 

ions were added to maintain overall charge neutrality of the system. After 6 ns of simulation, the 

inserted residues (304 and 367) pop out of the bilayer (Figure 59) from their respective inserted 

positions. Distance before and after the start of simulation is also shown. This result shows that 

Ca
2+

 ions are necessary to keep the C2B domain inserted in lipid bilayer. An explanation to this 

is that once Ca
2+

 is removed, the electrostatics of the system changes and repulsion between the 

negatively charged bilayer and interacting protein surface causes the protein to move away. 
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Figure 59: Post simulation configuration of C2B domain after removal of Ca2+ ions from the designated pockets. 

Residue 367 (Orange) is ejected from the bilayer surface. 

 

Electrostatic potential of protein surface 
 

The role of Ca
2+

 in imparting a positive electrostatic potential (ESP) to both C2A and C2B 

domains has been well documented in the literature [287, 298]. As proposed by Zheng et al. 

[299], one of the major driving forces for the association of SYT-1 protein to anionic lipid 

bilayers is the favorable electrostatic energy which arises due to binding of Calcium to SYT-1's 

C2A and C2B domain. Ca
2+

 binding increases the electrostatic potential locally around the 

binding site thereby attracting the negatively charged surface of anionic bilayers. Electrostatic 

maps of both Ca
2+

-bound and Ca
2+

-free C2A and C2B domains were generated to analyze the 
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overall electrostatic effect (Figure 60). Maps were generated using the Adaptive Poisson 

Boltzman Solver software [303] incorporated in VMD which uses Finite element method to 

solve Poisson-Boltzmann equation numerically. Input file for APBS calculation was generated 

using PDB2PQR software [309, 310] which coverts system coordinate file in PDB format to 

PQR format as required by the APBS software. Circled region in Figure encloses the Ca
2+

 -ion 

pocket and this is where major changes in electrostatics occur upon Ca
2+

 binding. It can be seen 

that this region carries a high negative charge when Ca
2+

 ions are not bound but changes into a 

positively charges region upon Ca
2+

 binding. Negative charge in the Ca
2+

 binding pocket is due 

to the presence of Aspartic acid residues (also shown in Figure) in both C2A and C2B domains. 

Negative electrostatic potential (before Ca
2+

 binding) repels this protein region from the acidic 

bilayer thereby increasing the free energy barrier. However, post Ca
2+

 binding, resulting in a 

negative to positive shift in ESP, the energy barrier is lowered due to the attraction between this 

positive region of protein and negative region of bilayer surface which may result in SYT-1 

association with bilayer. This calculation, although qualitative in nature, suggests the importance 

of electrostatic interactions in SYT-1 association with anionic bilayer.  
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Figure 60: Electrostatic potential maps of Ca
2+

-bound (left) and Ca
2+

-free (right) C2A domain. Red and blue colors 

denoted negatively and positively charged surfaces respectively. 

 

 

Interaction energy between SYT-1 and bilayer 
 

Interaction energy between both C2A/C2B domains of SYT-1 and lipid bilayer was evaluated to 

further study the role of electrostatics in this insertion process. Steered molecular dynamics was 

applied for this calculation. Bilayer was fixed in space and the protein SYT-1, initially at a 

distance of 40.0 Ǻ from the bilayer surface, was moved towards the bilayer with a constant 

velocity and varying force to cover a distance of 40.0 Ǻ so that protein just touches the bilayer 
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surface.  Electrostatic energy was computed with the analysis tools in NAMD and plotted with 

the distance between the approaching protein and bilayer.  

 

Figure 61: Electrostatic energy vs. distance between anionic bilayer (PC/PS) and approaching C2B domain. 

Resulting profile for system with Ca2+ - free C2B is shown in red and with Ca2+ - bound C2B is shown in blue 

color. 

 

As can be seen from Figure 61, electrostatic energy between the protein and bilayer remains 

constant to a distance of 12.0 Ǻ suggesting that electrostatic interactions develop only when 

SYT-1  at a minimum distance of ~ 14.0 Ǻ from the bilayer surface. When Ca
2+

 ions are bound 

to the protein (C2A or C2B), the electrostatic energy lowers down from 0.0 kcal/mol to a value 

of -15.0 kcal/mol for C2A domain and to -8.0 kcal/mol for the C2B domain marking a favorable 

interaction between SYT-1 and bilayer. Contrasting to this result, when  the two domains are 

Ca
2+

 free, and are moved towards the bilayer, there is a sharp rise in the electrostatic energy from 
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0.0 kcal/mol to 5.0 kcal/mol for both C2A and C2B. This profile suggests the repulsive 

behaviour between the protein and bilayer in the absence of Ca
2+

. It should be noted that the 

electrostatic interactions in this case start developing around same point as observed for the case 

when Ca
2+

 ions were bound to the protein thereby strengthening the result that in this 

configuration SYT-1 starts interacting with the bilayer from a distance of ~ 14.0 Ǻ. The results 

are qualitative in nature and indicate that binding of Ca
2+

 to both C2A and C2B domains changes 

the electrostatics of system and the protein interactions with the bilayer are turned from 

unfavorable to favorable. 

