22 research outputs found

    An algebraic basis for specifying and enforcing access control in security systems

    Get PDF
    Security services in a multi-user environment are often based on access control mechanisms. Static aspects of an access control policy can be formalised using abstract algebraic models. We integrate these static aspects into a dynamic framework considering requesting access to resources as a process aiming at the prevention of access control violations when a program is executed. We use another algebraic technique, monads, as a meta-language to integrate access control operations into a functional programming language. The integration of monads and concepts from a denotational model for process algebras provides a framework for programming of access control in security systems

    Modular Composition of Language Features through Extensions of Semantic Language Models

    Get PDF
    Today, programming or specification languages are often extended in order to customize them for a particular application domain or to refine the language definition. The extension of a semantic model is often at the centre of such an extension. We will present a framework for linking basic and extended models. The example which we are going to use is the RSL concurrency model. The RAISE specification language RSL is a formal wide-spectrum specification language which integrates different features, such as state-basedness, concurrency and modules. The concurrency features of RSL are based on a refinement of a classical denotational model for process algebras. A modification was necessary to integrate state-based features into the basic model in order to meet requirements in the design of RSL. We will investigate this integration, formalising the relationship between the basic model and the adapted version in a rigorous way. The result will be a modular composition of the basic process model and new language features, such as state-based features or input/output. We will show general mechanisms for integration of new features into a language by extending language models in a structured, modular way. In particular, we will concentrate on the preservation of properties of the basic model in these extensions

    Layer by layer - Combining Monads

    Full text link
    We develop a method to incrementally construct programming languages. Our approach is categorical: each layer of the language is described as a monad. Our method either (i) concretely builds a distributive law between two monads, i.e. layers of the language, which then provides a monad structure to the composition of layers, or (ii) identifies precisely the algebraic obstacles to the existence of a distributive law and gives a best approximant language. The running example will involve three layers: a basic imperative language enriched first by adding non-determinism and then probabilistic choice. The first extension works seamlessly, but the second encounters an obstacle, which results in a best approximant language structurally very similar to the probabilistic network specification language ProbNetKAT

    Facilitating modular property-preserving extensions of programming languages

    Get PDF
    We will explore an approach to modular programming language descriptions and extensions in a denotational style. Based on a language core, language features are added stepwise on the core. Language features can be described separated from each other in a self-contained, orthogonal way. We present an extension semantics framework consisting of mechanisms to adapt semantics of a basic language to new structural requirements in an extended language preserving the behaviour of programs of the basic language. Common templates of extension are provided. These can be collected in extension libraries accessible to and extendible by language designers. Mechanisms to extend these libraries are provided. A notation for describing language features embedding these semantics extensions is presented

    Exploiting Labels in Structural Operational Semantics

    Get PDF
    Structural Operational Semantics (SOS) allows transitions to be labelled. This is fully exploited in SOS descriptions of concurrent systems, but usually not at all in conventional descriptions of sequential programming languages. This paper shows how the use of labels can provide significantly simpler and more modular descriptions of programming languages. However, the full power of labels is obtained only when the set of labels is made into a category, as in the recently-proposed MSOS variant of SOS

    Foundations of Modular SOS

    Get PDF
    A novel form of labelled transition system is proposed, wherethe labels are the arrows of a category, and adjacent labels in computations are required to be composable. Such transition systems provide thefoundations for modular SOS descriptions of programming languages.Three fundamental ways of transforming label categories, analogous tomonad transformers, are provided, and it is shown that their applicationspreserve computations in modular SOS. The approach is illustrated withfragments taken from a modular SOS for ML concurrency primitives

    Modularity in Meta-Languages

    Get PDF
    A meta-language for semantics has a high degree of modularitywhen descriptions of individual language constructs can be formulated independently using it, and do not require reformulation when new constructs are added to the described language. The quest for modularity in semantic meta-languages has been going on for more than two decades. Here, most of the main meta-languages for operational, denotational, and hybrid styles of semantics are compared regarding their modularity. A simple bench-mark is used: describing the semantics of a pure functional language, then extending the described language with references, exceptions, and concurrency constructs. For each style of semantics, at least one of the considered meta-languages appears to provide a high degree of modularity

    Program Slicing Based on Monadic Semantics

    Get PDF

    Composing Programming Languages by Combining Action-Semantics Modules

    Get PDF
    This article demonstrates a method for composing a programming language by combining action-semantics modules. Each module is defined separately, and then a programming-language module is defined by combining existing modules. This method enables the language designer to gradually develop a language by defining, selecting and combining suitable modules. The resulting modular structure is substantially different from that previously employed in action-semantic descriptions. It also discusses how to resolve the conflicts that may arise when combining modules, and indicates some advantages that action semantics has over other approaches in this respect
    corecore