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Abstract

We propose a framework for specification of programming language semantics, abstract and
concrete syntax, and lexical structure. The framework is based on Modular Monadic Semantics
and allows independent specification of various language features. Features such as arithmetics,
conditionals, exceptions, state and nondeterminism can be freely combined into working inter-
preters, facilitating experiments in language design. A prototype implementation of this system
in Haskell is described and possibilities for more sophisticated interpreter generator are outlined.

1 Introduction

Denotational Semantics is a widely used method for formal specification of programming language
semantics. It is a complete semantics, which permits proving all relevant program properties, and
also enables automatic generation of language interpreters from language specifications. One of
the problems which hinder wider use of Denotational Semantics is its lack of modularity. Within
last decade an approach called Modular Monadic Semantics was proposed as a means to structure
Denotational Semantics and make it more usable. This approach has theoretical advantages in
systematic treatment of language features ([14]), but is also of great value for generating more
efficient interpreters from specifications ([12], [4]).

In this paper we explore the benefits of using Modular Monadic Semantics for writing language
specifications in Haskell. Unlike previous works, which focused on semantics ([12], [4]) or abstract
syntax ([3]), we also pay special attention to modularity of the concrete syntax and lexical structure
(henceforth termed lexics). The result is modularity of the interpreter along two dimensions:
interpreter stages and language features.

We use higher-order, non-strict, purely functional programming language Haskell as implemen-
tation language. In addition to features present in Haskell98 ([8]), we adopt the use of multipa-
rameter type classes, which are present in Hugs ([9]) and GHC (Glasgow Haskell Compiler) Haskell
implementations and are likely to be incorporated into future language versions ([10]). We also use
overlapping class instances, mostly to introduce the subtyping relation.

The rest of the paper is organized as follows. In Section 2 we explain our treatment of modu-
larity. In Section 3 we use examples to illustrate language specification in our system. Section 4
explains the present implementation of the system in Haskell. Section 5 summarizes the advantages
and disadvantages of the approach. Section 6 outlines a future implementation based on program
generation and Section 7 concludes.


https://core.ac.uk/display/147929774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

lexics for . lexics for
. lexics for
arith- error
. state .
metics handling
syntax for syntax for
. syntax for
arith- Lot error
metics state handling
semantics . semantics
. semantics
for arith- for stat for error
metics or state handling

Figure 1: Two levels of modularity

2 Modularity in language design

2.1 Stages of interpreter

Division of interpreters and compilers into stages of lexical analysis, syntax analysis and semantics
analysis is a widely used approach for handling the complexity of language processors ([1], [2]). This
is a well known instance of modular design which allows using the most appropriate techniques and
tools for each stage.

This approach also permits the reuse of stages of an interpreter or compiler, practical advantages
of which are most evident in retargeting a programming language implementation for different
platforms.

2.2 Another dimension of modularity

In this paper we focus on another level of modularity: division of an interpreter with respect to
language features. The idea is to build blocks for features such as arithmetics, conditionals, loops,
control flow, error handling, local definitions, and nondeterminism. By combining appropriate
building blocks, an interpreter for the desired language is obtained.

Our intention is to applies 2-dimensional modularity: Grouping components along one dimen-
sion yields the usual stages of interpreter, whereas grouping them along the other dimension results
in specifications of language features. We believe that this approach leads to a more systematic
language design by providing foundations for the well recognized principle of orthogonality.

In both these dimensions of modularity, using Haskell as implementation language is advanta-
geous. Lazy intermediate data structures help define clean interface between stages of interpreta-
tion, and demand-driven evaluation strategy makes the operational behavior of program identical
to behavior of monolithic interpreter. The advantages are even more striking in the case of feature-
wise modularity. We know of no other language apart from Haskell and its variant Gofer which
have been able to capture the idea of Modular Monadic Semantics with such degree of precision.
While the advantage of using a purely functional programming language for specification of Deno-
tational Semantics is evident, it is the use of constructor (multiparameter) type classes that made
it possible to express this new dimension of modularity in the type system, without the need for



program generation.

