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Abstract

High Performance Silicon Photonic Interconnected Systems

Ziyi Zhu

Advances in data-driven applications, particularly artificial intelligence and deep learning,

are driving the explosive growth of computation and communication in today’s data centers and

high-performance computing (HPC) systems. Increasingly, system performance is not

constrained by the compute speed at individual nodes, but by the data movement between them.

This calls for innovative architectures, smart connectivity, and extreme bandwidth densities in

interconnect designs. Silicon photonics technology leverages mature complementary

metal–oxide–semiconductor (CMOS) manufacturing infrastructure and is promising for low cost,

high-bandwidth, and reconfigurable interconnects. Flexible and high-performance photonic

switched architectures are capable of improving the system performance. The work in this

dissertation explores various photonic interconnected systems and the associated optical

switching functionalities, hardware platforms, and novel architectures. It demonstrates the

capabilities of silicon photonics to enable efficient deep learning training.

We first present field programmable gate array (FPGA) based open-loop and closed-loop

control for optical spectral-and-spatial switching of silicon photonic cascaded micro-ring

resonator (MRR) switches. Our control achieves wavelength locking at the user-defined

resonance of the MRR for optical unicast, multicast, and multiwavelength-select functionalities.

Digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) are necessary for

the control of the switch. We experimentally demonstrate the optical switching functionalities



using an FPGA-based switch controller through both traditional multi-bit DAC/ADC and novel

single-wired DAC/ADC circuits. For system-level integration, interfaces to the switch controller

in a network control plane are developed. The successful control and the switching functionalities

achieved are essential for system-level architectural innovations as presented in the following

sections.

Next, this thesis presents two novel photonic switched architectures using the MRR-based

switches. First, a photonic switched memory system architecture was designed to address

memory challenges in deep learning. The reconfigurable photonic interconnects provide scalable

solutions and enable efficient use of disaggregated memory resources for deep learning training.

An experimental testbed was built with a processing system and two remote memory nodes using

silicon photonic switch fabrics and system performance improvements were demonstrated. The

collective results and existing high-bandwidth optical I/Os show the potential of integrating the

photonic switched memory to state-of-the-art processing systems. Second, the scaling trends of

deep learning models and distributed training workloads are challenging network capacities in

today’s data centers and HPCs. A system architecture that leverages SiP switch-enabled server

regrouping is proposed to tackle the challenges and accelerate distributed deep learning training.

An experimental testbed with a SiP switch-enabled reconfigurable fat tree topology was built to

evaluate the network performance of distributed ring all-reduce and parameter server workloads.

We also present system-scale simulations. Server regrouping and bandwidth steering were

performed on a large-scale tapered fat tree with 1024 compute nodes to show the benefits of using

photonic switched architectures in systems at scale.

Finally, this dissertation explores high-bandwidth photonic interconnect designs for

disaggregated systems. We first introduce and discuss two disaggregated architectures leveraging

extreme high bandwidth interconnects with optically interconnected computing resources. We

present the concept of rack-scale graphics processing unit (GPU) disaggregation with optical

circuit switches and electrical aggregator switches. The architecture can leverage the flexibility of

high bandwidth optical switches to increase hardware utilization and reduce application runtimes.



A testbed was built to demonstrate resource disaggregation and defragmentation. In addition, we

also present an extreme high-bandwidth optical interconnect accelerated low-latency

communication architecture for deep learning training. The disaggregated architecture utilizes

comb laser sources and MRR-based cross-bar switching fabrics to enable an all-to-all high

bandwidth communication with a constant latency cost for distributed deep learning training. We

discuss emerging technologies in the silicon photonics platform, including light source,

transceivers, and switch architectures, to accommodate extreme high bandwidth requirements in

HPC and data center environments. A prototype hardware innovation - Optical Network Interface

Cards (comprised of FPGA, photonic integrated circuits (PIC), electronic integrated circuits

(EIC), interposer, and high-speed printed circuit board (PCB)) is presented to show the path

toward fast lanes for expedited execution at 10 terabits.

Taken together, the work in this dissertation demonstrates the capabilities of

high-bandwidth silicon photonic interconnects and innovative architectural designs to accelerate

deep learning training in optically connected data center and HPC systems.
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Chapter 1: Introduction and Background

1.1 Deep Learning Trends and Challenges

Deep learning (DL) is a branch of machine learning that has drastically improved the state-of-

the-art in many applications that enhance our daily lives and impact various aspects of our society.

The computational models used in deep learning, called deep neural networks (DNNs), have been

successfully applied to various fields including activity recognition [1], image classification [2],

and natural language processing [3]. The DNNs consist of many processing layers whose compu-

tation is mainly defined by weights and biases. These weights and biases, called parameters of the

DNNs, are learned during the training, and used for the inference. Accelerators, such as graphics

processing units (GPUs) and field programmable gate arrays (FPGAs), are used for accelerating

these training and inference processes [4, 5]. As researchers make continuous studies to improve

these DL models, it is found that larger model sizes and larger dataset usually result in better model

accuracy [6, 7]. Increased model size is at the center of these advancements [8, 9, 10], and multi-

ple studies have shown that this trend will continue in natural language processing particularly [11,

12]. As a result, there has been significant investment in training huge models. As Fig.1.1 shows,

the model sizes have increased over 100,000 times over the past five years to more than 1 trillion

parameters.

Researchers have adopted distributed deep learning training [14, 18, 19], where the DL mod-

els or the training datasets are partitioned and distributed onto GPUs, to train such large models.

There are three major parallelism strategies: data parallelism (DP), model parallelism (MP), and

hybrid parallelism (HP). For a model that fits in the device memory for training, DP is used to scale

training to multiple devices. DP keeps a full copy of the entire training model on each worker node

while distributing the partitioned input dataset to different working nodes. Each worker executes
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Figure 1.1: Model Trend from 2016 to 2022.
[2, 3, 8, 13, 9, 14, 15, 16, 17]

the forward and backward propagation on a different subset of data samples. For synchronized

training, workers need to synchronize their averaged gradients with each other and update the

model locally at each integration through all-reduce collective operation. For asynchronized train-

ing, each worker sends the averaged gradients to parameter servers [20] and retrieves the updated

model parameters for each iteration without waiting for others. When a model does not fit in the

device memory, tensor model parallelism (TP) [14, 21] and pipeline model parallelism (PP) [18,

22] can be performed. In TP, the training model is split vertically across layers, so each tensor

layer is placed on multiple nodes. The results on each node are then synchronized across the DP

workers. In PP, the training model is split horizontally across layers, placing one or more layers on

each working node. This requires computing nodes to receive activations/gradients from previous

layers before they can proceed onto computing the next layer. Hybrid Parallelism (HP) combines

both DP and MP to partition both the models and the dataset. Computing nodes are divided into DP

groups of MP nodes. At each iteration, each group of MP nodes synchronize among themselves
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using MP-transfers and then synchronize across the DP groups. Figure 1.2 illustrates DP, TP, PP

and HP using DP and TP, respectively.

Figure 1.2: Data parallelism, tensor model parallelism, pipeline model parallelism, and hybrid

parallelism.

Despite the distributed deep learning training and parallelism techniques, there are three major
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challenges.While the maximum memory requirement keeps growing, the real-time memory usage

is application dependent and often requires on-demand solutions. First, different deep learning

applications show varying memory requirements based on their architectures for example con-

volutional neural networks (CNNs), recurrent neural networks (RNNs), transformers, and etc.)

Second, the memory capacity requirement for various batch sizes [23] and optimization strategies

[24] can change within a large range, but the method requiring a larger memory size does not al-

ways guarantee a better system performance [25]. Lastly, the size of embeddings that are used in

recommendation applications is dependent on the entry size and number of models [26]. Having a

fixed and preconfigured amount of memory in the local system for the maximum memory capacity

requirement is inefficient and will become more so. A scalable and dynamic solution is required

to address the memory challenges for future deep learning applications.

Besides, DL workloads are taking a large proportion of the computation in today’s HPC op-

erations, and observation has shown that the demand is dramatically growing in datacenters [27].

Distributed deep learning workloads can require many server nodes and show strong communica-

tion patterns between these nodes. These trends have shifted the performance bottleneck from the

compute to the network interconnect due to system fragmentation (applications often receive an

allocation on a set of distant and non-contiguous nodes) [28]. An example of system fragmentation

in a tapered 16-node fat tree topology is shown in Fig. 1.3. Under the top-of-rack (ToR) switch the

full bandwidth can be utilized under the best scenario, no traffic goes beyond the ToR switches.

However, for the fragmented case, nodes for running the same job can distribute across the network

and constrained bandwidth is experienced. Due to the constrained links at higher layers, training

workloads can be slowed down substantially. This places a tremendous challenge on interconnect

designs to provide high bandwidth and low latency networking to sustain the continual growth of

these hardware-driven deep learning applications. These challenges present a unique opportunity

for flexible photonic switched networks that have the capabilities to perform topology reconfigu-

ration and have motivated much research to explore reconfigurable network architectures based on

optical circuit switches (OCSs).
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Figure 1.3: Illustrations of localized nodes and fragmented nodes

Lastly, researchers have also demonstrated the GPU clusters that have increased to more than
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Figure 1.4: Hardware bandwidth trend from 2015 to 2022.
[30, 31, 32, 33, 34, 35, 36, 37]

3000 GPUs [29] for training extremely large models with hybrid parallelism. However, current

hardware solutions can only provide high-bandwidth network for a limited group of computing

units (e.g. Nvidia DGX Station connects 8-16 GPUs using high speed NVSwitches and NVLinks

for up to 600 GB/s bidirectional bandwidth [30]). To scale the training to sizes larger than the group

size would require inter-group communication that relies on 200 Gb/s InfiniBand links which are

much slower than the intra-group fabric. And this bandwidth discrepancy has severely limited the

communication efficiency during the training process. As Fig.1.4 shows, the increase in network

bandwidth is not able to catch up with the exponential rate at which the model sizes are increasing.

And the on-board memory/GPU bandwidth (red and blue lines in Fig.1.4 have been growing at a

much faster rate than the inter-board bandwidth (yellow line).

To this end, novel reconfigurable architectures and high-bandwidth inter-node interconnects are

required to address these challenges and to meet the requirement of scaling trends of deep learning

training.
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1.2 Silicon Photonic Circuit Switching

Optical circuit switching offers a promising approach to reconfigure the interconnect in or-

der to address the challenges mentioned above. In particular, optical switches can (1) regroup a

set of distant and non-contiguous nodes and (2) steer bandwidth at network layers for efficiency.

Depending upon underlying traffic patterns of the nodes at different times, optimized topology

connections can be dynamically formed on demand.

Commercially available technologies, such as microelectromechanical systems (MEMS) [38],

beam-steering [39], and liquid crystal on silicon (LCOS) [40], can be used to implement the re-

configurable network. However, there are still challenges to achieve commercial adoption. The

rigorous calibration and the installation of discrete components introduce significant complex-

ity and result in high cost per port. Similarly, arrayed waveguide grating routers (AWGRs) [41]

based interconnects usually require higher cost tunable wavelength transceivers that add complex-

ity and additional power consumption in broadcast and select type architectures. For low-cost

datacenter/HPC adoption, lithography-based photonic integration technologies hold great promise

for large-scale optical integrated switch fabrics with smaller device footprint, and reduced assem-

bly and calibration overheads.

The silicon photonics (SiP) platform, in particular, leverages the mature and widespread CMOS

manufacturing infrastructure, and SiP switches are promising for the dynamic topology reconfig-

uration with better power efficiency, lower cost-per-port, smaller footprint, and the potential for

nanosecond range dynamic switching [42, 43, 44, 45, 46]. However, there are several technical

challenges to address in this platform, specifically loss through the switch, polarization depen-

dency, thermal stability, and switch radix scalability. Research works have been reported to ad-

dress these challenges, and the primary switching cells that are being explored are Mach-Zehnder

interferometers (MZIs), microring resonators (MRRs), and MEMS-actuated couplers.
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Figure 1.5: (a) Low insertion loss 32 × 32 MZI switch, reprinted from [47]. (b) Polarization-

diversity 32 × 32 MZI switch, reprinted from [48]. (c) 64 × 64 T-O MZI switch, reprinted from

[49]. (d) 16 × 16 E-O MZI switch, reprinted from [50]. (e) 32 × 32 E-O MZI switch, reprinted

from [51]. (f) Hybrid 2 × 2 MZI-SOA module, reprinted from [52].

MZI switching circuits of 32 × 32 connectivity have been realized using thermo-optic (T-

O) phase shifters with 6.1 dB on-chip loss [47]. To overcome the polarization dependency, a
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polarization-diversity SiP MZI switch was further developed [48]. The current record for the T-

O MZI switch is a 64 × 64 implementation in Bene topology [49]. For fast electro-optic (E-O)

switching, carrier-injection based PIN junctions are employed. 16 × 16 and 32 × 32 E-O MZI-

based switches were proposed in Refs. [50, 51]. Performance, however, can be limited due to

the high insertion loss. Gain-integrated switches with semiconductor optical amplifiers (SOAs) for

lossless operation can be applied to overcome this challenge [52]. Figure. 1.5 depicts the MZI

based switches.

Figure 1.6: (a) 8 × 7 cross-bar switch, reprinted from [53]. (b) 8 × 8 Omega switch, reprinted from

[54]. (c) 4 × 4 switch-and-select switch, reprinted from [55]. (d) 4 × 4 hitless switch, reprinted

from [56].
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MRR based devices show ultra-compact and energy-efficient potentials for optical switching.

Recent work has demonstrated 8 x 7 cross-bar [53], 8 x 8 Omega [54], 4 x 4 switch-and-select [55],

and 4 x 4 hitless [56] architectures. Add-drop filters assembled in a 1-D bus structure can act as

spatial (de)multiplexers [57]. Thermal stabilization [58, 59] is necessary for MRR based switches

to address wavelength drifts due to the thermal dependencies to the varying ambient temperature.

Figure. 1.6 depicts the MRR based switches.

The largest-scale SiP switch fabric reported to date is the MEMS-actuated cross-bar switch

with 240 × 240 connectivity, which consists of a 3 × 3 array of identical 80 × 80 switch blocks

[60]. Maximum on-chip loss of 9.8 dB was reported. Multilayer bus waveguides can be used for

eliminating waveguide crossings to reduce insertion loss and for addressing polarization sensitivity

[61]. Recent work has shown successful fabrication of SiP MEMS using a commercial foundry

with reduced driving voltage down to 9.45V [62].

More detailed discussions on the photonic switching technologies in datacenter/HPC systems

can be found in the reviews [42, 43, 44]. We note that SiP switches are promising for optical

switching in datacenter/HPC rack-to-rack applications; however, the loss should be further reduced

before being deployed in practice. Approaches, such as (1) integration with SOAs, (2) improve-

ment of coupling loss, and (3) progress on individual component to have a better loss performance,

are being taken to further reduce the loss of silicon photonic switched architectures.

1.3 Silicon Photonic High Bandwidth Transceivers

The increasing mismatch between on-board and off-board bandwidth, as indicated in Fig. 1.4,

calls for new interconnect design to overcome the network bottleneck and speed up applications

such as the distributed training of extreme large models. Co-packaged silicon photonics with un-

precedented bandwidth density, efficiency, and reach lends itself to the applications that require

Tb/s data links. Direct silicon photonic connectivity for central processing units (CPUs), GPUs,

FPGAs, domain-specific accelerators, and memory will impact a host of future deep learning ap-

plications.
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Figure 1.7: (a) 240 × 240 MEMS cross-bar switch, reprinted from [60]. (b) Polarization-Insensitive
MEMS switch, reprinted from [61]. (c) 32 × 32 MEMS switch fabricated in a commercial foundry,
reprinted from [62].

Figure 1.8: The various integration approaches to integrate PICs with EICs. (a) Monolithic inte-
gration. (b) 2D integration. (c) 3D integration. (d) 3D integration with active photonic interposer.
(e) 2.5D integration. Reprinted from [63].
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Figure 1.8 shows different methods of SiP co-packaging integration. In monolithic integration,

both photonic integrated circuits (PICs) and electronic integrated circuits (EICs) components are

fabricated in within the same die. It achieves minimum parasitics and simplified packaging with

wire bonds for the connectivity to the PCB. However, it lags in cutting edge electronic perfor-

mance and suffers from high waveguide loss, low photodiode responsivity, and low photodiode

bandwidth. Figure 1.8(a) shows the monolithic integration approach. In 2D integration, the PIC

and the EIC chips are placed side by side on a PCB, and wire bonds are used to connect the chips

as well as to interface to the PCB. 2D integration allows most advanced technologies in photon-

ics and electronics, but it shows limited I/O density, and introduces parasitic inductance. Figure

1.8(b) shows 2D integration approach.. Another approach is 3D integration, where EIC chip is flip

chip (FC) bonded to the PIC chip. 3D integration increases the connectivity throughout the two-

dimensional solder bumps, and reduces the parasitics between the EIC and PIC chips compared to

2D approach. However, PIC active components may be sensitive to the heat dissipated by the EIC

chip. A promising approach is incorporate PIC components into an interposer. This is ideal for

a dense, high performance I/O packaging; however, it is a relatively new technology and requires

more development efforts. Figure 1.8 (c) and (d) shows the 3D integration and 3D active interposer

integration approaches. A compromised solution is 2.5D integration, where PIC and EIC chips are

flip chipped bonded to an interposer. The interposer supports EIC-to-PIC connections and fanouts

necessary signals to PCB through a ball grid array (BGA). This approach also allows for high I/O

bandwidth and density, and has fewer thermal concerns compared to the traditional 3D integration.

Figure 1.8(e) shows the 2.5D integration approach. More detailed discussions can be found in Ref.

[63].

The SiP transceiver architecture is the key enabler for high bandwidth interconnects. Coherent

technology with advanced modulation format is widely used to provide high-capacity links in

long-distance networks and metropolitan area networks. However, coherent systems are expensive

for short-reach applications. They require narrow-linewidth lasers, power-consuming digital signal

processing (DSP), and digital-to-analog and analog-to-digital (DA/AD) converters. Many schemes
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have been proposed to reduce the power consumption, transceiver cost, and DSP complexity [64,

65, 66, 67].

Figure 1.9: TeraPHY chiplet showing optical Tx/Rx macros, fiber array, and Tx/Rx circuits.
Reprinted from [68].