 

Force between SYT-1 and bilayer  
 

Total number of bound Ca
2+

 ions can have an effect on the SYT-1-bilayer interactions. To 

measure this, SMD calculations with constant velocity and variable force were run for both C2A 

and C2B domain.  Applied force was plotted against distance which provides a qualitative 

analysis on the attraction and repulsion behavior of the two interacting species. Calculations 

were done for three systems where the first had zero Ca
2+

 ions attached to C2B, second system 

had 1 bound Ca
2+

 ion and the third system had both Ca
2+

 ions bound at their designated sites. 
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Figure 62: : Force required in bringing C2A domain close to anionic bilayer (PC/PS) surface plotted as a function of 

distance. Resulting profile for system with number of bound Ca2+ ions equal to 0 and 3 are shown in black and red 

colors respectively. 

 

 

 

The three systems were pulled towards the bilayer with same velocities and force constant 

values. Plot between the applied force and distance between the approaching protein and bilayer 

is shown in Figure 62. There is a clear distinction between the magnitude of applied force for the 

three cases as the force required to pull the third system with 2 bound Ca
2+

 ions was lowest as 

compared to the other two cases and increased as the number of bound Ca
2+

 ions decreased. 

Results for C2A domain are shown in Figure 63. Force required for the case when Ca
2+

 is bound  
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Figure 63: Force required in bringing C2B domain close to anionic bilayer (PC/PS) surface plotted as a function of 

distance. Resulting profile for system with number of bound Ca2+ ions equal to 0, 1 and 2 are shown in black, red 

and blue colors respectively. 

 

 

to C2A is lower than when the domain is Ca
2+

 free. This result again provides a qualitative 

picture on the role of Ca
2+

 ions on increasing the favorable interactions between SYT-1 protein 

and the lipid bilayer. 

 

Potential of mean force  
 

Potential of mean force calculations with C2A domain were performed to understand the effect 

of Ca
2+

 on the binding affinity of SYT-1 to the lipid bilayer. PMF calculations were done using 
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the adaptive biasing force (ABF) method. Distance between center of masses of the two 

penetrating residues (M173 and F234) and the upper leaflet of lipid bilayer was chosen as the 

reaction coordinate. PMF profiles for the Ca
2+

 free and Ca
2+

 bound C2A systems are displayed in 

Figure 64 with red and black color scheme respectively. Profile for Ca
2+

 bound case shows a clear 

minimum at around 4.0 Ǻ, a stage where the protein tips just touch the bilayer surface, followed 

by a rise as C2A moves away from the bilayer into the bulk water phase. In contrast to this, Ca
2+

 

free C2A domain profile attains a maximum when it is close to the bilayer surface and drops 

down to a minimum when moved into the water phase. Free energy difference between the two 

state points (C2A in contact with bilayer and in bulk water phase) for Ca
2+ 

bound case is negative 

(-2.90 kcal/mol) suggesting a favorable interaction between C2A and bilayer in the presence of 

Ca
2+

. For Ca
2+

 free case, this difference is positive (+1.5 kcal/mol) which means that bringing 

C2A domain (with no bound Ca
2+

) close to the bilayer from bulk water phase is energetically 

unfavorable. These results highlight the role of Ca
2+

 in altering the interactions between SYT-1 

and bilayer. 
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Figure 64: Potential of mean force between PC/PS (65:35) bilayer and C2A domain of SYT-1. Red profile is for the 

Ca2+ free C2A domain and black profile is for the Ca2+ bound C2A domain. 

