75 research outputs found

    AXTAR: Mission Design Concept

    Full text link
    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for submillisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultradense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR's main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2-50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of supermodules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study.Comment: 19 pages, 10 figures, to be published in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Proceedings of SPIE Volume 773

    ProtoEXIST: Advanced Prototype CZT Coded Aperture Telescopes for EXIST

    Get PDF
    {\it ProtoEXIST1} is a pathfinder for the {\it EXIST-HET}, a coded aperture hard X-ray telescope with a 4.5 m2^2 CZT detector plane a 90×\times70 degree field of view to be flown as the primary instrument on the {\it EXIST} mission and is intended to monitor the full sky every 3 h in an effort to locate GRBs and other high energy transients. {\it ProtoEXIST1} consists of a 256 cm2^2 tiled CZT detector plane containing 4096 pixels composed of an 8×\times8 array of individual 1.95 cm ×\times 1.95 cm ×\times 0.5 cm CZT detector modules each with a 8 ×\times 8 pixilated anode configured as a coded aperture telescope with a fully coded 10×1010^\circ\times10^\circ field of view employing passive side shielding and an active CsI anti-coincidence rear shield, recently completed its maiden flight out of Ft. Sumner, NM on the 9th of October 2009. During the duration of its 6 hour flight on-board calibration of the detector plane was carried out utilizing a single tagged 198.8 nCi Am-241 source along with the simultaneous measurement of the background spectrum and an observation of Cygnus X-1. Here we recount the events of the flight and report on the detector performance in a near space environment. We also briefly discuss {\it ProtoEXIST2}: the next stage of detector development which employs the {\it NuSTAR} ASIC enabling finer (32×\times32) anode pixilation. When completed {\it ProtoEXIST2} will consist of a 256 cm2^2 tiled array and be flown simultaneously with the ProtoEXIST1 telescope

    Efficient Intra-Rack Resource Disaggregation for HPC Using Co-Packaged DWDM Photonics

    Full text link
    The diversity of workload requirements and increasing hardware heterogeneity in emerging high performance computing (HPC) systems motivate resource disaggregation. Resource disaggregation allows compute and memory resources to be allocated individually as required to each workload. However, it is unclear how to efficiently realize this capability and cost-effectively meet the stringent bandwidth and latency requirements of HPC applications. To that end, we describe how modern photonics can be co-designed with modern HPC racks to implement flexible intra-rack resource disaggregation and fully meet the bit error rate (BER) and high escape bandwidth of all chip types in modern HPC racks. Our photonic-based disaggregated rack provides an average application speedup of 11% (46% maximum) for 25 CPU and 61% for 24 GPU benchmarks compared to a similar system that instead uses modern electronic switches for disaggregation. Using observed resource usage from a production system, we estimate that an iso-performance intra-rack disaggregated HPC system using photonics would require 4x fewer memory modules and 2x fewer NICs than a non-disaggregated baseline.Comment: 15 pages, 12 figures, 4 tables. Published in IEEE Cluster 202

    Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap

    Get PDF
    The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies

    MICROELECTRONICS PACKAGING TECHNOLOGY ROADMAPS, ASSEMBLY RELIABILITY, AND PROGNOSTICS

    Get PDF
    This paper reviews the industry roadmaps on commercial-off-the shelf (COTS) microelectronics packaging technologies covering the current trends toward further reducing size and increasing functionality. Due tothe breadth of work being performed in this field, this paper presents only a number of key packaging technologies. The topics for each category were down-selected by reviewing reports of industry roadmaps including the International Technology Roadmap for Semiconductor (ITRS) and by surveying publications of the International Electronics Manufacturing Initiative (iNEMI) and the roadmap of association connecting electronics industry (IPC). The paper also summarizes the findings of numerous articles and websites that allotted to the emerging and trends in microelectronics packaging technologies. A brief discussion was presented on packaging hierarchy from die to package and to system levels. Key elements of reliability for packaging assemblies were presented followed by reliabilty definition from a probablistic failure perspective. An example was present for showing conventional reliability approach using Monte Carlo simulation results for a number of plastic ball grid array (PBGA). The simulation results were compared to experimental thermal cycle test data. Prognostic health monitoring (PHM) methods, a growing field for microelectronics packaging technologies, were briefly discussed. The artificial neural network (ANN), a data-driven PHM, was discussed in details. Finally, it presented inter- and extra-polations using ANN simulation for thermal cycle test data of PBGA and ceramic BGA (CBGA) assemblies

    ToSHI - Towards Secure Heterogeneous Integration: Security Risks, Threat Assessment, and Assurance

    Get PDF
    The semiconductor industry is entering a new age in which device scaling and cost reduction will no longer follow the decades-long pattern. Packing more transistors on a monolithic IC at each node becomes more difficult and expensive. Companies in the semiconductor industry are increasingly seeking technological solutions to close the gap and enhance cost-performance while providing more functionality through integration. Putting all of the operations on a single chip (known as a system on a chip, or SoC) presents several issues, including increased prices and greater design complexity. Heterogeneous integration (HI), which uses advanced packaging technology to merge components that might be designed and manufactured independently using the best process technology, is an attractive alternative. However, although the industry is motivated to move towards HI, many design and security challenges must be addressed. This paper presents a three-tier security approach for secure heterogeneous integration by investigating supply chain security risks, threats, and vulnerabilities at the chiplet, interposer, and system-in-package levels. Furthermore, various possible trust validation methods and attack mitigation were proposed for every level of heterogeneous integration. Finally, we shared our vision as a roadmap toward developing security solutions for a secure heterogeneous integration
    corecore