Another approach is to still use simpler intensity-modulated direct-detection (IM-DD) links as

preferred in today’s DC applications. IM-DD links with on-off-keying (OOK) or pulse amplitude

modulation 4-level (PAM 4) modulation formats can be reconstructed directly without forward

error correction (FEC) for error-free operations. An example is TeraPHY [68] that supports up to

2Tbps bandwidth per chiplet. It uses a bus of 8 MRR based modulators running at 25Gbps each

and a bus of 8 MRR based detectors form a transceiver macro. Each transceiver macro transmits

and receives 8 different wavelengths of light. The chiplet then contains 10 macros to achieve the

13



aggregated bandwidth. Figure 1.9 shows the TeraPHY chip. It projects 100 Tbps and beyond for

future generations on the roadmap. One drawback is its scalability. Each macro requires a pair of

fibers for the input and output, such that the number of fibers linearly grows with the number of

macros in the chiplet.

Figure 1.10: (a) Schematic of the comb-driven transceiver architecture, reprinted from [69]. (b)
Micrograph of the full die, reprinted from [69]. (c) Image of the Kerr comb device, reprinted from
[70].
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Dense wavelength division multiplexing (DWDM) can be used to solve this issue and scale up

high-bandwidth per fiber. The key challenges are the DWDM light source with hundreds of lines

and a scalable transceiver architecture that is able to modulate and detect each of the wavelengths.

Recently, a promising Kerr frequency comb-driven silicon photonic transceiver architecture [69]

has been reported to achieve this goal. It leverages a frequency comb [70] that generates the

DWDM light source. A de-interleaver is used to split the comb spectrum into subgroups. Each

wavelength subgroup gets modulated by a bus of cascaded microdisk modulators, and then all

the subgroups are recombined using an identical interleaver and coupled off the chip into a single

fiber. At the receiver, the modulated comb lines are de-interleaved similarly and are incident on

buses with cascaded MRR based detectors. Figure 1.10(a) shows the transceiver architecture and

Fig.1.10(b) shows the transmitter chip. The Si3N4 dual-micro-resonator system for the comb

generation is shown in Fig. 1.10(c).

Novel SiP transceiver technologies and proper packaging schemes have the potential to enable

efficient muti-Tbps chip-to-chip communications and to meet the inter-chip bandwidth requirement

posed by the scaling deep learning models.

1.4 Scope of Dissertation

The work in this dissertation addresses system level challenges posed by deep learning training,

focuses on innovative architectural designs leveraging high performance silicon photonic intercon-

nects, and demonstrates prototype systems to show the potential of integrating silicon photonic

interconnects in future datacenters and HPCs. The chapters in this dissertation are comprised of

the author’s works in published peer reviewed journals and research conference proceedings.

In Chapter 2, we explore various optical spectral and spatial switching of SiP MRR based

switches, such as unicast, multicast, and multiwavelength-select functionalities. We demonstrate

our FPGA-based open-loop and closed-loop control over the switches. The successful control

and the switching functionalities are essential for new architectural explorations in the following

chapters.
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In Chapter 3, we propose a photonic switched optically connected memory architecture for

addressing memory constraints in deep learning. A “lite” (de)serialization scheme is used to reduce

the communication overhead for memory transfers in optics. We evaluate the system performance

on an experimental testbed with processing system, remote memory nodes, and SiP switches. The

collective results show the potential of using optically connected memory for deep learning.

In Chapter 4, we demonstrate a silicon photonic switched architecture for deep learning in dat-

acenter and HPC networks. The proposed architecture leverages reconfigurable optical switching

fabrics to tackle the network challenges and accelerate distributed deep learning training. Exper-

imental and simulation results suggest integrating SiP switches into datacenter and HPC systems

can improve system performance and accelerate distributed deep learning training at scale.

In Chpater 5, we present two silicon photonic-enabled disaggregated system architectures for

deep learning. The first architecture shows the concept of rack-scale disaggregation. The flexible

optical switches enable resource disaggregation and defragmentation. The second architecture

leverages comb laser sources and multi-wavelength selective MRR-based cross-bar switches to

enable the all-to-all high bandwidth communication. We observe improved system performance of

our proposed architecture compared to other existing topologies.

Lastly, in Chapter 6, we report our progress on the development of optical network interface

cards for the FLEET project. We show the design and packaging flow to expand PCIe communi-

cation into optical domain. Test packages for system development and verification are presented.

This chapter shows integrating of silicon photonic technologies into high performance systems.
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Chapter 2: FPGA-controlled Silicon Photonic Interconnects

2.1 Introduction

Reconfigurable networks and optical circuit switches (OCSs) based architectures have been

proposed to be deployed in datacenter and HPC systems. These architectures including Helios

[71], Mordia [72], ProjecToR [73], Flexfly [74], and many others, can establish high-bandwidth

connections to optimize network performance for frequently-communicating nodes. Commercially

available technologies [38, 39, 40] suffer from high cost per port due to their rigorous calibra-

tion and installation of discrete components. For low-cost adoption, lithography-based photonic

integration technologies hold great promise for large-scale optical integrated switch fabrics by re-

ducing the device footprint and also the overhead in terms of assembly and calibration. Planar

integrated optical switches have been developed on several material platforms, such as indium

phosphide, lithium niobate, silica, and silicon [52, 75, 76, 55].

Silicon photonics, fabricated in high volume CMOS compatible foundries, is promising for

low-cost, power-efficient interconnects. The primary switching cells that are being explored are

MZIs [47], MRRs [54], and MEMS-actuated couplers [60]. A basic 1 × 2 MZI switching cell

is shown in Fig. 2.1(a). The phase delays in the two arms can be changed by their correspond-

ing phase shifters through electronic bias input to thermo-optic heaters or electro-optic drivers for

carrier injection/depletion. The resultant phase differences between the MZI arms can direct the

input light to output port #1 (bar state) or output port #2 (cross state), respectively. Same bias

control mechanism can be applied to MRRs. A fundamental 1 × 2 MRR switching cell is shown

in Fig. 2.1(b). The input light can be directed to output port #1 (through state) or output port #2

(drop state), respectively. The difference is that MZI switches are broadband switches, while MRR

switches are narrowband devices and only periodic wavelengths with a certain free-spectrum-range
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Figure 2.1: (a) 1 × 2 MZI cell. (b) 1 × 2 MRR cell. (c) 1 × 2 MEMS-actuated coupler cell. (d)
Packaging with wirebonding and fiber attachment

(FSR) can be dropped. Figure 2.1(c) the fundamental 1 × 2 MEMS switch. By biasing the elec-

trodes of MEMS, the input light can be forwarded to output port #1 (off state) or redirected through

the adiabatic couplers to output port #2 (on state), respectively. In general, all three switching cells

can be tuned by electrical bias voltages. Figure 2.1(d) shows a generic packaging scheme for the

interface to a large radix switch chip that consists of many of those basic switching cells. Since

the tuning scheme is similar, only the MRR-based switches are mainly discussed in the rest of this

chapter.

2.2 Optical Switching in Cascaded-MRR Switch

Figure 2.2(a) shows an array of eight cascaded SiP MRRs. This cascaded MRR switch can

achieve various optical functionalities such as unicast, multicast, and multiwavelength-select. Fig-

ure 2.2(b) illustrates the responses of the MRRs in the chip when no bias voltage is applied. By

design, the responses of the rings are separated by 1.27 nm (160 GHz) with an FSR of 13 nm and

3 dB bandwidth of 0.7 nm.

Figure 2.2(c) shows a unicast operation where the input data on the wavelength denoted by a red
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Figure 2.2: (a) Switch architecture with 8 Cascaded MRRs. (b) Zero bias scenario. (c) Unicast
scenario. (d) Multicast scenario. (e) Multiwavelength-select scenario.

vertical arrow is routed to output port 8 (dashed black curve). To obtain this mode of operation,

i) the resonance of ring R2 must be detuned to prevent dropping at port 2 because R2 has the

precedence over R8 in the MRR array, and ii) the resonance of ring R8 must be tuned to the red

wavelength. Detuning is required for ring R2 to achieve error free operation for ring R8. As the

bias voltage over R2 is increased gradually, its resonance is shifted to allow the signal to propagate

to R8. The bit-error-rate (BER) is needed to verify the amount of detuning necessary in order to

reach the error free transmission (BER = 10e-12) with negligible crosstalk effects [77]. At a bias

of 0.85 V the signal is fully routed to the output port 8. We estimated that this amount of detuning

is about 1.08 nm which corresponds to a channel suppression of 10 dB between the desired output

port (R8) and the detuned MRR (R2). This amount of detuning is chosen for power efficiency; any

further detuning will cost more energy-per-bit while introducing negligible improvement on the

BER of the routed signals.

Figure 2.2(d) illustrates a one-to-seven multicasting operation. This operation is possible by

aligning the Lorentzian response of each MRR so that the power of the optical signal is divided

equally among the desired output ports; i.e. tuning the rings to the appropriate resonances, starting

19



from the last MRR participating in the multicast operation. The last MRR, R8 in this example, is

tuned so that its resonance aligns exactly with the input wavelength, allowing maximal transmis-

sion over its drop path. R7 is then tuned to its 3dB bandwidth point, allowing a drop of 50% of the

optical power. Continuing with this approach R6, R5, R4, R3 and R2 are tuned to the following

drop power ratios: 33.33%, 25%, 20%, 16.67% and 14.28%, respectively, i.e. following a har-

monic series (1, 1/2, 1/3, 1/4 . . . ). When the process is complete, each of these seven rings will

equally drop 14.28% of input optical power coupled into the SiP chip. Realizing multicast exhibits

the fine tuning levels, and demonstrates the potential of SiP for error-free multicast operation of

one stream of data over a single wavelength.

Figure 2.2(e) shows a three-to-one multiwavelength-select operation. This operation leverages

the ring’s FSR. Each ring is capable of dropping a train of input signals as long as their input wave-

lengths are separated from each other with a distance as the ring’s FSR. Similar to the unicast case,

the resonance of ring R8 is tuned to each of the input red wavelengths, and ring R2’s resonance is

detuned to prevent dropping them at port 2. This operation allows to aggregate more bandwidth

with multiple wavelengths at drop port of each ring, and potentially enables a shuffling operation

in a cross-bar ring-based switch fabric. More discussions on the cross-bar switch design and its

usage can be found in chapter 7.

2.3 FPGA-Based Open Loop Control

2.3.1 System Architecture

Figure 1 shows a block diagram of our proposed system architecture. The main components

are fast tunable lasers (TL), a SiP chip, a field programmable gate arrays (FPGA) and a computer

that provides an interface to the user. Depending on the desired configuration, the computer sends

operation messages to the FPGA via a serial data transfer interface. The TLs can adjust its output

optical power and the wavelength of operation over the C-band. The FPGA controls the array of

eight cascaded MRRs and sets their resonances. As shown in Fig. 1, an external modulator is used

to encode data onto the laser outputs. Altogether, the system is capable routing of optical data to
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any of the eight output ports, splitting the incoming data to a number of output ports, as well as

selecting/forwarding multiple wavelengths to a single MRR.

Figure 2.3: Open-loop control scheme.

The time-slot diagram in Fig. 2.3 illustrates four possible operations of the system. In this

example, the different colors of the data in the figure correspond to different wavelengths. During

slot Δ𝑡0 the data stream is routed to output R1. During Δ𝑡1 slot the data stream is switched to

output R4 (Fig. 1(a)) without changing the operating wavelength (red color). In the second case,

shown in Fig. 1 (b), wavelength routing is performed. During time slot Δ𝑡2 the data is transmitted

to output R2 on a carrying wavelength _1 (green color) while in slot Δ𝑡3 the output port stays the

same but the wavelength changes to _2 (blue color). Multicast (one to many) operations are also

performed. During Δ𝑡4, an incoming data stream modulated on the wavelength (purple color) is

split among four output ports: R2, R4, R7, and R8. In the following time slot Δ𝑡5, the configuration

is modified to R1, R3, R5, and R6. Finally, during time slot Δ𝑡6, R2 and R3 are used to perform
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multiwavelength-select operations. Wavelengths in blue and dark blue separated a FSR are dropped

by R4. Similarly, the adjacent R5 drops wavelengths in red and dark red. The minimum transition

time between the time slots is determined by the reconfiguration time of the SiP device from the

moment the FPGA apply the bias voltages for new configurations.

The operation of the system is not limited to the particular sequential illustration presented in

Fig. 2.3. The SiP device can perform unicast (one to one), multicast (one to many), and broadcast

(one to all), multiwavelength-select (many to one) operations, numerous deterministic combina-

tions are possible without any constraints.

2.3.2 Experimental Demonstration for Unicast and Multicast

Figure 2.4: (a) Tunable laser. (b) Schematic of the unicast and multicast experimental setup. (c)
FPGA-based switch controller and the packaged MRR switch on a PCB.

The schematic of the experimental setup is shown in Fig. 2.4. A tunable Y-branch laser [78]

(Fig. 2.4(a)) was used to output light at various frequencies across the ITU 100 GHz C-band

grid. The packaged SiP device along with its control plane is shown in Fig. 2.4(c). The control

plane is based on an Stratix III EP3SL150 FPGA capable of hosting and controlling eight parallel

digital-to-analog converters (65 MHz DAC) with 14 bits of resolution. The output voltage from the

DACs (0 – 1V) is amplified by 5 in the gain stage to achieve a full FSR swing for each MRR. The

amplified control signals are connected to a break-out printed-circuit-board (PCB) which hosts the

SiP chip. After fabrication, the chip was attached to, and wire-bonded on, a standard electrical IC
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Figure 2.5: Experimental results of 8 different cases including unicast, multicast, and broadcast.

package as shown Fig. 2.1(d). The silicon photonic chip used in this work is not equipped with

any temperature sensors, so no active temperature stabilization procedure is included in the design

of the chip. However, the chip is sitting on a heat sink in the IC package that passively regulates

its temperature to the ambient temperature level.

To test various switching scenarios, a programmable pulse generator (PPG) was used to output

a 10 Gbps PRBS (231-1) signal, which was then electrically amplified before being modulated

onto the optical carrier using a Mach-Zehnder modulator. The optical signal was then sent to the

SiP device, configured through the software control plane, to route the signal to the desired output

port(s). An erbium-doped fiber amplifier (EDFA) was required to amplify the received signal to
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compensate coupling loss of the chip. Using a 1:3 divider, the optical signal was directed to an

OSA, an oscilloscope to observe the received eye diagram and an APD. The power falling on the

APD was kept at a constant level of -8 dBm to avoid saturation. The output of the photo-receiver

was sent to the bit error rate tester (BERT) for BER measurement. The BERT and oscilloscope

were both triggered with the same clock signal from the PPG.

Figure 2.5 shows experimental measurements for multicast and broadcast operations. All the

results were set to perform at 1548.11 nm. First, the control plane was set to route the data to R2.

Then the SiP device was reconfigured to multicast the data to ports R2 and R7. The BER and the

eye-diagrams were captured at the two output ports separately to verify error-free operation. This

process continued to higher multicast port counts until it covered all the eight ports (broadcast).

The tested multicast cases are marked by eye-diagram results in each row of Fig. 2.5.

2.3.3 Experimental Demonstration for Multiwavelength-select

Figure 2.6: Schematic of the multiwavelength-select experimental setup.

The schematic of the experimental setup is shown in Fig. 2.6. Four TLs are used to output four
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wavelengths. First two wavelengths are located at the resonances of R1 and the third and fourth

wavelengths are at R2’s resonances. An optical multiplexer (MUX) is used to combine them into a

WDM channel. PCs maximize the optical power going into a broadband modulator (MOD) as well

as the chip. A PPG generates the pseudo random bit sequence (PRBS) signal and drives the MOD

at 10 Gb/s/_. R1 is tuned to drops two wavelengths distant from a FSR, and R2 is tuned to drop the

other two. Using a 1:2 splitter, the WDM signal dropped by each ring was directed to an OSA to

visualize the spectrum, and to a 40GHz photo-detector (PD) at the same time. In between, an EDFA

is used to compensate the coupling loss of the chip, and an optical bandpass filter (OBF) is used for

only passing the corresponding wavelength for each measurement. A variable optical attenuator

(VOA) reduces the input power if necessary to protect the PD. Two high-speed electrical outputs

are available from the PD, and the outputs are connected to a BERT for the BER measurement,

and to a real-time scope for plotting the eye diagrams.

Figure 2.7: Experimental results for multiwavelength-select operations.
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Figure 2.7 shows experimental measurements for multiwavelength-select operations. There

are four modulated signals at different wavelengths. The bias voltage was set to route the data

signals at 1545.29 nm and 1559.90 nm to R2, and R1 was tuned to drop the data signals at 1550.02

nm and 1564.78 nm. The optical spectrum shows the modulated signals received at the SOA

for R1 and R2 in Fig. 2.7(a) and (b), respectively. The eye-diagrams of each wavelength, also

shown in Fig. 2.7(a) and (b), were captured at the two output ports separately to verify error-free

operation. This process shows the potential of MRR to aggregate more bandwidth by leveraging

this multiwavelength-select functionality.

2.4 FPGA-Based Closed Loop Control

As Silicon Photonic technology matures, fabrication foundries are able to integrate large scale

optical components on a single chip [79]. The foundries support a library of components including

Mach-Zehnders modulators (MZM), spatial switches, optical splitters and photo-detectors. Among

these, the MRR is one of the most versatile optical building blocks with a narrow wavelength selec-

tivity. Along with modulation capabilities, the MRR allows wavelength filtering, hence applicable

for (de)multiplexing the WDM signals at a small footprint and low energy consumption. However,

MRR resonance characteristics make it susceptible to deviation from the optimal operations. Fab-

rication and thermal variations can shift the resonance and cause high optical losses. A common

method to address these problems is an integration of a micro-heater next to the MRR to tune the

local temperature and fix resonance to the desired wavelength. An analog feedback loop [58] can

tap a portion of the optical signal dropped from the MRR and adjust the bias on the heater to maxi-

mize the transmission power. However, a digital interface is still needed for a selective wavelength

operation. While Digital feedback solutions [80, 81, 82] can achieve both functionalities, they rely

on traditional digital-to-analog (DACs) and analog-to-digital converters (ADCs), which require a

large number of parallel input/output (I/O) pins. For example, a 4-channel receiver [80] with 8-bit

DACs and 16-bit ADCs requires 24 I/O pins for each MRR and 96 in total. Reference [81] suc-

cessfully decreased the number of DACs and ADCs in a cascaded MRR structure, however tens of
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Figure 2.8: (a) Schematic of digital-to-analog and analog-to-digital control and feedback (b) Tran-
sient of digital-to-analog circuit response and MRR response due to a changed duty cycle of the
PWM control signal.