3 Modular language specification in Haskell

We have built a set of modules in Haskell which enable modular specification of a programming
language and its interpreter. Using higher-order functions from these libraries, Haskell modules
can be written that concisely describe interpretation stages for each language feature. We shall
use arithmetics feature to illustrate the nature of these specifications and defer the details of
implemented system to Section 4.

3.1 Lexics

The lexics of a language feature contains
e token data type definition (here: Token)
e list (lexemes) of lexeme specifications, which are pairs of

— regular expression

— function of type [Char] -> Token

>data Token = N Int | Plus | Minus | Times | Divided | Power
>lexemes = [(pInt, makeInt),

> (rSym ’+’, \_ -> Plus), (rSym ’-’, \_ -> Minus),

> (rSym ’*’, \_ -> Times), (rSym ’/’, \_ -> Divided),
> (rSym ’>~’, \_ -> Power)]

>pInt = digit <&> (rMany digit) -- digit digitx*

> where digit = rAny0f "0123456789"
>makeInt ds = N (foldl op O ds)
> where op n d = 10*n + (ord d - ord ’0’)

Token data type defines the interface between lexical analysis and syntax analysis stage for the
particular language feature. Each regular expression defines a sequence of characters comprising a
lexeme of the language. Regular expressions are built using operators <&>, <|>, and rMany which
correspond to concatenation, alternative, and iteration, respectively. The function which forms the
second component of the pair in lexeme specification maps the lexeme into its Token representation,
which is used in syntax analysis stage.

3.2 Syntax

Specification of the syntax for a language feature contains
e abstract syntax tree definition

e a function (par) mapping a token to operator description

>data Tree x = Const Int
> | Add x x | Sub x x
[

> Mul x x | Div x x



> | Pow x x

>par (N x) = literal (Const x)
>par Plus = infixOpL 502 Add
>par Minus = infixOpL 502 Sub
>par Times = infixOpL 503 Mul

>par Divided
>par Power

infixOpL 503 Div
infix0OpR 504 Pow

Declaration of the abstract syntax tree contains a type variable in place of recursion. Declaring
the tree as constructor rather than a type is essential for modularity of abstract syntax, as we
shall see in 4.2. Specification of the operator corresponding to a token is achieved using prede-
fined higher-order functions literal, infixOp, infix0OpL, infixOpR, prefix0p and others. For
instance, infix0pL function defines a left-associative infix binary operator with given priority and
syntax tree constructor. infixOpR can be used to specify right-associative operators, prefixOp
and prefixBinOp for prefix operators, and ternary for ternary prefix operator. The library can
easily be extended with new operator specifications.

3.3 Semantics

Specification of semantics for a language feature is based on Modular Monadic Semantics. In
Haskell it is expressed in the form of Algebra instance declaration.

>instance (Subtype Int v, ErrMonad String m) => Algebra Tree (m v) where

> phi e = case e of

> (Const x) -> returnInj x

> (Add xm ym) -> lift2sub plus xm ym

> (Sub xm ym) -> 1lift2sub minu xm ym

> (Mul xm ym) -> lift2sub tims xm ym

> (Div xm ym) -> do x <- mprj xm

> y <- mprj ym

> if y==0 then eThrow "Division by zero"
> else returnInj (divi x y)

> (Pow xm ym) -> 1lift2sub pow xm ym

The type constructor Tree can be treated as a signature of an algebra. This instance declaration
defines a particular algebra of the signature Tree by interpreting operations represented as nodes
of the abstract syntax tree ([3]). This interpretation corresponds to semantics definitions in Deno-
tational Semantics ([16]), but adopts the use of Modular Monadic Semantics to achieve a higher
level of abstraction and modularity.

Modular Monadic Semantics is based on the notion of monad ([13], [14], [18]). As far as
programming in Haskell is concerned, monad is a higher-order abstract data type, given by a class
declaration

>class Monad m where
> return :: a -> m a
> (>>=) ::ma->((a->mb) ->mb

and satisfying the following laws:



m >>= return = m
(return x) >>=f = f x
m>= (\a -> (f a>>=g)) = (m>=1f) >>=g

Monads generalize function application, a fact formalized by the following instance declaration.