 

 

 

 

Energetics of SNARE dissociation 
 

SNAREs (soluble N-ethylmalemide-sensitive factor attachment protein receptor) are a set of 

proteins which are known to facilitate the membrane fusion process by pulling the two 

membranes in close apposition to provide a contact point for fusion which is otherwise a 

thermodynamically unfavorable event [311]. This happens when SNAP-25 and Syntaxin-1A 

proteins (part of the target plasma membrane) start interacting with VAMP-2 (part of the 
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synaptic vesicle) protein and form a tight complex in a zipper like fashion thereby bringing 

the two membrane bodies close to each other and the energy released in this complex 

formation process helps in crossing the  energetic barrier. In this study, the stability and 

energetics of SNARE complex was investigated in order to understand the factors that hold 

the three proteins together in a favorable wound state. 

Steered molecular dynamics (SMD) simulations were carried out to dissociate the SNARE 

complex (Figure 65) and forces and energy associated were measured.  
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Figure 65: Schematic of a SNARE complex. Syntaxin1-A is shown in red, VAMP-2 in blue and the two coils of 

SNAP-25 in orange and green. 
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The first carbon atom of Syntaxin-1A and SNAP-25 on the N-termini was fixed while that of 

VAMP-25 was moved with a constant velocity of 12.0 Å/ns away from the fixed atoms in the 

negative z-direction thereby dissociating the complex. Variable forces and energy were then 

measured for this process and plotted as a function of distance between the fixed and moving 

atom to provide an estimate of energy stored in the complex. The force curve as a function of 

separation distance is plotted and shown in Figure 66. 

 

 

Figure 66: SMD pulling force plotted versus distance between fixed and SMD atom. Peaks  denote the dissociation 

of residue pares.  Peak 6 marks the point where VAMP-2 completely dissociates from the complex. 

 

Distinctive peaks can be seen in the figure marking the point where the complex dissociates and 

a bond is broken. For the same run, electrostatic energy of the system was calculated and plotted 

(Figure 67). 

Amino acid residues in the SNARE proteins that play a factor in stability of the complex were 

identified. Free energy of dissociation is plotted as a function of the reaction coordinate. 
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Figure 67: Electrostatic energy between VAMP-2 and (t)-SNAREs plotted versus distance between fixed and SMD 

atom. Jumps in energy correspond to peaks in force curve. Flat region after Peak-6 point is due to complete 

dissociation of the SNARE complex. 
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This project is focused on identifying the role of key players in the membrane fusion process at 

the atomic level with the use of molecular dynamics simulations. Membrane fusion of apposed 

bilayers is one of the most fundamental and frequently occurring biological phenomena in living 

organisms. It is an essential step in several cellular processes such as neuronal exocytosis, sperm 

fusion with oocytes and intracellular fusion of organelles to name a few. Membrane fusion is a 

frequent process in a living organism but is still not fully understood at the atomic level in terms 

of the role of various factors that play a crucial part in completion of membrane fusion. Two 

major factors that have been identified and studied experimentally are the protein Synaptotagmin 

and SNAREs. In addition, Ca
2+

 is known to play a crucial role in this process, however the exact 

mechanism of action is still unknown. 
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           Prime objective of this study is to understand these interactions and the role of Ca2 + in 

the process at the atomic level by carrying out molecular dynamics simulations. One of the 

primary calculations to perform is potential of mean force (PMF) between SYT and bilayer to 

analyze the effect of Ca
2+

 on their relative affinities. 

           1–octanol–water partition coefficient (log Kow) of a solute is a key parameter used in the 

prediction of a wide variety of complex phenomena such as drug availability and 

bioaccumulation potential of trace contaminants. Adaptive biasing force method is applied to 

calculate 1-octanol partition coefficients of n-alkanes and extended to other complex systems 

like ionic liquids, energetic materials and chemical warfare agents. 

          Molecular dynamics simulations show that both domains of SYT-1, C2A and C2B, once 

calcium bound, insert into the lipid bilayer composed of anionic phospholipids. In contrast, no 

insertion is observed when the domains do not have bound calcium or when the bilayer is not 

charged negative. Electrostatic interactions play an important role in this insertion process. Effect 

of calcium binding to the C2A and C2B domain on the overall electrostatics of the protein was 

studied by generating the ESP maps. Negative potential on the Calcium binding pocket 

transforms into positive potential once calcium is attached to those sites. Interaction of this 

positive potential surface with the negatively charged bilayer acts as a driving force for protein 

insertion into the bilayer.  

           In addition, adaptive biasing force method has emerged as a powerful tool for prediction 

of 1-octanol water partition coefficients and is successfully implemented and optimized for n-
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alkanes and extended to the systems of ionic liquids, energetic materials and chemical warfare 

agents for which 1-octanol water partition coefficient is either not known or is difficult to 

measure via experimental methods. 
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