I/O pins are still required.

2.4.1 Closed-loop Single-wire DAC and ADC Architecture

Figure 2.8(a) shows the building blocks for realizing the wavelength switching and feedback

for reliable operations of an MRR. On the control side, a PWM control signal is generated by

the FPGA and converted to bias voltage to tune the resonance of the MRR. On the feedback side,

the analog feedback signal coming from the MRR is also converted to a PWM signal for the

FPGA to process. Based on the input and the output PWM signals, the feedback control algorithm

implemented as a finite-state-machine (FSM) will tune the resonance of the MRR for optimized

operations.
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The digital-to-analog converter is implemented for the control side. By increasing/decreasing

the duty cycle of the PWM control signal, the bias voltage on the heater is increased/decreased.

The PWM generator first generates the signal at 1.2MHz, which passes through the converter

consisting of a comparator, a low-pass filter and a buffer for cleaning, converting and supplying

enough current to the MRR heater. Fig. 2.8(b) shows the circuit and MRR response time are 6.20

`s and 30.3 `s due to a duty cycle change from 29.67% to 42.26%. The time response of the circuit

is 5 times faster than the MRR, which guarantees a fast tuning procedure. The clock frequency of

the FPGA at 625MHz provides a 9-bit resolution (625M divided by 1.2MHz) with a single wire.

For the feedback, a portion of the optical signal is tapped from the MRR and converted to

an analog signal at the photo-detector (PD). The signal then passes through the analog-to-digital

converter consisting of a comparator and a triangular wave generator. The analog signal from

the PD is compared with the triangular wave at 150 KHz, resulting in a feedback PWM signal,

received by the reader, also at 150 KHz. The resolution of our analog-to-digital converter is 12-bit

(625MHz divided by 150KHz), with only a single wire required.

The single-wire ADC/DAC structure is also compatible with the feedback control algorithm

for tuning the MRR to maximize transmission power in unicast and divide power equally in mul-

ticast operations. The algorithm starts with an estimate of the PWM control signal that sets the

bias voltage for each required operation. However, due to thermal fluctuations, the resonance may

shift and need to be fixed to the desired wavelength. In order to achieve this, the algorithm first

detects the sign of gradient [82] at the estimated duty cycle of applied PWM signal, and tunes

the resonance based on expected operations as well. For unicast, the algorithm keeps increas-

ing/decreasing the duty cycle in steps until the maximized transmission power is achieved. For

multicast, the algorithm begins with the last participating MRR to maximize the dropped power,

and all other participating MRRs in the cascaded structure waits until the preceding MRR is fin-

ished. They are then tuned to drop optical power that is equal to the first tuned MRR. The transient

operation of the feedback tuning procedures is presented in the results section.
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Figure 2.9: Experimental setup demonstrating the single-wire ADC and DAC silicon photonic
circuits evaluated with PAM-4 signal.

2.4.2 Experimental Setup

The experimental setup is shown in Fig. 2.9. The proposed control and feedback architecture

is evaluated with two cascaded MRRs for unicast and multicast. A TL is set to a specific wave-

length on the C-band. A 10Gb/s PRBS is generated using a PPG. The positive output data (𝐷)

is attenuated by 6dB and negative data (�̄�) output is phase-matched with an electrical delay line

(ED). Subsequently, 𝐷 and (�̄�) are combined by a combiner and amplified using an RF amplifier

to drive the MZM to generate the 20Gb/s PAM-4 signal. The polarization controller (PC) is used

to set the maximized optical signal to the SiP Chip.

An FPGA configures each MRR with bias voltage through the single-wire DAC and ADC. Two

additional I/O pins from the FPGA are used in multicast operation. An optical splitter is used to tap

10% of the optical power to a PD feeding it back to the FPGA at each output port of the MRRs. The

other 90% is amplified by an erbium doped fiber amplifier (EDFA) to compensate for the 15dB

fiber to grating coupler loss. The optical PAM-4 signal is directed to a digital communication
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analyzer (DCA) for capturing the eye-diagram and estimating the sample-error rate (SER).

2.4.3 Results

Figure 2.10: (a) Transient responses for unicasting of MRR #1. (b) Corresponding spectrums and
eye diagrams of MRR #1 before and after tuning. (c) Transient responses for unicasting of MRR
#2. (d) Corresponding spectrums and eye diagrams of MRR #2 before and after tuning.

Figure 2.10 shows the experimental results of two unicast cases. The resonance of MRR #1

is 6dB deviated from the input wavelength at 1547nm (Fig. 2.10(a)). An increased duty cycle of
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applied PWM signal is required. The optical transient response (blue curve) is captured in the PD

and the feedback process starts at t = 37 `s (t0) and ends at t = 271 `s (t1). The PWM signal

received by the FPGA is shown in black, where the duty cycle gradually increases from 27.24%

at t = t0 until the feedback algorithm detects a negative change and returns to the maximum point

where the duty cycle stays at 92.78%. The orange curve shows the applied voltage on the MRR

heater during the tuning operation. The applied PWM control signal and its duty cycle are shown

in the black box. Fig. 2.10(b) top illustrates the resonance of MRR #1 versus the input wavelength

before and after tuning. Eye diagrams are also shown at the bottom. The corresponding SERs

are 2e-6 and 7e-18. The results for MRR #2 are collected with input wavelength at 1560nm are

shown in Fig. 2.10(c) and (d). In this scenario, a decreased PWM duty cycle is needed. The tuning

procedure takes 218 `s in total and achieves 3dB increased optical power. The corresponding

received PWM duty cycles are 50.26% at the beginning and 96.20% at the end. The applied

PWM’s duty cycle decreases from 64.41% to 61.77% during tuning. MRR #2’s resonance versus

the input wavelength is shown at the top of Fig. 2.10(d). The resulting eye diagrams are shown in

the bottom and SERs are 2e-7 and 3e-18.

Figure 2.11 shows the experimental results for the multicasting data at 1547 nm through both

MRRs simultaneously. The feedback operation as captured in the PDs is shown in Fig. (a) (blue

and orange curve).The feedback starting at t = 17 `s (t0) is completed in 327 `s. At t= 228 `s (t1),

the resonance of MMR #2 reaches the input wavelength where maximum output power is obtained

and the algorithm starts to tune MRR #1. Multicast is achieved as MRR #1 drops the same optical

power as MRR #2 at t = 344 `s (t2). The applied PWM and its duty cycle for both MRRs is labeled

in the black box. Fig. 2.11(b) shows the transient of received PWM signals. During the tuning

procedure, the duty cycle of PWM received signal from MRR #2 (in the top of Fig. 2.11(b) ) is

27.24%, 71.01% and 49.21% at t0, t1, and t2. The transient of the received PWM signal from MRR

#1 is shown in the bottom of Fig. 2.11(b), with the duty cycle increasing from 29.28% at t1 to

50.77% at t2. The resonances of MRR #1 and MRR #2 are shown in the green and purple curve

before tuning and the eye diagrams for detuned MRR #1 and MRR #2 are shown in the bottom
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Figure 2.11: (a) Optical transient before and after the feedback tuning procedure for multicasting.
(b) Received PWM transient. (c) Corresponding spectrum and eye diagrams before the tuning
procedure. (d) Corresponding spectrum and eye diagrams after tuning.

with SERs of 2e-9 and 2e-7 (Fig.2.11(c)). After tuning, SERs are improved to 2e-12 and 3e-11 for

MRR #1 and MRR #2. The eye diagrams and resonances corresponding to input wavelength are

shown in Fig. 2.11(d).

Our results show that the single-wire ADC/DAC control and feedback architecture is capable

of achieving wavelength switching for unicast and multicast with 20Gb/s PAM4 optical signals in

microseconds. The demonstration validates that our novel control and feedback strategy fits the

subsystems to obtain high scalability and reliability.
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2.5 Chapter Summary

In this chapter, we introduced the control mechanism for MZI, MRR, and MEM-actuated cou-

pler switching cells. We demonstrated optical unicast, multicast, and multiwavelength-select func-

tionalities in cascaded-MRR structures. Both FPGA-based open-loop and closed-loop control are

presented. In a stable environment, the open-loop control is sufficient with a calibration of the chip.

When ambient temperature varies, a closed-loop control should be applied. The control scheme

is agnostic to different types of SiP switches. The MZI and MEMS based spatial switching, and

MRR based unicast and multiwavelength-select functionalities are essential for the architectural

designs in later chapters.
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Chapter 3: Optically Connected Memory for Deep Learning

3.1 Introduction

Recent studies [6, 7] indicate that the deep learning datasets and models are continuously scal-

ing, which will inevitably exceed the memory capacity in today’s systems and limit the perfor-

mance of deep learning applications. As indicated in Chapter 1, there are three major memory

challenges regarding deep learning. Here we state them again. First, different deep learning mod-

els show varying memory requirements. Second, the memory required during training depends on

batch size and optimization strategies. Third, embeddings used in both recommendation systems

and language models are huge. Having fixed and preconfigured amount of memory for the max-

imum memory capacity requirement is inefficient and will become more so. A scalable solution

that can adapt to run-time memory requirements is needed to address the memory challenges for

future deep learning applications.

Several approaches to tackle the memory capacity issue for large DNNs have been explored.

Virtualizing the memory usage of DNNs such that both host and device memory can be utilized by

a careful study on the data dependency and network topology of the DNNs is proposed in Ref. [83].

Parallelizing deep learning models across multiple GPUs can be another approach: data parallelism

and model parallelism algorithms presented in Ref. [84] show how to distribute large networks

among GPUs to relieve the memory capacity limitation. To reduce the communication overhead

and achieve better resource utilization, in Ref. [85] a memory-centric architecture is demonstrated

in simulation and proposed for future high-performance computing systems. Memory modules

are aggregated locally and connected with device nodes using NVLink. Reference [86] proposed

using non-volatile memory (NVM) for storing embeddings in deep learning models with caching

data in volatile memory to relieve the constraints. The first three approaches tackling the memory
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capacity issue with preconfigured and fixed memory resources do not provide a scalable solution

to the on-demand memory requirement while the last approach can still be limited by the NVM

bandwidth.

Photonic interconnects can enable disaggregated high-bandwidth networks reconfiguring com-

pute and memory resources to meet application requirements in a more efficient and scalable net-

work [87] than those using fixed resource configurations. Memory resources can be pooled and

connected to other resources using reconfigurable optical switch fabrics [88]. The system can

then be adaptively configured, according to dynamic resource requirements of deep learning ap-

plications, to achieve high resource utilization and deliver required system performance. Optically

connected memory technique has been demonstrated using custom network interface card [89]

with the inevitable overheads in memory-to-network conversions [85]. An optically connected

system with emulated processors and a custom memory controller has been reported in [90, 91]

without an end-to-end program-level demonstration.

We investigate the feasibility of integrating photonic switched optically connected memory into

processing systems to address memory challenges in deep learning. The proposed system archi-

tecture enables on-demand allocation of additional memory to processing systems with a constant

reconfiguration time that is independent of the required memory size. A “lite” (de)serialization

scheme, which avoids heavy memory-to-network conversions and directly (de)serializes mem-

ory requests, responses, and data transfers, is proposed to eliminate the network communication

overheads. The (de)serialization scheme is compatible with standard memory interface protocol

and is applied to memory transfers between the processing system and remote memory nodes via

optical links at the program-level. We built a testbed with a processing system node and two re-

mote memory nodes to evaluate the system performance with memory read/write operations. This

testbed experimentally demonstrates an end-to-end reconfiguration latency of 2.78 ms and showed

a step towards deploying photonic interconnects and optically connected memory for deep learn-

ing. Compared to the latency introduced by using storage devices for the DNNs, the proposed

system achieves a significant speedup with remote memories.

35



3.2 System Architecture

Figure 3.1A left depicts the traditional system architecture. Each processing system is com-

posed of CPU, memory, storage, accelerator, and network resources. In order to achieve bet-

ter accuracy, larger datasets and more complex larger models are being used [6]. Adding more

fixed memory modules to the processing system or to the accelerator for large DNNs is not an

indefinitely scalable solution that will meet the scaling requirements. Furthermore, incorporat-

ing new more advanced hardware with fixed resources cannot guarantee an efficient utilization of

compute and memory resources, as the memory capacity requirement for DNN models can vary

significantly with applications [92, 93, 23, 26, 94]. We note, therefore, the traditional system ar-

chitecture for deep learning applications is facing scaling and resource utilization challenges. In

our proposed system architecture, as shown in Fig. 3.1A right, the reconfigurable photonic in-

terconnects enable decoupling of additional memory modules from the processing systems and

therefore enable flexible allocation of the additional memory capacity to systems or accelerators

as required or on-demand. This system architecture breaks through the memory capacity limita-

tion, improves the resource utilization, and is compatible with existing processing systems using

designated (de)serialization and memory mapping schemes. Figure 3.1B shows more details of

our proposed photonic switched optically connected memory system architecture. The process-

ing system on the left is initially equipped with CPU, memory, accelerator, network, and storage

resources. Based upon the memory capacity requirement of the deep learning applications, ad-

ditional remote memory resources can be connected to the processing system using photonic in-

terconnects through high-speed serial optical links. Helper blocks directly (de)serialize memory

requests avoiding potential overheads introduced by network protocols and the NVMs.

Disaggregated memory blocks can be assigned to the processing system using reconfigurable

photonic interconnects for two cases. In the first case a processing system occupies the required

memory blocks until it finishes the usage of the additional memory capacity. In this case, additional

remote memory blocks can be assigned solely to that processing system. The second case occurs
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Figure 3.1: (A) On the left, the traditional system architecture with each processing system com-
posed of preconfigured and fixed CPU, memory, storage, accelerator and network resources. In
our proposed system architecture, on the right, each processing system using optical I/Os is also
connected to a remote memory pool through photonic interconnects. (B) Detailed implementation
of photonic switched system architecture with optically connected memory. The processing sys-
tem includes additional (de)serialization and transceiver (XCVR) helper blocks for (de)serializing
memory mapped transactions being transmitted through optical links. On the right, remote double
date rate synchronous dynamic random-access memory (DDR) nodes, are also equipped with the
(de)serialization and XCVR helper blocks, and the photonic interconnects physically connect re-
mote memory nodes to the processing system.
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when multiple processing systems share remote memory nodes. This case depends on the fast

switching capability of the photonic interconnects. Remote memory nodes can thus be dynamically

selected while applications are running. The optical switching also enables the processing system

to access remote memory nodes with limited optical transceiver ports. Examples of these two cases

can be found in the following subsection B. In addition, the proposed system architecture can be

integrated to current systems with minor modifications to current operating systems.

In this work, we use Xilinx multiprocessor system-on-chip (MPSoC) devices to demonstrate

the feasibility of integrating photonic switched optically connected memory into the processing

system. Detailed system implementations: (A) a “lite” (de)serialization of memory transfers; (B)

mapping remote DDR into the system address space; (C) Silicon Photonic (SiP) switch and control;

and (D) accelerator design are presented in the subsections below.

3.2.1 (de)Serialization of Memory Transfers

The MPSoC system uses the AMBA AXI protocol [95] to perform memory read/write op-

erations. To access a locally memory mapped slave device, master devices such as CPU and

accelerators can simply launch requests through transaction channels, such as read address, read

data, write address, write data, and write response, in order to finish the memory transactions. To

access an optically connected remote memory slave, however, the AXI memory mapped channel

signals have to be combined and serialized before being transmitted to the remote side through

high-speed serial links. We leveraged existing IP blocks designed by Xilinx to achieve the “lite”

(de)serialization of the remote memory transfers. Without using any network layer protocol, our

scheme directly serializes the AXI channel signals and transfers the high-speed serial signals to

the remote nodes through optical links. On the receiver side, the high-speed serial signals are

deserialized back to the parallel AXI channel signals.

We primarily used two IP blocks, AXI chip2chip [96] and Aurora 64B/66B [97] IP cores in this

system design. The AXI chip2chip core converts the AXI memory mapped channel signals into

AXI streaming signals or vice versa and interfaces to the Aurora 64B/66B core. The latter core
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utilizes a link-layer protocol, including transceiver initialization, multi-lane handling, and link

negotiation for the high-speed serial communication between our optically connected nodes. The

AXI chip2chip core can be connected to the AXI interconnects that can be consequently accessed

by CPU and accelerators. To achieve an error-free operation, specific transceiver control settings

are necessary to be properly configured. These settings depend on the link characteristics. Further

details are shown in Section IV.

3.2.2 Map to Local System Address Space

The master CPU and accelerators can only see and communicate with the AXI chip2chip IP

blocks in the processing system. In fact, the AXI chip2chip core exposes the remote DDR slave

to the local system space. Memory address offsets of the AXI chip2chip and the remote DDR

are set to be the same. In this way, CPU and accelerators can seamlessly access the remote DDR

as a “local” device. For the case where the processing system occupies multiple memory blocks

without optical switching during the application, the remote memory blocks are assigned with

different memory address offsets (as they are connected to different chip2chip cores). An example

of this case is shown in Fig. 3.2A. Remote DDR #1 node is projected by chip2chip #1 and remote

DDR #2 is projected by chip2chip #2. Two remote DDR nodes have different address offset values

because they are mapped to separate chip2chip cores. However, for the switching case, the memory

address offset of all the remote DDRs is set to be the same. This is due to the fact that CPU and

accelerators are accessing the remote DDRs through the same AXI chip2chip core. An example of

two remote DDR nodes projected by a single chip2chip core is shown in Fig. 3.2B. The mapping

configuration for both cases is one of the modifications to the operating systems.

3.2.3 SiP Switch Control

In this work, we use silicon thermo-optic MRR based 1 × 8 switch fabrics as spectral-and-

spatial de-multiplexers for data routing. We use the MRR to select/drop a specific wavelength to

connect communicating nodes. We note that our proposed architecture is agnostic to the choice of
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Figure 3.2: (A) An example of case 1, two remote memory resources mapped to two AXI chip2chip
cores in the local processing system for the unswitched case after the resources are assigned. Each
chip2chip core is assigned with a unique memory address offset (B) An example of case 2, the
switching case. Both remote DDR #1 and remote DDR #2 are mapped to the AXI chip2chip #1 in
the processing system. They share the same memory address offset.
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switching device, although the individual properties of the switch cell choice will have an effect

on system performance.