>newtype Id x = Id { unId :: x }
>instance Monad Id where

> return = Id

> (Id x) >>=f = f x

Programs expressed via monad composition become easier to maintain, since we can tune the
meaning of the program by changing the underlying monad. To make the use of monads more
convenient, Haskell provides syntactic sugar in the form of do-notation, whose essence is given by
the following equation.

do {x <-m; e} =m >>= (\x > e)

In Modular Monadic Semantics the domain of interpretation is decomposed into computation
type constructor m, and value type v. The domain d is then d = m v. The computation construc-
tor is a subclass of Monad class, supporting additional operations which are needed to interpret
particular language feature. For instance, the ErrMonad is defined by

>class Monad m => ErrMonad e m where
> eThrow :: e -=> m a

which permits the use of eThrow in interpretation of the Div tree node. Similarly, we use class
constraints to allow any supertype of Int as the value v. By using sophisticated class mechanism
of Haskell we can specify minimal requirements for the domain of interpretation, which is crucial
for modularity.

3.4 Putting the components together

Here we outline the way in which components are composed into working interpreter. Looking
back at figure 2.2, we first group horizontally components in each stage, using clex operator for
composing lexical specifications, cpar for composing syntax, and monad transformers to create the
final interpretation domain. The description of each stage is then turned into function, and these
functions are composed in sequence to provide the final interpreter as a function String -> String.
We give some more details on this process in 4.2.

4 A simple implementation

Current implementation of the system is a collection of Haskell modules. These modules implement
abstract data types for the specification of lexics, syntax, and semantics of language components,
functions for transforming specifications into executable functions, as well as higher-order functions
for merging component descriptions into final language specification.



4.1 Implementing stages of interpreter

Implementation of lexical analysis is based on transformation of regular expressions into Nondeter-
ministic Finite Automaton (NFA) and Deterministic Finite Automaton (DFA). In the first stage,
regular expression is used to derive a NFA states of which are nodes of the regular expression tree
([1]). This avoids the creation of empty () transitions. Furthermore, to avoid the potential explo-
sion of states in DFA construction, lazy transition evaluation is applied to construct DFA states
and transitions during the lexical analysis ([1]). This approach can be seen as a manual application
of the memoization technique ([5]).

Implementation of (concrete) syntax analysis is based on precedence parsing. Operator spec-
ifications are evaluated into transitions of a state machine. The machine contains operator stack
and argument stack. The parsing algorithm can be seen as a result of merging translation of ex-
pressions into postfix form ([17]), which uses the operator stack, and expression evaluation using
argument stack. The algorithm is extended to provide handling of unary, binary and ternary infix
expressions as well as error detection. The choice of precedence parsing may seem unusual in the
light of limitations of this technique, but it turns out to be a convenient and efficient choice when
modularity is imperative.

Implementation of semantics derives from the previous work on Modular Monadic Semantics. It
uses monad transformers ([14], [12], [4]) for monad composition and lifting to merge the computation
effects required by various language features. Our semantics library contains definitions for identity
and nondeterminism monad as well as monad transformers for errors, environments, state, and
continuations. Each transformer extends a monad with additional operations. For instance, the
continuation monad transformer adds the operation callcc (call with current continuation).

class Monad m => ContMonad m where

callcc :: ((@a->mb) >ma) ->ma
newtype ContT ¢ m a = Cont {unCont :: (a -> m c) -> m c}
instance Monad m => Monad (ContT c¢ m) where

return a = Cont (\k -> k a)

(Cont m) >>= f = Cont (\k -=> m (\a -> unCont (f a) k))
instance Monad m => ContMonad (ContT c m) where

callcc f = Cont (\k -> unCont (f (\v -> Cont (\k’ -> k v))) k)

The ContMonad class represents computations that require complex flow of control, such as (equiv-
alents of) non-local jumps. The newtype declaration introduces a type constructor ContT which
transforms its argument to enable implementation of functionality for the new class. This new
functionality is defined in the second instance declaration. The first instance declaration makes
sure that the new type still supports the functionality of monad class.

