6 research outputs found

    06261 Abstracts Collection -- Foundations and Practice of Programming Multi-Agent Systems

    Get PDF
    From 25.06.06 to 30.06.06, the Dagstuhl Seminar 06261 ``Foundations and Practice of Programming Multi-Agent Systems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Behavioural state machines

    Get PDF

    Verifying heterogeneous multi-agent programs

    Get PDF
    We present a new approach to verifying heterogeneous multi-agent programs — multi-agent systems in which the agents are implemented in different (BDI-based) agent programming languages. Our approach is based on meta-APL, a BDI-based agent programming language that allows both an agent’s plans and its deliberation strategy to be encoded as part of the agent program. The agent programs comprising a heterogeneous multi-agent program are first translated into meta-APL, and the resulting system is then verified using the Maude term rewriting system. We prove correctness of translations of Jason and 3APL programs and deliberation strategies into meta-APL. Preliminary experimental results indicate that our approach can significantly out-perform previous approaches to verification of heterogeneous multi-agent programs

    Externalisation and Internalization: A New Perspective on Agent Modularisation in Multi-Agent System Programming

    Full text link
    Abstract—Agent modularisation is a main issue in agent and multi-agent system programming. Existing solutions typically propose some kinds of constructs – such as capabilities – to group and encapsulate in well-defined modules inside the agent different kinds of agent features, that depend on the architecture or model adopted—examples are goals, beliefs, intentions, skills. In this paper we introduce a further perspective, which can be considered complimentary to existing approaches, which accounts for externalizing some of such functionalities into the computational environment where agents are (logically) situated. In this perspective, agent modules are realised as suitably designed artifacts that agents can dynamically exploit as external tools to enhance their action repertoire and – more generally – their capability to execute tasks. Then, to let agent (and agent programmers) exploit such capabilities abstracting from the low-level mechanics of artifact management and use, we exploit the dual notion of internalization, which consists in dynamically consulting and automatically embedding high-level usage protocols described in artifact manuals as agent plans. The idea is discussed providing some practical examples of use, based on CArtAgO as technology for programming artifacts and Jason agent platform to program the agents. I

    Putting the User at the Centre of the Grid: Simplifying Usability and Resource Selection for High Performance Computing

    Get PDF
    Computer simulation is finding a role in an increasing number of scientific disciplines, concomitant with the rise in available computing power. Realizing this inevitably re- quires access to computational power beyond the desktop, making use of clusters, supercomputers, data repositories, networks and distributed aggregations of these re- sources. Accessing one such resource entails a number of usability and security prob- lems; when multiple geographically distributed resources are involved, the difficulty is compounded. However, usability is an all too often neglected aspect of computing on e-infrastructures, although it is one of the principal factors militating against the widespread uptake of distributed computing. The usability problems are twofold: the user needs to know how to execute the applications they need to use on a particular resource, and also to gain access to suit- able resources to run their workloads as they need them. In this thesis we present our solutions to these two problems. Firstly we propose a new model of e-infrastructure resource interaction, which we call the user–application interaction model, designed to simplify executing application on high performance computing resources. We describe the implementation of this model in the Application Hosting Environment, which pro- vides a Software as a Service layer on top of distributed e-infrastructure resources. We compare the usability of our system with commonly deployed middleware tools using five usability metrics. Our middleware and security solutions are judged to be more usable than other commonly deployed middleware tools. We go on to describe the requirements for a resource trading platform that allows users to purchase access to resources within a distributed e-infrastructure. We present the implementation of this Resource Allocation Market Place as a distributed multi- agent system, and show how it provides a highly flexible, efficient tool to schedule workflows across high performance computing resources

    Modular BDI architecture

    No full text
    Categories and Subject Descriptors General Term
    corecore