We choose to have an independent switch controller for future system scalability. Controlling

high-radix SiP switches generally requires a large number of analog control pins due to the large

number of switching elements that forms the switching matrix. A scalable solution is to have a

separate switch controller with the required number of analog pins. The processing system will

only be required to send configuration requests to the switch controller and the switch controller

applies required analog control signals to the switching elements in the SiP switches. We apply this

methodology to our proposed system architecture and use group peripheral I/O (GPIO) pins as the

interface to the switch controller. These control pins contain 1 bit for triggering and a power of 2

bits for the configurations. Based on the physical configuration required by users or deep learning

applications, the processing system will first stabilize the configuration bits and toggle the trigger

bit from logic high to logic low to initiate the reconfiguration process. For the switch controller,

the procedure is as following: (1) The control logic in the switch controller samples the triggering

signal and the configuration bits; (2) if triggered, it reads registers that contain pre-stored digital

voltage values associated with each switching element for required configurations and (3) applies

the parallel digital voltage values to digital-to-analog convertors (DACs) that bias the switching

elements of the SiP switches.

3.2.4 Accelerator Design

We designed a “vanilla” accelerator on the FPGA of the ZCU106 board to further evaluate

the feasibility of our photonic switched optically connected memory system architecture. The

accelerator uses the standard AXI memory interface and it has the access to remote memory nodes

through the AXI chip2chip core. The accelerator functions as a data mover that can “copy” and

“paste” data from local DDR to remote DDR or vice versa. Although it does not heavily process the

fetched data from either local or remote memories, the functionality of accessing remote memory

through a standard memory interface is achieved. The ARM CPU in the processing system initially
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Figure 3.3: SiP switches’ configurations for the dynamic access to remote DDRs. (A) Remote
memory resources to the processing system direction. (B) The processing system to remote mem-
ory resources direction.

comes with AXI interface and it does not require additional implementations.

3.3 Testbed

We built an experimental testbed to evaluate the optical links and switching characteristics, and

to demonstrate the feasibility of integrating SiP switches and remote DDRs into the processing

system for DNNs. It includes one processing system node dynamically connecting two remote

DDR memory blocks.

Two SiP switches connect the processing system to the remote DDR nodes. In this specific

implementation of our architecture only a 1 × 2 switch and a 1 × 4 switch are required, although

we used 1 𝑡𝑖𝑚𝑒𝑠 8 SiP switches for the experiment. As we are only accessing the first MRRs, the

experimental results are not impacted. Based on our system configurations, two MRRs in one of

the 1 × 8 SiP switches are used for the direction from remote DDR nodes to the processing system

and four MRRs in the other 1 × 8 SiP switch are used for the processing system to remote DDRs
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direction. We label them as 1 × 2 and 1 × 4 switches in the rest of the chapter. In addition, each

optical link contains two bundled lanes.

Figure 3.3A shows the direction from remote DDR nodes to the processing system. If the

processing system requires the connection to remote DDR node #1 then MRR #1 and MRR #2

in the 1 × 2 switch are tuned to select and forward _1 and _2 to the processing node. For the

connection to the remote DDR #2, _3 and _4 are selected. Figure 3.3B shows the other direction

for data transactions. If the system is configured as remote DDR #1 node being connected to the

processing system node, the first two MRRs connected to the remote DDR #1 node in this 1 × 4

switch will drop _5 and _6. When the remote DDR #2 node is acquired by the processing system,

MRR #3 and MRR #4 in the 1 × 4 switch are detuned from _5 and _6 to allow the light to pass

through while MRR #5 and MRR #6 are tuned to drop and forward the light to the corresponding

receiver ports of the remote DDR #2 node.

Figure 3.4A shows the experimental setup. Two Xilinx ZCU106 and a Terasic TR4 evaluation

boards are used to evaluate the system. One of the ZCU106 boards contains both the processing

system and remote DDR #1 nodes. The physical connection is only through the optical link that

can be steered by the SiP switches. The other ZCU106 only comprises the remote DDR #2 logics.

Each remote DDR node contains a 2 GB 64-bit wide DDR4 memory system. Six transceivers

in total are used to support multi-lane optical communications. Each link contains two lanes and

each lane operates at 10 Gb/s data rate. The maximum throughput for the serial link between

the processing system and a remote DDR node can reach up to 20 Gb/s. Four C-band SPF+

transceivers, with wavelengths at 1545.32 nm (_1), 1546.92 nm (_2), 1553.33 nm (_3) and 1554.94

nm (_4), are used for the two remote DDR nodes to transmit data to the processing system, and two

wavelengths at 1554.94 nm (_5) and 1556.56 nm (_6) are used for the opposite direction. Optical

signals are combined by the multiplexers (MUX) and then enter the SiP MRR based switch chips.

The polarization controllers (PC) change the polarization of the light of each lane to maximize

the optical power being coupled in to and out of the SiP chips. An erbium doped fiber amplifier

(EDFA) is necessary to compensate the loss due to the grating couplers of the SiP switch chips.
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Figure 3.4: (A) Experimental setup demonstrating a case of photonic switched optically connected
memory system with dynamic allocation of remote DDR resources to the processing system. (B)
Key hardware components. One Xilinx ZCU106 board containing the processing system and the
remote DDR #1 nodes, another ZCU106 board containing only the remote DDR #2 node, and the
TR4 switch controller FPGA board. (C) A packaged SiP MRR based switch with electrical SMA
interface.

The processing system sends configuration requests to the switch controller FPGA, on the Terasic

TR4 board, which configures each MRR by tuning the resonance of each MRR with bias voltage

through DACs and electrical amplifiers (AMPs). The electrical amplifiers are used to provide

sufficient voltage levels to the MRRs. The configuration and trigger signals are transmitted through

GPIO pins from the processing system ZCU106 board to the TR4 board. Figure 3.4B illustrates the

key hardware components that enable the evaluation of the system. CPU, FPGA, remote DDRs,

GPIO, optical transceivers, switch controller and DACs are used for the evaluation of optical link
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and switching characteristics. A packaged SiP chip on a printed circuit board with SMA interface

is shown in Fig. 3.4C.

3.4 Experiment and Results

3.4.1 Optical Spectra

We first demonstrate that the SiP MRR based switches are capable of supporting the multi-lane

optical communications required for the two different physical memory access topologies. Figure

5A shows the optical spectra at the drop port of each MRR configured for prioritizing the physical

connection between the processing system to the remote DDR #1 node. MRR #1 and MRR #2

are tuned to drop the optical wavelengths at 1545.32 nm (_1) and 1546.92 nm (_2) for the lane

#1 and lane #2 from the remote DDR #1 node. The received optical power of the data signal at

the corresponding receiver ports is -15.60 dBm and -18.32 dBm respectively. MRR #3 and MRR

#4 are configured to select and forward the wavelengths at 1554.94 nm (_5) and 1556.56 nm (_6)

from the processing system to the remote DDR #1 node. The received optical power for lane #1

and lane #2 are -17.48 dBm and -16.39 dBm respectively. For the plots of MRR #1 to MRR #4, the

highest peak is the optical data signal and other peaks are crosstalk from adjacent optical channels.

For the plots of MRR #5 and MRR #6, the peaks show leakage power from previous MRRs, MRR

#3 and MRR #4.

Figure 5B shows the optical spectra at the drop output of each MRR for the second case where

the remote DDR #2 node is connected to the processing system. The optical power received by

the processing system at 1553.33 nm (_3) and 1554.94 nm (_4) is -14.96 dBm and -18.25 dBm

respectively. MRR #3 and MRR #4 are detuned to allow the light to pass through these MRRs and

the light can be dropped by MRR #5 and MRR #6. The received optical power at the receivers of

DDR #2 node are -20.3 dBm and -18.3 dBm respectively. We ensured the received optical signal

power is above the receiver sensitivity of -23 dBm.
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Figure 3.5: Optical spectra at the drop port of each MRR for two different configurations. (A) Two
SiP switches configured as the processing system connecting to the remote DDR #1 node. (B) Two
SiP switches configured as the processing system connecting to the remote DDR #2 node. (In this
figure, the MRR numbers are consistent with the MRR numbers shown in Fig. 3.3.)
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Figure 3.6: Screen shots of open eye diagrams of connected receiver ports at 10 Gb/s PRBS-31.
(A) Two SiP switches configured as the processing system (PS) connecting to the remote DDR #1
node. (B) Two SiP switches configured as the processing system connecting to the remote DDR
#2 node.

3.4.2 Eye Diagrams

Data transmission at 10 Gb/s non-return-to-zero (NRZ) on-off keying (OOK) using 231-1

pseudo-random bit sequence (PRBS-31) was performed to extract transceiver settings for the Au-

rora 64B/66B IP core. With transmitter driver swing at an amplitude of 647 mV𝑃𝑃𝐷 , pre-cursor

TX pre-emphasis of 0.68 dB and post-cursor TX pre-emphasis of 1.16 dB, error-free operations

over the optical links are achieved. All the connected paths for the two different configurations

show clear eye-openings as shown in Fig. 3.6.
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Figure 3.7: Screen shots of open eye diagrams of connected receiver ports at 10 Gb/s PRBS-31.
(A) Two SiP switches configured as the processing system (PS) connecting to the remote DDR #1
node. (B) Two SiP switches configured as the processing system connecting to the remote DDR
#2 node.

3.4.3 Switching Time

We performed measurements of two switching cases between two configurations: (1) the re-

mote DDR #2 node connected to the processing system, and (2) the remote DDR #1 node con-
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nected to the processing system. The first switching case is changing from configuration #1 to

configuration #2 and the second switching operation happens 330 `s after the first switching op-

eration, which is changing from configuration #2 to configuration #1. In Fig. 7, we show the

transient responses of the received optical power, normalized individually for each MRR.

As shown in Fig. 3.7A, the first switching case starts at the time that approximately equals to

50 `s. We notice that MRR #4 experiences faster rise time than MRR #3 and becomes stabilized

within a shorter time. The local maxima and the local minima of the orange curve are due to the

fact that MRR #4 passes through 1554.94 nm (_5) during the first switching process. MRR #5 and

MRR #6 are initially tuned at 1554.94 nm (_5) and 1556.56 nm (_6), and the control bias voltages

are not changed during the process, thus the transient response of MRR #5 is reciprocal to the

superposition of the transient responses of MRR #3 and MRR #4. The transient response of MRR

#6 is reciprocal to MRR #4 only. For the configuration #2 to configuration #1 case, MRR #3 and

MRR #4 are detuned to allow the optical signals to pass through, and the transient responses can be

observed at the time approximately equal to 380 `s. The limiting factor of the switching operation

is the slowest transient response of all the responses. We can see from Fig. 7A that the rise time

of MRR #3 for the switching from configuration #1 to configuration #2 is the slowest transient

response and the latency is approximately 119 `s. We have, however, shown that the thermo-optic

switching time can be as low as 1.2 `s with optimized driving circuitry [54].

Figure 3.7B illustrates the transient responses at the receiver ports for MRR #1 and MRR #2 in

the two switching scenarios. Since both MRR #1 and MRR #2 are dropping optical signals for two

configuration cases, the transient response of each individual MRR is expected to fall first and then

rise back during the switching process. As we find from Fig. 7B, the slowest transient response is

approximately 107.5 `s at the receiver port for MRR #1 in the first switching case.

3.4.4 End-to-end Reconfiguration Time

The system end-to-end reconfiguration latency consists of (1) the time for AXI chip2chip and

Aurora 64/66B cores to reset, (2) optical switching time, and (3) link re-negotiation time. To
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reconfigure the physical connections between the processing system and remote DDR nodes, the

AXI chip2chip and Aurora 64/66B cores in the processing system are required to be put into

reset state. This reset action will also be propagated to the remote DDR end to restart the link-

renegotiation process. The reset process and the link-renegotiation process are described in [96,

97]. One requirement for this process is that the asserted reset state needs to last at least 128 user

clock cycles and we chose to set the cores to be in reset state for 2 ms. The optical switching time

shown in the previous section is approximately 119 `s and we chose to wait 330 `s to ensure the

optical link is stabilized. The reset was then released and the link-renegotiation process started.

This renegotiation time was measured to be 0.45 ms. In total, the end-to-end reconfiguration time

was 2.78 ms.

3.4.5 Application and Execution Time

We built a Linux kernel image based upon the system implementation using Xilinx PetaLinux

tool and booted the operating system with Ubuntu 18.04 filesystem on the Xilinx ZCU106 board.

The kernel image is stored in the SD card boot partition while the filesystem is stored in the hard

drive root partition. The hard drive is connected to the processing system through SATA interface.

We evaluated the system performance by measuring the latencies of loading data from storage

to local memory, storing data from local memory to storage, loading data from remote memory to

local memory, storing from local memory to remote memory, and classifying an image on the ARM

Cortex CPU. A VGG16 model was pretrained using TensorFlow in Python and its parameters,

such as weights and biases for each layer in the network, are also saved in the hard drive. A

feedforward implementation of the neural network including the convolutional and fully-connected

layers is coded in the C programming language, thus the processing system is capable of running

a C program to load the parameters and classify an image using the pretrained VGG16 model on

the ARM CPU. The VGG16 model contains 13 convolutional layers and 3 fully-connected layers

with 138,357,544 parameters and we use 32-bit floating point data type for each parameter. Thus,

the total size of the VGG16 is approximately 528 MB. The loading time from the hard drive to
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Figure 3.8: Loading/storing latencies using hard drive and remote DDR memory of different batch
sizes.

the local main memory is 5.70 s for the entire VGG16. The execution time to classify an image is

63.34 s on the ARM CPU.

To measure the latencies of using remote DDR for storing/loading parameters, i.e. weights and

biases, we use our designed accelerator in a standalone design (without the operating system). The

time for storing 528 MB data, the same size as the VGG16, from the local contiguous memory

allocation (CMA) region to the remote DDR takes 1.40 s for the accelerator and loading the data

from remote DDR to the local CMA region takes 1.34 s.

The accelerator’s equivalent throughput for loading from the remote memory to local memory

is 3.31 Gb/s, and 3.16 Gb/s for storing. The limited throughput is due to the fact that the designed

accelerator operates at 250 MHz with 32-bit AXI data channel width, which can theoretically

achieve up to 7.8 Gb/s without overhead. In addition, the accelerator performs “copy” and “paste”

operations which lead to an overhead factor of approximately 0.5 over the entire system. By
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increasing the clock frequency and data channel width of the accelerator, higher throughput can be

achieved.

During training, memory space is required to store each layer’s output and its corresponding

gradients. The space required for gradients is the same size as the layer’s output for backpropaga-

tion when stochastic gradient descent (SGD) [24] optimization strategy and ReLu [98] activation

function are used. To evaluate the feasibility of our proposed architecture for increasing the mem-

ory capacity for training, we performed a forward propagation of the VGG16 with a batch size of

1, 2, 4, 8, and 16 images in the software. Based upon the memory requirement for training, we

stored/loaded the intermediate layer results and randomly initialized gradients to/from both remote

memory and the hard drive for the purpose. The intermediate results include the output of each

convolutional layer, max pooling layer and fully-connected layer. There are 15,087,080 elements

of intermediate layer results per image to be stored for backpropagation. Considering the gradients,

there are in total 30,174,160 elements per image that are being stored/loaded during the process.

The time for storing to the hard drive is 1.14 s, 2.49 s, 4.98 s, 10.53 s, and 22.58 s, respectively.

For loading from the hard drive, the latencies are 1.26 s, 2.53 s, 5.24 s, 10.61 s, and 20.57 s, re-

spectively. As expected, the latencies for storing/loading using remote DDR are less than using

the hard drive in the testbed. The storing latencies using the remote memory are 0.31 s, 0.61 s,

1.23 s, 2.45 s, and 4.92 s, while the loading latencies are 0.30 s, 0.60 s, 1.21 s, 2.41 s, and 4.85 s,

respectively. Figure 3.8 compares the latencies of using hard drive and remote DDR memory and

shows that the required memory space for layer output and layer gradients grows with the batch

size. We note that larger batch size will require more memory and the memory requirement is also

related to the use of other optimizers [16], but the functionality of our architecture and the remote

memory remains the same. Table 3.1 lists the results for the system performance measurements.

Figure 3.9 compares the three scenarios for the test case of inference: processing system load-

ing from storage, processing system with remote DDR and optical interconnect, accelerator with

remote DDR and optical interconnect. The total execution time consists of both compute time and

the time for data access. For the latter, we can achieve a speedup of 4.3 when loading the data
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Table 3.1: System Performance Measurements

Operations Latency

Optical switching 119 `s

End-to-end reconfiguration 2.78 ms

Load VGG16 (528 MB) from hard drive to local 5.70 s
DDR memory

Load 528 MB data from remote DDR to local DDR 1.34 s
CMA region (accelerator)

Store 528 MB data from local DDR CMA region to 1.40 s
remote DDR (accelerator)

Load intermediate results and gradients from hard 20.57 s
drive to local DDR memory (batch size of 16)

Store intermediate results and gradients from local 22.58 s
DDR memory to hard drive (batch size of 16)

Load intermediate results and gradients from remote 4.85 s
DDR to local DDR CMA region (batch size of 16)

Store intermediate results and gradients from local 4.92 s
DDR CMA region to remote DDR (batch size of 16)

Classify an image using VGG16 on ARM CPU 63.34 s
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Figure 3.9: Timelines comparing system latencies in different scenarios for switching case #2.

from remote DDR compared to loading from the storage device to the local DDR. The end-to-end

reconfiguration latency we observed is much shorter than the loading time therefore we use 1.34 s

as the total time for the processing system to load the data from the remote memory. In the case of

the accelerator, the end-to-end reconfiguration time is the only one considered as the accelerator

can directly access the remote memory without loading. We note that the optical reconfiguration

time is a constant overhead independent of the data size. With increased data size the impact of the

overhead is amortized.

3.5 Discussion

Optical switching technology enables reconfigurable disaggregation allowing the processing

system to dynamically access additional memory resources. In order to successfully integrate the

photonic switched optically connected memory into the system, several requirements for the opti-

cal switches need to be taken into consideration including: optical power budget, reconfiguration

time, power consumption and scalability.
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The optical power budget available is based on the receiver sensitivity and the optical power

launched by the transmitter. The insertion loss of the optical switches should be well below this if

the system has no optical amplification. If the insertion loss of the switch and additional losses in

the link go beyond this optical power budget, optical amplification is required, which is generally

not desirable due to energy and cost considerations, although recent work with semiconductor

amplifiers has shown promise [99]. The extinction ratio (ER) of the optical switch also depends

on the optical transceiver. For a transmitter ER of 3.5 dB, we measured more than 10 dB power

suppression ratio of the optical signal power to the optical leakage power which can guarantee

error-free operation.