4.2 Combining specifications

Combining specifications of various interpreter stages is central to our approach of modularity. We
begin by describing the composition of semantics specifications, since this was the original problem
of modular interpreters.

The key problem in Modular Monadic Denotational semantics is that of correct definitions of
liftings. Liftings ensure that monad operations introduced by one transformer remain available
after subsequent application of further monad transformers. The first step in lifting is to associate
with each monad transformer a 1ift function which transforms original monad values into new
monad values.



class (Monad m, Monad (t m)) => MonadT t m where
lift :: ma ->tma

instance Monad m => MonadT (ContT c) m where
1lift = Cont . (>>=)

This function is enough to lift any operation not containing monad in the domain type, such as
eThrow. The following declaration defines lifting of eThrow through arbitrary monad transformer,
which means that applying any monad transformer t to an ErrMonad yields not only Monad, but
also ErrMonad.

instance (ErrMonad e m, MonadT t m) => ErrMonad e (t m) where
eThrow = 1lift . eThrow

Some other cases of lifting are more difficult. Providing the definition for these cases amounts to
describing interaction between individual semantic features ([12]).

Modularity of abstract syntax is based on the notion of sum of algebras. Abstract syntax trees,
defined as constructors, represent algebra signatures. The sum of algebras is defined using the Sum
constructor.

>newtype Sum f g x = Sum {uSum :: Either (f x) (g x) 1}

After forming the sum of abstract trees of all components, the Fix constructor is applied to create
the recursive structure. On the one hand this corresponds to initial algebra over algebra signature.
On the other hand, it is the abstract syntax tree which provides an interface between the analysis
of concrete syntax and semantics analysis.

>newtype Fix f = In {out :: f (Fix £)}
The interpretation is captured by a multiparameter class Algebra.

>class Functor f => Algebra f a where
> phi :: f a->a

Sum of algebras is defined in the natural way.

instance (Algebra f a, Algebra g a) => Algebra (Sum f g) a where
phi (Sum (Left ef)) = phi ef
phi (Sum (Right eg)) = phi eg

Finally the notion of expression value is defined given the interpretation of algebra.

>eval :: Algebra f a => Fix f -> a
>eval (In e) = phi (fmap eval e)

Modularity of concrete syntax and lexical structure of interpreted language does not seem to
have attracted much attention so far. The previous approaches we are aware of either used mono-
lithic syntax analysis stage that generates abstract syntax trees, or applied parsing combinators to
make a trivial extension to abstract syntax from previous paragraph. The first approach means
giving up modularity of the whole interpreter, so we avoid it. The second approach requires ex-
cessive use of parentheses since concrete syntax is a direct translation of abstract syntax. What
is more, the resulting parsers are inefficient due to intensive backtracking in combinator parsers.
This is because the concrete expression grammar is not LL(1) and no left factoring is performed.



Our choice of precedence parsing results in efficient token-driven algorithm which works as a
deterministic push-down automaton. We achieved the modularity using higher order functions.
The type of functions such as infix0OpL is not just a state transition (denoted by ParsingItem b),
but a function from a->b to the transition.

infix0OpL :: Int -> (b -> b -> a) -> (a -> b) -> Parsingltem b
The previous specification of Plus token can be written equivalently as
par Plus r = infixOpL 502 Add r

Combining two syntax definitions can be achieved by a single higher-order function cpar which
modifies the r argument.

cpar :: (tokL -> (treelL a -> b) -> ¢) ->
(tokR -> (treeR a -> b) -> c) —>
Either tokL tokR -> (Sum treeL treeR a -> b) -> ¢
cpar parL parR = f
where
f (Left x) r
f (Right x) r

parL x (r . Sum . Left)
parR x (r . Sum . Right)

The combined parser accepts the sum of token types as a new token type and the sum of trees as
new abstract tree type. By a simple map of lexeme specification lists we also achieve combination
of lexical structure.

clex :: [Lexeme c tokL] -> [Lexeme ¢ tokR] -> [Lexeme ¢ (Either tokL tokR)]
clex lexL lexR = (map (m Left) lexL) ++ (map (m Right) lexR)
where m f (exp,val) = (exp, f . val)

Higher-order functions cpar and clex, together with type constructors and instance declarations
for modular abstract syntax and modular semantics enable the construction of an interpreter from
the specifications of language features.

