
Doan, Thu Trang and Yuan, Yao and Alechina, Natasha
and Logan, Brian (2014) Verifying heterogeneous multi-
agent programs. In: 13th International Conference on
Autonomous Agents and Multi-Agent Systems AAMAS
2014, 5-9 May 2014, Paris, France.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/30182/1/eprints-doan14.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33574678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Verifying Heterogeneous Multi-Agent Programs

Thu Trang Doan Yuan Yao Natasha Alechina Brian Logan

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, UK

{ttd,yvy,nza,bsl}@cs.nott.ac.uk

ABSTRACT

We present a new approach to verifying heterogeneous multi-agent

programs — multi-agent systems in which the agents are imple-

mented in different (BDI-based) agent programming languages. Our

approach is based on meta-APL, a BDI-based agent programming

language that allows both an agent’s plans and its deliberation strat-

egy to be encoded as part of the agent program. The agent pro-

grams comprising a heterogeneous multi-agent program are first

translated into meta-APL, and the resulting system is then verified

using the Maude term rewriting system. We prove correctness of

translations of Jason and 3APL programs and deliberation strate-

gies into meta-APL. Preliminary experimental results indicate that

our approach can significantly out-perform previous approaches to

verification of heterogeneous multi-agent programs.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Programming Languages and Soft-

ware

Keywords

Agent programming languages; Agent programs; Verification

1. INTRODUCTION
Multi-agent systems (MAS) offer a promising approach to the

development of large, distributed, intelligent systems. In a multi-

agent system, the agents interact via message passing and/or by

performing actions in a shared environment. The agents in a MAS

are typically loosely coupled, and a key advantage of multi-agent

systems is that the individual agents comprising the system can

be developed independently by different developers using different

programming languages. We call a multi-agent system in which the

agents are implemented in different agent programming languages

a heterogeneous multi-agent program. In this paper, we focus on

heterogeneous multi-agent programs in which the individual agents

are written in a language in the Belief-Desire-Intention (BDI) fam-

ily of languages, as BDI is arguably the dominant agent program-

ming paradigm [13].

A key challenge in developing a multi-agent system is verifying

that it meets its design requirements. This is particularly impor-

tant as MAS are increasingly being used for safety critical appli-

cations. There has been considerable work on the verification of

This is author’s accepted manuscript version of an AAMAS 2014 paper

individual agent programs and homogeneous multi-agent programs

(where the individual agents are all implemented in the same agent

programming language), e.g., [21, 1, 5, 2, 18]. However, with the

exception of the work on the Agent Infrastructure Layer (AIL) [4,

9, 10], there has been relatively little work on verification of hetero-

geneous multi-agent programs. AIL is a collection of Java classes

abstracting capabilities of BDI agent programming languages. The

interpreters of each language in a heterogeneous multi-agent pro-

gram are reimplemented using AIL and programs verified using the

AJPF model checker.

In this paper, we present a new approach to verifying hetero-

geneous multi-agent programs based on meta-APL. Meta-APL is a

BDI-based agent programming language that allows both an agent’s

plans and its deliberation strategy to be encoded as part of the agent

program. In our approach, the agent programs comprising a hetero-

geneous multi-agent program are first translated into meta-APL,

and the resulting system is then verified using Maude [6]. A com-

pact, declarative representation of deliberation strategies (rather than,

e.g., reimplementing the agent interpreter using special purpose li-

braries as in AIL) makes it easier to ensure that the operational

semantics of the target language has been faithfully encoded for

verification. While there has been work on expressing deliberation

strategies in an agent programming language, e.g., [12, 15, 7], to

the best of our knowledge, such an approach has not previously

been used in the verification of heterogenous multi-agent systems.

The main contributions of this paper are the definition meta-APL

and its operational semantics; provably correct translations of Jason

and 3APL programs into meta-APL; a verification framework for

meta-APL multi-agent programs based on Maude; and preliminary

experimental results which indicate that our approach requires sig-

nificantly less time to verify properties compared to [10].

2. Meta-APL
In this section, we briefly introduce meta-APL.1 A meta-APL

agent consists of an agent program and the agent state which is

queried and manipulated by the program. The agent’s state consists

of two main components: the mental state, which is a collection of

atom instances, and the plan state which consists of a collection of

plan instances and their properties. Atom instances are used to rep-

resent beliefs, goals, events etc. Plan instances play a role similar to

relevant, applicable plans in conventional BDI agent programming

languages.

2.1 Meta-APL Syntax
The syntax of Meta-APL is built from atoms, plans, clauses,

macros, object rules, and meta-rules, and a small number of primi-

1A preliminary version of meta-APL was presented in [22].

tive operations for querying and updating the mental state and plan

state of an agent.

Atoms Atoms are built of terms. Terms are defined using the

following disjoint sets of symbols: IDs which is a non-empty to-

tally ordered set of ids, Pred which is a non-empty set of predicate

symbols, Func which is a non-empty set of function symbols, and

Vars which is a non-empty set of variables.

The syntax of terms t and atoms a is given by:

t =def x | f(t1, . . . , tm)
a =def p(t1, . . . , tn)

where f ∈ Func, p ∈ Pred, x ∈ V ars ∪ IDs, n ≥ 0, and

m ≥ 0. To distinguish between different instances of syntactically

identical atoms (e.g., two instances of the same event), each atom

instance is associated with a unique id ∈ IDs .