End-to-end reconfiguration latency is an important network parameter. This parameter includes

optical switching time, transceiver reset and link negotiation. In order to not introduce excessive

overhead, the optical switch reconfiguration should not occupy more than ten percent of the entire

reconfiguration latency. In this case we have shown that the optical switch reconfiguration time

is not detrimental to the system performance. To decrease the overhead of the optical switching

and link reconfiguration latency, advanced high-speed devices could be employed. Electro-optic

switches and burst-mode transceivers can be deployed in the system. Electro-optic silicon photonic

switches provide nanosecond-scale reconfiguration time [51] and sub-nanosecond clock and data

recovery has been demonstrated in an optically switched link via clock phase catching [100]. The

achievable end-to-end reconfiguration latency can thus be reduced to the nanosecond scale.

The power consumption of the optical switch should be a small fraction of the power con-

sumption of the entire system. The state-of-the-art GPU [101] can consume up to 280 W while

reported silicon photonic switches [102], are in the range of Watts and are therefore relatively

power efficient when integrated into the system to support dynamic memory resource allocation.

For example a 32 × 32 MZI-based switch consuming a power of 1.9W [47]. The switch fabric

used in this experiment consumes approximately 10 mW per MRR.

Although we demonstrated a 1 × 2 switching scenario in the testbed, larger N × M optical

switches in application dependent topologies would support the system requirements, depending
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on the number of compute/accelerator nodes (N) and the remote memory nodes (M) within the

subsystem. Ref. [85] indicates a use case of 8 compute and 8 memory nodes. A full analysis of

the relationship between the radix/topology of the optical switch and the overall system perfor-

mance/cost can be performed using the same methodology as shown in our previous work [42], for

specific applications and switch architectures.

Our experimental testbed was designed to experimentally demonstrating the proof-of-concept

functionalities of our proposed system architecture. Although we used legacy SATA based stor-

age devices in our testbed, commercially available storage drives can support up to 2,375 MB/s

throughput (Amazon Web Service [103]). In order for our proposed architecture to demonstrate

comparable speedup using commercial high-end storage devices, one would build an optical sys-

tem with comparable high-end bandwidth optical I/Os and optimized transceiver circuitry. Mul-

tiwavelength terabit optical links are under development with state-of-the-art silicon transceivers

capable of modulating [104] and detecting [105] at over 100 GHz bandwidth.

In summary, our proposed photonic switched system architecture demonstrates the concept of

using dynamic allocation of memory to tackle the scaling challenge of deep learning. Our test

cases demonstrate the capability of increasing memory capacity at the program-level using an ar-

chitecture based on MRR optical switches, FPGA processing systems, and optically connected

DDR memories. The designed “lite” (de)serialization and memory mapping scheme show a path

towards lowering the system latency, a critical metric for disaggregated systems. The independent

switch controller is scalable and is able to be applied in the systems requiring large number of

switching elements as long as they are controlled by biasing voltages. The proposed system archi-

tecture shows a significant step toward deploying photonic interconnects and optically connected

memory for deep learning applications. More generally, with specific optimizations the approach

would also be applied to other workloads that face the same memory challenges.
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3.6 Chapter Summary

We demonstrate a proof of concept system architecture, showing the functionality of photonic

switched optically connected memory for large DNNs in deep learning. It features dynamic allo-

cation of additional memory to the processing system and a constant reconfiguration latency. The

experimental testbed demonstrates real memory transactions between the processing system and

remote memory nodes. We measured a 119 `s latency for optical switching and an overall 2.78

ms latency for the end-to-end reconfiguration. Our results and silicon-based high-bandwidth I/O

capabilities show the feasibility of using photonic switched optically connected memory to solve

the memory challenges in future deep learning applications.

57



Chapter 4: Photonic Switched Architectures for Distributed Deep Learning

4.1 Introduction

As discussed in Chapter 1, the demand for better DL models has resulted in a rise of more

complex models that support larger dataset sizes to improve these deep neural networks. Today,

DL workloads are taking a large proportion of the computation in HPC and datacenters, and will

continue to grow. These trends shift the bottleneck from computation resources to networks, and

require high performance and reconfigurable interconnects to sustain the continual growth of the

distributed deep learning applications.

Flexible photonic switched networks have the capabilities to perform topology reconfiguration

and many research works have explored reconfigurable network architectures using OCSs. These

OCS-based architectures employ various different technologies, such as 3D MEMS [106, 71], sili-

con photonic switches [74], wireless transceivers based on free space optics [73, 107], RotorSwitch

[108], and tunable lasers [109]. Early architectures of reconfigurable network such as Helios [71]

used OCSs to build a hybrid optical/electrical architecture to serve bandwidth-bound large flows

using the OCS network while serving the latency-bound small flows with static electrical packet

switches (EPSs). Later works such as ProjecToR [73] and RotorNet [108] used customized switch-

ing prototypes to build flatter network topologies where the top-of-rack (ToR) switches are directly

connected with a single layer of OCSs for higher energy efficiency. Meanwhile, silicon photonic

(SiP) switches have also been proposed as another solution that could provide power-efficient high

bandwidth scaling at low fabrication cost. Flexfly [107] and Flexspander [110] placed SiP switches

in between clusters/groups of EPSs to achieve better scalability.

In addition to applying these reconfigurable network architectures to traditional HPC work-

loads, various works in the literature have explored employing them under distributed machine
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learning settings as well. Truong et al. [111] have proposed using a hybrid electrical/optical ar-

chitecture, similar to Helios [71], to serve long-lived DL training communications using the OCS

network while using the EPS network for smaller messages. Evaluation with real DL workload

shows significant communication speedup when employing the hybrid architecture. Lu et al. [112]

have proposed to build a hierarchical network, similar to Flexfly [74], for distributed machine

learning applications. Results show that X-NEST outperforms RotorNet16 across different DL

workloads and performs similarly to fat trees with fewer hardware components.

While many reconfigurable network architectures have been explored in the past, prior work

has typically proposed architectures with reconfigurability at a single network layer (e.g. between

ToR and aggregation EPSs [113] or between dragonfly groups [74]). We propose our reconfig-

urable SiP architecture [114] that uses SiP switches between servers and ToR, and between ToR

and aggregation EPSs in a fat tree topology. This architecture introduces two unique network

functionalities: (1) server-regrouping between servers and ToR switches to recover job-level traffic

locality, and (2) bandwidth-steering between ToR and aggregation layers to maximize traffic reten-

tion at the lower fat tree layers. We demonstrate an improvement in overall network performance

for distributed ring all-reduce and parameter server deep learning training algorithms. An opti-

mized SiP switch control scheme is presented to simplify the control implementation complexity

and to achieve better integration of the SiP switches into large-scale systems. In our experimental

hardware testbed [114], we present new results demonstrating that regrouping servers and steering

network bandwidth can result in more efficient execution of the distributed deep learning work-

loads. We report a 1.9× to 3.6× performance improvements depending on different distributed

training strategies and test cases. In this paper we also present new system-scale simulations.

We perform server regrouping and bandwidth steering on a large-scale tapered fat tree with 1024

compute nodes. Our simulation results show that server regrouping can deliver up to 2.3× flow

throughput improvement for a 2× tapered fat tree and a further 11% improvement when higher-

layer bandwidth steering is applied.
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Figure 4.1: (a) System architecture demonstration with server nodes arranged in the fat tree topol-
ogy to show SiP switch-based server regrouping and higher-layer bandwidth steering. (b) An
example of before (left) and after (right) server regrouping. (c) An example of before (left) and
after (right) bandwidth steering above the ToR.

4.2 System Architecture and SiP Switch Control

4.2.1 System Architecture

Distributed deep learning training workflows, including data parallelism and model parallelism,

show strong communication patterns with high-bandwidth requirement between server nodes. We

demonstrate our proposed system architecture on synchronized ring all-reduce [115] and asynchro-

nized parameter server [20] data-parallel techniques. Figure 4.1(a) illustrates our proposed system

architecture. It consists of EPSs, SiP-based OCSs, and servers to demonstrate the capabilities of

server regrouping and network bandwidth steering. By using SiP OCSs between servers and ToR

EPSs, this architecture allows servers with intense communication requirements to be grouped lo-

cally within the same ToR-switch, thereby reintroducing traffic locality between physically distant
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Figure 4.2: (a) Overall network control plane. (b) SiP OCS subsystem including the SiP net-
work controller, SiP switch controller, and SiP switches. (c) The SiP network controller board
(ZCU106), SiP switch controller board (TR4), and PCB holding a packaged SiP switch.

servers. An example of regrouped servers is shown in Fig. 4.1(b). With the demand of traffic

between servers (in orange), the SiP OCS is capable of dynamically changing the connectivity

and connecting the regrouped servers (orange) under the same ToR EPS. Due to the limited port

count of the SiP OCS, it is not feasible to realize all-to-all ToR connectivity for systems at scale.

Therefore, SiP OCSs are also inserted between the ToR and the aggregation layers. When a partial

server regrouping is performed, bandwidth steering will be applied to reduce contentions at higher

layers. An example is shown in Fig. 4.1(c). Bandwidth steering above the ToR is used to relocate

connections from the ToR to desired aggregation EPSs. The overall system architecture essentially

reconstructs locality of connection and optimizes topology to better fit network traffic demands.

4.2.2 SiP Switches and Control

Our proposed architecture and control scheme are agnostic to the choice of SiP switching de-

vices. We optimized our control scheme of the SiP switches and fabricated custom DAC cards

to provide a software-based network control interface, and to ease control implementation com-

plexity and achieve better integration. Depending on the traffic patterns of the distributed deep
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learning training, the overall network controller reconfigures network topology on demand. Fig-

ure. 4.2(a) shows our overall network control plane. It consists of (1) a Ryu-based SDN controller

that manages the flow tables on the EPSs; (2) a TCP/IP client program that sends new reconfigura-

tion requests to the SiP OCS subsystem as shown in Fig. 4.2(b). In the subsystem, the SiP network

controller is built upon a Xilinx ZCU 106 board. We leverage Xilinx PetaLinux to build a kernel

image stored in a SD card and boot a Linux/Ubuntu operating system (OS) from a hard-drive. A

TCP/IP server program running on the ARM processors responds to the reconfiguration requests

from the overall network controller. Control algorithms such as calibration and thermal stabiliza-

tion can be not only implemented in the software for simplicity, but also implemented as hardware

logic in the field programmable gate array (FPGA) for control speed. A custom 80-channel DAC

daughter card was fabricated to demonstrate a path toward large-scale system integration. Using

the DAC daughter cards, the switch controller implemented on a Terasic TR4 board provides cor-

rect bias voltages to the switching elements in the packaged SiP switches. The SiP network and

switch controllers are connected using GPIOs and the interface from SiP switch controller to the

fan-out PCB uses SMA cables. Figure. 4.2(c) shows the physical devices.

Figure 4.3: A 16-node experimental testbed with SiP OCSs and EPSs in a reconfigurable fat tree
topology.
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Figure 4.4: Experimental setup demonstrating the cases of server regrouping and bandwidth steer-
ing above the ToR.

4.3 Testbed

To run distributed deep learning workloads and demonstrate the network improvements of our

proposed system architecture, we built a 16-node HPC/datacenter testbed as shown in Fig. 4.3.

We used 4 GPU servers (in orange) equipped with NVIDIA M40 GPU to run ring all-reduce and

parameter server training algorithms across them. The other 12 CPU servers (in blue) are used

for running other applications to generate background traffic across the network. The EPSs are

virtually partitioned from an OpenFlow-enabled PICA8 packet switch with 10G SFP+ ports. We

use a 1 × 2 and a 1 × 4 MRR-based OCSs to perform server regrouping and bandwidth steering

above the ToR EPSs. For the fully server-regrouped case (defined as case #1), the SiP switches

are connected to servers #9 and #10, and two separate ports on EPS #2 and #3, respectively. For

the case (defined as case #2) where the server regrouping is partially performed and bandwidth

is steered above the ToR, the SiP switches are connected to server #9 and a port on EPS #3, and

individual ports on EPS #3, #6, #2, #5 respectively. In this case, server #10 is connected to EPS
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Figure 4.5: A photograph of EPSs, CPU servers, GPU servers, SiP switches, SiP network con-
troller, and SiP switch controller.

#3 without going through the SiP OCSs. 10G SFP+ optical transceivers are used for reconfigured

links and static links are using 10G electrical transceivers.

A detailed experimental setup is shown in Fig. 4.4. Two SFP+ transceivers with wavelengths at

1554.94 nm (_5) and 1556.55 nm (_6) are used for server #9 and #10 to transmit data to EPS #3 and

EPS #2 (in case #1) or for server #9 and EPS #3 to transmit data to EPS #3, #6, and EPS #2, #5 (in

case #2). Four SFP+ transceivers, with wavelengths at 1545.32 nm (_1), 1546.92 nm (_2), 1553.33

nm (_3) and 1554.94 nm (_4), are used for the opposite direction. The polarization controllers (PC)

are used to maximize the optical power being coupled into and out of the SiP chips. An erbium

doped fiber amplifier (EDFA) is necessary to compensate the loss due to the grating couplers of

the SiP switch chips. We note that the approaches described in Section II can potentially reduce

the loss and allow the system to work without EDFAs. Detailed SiP switching characteristics can

be found in the previous work [116]. The SiP network controller FPGA board (ZCU 106) receives
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Figure 4.6: A photograph of EPSs, CPU servers, GPU servers, SiP switches, SiP network con-
troller, and SiP switch controller.

configuration requests from the overall network controller and triggers the SiP switch controller

(TR4). The switch controller will then configure each MRR by tuning the resonance with bias

voltage. A photograph of EPSs, CPU servers, GPU servers, SiP switches, SiP network controller,

and SiP switch controller is shown in Fig. 4.5.

We note that the reconfiguration speed limitation is the transceiver locking and the EPS polling

time49 at the millisecond scale. This is a negligible effect in the current architecture due to the fact

that the topology reconfiguration only happens before an application starts. Thermal drift of the

MRR-based switches could lead to system performance degradation, and thermal stabilization [58,

59] should be applied to address this issue before the deployment of MRR-based architectures in

future datacenter/HPC networks. The experiments described in this work take place in a thermally

stable environment.
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4.4 Experiments and Results

We used the distributed communication package in PyTorch,50 which enables the processing

groups for each of the workers used in the synchronized training and the parameter server and

workers in the asynchronized training. The training jobs run across 4 server nodes (#5, #6, #9,

#10) for the ring all-reduce algorithm and run across 3 server nodes (#5 – parameter server and

#9, #10 - workers) for the parameter server algorithm. For the remaining 12 servers, we run

skeletonized version of the Gyrokinetic Toroidal Code (GTC) benchmark applications [117] as the

background traffic across the network. There are two test cases. (1) Assuming OCS port count is

sufficient for server regrouping, we use baseline (no dynamic reconfigured links) to compare with

server-regrouping (servers #9, #10 regrouped to EPS #2) as our test case #1. (2) For test case #2,

a partial server-regrouping (only server #9 regrouped to EPS #2) compares server-regrouping with

bandwidth steering above the ToR (server #9 regrouped to EPS #2 and a steered link from EPS

#3 to EPS #5). Simplified diagrams for the two test cases are shown in the Fig. 4.6(a) and (b),

respectively.

Figures 4.7, 4.8, 4.9, and 4.10 plot the throughput of incoming traffic to servers #9 and #10

(blue and red), from EPS #5 to EPS #7 (green), and from EPS #1 to EPS #5 (yellow) for various

training strategies and test cases. The plotted links are sufficient to show the network performance

of deep learning workloads. The neural network is VGG1 for image classification and the dataset

is imagenette [118]. Figures 4.7, and 4.8 show the results for the synchronized training. For test

case #1, Fig. 4.7, the green curve in the baseline diagram (top left) indicates the traffic at the core

level is aggregated by the background GTC traffic (yellow) and the ring all-reduce training traffic

(red or blue). The training process is suppressed by the background GTC traffic, and it takes ap-

proximately 5341 s to train the VGG network for 1 epoch for the baseline. For the regrouped case,

server #9 and server #10 are regrouped to EPS #2, and the training job’s traffic is within EPS #2,

such that the communication bandwidth for the ring all-reduce training processes is restored. The

red curve in the server regrouping diagram in Fig. 4.7 shows a 5 Gb/s bandwidth on average for
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Figure 4.7: Throughput of the links to server #9 and #10, from EPS #1 to EPS #5, and from EPS
#5 to EPS #7 for test case #1 in the synchronized training of the VGG neural network.

Figure 4.8: Throughput of the links for the test case #2 in the synchronized training.
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Figure 4.9: Throughput of the links for the test case #1 in the asynchronized training.

Figure 4.10: Throughput of the links for the test case #2 in the asynchronized training.
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the ring all-reduce algorithm with a 72% difference in execution time which corresponds to a 3.6×

network performance improvement. For test case #2, Fig. 4.8 right shows the results for server

regrouping with limited OCS port count and when bandwidth steering above the ToR is applied.

We observe a 5709 s execution time (in 4.8 top) when only server #9 is regrouped to EPS #2 and

no bandwidth is steered between ToR and aggregation EPSs. In comparison, server regrouping

and bandwidth steering above the ToR (Fig. 4.8 bottom) provides a 61% difference in execution

time which corresponds to a 2.6× network performance improvement due to the fact that the deep

learning training flows are not going through the core layer of the network. Figure 4.9 shows

the performance improvements for the parameter server training algorithm. Similar performance

improvements are observed for the server regrouping and the server regrouping with bandwidth

steering above the ToR as 67% and 47% in execution time differences (3.0× and 1.9× improve-

ments), respectively. We should note that parameter server training is an asynchronized training,

and it is reasonable that the two worker nodes finish their individual training job at different time

stamps as indicated by the red and blue curves in Fig. 4.10. The comparative experimental results

can be found in Table 4.1.