5 Results

We have implemented the framework for the specification of semantics, abstract syntax, concrete
syntax and lexical structure of language components in Haskell, using Hugs98 interpreter and
relying on multiparameter type classes and overlapping instances. This framework was then used
to implement 8 language features: arithmetics, comparison relations and conditionals, environments
(local names), exceptions (via continuations), (call by value) functions, loops, nondeterminism and
state (assignable store). Using higher-order functions from the previous paragraph, all of these
features can be combined into working interpreter.

The most immediate advantage of this approach is that we remain inside a general-purpose
language Haskell, which yields more flexibility than special-purpose formalisms. We retain the
convenience of static type-checking and the maintenance of specification is easier since there are
no multiple program generation phases. Language feature specifications are first-order citizens,
offering great potential for extensibility of the system. Using a language based on typed lambda
calculus allows us to directly write Denotational Semantics definitions, fully integrated with syntax
definitions. Type classes enable the desired modularity, making the specification easy to manage and



reason about. The system of library modules itself is small, and can be included into considerations
of the interpreter semantics if needed.

The current implementation has also some drawbacks. Precedence parser is not flexible enough.
The view of abstract syntax from [3] which we have adopted appears to be oversimplified. We may
need the notion of multisorted algebras to capture the syntax of programming languages, unless we
want to rely on more complex static semantics of the language. Lexical analyzer is not as efficient
as we would like, and there is much space for improvements. Also, at this level of implementation
the process of feature composition is not fully transparent to the user of our library modules. This
is mainly due to the limitations of the type system and is evident when constructing recursive
domains.

6 Future work

Two major areas for future work are extending the flexibility of specification and improving the
efficiency of resulting interpreters. In our simple implementation we have often faced limitations of
the type system, even in the presence of language extensions such as multiparameter type classes and
overlapping instances. While we have demonstrated that much can be done using the type system
as a metaprogramming tool, we think that some sort of program generation (metacomputation)
approach will be necessary for future enhancements.

Our intention is that we keep as many benefits of the current system as possible as we move
to program generation. For the start, we would not like to loose the safety of type checking. This
is in contrast to most compiler-compiler tools that syntactically merge semantic actions with the
generated code, deferring the consistency checks to target program compilation. The alternative we
propose is extension to the Haskell language (or its relevant subset) with new constructs (syntactic
sugar) for specification of syntax and lexical structure of programming languages. The imple-
mentation of this language would perform syntactic sugar elimination and limited form of partial
evaluation to obtain (the representation of) an ordinary Haskell program. In this way we hope to
keep the advantages of the current approach while improving the efficiency and flexibility.

Another potential line of work is compiler generation. The step from an interpreter to compiler
is conceptually simple, but forms the body of work on compilation technology for several decades.
Theoretical foundation of this are in specialization, partial evaluation and pass separation. Modular
monadic semantics has been used for compilation in [11] and [6], but we are not aware of any system
for compiler generation from specifications which would be based on this approach. A promissing
possibility for practial application is the integration ([19]) of Modular Monadic Semantics with
Action Semantics ([15]).

7 Conclusions

We have demonstrated that Haskell can successfully be used for the complex task of highly modular
specification of programming language features. This approach allows fast creation of interpreter
prototypes from their formal specifications, helping debug semantic definitions and providing a
theoretical basis for future implementations. Using a general purpose language instead of specialized
formalisms has many advantages. We believe that most of these can be retained in a future
interpreter or compiler generator.
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