4.5 System-scale Evaluation

We study the scalability and network performance of the proposed system architecture on two

distributed deep learning training algorithms: (1) ring all-reduce and (2) parameter server. For each

of the workloads, we analyze how server regrouping and bandwidth steering affect the performance

of large-scale networks with various tapering ratios. In addition to using uniformly mapped jobs as

a performance upper bound, we also simulate non-uniformly mapped jobs since past work [113]

has shown that frequent system fragmentations in high performance systems could make the job

mapping largely non-uniform. For the purpose of this work, which is to show the performance

improvement of the proposed strategies, we assume that server regrouping and bandwidth steering

strategies for non-uniform job placements happen before a workload starts in the simulation and

therefore has no packet loss due to reconfiguration. We plan to add this reconfiguration function-
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Figure 4.11: A 1024-node untapered fat tree topology with SiP OCSs in between the server-ToR
and ToR-aggregation layers.

ality to the Netbench simulator as future work.

4.5.1 Simulation Setup

We use Netbench [119], a discrete event-driven packet-level simulator, to evaluate network

performance at scale.

The simulated network is a tapered 3-layer fat tree constructed using EPSs with 32 bidirectional

ports. We assume the link bandwidth to be 100 Gb/s. The fat tree topology contains 1024 compute

nodes distributed among 4 pods. Each pod consists of 16 ToR switches each connected to 16

servers, with a total of 256 servers per pod, as shown in Fig. 4.11. The tapering in our fat tree

refers to the difference in bisection bandwidth between any two levels of the tree, as described by

Ref. [28]. We taper the fat tree at the aggregation and core layers to emulate production networks.

For our simulation, we taper the aggregation layer by 2×, 4×, 8×, and 16× while tapering the

core layer with a constant 8× with respect to the aggregation layer. We use Equal-Cost Multi-

Path (ECMP) routing on both the bandwidth-steered and static baseline fat trees with per-packet
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load-balancing.

We test server regrouping on both ring all-reduce and parameter server types of traffic work-

load in our simulation. The ring all-reduce traffic and parameter-server traffic each contains 32 and

16 compute nodes per job, respectively. Under uniform job placement, each process is mapped se-

quentially onto each server. However, job placement might not always be uniform in real high

performance systems. Past work [113] has shown that applications are often placed on a set of

distant and non-contiguous nodes, resulting in system fragmentation. In order to verify the effec-

tiveness of server regrouping at large scale, we introduce a mixed job mapping strategy to generate

a more adversarial traffic pattern to the static fat tree. This mapping hinges on the ratio of intrapod

to interpod traffic. For our simulation, we set the ratio so that half of the nodes in each pod com-

municates with other nodes in the same pod, and the other half would communicate with nodes

in the other pods. The mapping within each half is also shuffled to introduce randomness in the

mapping.

4.5.2 Server Regrouping and Bandwidth Steering

Since the usage of small-radix OCSs could impose extra physical constraints on the topology-

wiring problem [120], we first make the assumption that given k ToRs with k downlinks each, the

OCS layer in between the server and the ToR layer is comprised of a single large-radix OCS with

k2 ports. The OCS can be viewed as a k2 by k2 fully non-blocking switch ca- pable of reaching and

regrouping servers across all pods. This assumption is necessary for the purpose of our work which

is to evaluate the performance and scalability of server re- grouping strategy. Experiment with this

initial assumption can serve as a performance upper bound for our experiments with smaller radix

OCSs. To evaluate the network performance of smaller-radix OCSs, we split the single large-radix

OCS into two OCSs with half the radix (each connecting two pods) and into four OCSs with a

quarter of its original radix (each connecting one pod). The server regrouping heuristic for the ring

all-reduce traffic is similar to that of the parameter-server, and it can be split into two substeps:

1. Group jobs that only contain servers in the same pod. For these jobs, group as many servers
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under the same ToR switch as possible.

2. Group jobs that contain servers in different pods. If the OCS port count is big enough to

reach all the servers in the same job, then group these servers under the first available ToR. If not,

group as many servers in the same job as possible under a single ToR for each pod that contains

these jobs.

When server regrouping falls short, bandwidth steering at the ToR to aggregation layer can be

applied together with server regrouping to further improve the performance. We assume a single

large OCS between the aggregation and core layers as a performance upper bound. Smaller radix

OCS could also be used here similar to previous works13,21 for bandwidth steering at higher layers

depending on the reconfiguration requirements and tapering ratios. Bandwidth steering above the

ToRs is configured so that the number of flows traversing the core layer is minimized. This is

done by first regrouping the servers that have the same destination pod under the same ToR switch

within each pod and then wire the OCS such that the two ToRs with the heaviest communication

are connected by the same aggregation switch. For these simulations, we assume that the topology

is reconfigured according to the described server regrouping or bandwidth steering strategy before

a workload starts.

4.5.3 Results

In this section we evaluate the performance of server re- grouping and higher-layer bandwidth

steering in large-scale systems. Figure [fig:ddlSimulationResult] shows the simulation results for

average flow throughput (for both intrapod and interpod flows) as the job- mapping and topology

design vary for all ToR-to-aggregation tapering ratios. Uniform job placement corresponds to the

case where jobs are mapped sequentially onto the servers in the topology without any shuffling. It

achieves the highest average throughput since the communicating nodes are placed close to each

other, so the tapered core layer links are not congested by interpod flows. It serves therefore as

the performance upper bound for all the server regrouping schemes in our experiments. Indeed,

when servers are regrouped with one large-radix OCS (RG (#OCS = 1)), results for both ring all-
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reduce workload in Fig. 4.12(a) and parameter server workload in Fig. 4.12(b) show matching

behavior with the uniform case. Note here that the mean flow throughput for parameter server is

much lower than that of ring all-reduce because parameter server jobs contain many more flows in

each iteration, resulting in much higher link congestion. On the other end, baseline corresponds

to the case where jobs are randomly mapped onto servers across different pods without server

regrouping.

RG (#OCS = 2) and RG (#OCS = 4) correspond to the cases where the servers are regrouped

with two and four OCSs respectively. Since we have four pods in total, the former case with

two OCSs would mean that each OCS connects to servers and ToRs in two pods. Similarly, the

latter case with four OCSs means that each OCS is responsible for connecting servers and ToRs

in only one pod. For the cases where servers can only be partially regrouped, we still observe

improvement from the baseline case, especially under higher tapering. Although not all servers

can be regrouped, other properly re- grouped servers have already reduced the amount of traffic

traversing the tapered layer by an appreciable amount.

On top of server regrouping, we can further improve the performance of the network by em-

ploying bandwidth steering in the ToR-to-aggregation layer to alleviate congestion at the top layers.

We see that for the cases with both server regrouping and higher-layer bandwidth steering (BS),

the performance is consistently higher than the purely regrouped cases, especially at lower tapering

ratio. For higher tapering ratios, the number of available reconfigurable links between each ToR

switch and the aggregation switches is limited, which limits the benefits of higher-layer bandwidth

steering.

Simulation results show that our approach improves the network performance for the ring all-

reduce and parameter server workloads at scale. We only consider results with two or more OCSs

as the RG (#OCS = 1) case is the same as our performance upper bound. We found that for 2×

tapering ratio, server regrouping alone can improve the throughput performance from the baseline

by 2.3×, and higher-layer bandwidth steering can provide up to 11% further improvement (2.5×

improvement in total from the grey bar to the pink bar). For higher tapering ratios, the total im-
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Figure 4.12: Average flow throughput of all the flows as a function of the tapering ratio for all
the traffic and job mapping scenarios. RG denotes regrouping and BS denotes higher-layer band-
width steering. With the exception of Uniform (uniform job-mapping), all other cases assume an
adversarial interpod job mapping as described in the Simulation Setup Section. (a) Results for ring
all-reduce flows. (b) Results for parameter server flows.
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provements can reach up to 8.6× for ring all-reduce and 2× for parameter server, respectively.

Table 4.1 shows the performance improvements of different architectures including both experi-

ments and simulations.

Table 4.1: Experiment and Simulation Performance Measurements

Configurations Improvements

Server regrouping compared to baseline for 3.6×
ring all-reduce training (experiment)

Server regrouping with bandwidth steering 2.6×
compared to server regrouping with limited

point count for ring all-reduce training (experiment)

Server regrouping compared to baseline for 3.0×
parameter server training (experiment)

Server regrouping with bandwidth steering 1.9×
compared to server regrouping with limited

point count for parameter server training
(experiment)

Server regrouping using two OCSs on 2× 2.3×
tapered fat tree compared to baseline for ring

all-reduce training (simulation)

Server regrouping using two OCSs with 2.5×
bandwidth steering on 2× tapered fat tree
compared to baseline for ring all-reduce

training (simulation)

Server regrouping using two OCSs on 2× 1.2×
tapered fat tree compared to baseline for
parameter server training (simulation)

Server regrouping using two OCSs with 1.4×
bandwidth steering on 2× tapered fat tree
compared to baseline for parameter server

training (simulation)
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4.6 Chapter Summary

In this chapter, we have shown a reconfigurable datacenter/HPC system architecture using

SiP switches to accelerate distributed deep learning training workloads. We used VGG as the

primary workload for our experiment, but our proposed architecture could work on a wide range of

distributed machine learning applications that employ ring all-reduce or parameter-server types of

collective operations. Using silicon photonic switches, we introduce topological reconfigurability

at two network levels to achieve two optimization goals: (1) server-regrouping by introducing

SiP OCSs between the ToR switches and servers, and (2) bandwidth-steering by introducing SiP

OCSs between the ToR and aggregation layers. We demonstrate our proposed architecture using

a physical testbed with 16 nodes arranged in a fat tree topology and show up to 3.6× network

improvement. At system scale, server regrouping delivers a 2.3× flow throughput improvement

and higher-layer bandwidth steering provides a further 11% improvement in a 2× tapered fat tree.

These results show the proof-of-concept functionalities of our proposed system architecture and the

potential of integrating SiP switches in datacenters and HPCs to improve DL training performance.
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Chapter 5: Disaggregated Architectures for Deep Learning

5.1 Flexible Optically Interconnected Computing Resources

5.1.1 Introduction

Distributed machine learning applications have become a significant part of today’s high perfor-

mance computing and data center workloads [121]. When training a distributed machine learning

model across multiple nodes due to system fragmentation in the conventional server-centric ar-

chitecture, inter-node communication becomes more bottlenecked than intra-node communication

due to both higher latency and lower link bandwidth. The problem becomes even worse when

scaling to a larger number of nodes as the inter-node links will be further congested due to heavy

inter-node communication. This results in significant resource under-utilization in conventional

server-centric architectures [122]. Resource disaggregation provides a solid solution to this prob-

lem by providing a flexible allocation of fine-grained hardware into virtual nodes [88]. Optical

circuit switches (OCSs) provide high bandwidth, low cost solution to de-fragment and pool disag-

gregated resources with minimal latency overhead. In previous work, OCSs have been proposed to

achieve resource disaggregation [122, 123, 124], however, the prior work was limited to a generic

concept without system-level demonstration.

In this section, we demonstrate rack-scale GPU disaggregation with OCSs and emulated aggre-

gator switches, and show the capability to reconfigure resources to reduce communication over-

head. Our proposed architecture leverages the flexibility of optical switches to increase hard-

ware utilization and reduce application runtimes by alleviating system fragmentation. We build

up our testbed using 4 commercial rack servers with 6 GPUs, 2 emulated aggregator switches and

a MEMS switch to demonstrate resource disaggregation and defragamentation using application

containers. Our testbed experimental results show 73.2% and 62.0% improved workload comple-
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tion time with 3x increased GPU utilization in two test cases.

Figure 5.1: (a) Traditional architecture for GPU clusters. (b) Proposed system architecture for
disaggregated GPU resources.

5.1.2 System Architecture

Figure 5.1 shows our proposed system architecture with Aggregator Switches (AS), Optical

Circuit Switches (OCS) and a pool of disaggregated GPU resources. The aggregator switches

are essentially packet switches that connect a group of heterogeneous resources. For example, an
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Figure 5.2: (a) Network control plane. (b) Testbed architecture. (c) Hardware implementations
using Calient MEMS switch, server rack with ToR switch and rack server.

equivalent device in traditional architecture would be NVSwitch or PCIe Switch. Traditionally in

distributed AI/ML applications, nonstop synchronization of large gradients implies an urgent need

to allocating its GPU instances in a single machine. Top-of-rack switches can act as aggregators

to hold recomposed resources and to connect multiple types of devices. By reconfiguring the op-

tical links between GPUs and our aggregator switch, disaggregated resources can be rearranged

to reduce system fragmentation and increase job locality. As a result, this leads to cost and per-

formance benefits of the disaggregated system from increased utilization and maximized traffic

locality. Nevertheless, accommodating OCSs in the network of disaggregated resources enables

changing the network topology as needed by the application. For GPUs, different AI/ML applica-

tions have different requirements on the number of GPUs needed, varying from one to hundreds.

Furthermore, this architecture can be adapted to provide flexibility to re-assemble heterogeneous

computing resources for specific application needs, such as CPU, memory. In this case, the issue

of low port counts of OCSs can be tackled by using multiple low-radix switches at the same time

combined with other methods like locality-driven job scheduling.
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5.1.3 Experimental Setup and Results

We build up our testbed with 6 NVIDIA GPUs installed into 4 commercial rack servers to

demonstrate the capabilities of emulating deep disaggregation of GPUs and resource reconfigura-

tion with OCSs. Each server is installed with a Tesla M40 GPU. In addition, two Titan V GPUs are

inserted into the servers. All of them are connected with Mellanox ConnectX-4 NICs that enables

RDMA over Converged Ethernet v2 (RoCEv2) for improved performance. In Fig. 5.2 we show

the network control plane for our testbed. We use a SDN controller to host management applica-

tions, including EPS flow table control, optical switch control, and container management through

Ethernet.

When running an ML workload we reserve a certain number of GPUs and create one Docker

container for each of them on their corresponding . On the servers, each container has one and

only one GPU visible to it. The container’s network I/O is then mapped to a specific NIC port

on the physical machine with a unique IP address. By doing this we’re able to (1) send gradient

updates directly from one GPU to another without the participation of other resources; (2) assign

specified IP address for each GPU resource in the network. This allows us to emulate and study

these GPUs as they are deeply disaggregated. We use Tensorflow to build distributed machine

learning applications to synchronously train a modified VGG16 neural network across multiple

workers. Two different cases of ML workloads were studied on this topology. One in Fig. 3a

shows two different jobs (red/blue) requiring 4 and 2 GPU resources for synchronous training,

using ring all-reduce algorithm. The other case, as shown in Fig. 3b, shows two workloads with

3 and 3 GPUs required for synchronous training, using the same ring all-reduce algorithm. We

obtained network I/O throughput for each Docker container using Ryu SDN monitoring program,

and the GPU performance data is queried by nvidia-smi.

In case #1 the red workload spent 407s to complete when there is no reconfiguration, compared

to 109s after regrouping all 4 GPUs under the same ToR switch. This yields a 73.2% reduction in

completion time and a 3x utilization increase during training phase. In case #2 our workload of

concern spent 368s before reconfiguration and 140s afterwards. Here we obtained 62.0% reduction
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Figure 5.3: Testbed topology for two synchronous ML workload using 4 GPUs and 2 GPUs for
training. Experimental results that show network performance and utilization improvements.
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Figure 5.4: Testbed topology for two synchronous ML workload using 3 GPUs and 3 GPUs for
training. Experimental results that show network performance and utilization improvements.
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in training time, while no significant improvement in resource utilization is observed. However,

there is an expected increase in network throughput that indicates a higher effective utilization of

the GPU after reconfiguration. Without the reconfiguration, resource fragmentation undermines

the application performance of the workload running on top and interferes with other application

flows. We find that OCSes can significantly help increase performance and hardware utilization in

disaggregated systems running AI/ML workloads.

5.1.4 Conclusion

We demonstrated resource reconfiguration in disaggregated systems for machine learning ap-

plications using OCSes. Our proposed control plane separates GPUs in a single server and allow

for disaggregation using RoCEv2. With optical switching we showed 73.2% and 62.0% improved

training time and 3× increase in GPU utilization. In the future, we will explore implementing our

architecture at larger scale.

5.2 SiPAC: Silicon Photonic Accelerated Compute Cluster

5.2.1 Introduction

Distributed deep learning (DDL) has been proposed as a solution to perform large-scale training

tasks that require multiple computing units (CU), such as GPUs, TPUs, and other accelerators,

to complete. Many specialized hardware accelerators have been proposed to accelerate DDL.

Some commercially available examples include Nvidia’s DGX system [125] and Google’s Cloud

TPU system [126]. Large-scale models have been reported to be trained on these systems (e.g.

Megatron-LM was trained on 3072 Nvidia A100 GPUs [29]). However, as the scale of these

models continue to increase, researchers have found that the current systems may face severe

communication bottlenecks [29, 127]. Benchmark from the Sierra supercomputer [128] reported

DDL communication overhead to be more than 10x the computation time when DDL workload is

trained on more than 256 GPUs [129].
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Another emerging trend is to incorporate SiP technologies in the network design as SiP inter-

faces are critical for achieving extreme high bandwidth (Tbps) interconnects. An example of the

silicon photonic interface is TeraPHY [130] that supports up to 2 Tbps bandwidth per chiplet. Re-

cently, a promising Kerr frequency comb-driven silicon photonic transceiver architecture [69] has

been reported. It leverages a frequency comb [70] for a dense wavelength division multiplexing

(DWDM) light source, and uses (de-)interleavers to split and combine wavelength channels in or-

der to scale up the data transmission bandwidth within a single fiber. However, works that proposed

using silicon photonic technologies for DDL training [112, 131, 132, 133] have put more emphasis

on designing networks using Optical Circuit Switches (OCS) to dynamically reconfigure the net-

work topology to cater for different DDL traffic demands. For example, SiP-OCS [132] co-designs

the model partitioning and device placement with a specialized network architecture that employs

a layer of reconfigurable OCS. And there is little known work about leveraging the inherent advan-

tages of extreme high bandwidth silicon photonic interconnects, including both transceivers and

switches, to achieve efficient communication and architecture design, which will be a main focus

of this study. The major contributions of our work are as follows:

Hierarchical All-to-All Interconnection: High bandwidth all-to-all topologies are ideal for

network interconnections but are expensive to build due to the high component counts required. To

achieve the benefit of the all-to-all topology while saving component count and cost, we propose

the SiPAC topology which is an optical switched topology that leverages multi-wavelength selec-

tive switches and high-bandwidth dense wavelength division multiplexing (DWDM) links to build

a hierarchical all-to-all topology with a physical topology based on the BCube topology [134].

This architecture ensures low network diameter while providing high-bandwidth direct paths for

collective communications (e.g. all-reduce, all-to-all) that are commonly used in DDL workloads.

Multi-Wavelength Selective Crossbar MRR Switch: We design a micro-ring resonator

(MRR) based multi-wavelength selective crossbar switch (WSS) that exploits the periodic prop-

erty of the free spectral range (FSR) of the MRRs. By carefully engineering the FSRs, we

demonstrate the ability for each MRR to drop multiple wavelengths, thus increasing the effective
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Figure 5.5: a) SiPAC architecture based on the recursive BCube topology with 𝐿 = 𝑙 + 1 levels.
The 𝑙th level is constructed from 𝑟 𝑙 𝑟-port switches and 𝑟 (𝑙 − 1)th level units. b) The base unit of
the SiPAC topology where 𝑟 CUs are connected to a WSS.

bandwidth per ring. The cascaded ring structure separates the incoming wavelengths into sub-

groups and recombine the interleaved wavelengths into common output buses. It shuffles the input

wavelengths to different outputs and effectively achieves the optical broadcasting functionality. To

demonstrate the feasibility of our architecture, we conducted a testbed experiment where an array

of wavelengths are shuffled by a cascaded ring switch, with each ring selecting and forwarding

multiple wavelengths.

5.2.2 Topology Design

The SiPAC architecture leverages the multi-wavelength selective property of the MRR crossbar

switch to realize a hierarchical full-mesh topology based on the BCube physical topology that has

been shown to have low network diameter and high capacity for one-to-x and all-to-all traffic

patterns [134]. BCube(𝑟, 𝑙) is a recursively defined, server-centric network topology, where 𝑟 is

the switch radix and 𝑙 is the level in the topology for 𝑙 ∈ [0, 𝐿 − 1] (notations used are different

from the original work) [134] where 𝐿 = 𝑚𝑎𝑥(𝑙) + 1 is the total number of levels. A base unit

BCube0 is constructed from connecting 𝑟 servers to an 𝑟-port switch. For SiPAC, instead of using

servers as endpoints, we replace each endpoint with a disaggregated CU, equipped with 𝑙 optical

transceivers. [insert work that builds on-chip transceiver + citation]. In SiPAC, we also replace

each electronic packet switch (EPS) with a multi-wavelength selective optical switch. The rest of

the physical topology is constructed similarly to a BCube, replacing each EPS with the wavelength

selective optical switches at each level.
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Therefore, a general SiPAC𝑙 (𝑙 ≥ 1) of level 𝑙 is constructed from 𝑟 SiPAC𝑙−1s and 𝑟 𝑙 𝑟-port

switches, totaling 𝑁 = 𝑟 𝑙+1 CUs and 𝑙 + 1 levels of switches, as shown in Fig.5.5(a). CUs in a

SiPAC𝑙 have 𝐿 = 𝑚𝑎𝑥(𝑙) + 1 optical ports and are connected to a optical switch in each of the

𝐿 levels. 𝐿 is typically small since the number of endpoints grow exponentially as a function of

𝐿. For example, using radix-16 WSSes, we could achieve 256 CUs for 𝐿 = 2 and 4096 CUs for

𝐿 = 3. And since the diameter of this topology is also 𝐿 [134], the resulting SiPAC topology has

low diameter. To be more flexible in terms of the number of endpoints, irregular SiPACs can also

be built using switches of different radix similar to how partial BCubes are built in [134].

The optical transceiver ports can be directly integrated onto the chip interposers [63] and there-

fore obviate the need to go through any NIC to reach any other CUs. The total bandwidth of a

DWDM link 𝐵 depends on the number of wavelengths 𝑤 supported by each transmitter and the

per-wavelength bandwidth 𝑢, giving 𝐵 = 𝑤𝑢. The resulting interconnection network allows for

transparent optical switching and therefore achieves direct CU-to-CU communication without any

bandwidth difference that appears in commercial GPU clusters. The packet-switch-less design also

mitigates packet buffering and avoids any intermediate queuing delays.

The SiPAC architecture enables arbitration-free all-to-all connections for CUs that are con-

nected to the same WSS (across different groups at different levels). This effectively achieves a

generalized HyperCube topology [135] with 𝑙 +1 dimensions, allowing each GPU to communicate

directly with (𝑙 + 1) (𝑟 − 1) other GPUs with reduced link count and transceiver count.

5.2.3 Wavelength Routing/Selection

In SiPAC, each CU is able to communicate with every other CUs that are connected to the same

WSS with uniform bandwidth. Since each CU is equipped with the same transmitter, meaning the

wavelengths being transmitted from the input ports are the same, we need to tune the MRRs in the

crossbar switches so that the wavelengths dropped by different MRRs to the same output bus are

different.

We employ a simple round-robin scheme to achieve this wavelength multiplexing. The 𝑤
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Figure 5.6: Example of wavelength multiplexing for a 3 × 3 multi-WSS and 8 wavelengths per
transmitter (𝑤 = 8).

wavelengths, _𝑖, 𝑗
𝑘
, 𝑘 ∈ [0, 𝑤 − 1], 𝑖, 𝑗 ∈ [0, 𝑟 − 1] being transmitted using an 𝑟 × 𝑟 crossbar switch

are divided into 𝑟 groups. Each group 𝑔 ∈ [0, 𝑟−1] contains 𝑤/𝑟 wavelengths with the wavelength

number 𝑘 ∈ [0, 𝑤 − 1] separated by an integer multiple of 𝑟 . Each group of wavelengths is also

labeled with their input port (𝑖) and output port ( 𝑗). The wavelengths from each input port are

interleaved at the crossbar switch in a way so that the drop bus for each output port contains all

different wavelengths. This can be done by tuning the rings so that the 𝑔th group of wavelengths

from input port 𝑖 are dropped at output port 𝑗 where 𝑗 = (𝑔+ 𝑖)𝑚𝑜𝑑 (𝑟). Fig. 5.6 shows an example

of a 3 × 3 crossbar switch connected to 3 CUs (𝑟 = 3) , with 9 transmitter wavelengths per CU

(𝑤 = 9). Each color represents a different group 𝑔 of wavelengths (i.e. red = 0, blue = 1, purple
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= 2). The colors are interleaved vertically so that each output port gets wavelengths of different

colors.

The amount of allocated bandwidth 𝑏 between each CU pair connected to a common WSS

therefore depends on the number of transmitter wavelength 𝑤 and the number of connections to

the WSS in the same level 𝑟. For a given bandwidth-per-wavelength 𝑢, the CU-to-CU bandwidth

is given by 𝑏 = 𝑤𝑢/𝑟 = 𝐵/𝑟.

5.2.4 Testbed Experiment

Figure 5.7: (a) Experimental setup for the comb laser. (b) Micrograph of Kerr comb source. (c)
Output of Kerr Comb source. (d) Micrograph of packaged 1 × 8 microring resonantor switch.
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In our experimental testbed, we demonstrate modulated Kerr frequency comb lines and multi-

wavelength optical switching achieved by wavelength-selective SiP MRRs. Fig. 5.7(a) illustrates

our experimental setup: 1) a continuous-wavelength laser centered on 1561.42 nm is used to pump

a silicon-nitride Kerr comb operating in the normal group velocity dispersion (GVD) regime [70].

The comb then generates evenly spaced lines at 200 GHz intervals, seen in Fig. 5.7(b) and (c),

with a spectral flatness suitable for data communication applications [136]. 2) The output of the

comb is filtered by an optical bandpass filter (OBF) to include only 22 channels. The output of

the comb is then modulated with a 10 Gb/s PRBS31 via a linear reference modulator, and then

coupled into our cascaded 1 × 8 MRR switch by means of a grating coupling fiber array (Fig.

5.7(d). With each MRR exhibiting a free-spectral range (FSR) of 14.41 nm we can reliably drop

multiple channels with the same element, given that the channels are spaced at ten-line intervals. 3)

The dropped signals are coupled out of the photonics switch through the same fiber array, and then

the signals are amplified through an in-line Erbium Doped Fiber Amplifier (EDFA) to compensate

for coupling and equipment insertion losses. An OBF is then used to focus the signal into our

wavelength range of interest, from where we can derive the optical spectra. Eye-diagrams are then

captured from our 40 GHz photodetector-assisted real-time scope. This testbed demonstrates the

feasibility of MRR to compose the multi-wavelength selective crossbar MRR switch proposed for

our SiPAC design.

For this experiment, we focused specifically on wavelength-selective switching of broadcast

signals as discussed in the previous sections. To demonstrate the efficacy of dropping multi-

wavelength signals using a MRR, the first element (Ring 1) in our cascade microring switch is

thermo-optically tuned to select the comb line at 1534.07 nm. Due to its 14.41 nm FSR, this au-

tomatically also selects the channel at 1548.48 nm. In Fig. 5.8(a), the optical spectrum captured

at the drop port of Ring 1, we can see that our channels of interest dominate over all other lines,

with a crosstalk suppression of 13.3 dB between our selected channel and an adjacent unselected

one. Very similar performance can be observed for the next element in the switch (Ring 2), which

is tuned to select wavelengths 1532.48 nm and 1546.87 nm; lines directly adjacent to the ones se-
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Figure 5.8: (a) Output spectrum of Ring 1. (b) Output spectrum of Ring 2. (c) Inset of (a),
illustrating the sidebands surrounding the modulated carrier. (d) Output eye-diagrams of dropped
signals.

lected by Ring 1. In its optical spectrum in Fig. 5.8(b), its minimum level of crosstalk suppression

is observed to be 13.2 dB. Fig. 5.8(c) shows the modulated carrier and the surrounding sidebands.

By tightening the span of the OBF, we are able to capture the eye diagrams for each individually

dropped line, without the interference from adjacent channels (Fig. 5.8(d)). We observe opened

eyes in all cases, although a variance in the signal-to-noise ratios (SNRs) is observed: 6.02 dB to

7.23 dB, from R1 at 1534.07 nm to R2 at 1559.90 nm, respectively. This can be attributed to the

uneven power of the comb lines. This factor degrades the relative extinction ratios of selected lines

in relation to the amplified spontaneous emission (ASE) from the in-line EDFA, which establishes a
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consistent noise floor across the spectrum. The collective results show the feasibility of using comb

source and crossbar MRR switches to achieve the extreme high bandwidth optical broadcasting in

our design.

5.2.5 System-scale Simulation

We use Netbench, an event-driven, packet-level simulator [119] to evaluate the performance of

various architecture designs. We extended Netbench to support (1) topologies with varying link

latencies and bandwidths and (2) traffic patterns with sequential job starting times that are found

in collective communications.

DGX-SuperPOD [125]: The basic units of DGX-SuperPOD are DGX-A100 stations where

8 A100 GPUs are connected to an array of 6 NVSwitches using NVLinks [137]. Multiple DGX-

A100 servers are then interconnected through a two layer leaf-spine fat-tree network using 8 Infini-

Band host channel adapters (200 Gb/s) per server [125]. We therefore fix the inter-node bandwidth

at 8 × 200 Gb/s = 1.6 Tb/s. We assume a 9`𝑠 NVLink latency [138] and 120𝑛𝑠 InfiniBand switch

latency [139]. We characterize the per-CU bandwidth here to be the sum of all intra-server (i.e.

NVLink) bandwidths coming out of a single CU, similar to [132].

TPU 2D-Torus [126]: Google’s Cloud TPU system directly interconnects TPUs in a 2D

toroidal mesh network [126] with uniform link bandwidth and latency. For systems with sizes

that are not integer squares, we pick integer sizes for each dimension with minimum differences

to achieve the targeted topology size. The per-CU bandwidth here is characterized as the total

bandwidth a single CU has with its four neighbors.

SiPAC and BCube [134]: Since the SiPAC architecture is based on the BCube topology, we

evaluate BCube built with EPSes in addition to SiPAC. While we choose 𝑟 and 𝐿 to best fit the

required system size, we limit 𝑟 < 32 and 𝐿 ≤ 3 to achieve realistic WSS radix and similar number

of per-CU optical interfaces as the other topologies. The per-CU bandwidth for both architectures

is characterized as the total bandwidth a single CU has with all connected switches (EPS for BCube

and WSS for SiPAC) in each of the 𝐿 layers.
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We use all-reduce as a representative workload for both DP and MP to evaluate the performance

of all architectures. We experiment with ring-based (R), mesh-based (M) and hierarchical ring-

based (H) all-reduce algorithms on all the architectures. For hierarchical-based all-reduce, we set

𝑘 to be equal to the number of nodes in a physical group in the topology (i.e. 8 in SuperPOD

and
√
𝑝 in 2D-Torus). For the SiPAC architecture and BCube architecture, we also use the SiPAC

all-reduce algorithm.

Figure 5.9: Job completion time of different topology-collective combinations for varying network
sizes. The message size is set to be 1MB.

We evaluate the performance of all architectures using job completion time (JCT): the amount

of time it takes for a specific collective communication job to finish. A lower job completion
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time indicates better network performance. We use ECMP routing on all the topologies. We do

not model any computation time since the main goal of this evaluation is to show improvement

in training efficiency by minimizing the communication cost. We assume that any improvement

in communication time could help enhance the overall training efficiency when computation and

communication cannot be efficiently overlapped for large scale training [129].

Figure 5.9 demonstrates the performance of different topology-collective combinations at vary-

ing topology sizes. Here, the message size is set to be 1MB. The ring all-reduce performs the worst

on each topology since it incurs the highest latency cost. We observe that for both ring all-reduce

and hierarchical all-reduce, the JCT are similar for different topologies. This is because these two

collectives only allow send and receive from one other node at each time step, which leaves many

links under-utilized for these topologies with multiple connections per CU. This is not the case

for mesh all-reduce and SiPAC all-reduce since these two collectives can take advantage of the

multi-port property of the CUs in these topologies. While the JCT for ring all-reduce increases by

over two orders of magnitude, the JCT for the SiPAC all-reduce remains relatively constant as the

topology size increases. This is due to the linear dependency of the latency term on the topology

size for the ring algorithm which dominates over the bandwidth term at large topology sizes. The

hierarchical and mesh-allreduce both trade higher bandwidth cost with lower latency cost, which

allows them to do well at lower message sizes.

5.2.6 Conclusion

In this work, we propose the SiPAC architecture which co-designs a silicon photonic enabled

optical network topology with a specialized collective algorithm to optimize the communica-

tion latency involved in DDL communication. Using silicon photonic multi-wavelength selective

switches, we introduce a hierarchical all-to-all topology while maintaining high bandwidth among

all node pairs connected to the same switch, allowing for fast collective communications. The

proposed WSS switch design is demonstrated on a physical testbed that showed its capability in

achieving compact and high bandwidth multi-wavelength switching, with the SNR of switched sig-
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nals attaining 7.23 dB. We compare our proposed architecture with representative DL acceleration

topologies. The SiPAC architecture shows better performance at at system scale.

5.3 Chapter Summary

This chapter proposes two disaggregated architectures. The first architecture benefits dis-

tributed deep leaning training models with moderate size. It aims to address the system frag-

mentation issue when many of these training workloads are being distributed across a GPU cluster.

The introduced optical switching layer between the compute resources and the aggregator switches

can defragment the distant nodes with heavy communications. By doing so, higher layer traffic that

goes through low bandwidth Ethernet or InfiniBand networks can be avoided. For the second archi-

tecture, training extreme large model is being considered under this scenario. The communication

between hundreds or thousands of nodes has to go through the higher layer network. The proposed

architecture then suggests to leverage extreme high bandwidth transceiver and switch technology

to improve the communication efficiency between distant compute units. With the new intercon-

nect technology and proper communication algorithms, the training speed of an extreme large deep

learning model across can be improved.

5.3.1 Future Work

Section. 5.1 only shows that the proposed architecture can work at small scale. For system-

level evaluation, methodologies and approaches shown in Chapter 4 can be applied to this work

as well. The main difference is that for this disaggregated architecture, there is a bandwidth mis-

match between Ethernet/Infiniband network layer and the GPU’s NVlink. This is not captured

in the current testbed. Besides, a multi-channel link needs to be established to show the path

towards high aggregated bandwidth per link. FPGA-emulated accelerators can be considered as

well. FPGAs are more flexible to show multi-channel link capabilities and capable of generating

traffics based on more realistic datacenter traces. Furthermore, bulk 3D-MEMs would not fit into

tightly-coupled datacenter integration. SiP MEMS switches should be considered for future system
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demonstrations.

Section. 5.2 shows a complete architecture and algorithm co-design to address the network

bandwidth issue in today’s GPU clusters. As described in the previous section, MRR based cross-

bar wavelength-selective switch is used to achieve an optical broadcasting functionality for the

SiPAC architecture design and for the corresponding hierarchical reduce operations. However, the

design is limited to a fix bandwidth between each CU. Once the radix of the switch and the num-

ber of comb lines are decided, the CU-to-CU bandwidth is determined as well. Effectively, every

CU-to-CU bandwidth in the SiPAC topology is fixed. DL training in a SiPAC cluster has to take

this into consideration. A more flexible interconnect design that can steer one CU’s bandwidth

and distribute more or less bandwidth to another CU can open up more design explorations. A

Flex-SiPAC architecture can not only be the best fit for the hierarchical training strategy, but also

be suitable for other training strategies. For example, if a Flex-SiPAC architecture can steer more

CU’s bandwidth to their neighbor CUs, the architecture will certainly be more efficient for running

ring all-reduce based algorithms than the static SiPAC.
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Chapter 6: Fast Lanes for Expedited Execution at 10 Terabits

6.1 Introduction

Today’s network interface cards are operating at 100 – 1000 × slower date rates compared to

other components, such as memory and GPU shown in Fig. 1.4. This gross mismatch significantly

slows down applications can run across many nodes and have strong communications between

them. The Fast Lanes for Expedited Execution at 10 Terabits (FLEET) is an initial platform de-

signed for addressing the interconnection bottleneck in computing and network subsystem for the

FastNICs program [140]. FLEET includes architecture, hardware, and software innovations to

meet or exceed the FastNICs program’s goals. We introduce FLEET cluster architecture and show

development progress on FLEET’s key hardware innovations - Optical Network Interface Cards

(O-NICs). Detailed software overview can be found in Ref. [141].

Figure 6.1(1) shows interconnections between FLEET clusters. The aggregated interconnec-

tion bandwidth is 3 Tbps for generation 1 (Gen 1) system and 12 Tbps throughout the generation

2 (Gen 2) system. The clusters are connected through optical links using MEMS OCSs. As shown

in Fig. 6.1(2), each cluster includes servers and PCIe devices (GPUs and NVMe storage drives)

equipped with the O-NICs for communications between any two servers, a server and a PCIe de-

vice, or two PCIe devices. Each GPU or NVMe RAID controller owns a O-NIC and each 8 CPUs

are with 3 O-NICs, as shown in Fig 6.1(3) and (4) separately. Figure 6.1(5) breaks down the con-

nection of 3 O-NICs to a server node. The O-NICs are plugged into the PCIe slots to extend PCIe

communication channels into the optical domain. A single O-NIC uses 16 wavelengths to support

a 16-lane PCIe communication channels with two optical ports. This allows steaming input from

one device while sending full bandwidth output to another device. Instead, communications will

be limited to one peer with only one optical port each O-NIC. In addition, the use of FPGA allows
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Figure 6.1: FLEET hardware overview, reprinted from [141].

in-place processing for data computation to accelerate certain applications and for minimizing

stage-to-stage communication latency. Figure 6.1(6) illustrates the O-NIC.

6.2 ONIC Module Overview

6.2.1 Overall Packaging Plan

The O-NIC module is under development, and we report the current progress on each com-

ponent of the entire package. Figure 6.2 illustrates the overall O-NIC packaging plan. The target
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Figure 6.2: FLEET O-NIC packaging plan.

package is leveraging 2.5D integration. The transceiver PIC chip contains two 16-channel trans-

mitter and receiver links to match the 16-lane PCIe communication link as described in Section

6.1. Each driver/TIA EIC chip can modulate or receive 8 channels and in total four identical EIC

chips are used to interface with the PIC chip. Both PIC and EIC chips are designed to be flip-

chip bonded to a multi-layer ceramic interposer. The interposer’s high speed transmission lines

are properly modeled and structured for driving/receiving RF signals with both PIC and EIC. For

RF signals between EICs and the O-NIC PCB and DC signals are fan-out through the interposer

to its bottom side. The interposer then is mounted to the O-NIC PCB via BGA. Fiber attachment

is necessary to couple light in to/out of the PIC chip. On the O-NIC PCB, high speed RF signals

are directly routed to the FPGA’s transceivers through FMCs. DAC/ADC circuits are used for the

feedback control of PIC chip, and are configured by the control logics in FPGA as well. More

details on the PCB are included in Section 6.4. The packaged O-NIC PCB will be plugged into
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FMC connectors on an HTG-930 FPGA evaluation board which will be connected to the server

through PCIe. LC connectors are envisioned for the connection to other O-NICs. The packing

plan is compatible with other FPGA evaluation boards that have the same placement of the two

being-used FMC connectors.

6.2.2 Link Analysis

Figure 6.3: FLEET O-NIC link and power budget.

The design of the link is targeted at 256 Gb/s with 16 optical channels operating at 16 Gb/s. The

spacing between channels was subject to variation and optimization based on the intermodulation

crosstalk of modulators and crosstalk penalty of filters. The channel crosstalk penalty in the link
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based on the PDK models was modeled and analyzed using Lumerical Interconnect. The minimum

required spacing between channels is set to 150 GHz. The design was considered to have 16

Gb/s data readily available for each channel and for all 16 channels. Figure 6.3(a) shows the

source, loss, and gain components in the link. The loss components include the modulation loss,

taps for monitoring, coupling loss, optical switch’s loss, fiber loss, and filter loss. To meet the

receiver’s sensitivity requirement, an EDFA is needed to compensate the loss. Assuming each

optical channel’s input power to the TX is 0 dBm. A summary of the optical budget analysis for

this design is presented in Fig. 6.3(b). The sensitivity of receiver at 16 Gb/s was simulated and set

to be -12.6 dBm. We consider the variations of the laser source, star coupler, and EDFA gain. A

4.8 dB margin has been achieved considering a 20 dB gain EDFA.

6.3 Silicon Photonic Transceiver Chip

Figure 6.4: FLEET PIC transmitter and receiver banks.

The PIC transceiver chip requires 256 Gb/s transmitter and receiver per link, operating at 16

Gb/s per wavelength. For the transmitter bank, a 16-wavelength WDM source will enter the chip

as the input. Microdisk modulators are used to modulate the light at each wavelength. Before

and after the microdisk modulators, input and output monitor PDs are included to enable thermal

control and polarization control. For the receiver bank, microring filters are used to select each

corresponding modulated signal and forward it to the receiving PD. Monitoring PDs are not needed
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for the receiver bank, since the receiving PDs can also provide the DC power level information.

Low loss waveguides are used in between every eight cascaded elements. Figure 6.4 depicts the 16-

channel transmitter and receiver banks. Test structures are included to assess fabrication variations

on different sections of each PIC.

Figure 6.5: FLEET PIC floor plan. (a) The two 16-channel transceiver links. (b) The transmitter
and receiver banks. (c) Two 8-channel transceiver banks and test structures.
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Figure 6.6: (a) FLEET PIC chip.(b) Illustration of a populated interposer.

As shown in Fig. 6.5(a), two transceiver links are placed on the PIC, and they are divided

horizontally across the middle. On the left, edge couplers are used to couple light into and out

of the PIC chip. Each transceiver link is then divided again into two 8-channel Tx/Rx banks as

shown in Fig. 6.5(b). This ensures the compatibility with a modular 8-channel driver/TIA EIC

design. The pad pitch is designed for acceptable crosstalk performance for high-speed signals

while minimizing the entire PIC chip size. Between the transmitter/receiver banks on the same

side, low loss waveguides are used to reduce the propagation loss within the chip. Figure 6.5(c)

shows a magnified picture of the left half of the chip. On-chip photonic test structures are in the

middle and they can be probed optically and electrically without damaging actual transceiver links.

The test structures can show the thermal tuning range of optical components on each chip, and the

intrinsic resonance of the microdisk resonators and the tunable microring filters. Based on the

measurements of the test structures, we are able to select PIC chips for further packaging. The
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design results in a photonic chip area of 12.11 mm2 (1.425 mm × 8.5 mm).

The fabricated PIC chip is shown in Fig. 6.6(a). Figure 6.6(b) illustrates how to populate the

PIC chip and the EIC chips on an interposer.

6.4 Development of O-NIC PCB

Figure 6.7: (a) FLEET PIC chip.(b) Illustration of a populated interposer.

The O-NIC PCB supports both high-speed RF differential signals, low-speed control signals,

and power planes for the PIC and EIC chips. As shown in Fig. 6.7, the TX/RX RF differential

signals for EIC #0 and #1 in Link #0 are routed to FMC B on the FPGA board, and the signals for

EIC #2 and #3 in link #1 are connected to FMC C. AC coupling capacitors are needed to cancel

the DC levels. The RF signals are then connected to the GTY transceivers in the FPGA. A scan-

chain circuit is necessary to configure the EIC chips, while minimizing the wires by configuring

in a sequential manner. The scan-chain circuit is connected to the FPGA through FMC B. For

103



biasing the heaters of both microdisk modulators and microring filters on the PIC, DAC circuits

are designed and interfaced with FPGA through FMC B and C for link #0 and link #1 respectively.

To close the feedback control loop, ADC circuits are designed for the TX input, TX output, and

EIC receiver monitoring signals. TIA circuits are required for converting photo current into voltage

before the amplification and ADC stages. The TX output feedback monitoring signals for both link

#0 and link #1 are connected back to the FPGA through FMC B. For the rest feedback signals, they

are routed through FMC B and C respectively. The current layout progress is shown in Fig. 6.8.

Figure 6.8: FLEET O-NIC PCB layout.

6.5 Test Packages

Test packages are necessary for the development of the FLEET O-NIC package. TX and RX

test packages can be used to verify ADC/DAC circuits, implement the feedback control algorithms,

test prototype EICs, as well as gain high-speed design experiences for the ultimate O-NIC PCB.
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Figure 6.9: FLEET RX test PIC chip and packaging plan.

6.5.1 RX Test Package

The PIC receiver test architecture is built on a bus waveguide with microring filter elements.

Eight microring filters are coupled to the bus waveguide. As shown in Fig. 6.9(a), four rings are

located at the top and the other four are located at the bottom. The rings are separated by 750 `m

apart to align with the corresponding channel on the TIA chips for packaging purposes. The heater

and ground pads are located on the right side of the chip. At a high level, the packaging uses the

2D integration approach with wirebonds. An interposer, however, is also used to fan out the signals

105



Figure 6.10: TIA bond pad assignment.

as well as provide the connectivity between the PIC/TIA chips and the PCB. The packaging plan

is shown in Fig. 6.9(b). Two 4-channel TIA chips (ONET2804TLP) are placed on the interposer

which is attached to the PCB underneath. There is a U shape cavity in the interposer to let the PIC

to be attached to the PCB as well. The receiving RF photo current signals are wire-bonded from the

PIC to the TIA. The TIA’s RF voltage output is wire-bonded down to the interposer, and then gets

fanned out to the edge of the interposer for another wire-bonding connection to the PCB. Finally,

the RF signals are routed to the edge SMAs at both top and bottom of the PCB. Other buffer, power,

I2C circuits are needed for the control of the TIA chips and the heater of the PIC chip. Figure 6.10

shows the bond pad assignment of the TIA chip. More details about the TIA chip regarding Vcc,

featured Received Signal Strength Indicators (RSSIs), I2C interface, sensitivity, operating speed,

and other parameters can be found in Ref. [142].
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Figure 6.11: (a) Interposer differential traces. (b) ADS layout model. (c) S21 and S11 results.

Figure 6.12: (a) ADS layout model for PCB differential to single ended traces. (b) ADS circuit
model. (c) S21 and S11 results.
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Figure 6.13: (a) ADS EMPro edge sma model. (b) 3D model with landing trace. (c) S21 result. (d)
S11 result.

Figure 6.14: (a) ADS 3D wirebonds model. (b) S21 result. (c) S11 result.

108



To ensure error-free operations on the high-speed links, transmission lines, such as interposer

traces, PCB traces, wire-bonds, and SMA connectors, need to be properly modeled and designed.

The models are implemented in KEYSIGHT Advanced Design System (ADS) and simulated with

3D FEM simulations. We performed the simulations for the differential CPWG trace on the inter-

poser, differential to single ended CPWG traces on the PCB, edge SMA, and wire-bonds. For the

wire-bonds, we assume a 500 µm height and the horizontal distance between the pads is 700 µm.

Figures 6.11, 6.12, 6.13, 6.14 show the models and the S-parameters results respectively.

Figure 6.15: (a) RX test package full assembly. (b) Wire-bonding picture. (c) Eye diagrams.

The received full RX assembly is shown in Fig. 6.15(a), and Fig . 6.15(b) shows the wirebonds

between PIC and TIA chips, and between TIA chips and the interposer. Two 10Gb/s PRBS 31 data

streams are tranmitted to the RX test package and the first and second microring filters are used to
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drop the data signals. The corresponding edge SMAs are connected to a real-time scope through

SMA cables. Open eye diagrams are observed as shown in Fig. 6.15(c). The streams are from two

SFP+ transmitters driven by an FPGA.

6.5.2 TX Test Package

The PIC transmitter test architecture is built on a bus waveguide with microdisk modulator

elements. The TX test package was developed through the same process as the RX test package.

Critical RF components are simulated. Figure 6.16 shows the PIC transmitter chip, a packaged TX

test board without driver EIC, and a packaging plan for a future version with a custom driving EIC.

These follow the 2D integration approach without an interposer.

Figure 6.16: (a) TX test PIC chip. (b) TX test board. (c) Packaging plan with a driving EIC.

6.6 PCIe Interface

In order to transfer data from a server to the O-NICs or vice versa, an PCIe subsystem needs to

be implemented on the FPGA for the communication. For the FLEET project, an PCIe subsystem

with a streaming interface to the Aurora transceiver cores is required due to the latency requirement
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Figure 6.17: (a) Schematic of the system for the host and FPGA memory transfers. (b) Physical
hardware.

of the project. We implemented a simpler version of the PCIe subsystem for system verification

during the development process. Figure 6.17(a) shows the schematic of the system design, and the

flow for memory transfer verification. A DMA subsystem for PCIe core is implemented to interface

with the system through PCIe. The core also provides an AXI-4 memory mapped interface which

is connected to the FPGA memory. Another AXI-lite interface from the DMA subsystem core is

used to control an AXI DMA core and a thermal control core. The thermal control core will be

implemented using Vivado-HLS and is under development. The AXI DMA core is used to fetch

data from the FPGA memory and send out the data through the Aurora transceiver cores to the

optical modules. The AXI DMA core is also responsible for receiving the date from the optical
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Figure 6.18: PCIe subsystem block diagram.

modules and store the data into FPGA memory. To achieve the memory transfers, PCIe DMA

software driver and AXI software driver are implemented in the host. There are five steps for the

memory transfer verification. First, move a chunk of data from the system memory to the FPGA

memory through PCIe using the DMA subsystem core. Second, configure the AXI DMA to fetch

the data and forward the data to the Aurora core and the transceiver modules. The transceiver

modules are connected back-to-back in this case. Third, use the AXI DMA to receive the looped

back data and store the data to another place in the FPGA memory. Fourth, configure the DMA

subsystem core again and read the data back to another place of the system memory. Last, verify

the transmitted and received data. This flow is also shown on Fig. 6.17(a) right. Figure 6.17(b)

shows the physical hardware FPGA board, PCIe cable, and transceiver modules that are used in

the implementation. We successfully demonstrated a working system for the data transfers. The

transceiver modules will be replaced by the O-NIC modules in the future. Figure 6.18 shows the

detailed block diagram of the system we described above in Vivado.
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6.7 Chapter Summary

In this chapter, we introduces the FLEET architecture and the project goals. We the report the

overall packaging plan of the hardware innovation - O-NIC module and demonstrate the fabricated

SiP transceiver chip. The design of O-NIC PCB and the test packages are presented to show

the path towards the full assembly. A PCIe interface is developed for future system functionality

verification. The O-NIC module is still under development, and more details will be reported in

future publications.
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Conclusion

The work presented in this dissertation focused on developing various high performance silicon

photonic interconnected system architectures for their deployment in future datacenter and HPC

systems. We summarize the contributions of this dissertation, and then discuss future research

directions.

Summary of Contribution:

The ever-growing data-driven applications such as machine learning and deep learning lead to

dramatic increase in computation and communication in today’s systems. Traditional technolo-

gies and architectures suffer from the mismatch in computing and network system performance,

which have shifted performance bottleneck from the compute to the network. Silicon photonics

provide high-bandwidth and reconfigurable interconnects that can address the network challenges

presented in datacenter and HPC systems.

In Chapter 2, we first presented FPGA-controlled silicon photonic interconnects, and demon-

strated open-loop and closed-loop control over cascaded microring-based switches. The achieved

optical unicast, multicast, and multiwavelength-select functionalities are essential for the novel ar-

chitectures presented in the following chapters to improve system performance in deep learning

training.

In Chapter 3, we proposed a photonic switched optically connected memory architecture to

address the memory challenges in deep learning. The proposed system architecture utilizes a

“lite” (de)serialization scheme for memory transfers via optical links to avoid network overheads
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and supports the dynamic allocation of remote memories to local processing systems. We built

an experimental testbed with a processing system and two remote memory nodes using silicon

photonic switch fabrics and evaluated the system performance. An end-to-end reconfiguration

time at millisecond-scale is achieved. The collective results and existing high-bandwidth optical

I/Os show the potential of integrating the photonic switched optically connected memory to state-

of-the-art processing systems.

In Chapter 4, we demonstrated a silicon photonic switched architecture. The system archi-

tecture leverages silicon photonic switch-enabled server regrouping using bandwidth steering to

tackle the network challenges and accelerate distributed deep learning training. The proposed

system architecture utilizes a highly integrated OS-based SiP switch control scheme to reduce

implementation complexity. We built an experimental testbed with a SiP switch-enabled reconfig-

urable fat tree topology and evaluated the network performance. The large-scale simulation results

also show that server regrouping can deliver flow throughput improvement for a tapered fat tree

when higher-layer bandwidth steering is employed. The collective results show the potential of

integrating SiP switches into datacenter and HPC systems to accelerate distributed deep learning

training.

In Chapter 5, we discussed two silicon photonic-enabled disaggregated system architectures

for deep learning. The first architecture utilizes optical switches to defragment the computing

resources in disaggregated systems. Increased GPU ultilization and accelerated network per-

formance are observed. The second architecture is called SiPAC - silicon photonic accelerated

compute cluster. It uses silicon photonic multi-wavelength selective switches to achieve a high-

bandwidth multi-dimensional all-to-all topology to speed up training communication collectives.

The collective results show communication time improvement over current state-of-the-art com-

pute clusters at scale.

In Chapter 6, we reported the development of O-NIC module for the FLEET project. The over-

all packaging plan for the full assembly was presented. We showed the design of the PIC chip,

and the progress on developing the O-NIC PCB. Test packages for design and function verification
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were demonstrated and the interface to the host through PCIe was discussed. The design method-

ologies and approaches show the path towards integrating of silicon photonic transceivers into high

performance systems.

Recommendations for Future Work:

Following the work in this dissertation, there are a range of research work and opportunities to

further show the potential of silicon photonic interconnects before widely deployed.

A direct step moving forward is to continue the development of the FLEET O-NIC module.

The target module and its packaging plan are compatible to be plugged into FPGA board with

HBMs. This provides more bandwidth to memory compared to the prototype system shown in

Chapter 2. An FPGA can be used to emulate a compute unit and improved performance can be

achieved for better demonstrating optically connected memory for deep learning. Additionally,

broadband silicon photonic switches, such as MZI based and MEMS-actuated switches, can be

incorporated for system demonstrations.

Another usage of the FLEET package is for the disaggregated architecture discussed in Section

5.1. FPGAs can be used to emulate the GPUs as well as the aggregator switches. With higher

bandwidth connectivity between the emulated compute and the aggregator switches, the poten-

tial results can be more convincing for researchers and providers to continue the development of

optically disaggregated systems.

Lastly, more efforts can be made in tunable multi-wavelength selective switches. For exam-

ple, a dual-ring based filter can drop multiple wavelengths within a FSR. By tuning the coupling

coefficients in the dual ring system, bandwidth steering can be realized in the crossbar switch as

described in Section 5.2. A flexible SiPAC architecture and better performance can be achieved

for more communication collectives in deep learning.
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