The atom instances comprising the agent’s mental state can be

queried and updated using the following primitive operations:

• atom(i, a): an instance of the atom a has id i

• add-atom(i, a): create a new instance of the atom a and bind

its id to i

• delete-atom(i): delete the atom instance with id i

For brevity, queries may be expressed in terms of atoms rather than

instances where the id is not important, i.e., the query a is true if

the query atom(_, a) is true.

Plans A plan is a textual representation of a sequence of ac-

tions the agent can execute in order to change its environment or

its mental state. Plans are built of external actions, mental state

tests, reified mental state actions and subgoals composed with the

sequence operator ‘;’. A plan π is defined as:

π =def ǫ | (ea | mt | ma | sg) ;π

where ǫ denotes the empty plan, ea is an external action of the

form e(t1, . . . , tn), e ∈ ActionNames and t1, . . . tn, n ≥ 0 are

ground terms, mt is a mental state test of the form ? q where q
is a (primitive or defined) mental state query, ma is a (primitive

or defined) mental state action, and sg is a subgoal of the form

! g(u1, . . . , um) where g(u1, . . . , um) is an atom and u1, . . . um,

m ≥ 0 are (possibly non-ground) terms.

Meta-APL distinguishes between generic plans, which are a static

part of the agent program, and plan instances — specific substitu-

tions of generic plans generated during the execution of the pro-

gram. The plan state of a meta-APL agent may contain multiple in-

stances of the same plan (e.g., if a plan is used to achieve different

subgoals). Each plan instance has a unique id, a current suffix (the

part of the instance still to be executed), one or more justifications,

a substitution and (at most) one active subgoal. A justification is an

atom instance id. Informally a justification is a ‘reason’ for execut-

ing (this instance of) the plan, e.g., an atom representing a belief or

goal. In general, a plan instance may have multiple justifications,

and a justification may be the reason for adopting multiple plan in-

stances. The substitution θ = {x1/t1, . . . , xk/tk} specifies the

current binding of variables in the plan instance to terms. A sub-

goal is created by the execution of a subgoal step ! g(u1, . . . , um),
and is an instance of the atom g(u1, . . . , um) which shares vari-

ables with the subgoal in the plan instance. Each plan instance also

has a set of execution state flags σ. σ is subset of a set of flags

Flags which includes at least intended, scheduled, stepped

and failed, and may contain additional user-defined flags, e.g.,

some deliberation strategies may require a suspended execution

state.

The plan instances comprising the plan state of an agent can be

queried and updated using the following primitive operations:

• plan(i, π): i is the id of an instance of the plan π

• plan-remainder(i, π): π is the textual representation of the

(unexecuted) suffix of the plan instance with id i

• justification(i, j): the plan instance with id i has the atom

instance with id j as a justification

• substitution(i, θ): the plan instance with id i has substitu-

tion θ

• subgoal(i, j): j is the id of the subgoal of the plan instance

with id i, i.e., plan-remainder(i, ! g;π) and atom(j, g) such

that j is the id of the instance of g created by executing ! g in

i

• state(i, σ): the plan instance with id i has execution state

flags σ

• set-remainder(i, π) set the (unexecuted) suffix of the plan

instance with id i to π

• set-substitution(i, θ): set the substitution of the plan in-

stance with id i to θ, where θ may be an implicit substitution

resulting from the unification of two terms t(x) = t(a)

• set-state(i, σ) set the execution state flags of the plan in-

stance with id i to σ

• delete-plan(i): delete the plan instance with id i, together

with its suffix, substitution and subgoal (if any)

• cycle(n): the current deliberation cycle is n

Clauses & Macros Additional mental state and plan state queries

can be defined using Prolog-style Horn clauses of the form:

q ← q1, . . . , qn

where q1, . . . , qn are mental or plan state queries or their negation.

Negation is interpreted as negation as failure, and we assume that

the set of clauses is always stratified, i.e., there are no cycles in

predicate definitions involving negations. Clauses are evaluated as

a sequence of queries, with backtracking on failure.

Additional mental state and plan state actions can be defined us-

ing macros. A macro is a sequence of mental state and/or plan state

queries/tests and actions. Macros are evaluated left to right, and

evaluation aborts if an action or query/test fails. For example, the

mental state action add-atom(a) which does not return an instance

id can be defined by the macro: add-atom(b) = add-atom(_, b).
Macros can also be used to define type specific mental state actions,

e.g., to add an instance of the atom b as a belief and signal a belief

addition event as in Jason [3], we can use the macro

add-belief(b) = add-atom(belief(b)), add-atom(+belief(b))

In what follows, we assume the following clause-definable plan

state queries and macro-definable plan state actions: intention(i):
the plan instance with id i is intended; executable-intention(i):
the intention with id i has no subgoal (hence no subintention);

scheduled(i): a step of the plan instance with id i will be executed

at the current deliberation cycle; failed(i): the plan instance with id

i has failed; add-intention(i): add the intended flag to the plan

instance with id i.
Object Rules To select appropriate plans given its mental state,

an agent uses object rules. Object rules correspond to plan selection

constructs in conventional BDI agent programming languages, e.g.,

plans in Jason [3], or PG rules in 3APL [8]. The syntax of an object

rule is given by:

reasons [: context]→ π

where reasons is a conjunction of non-negated primitive mental

state queries, context is boolean expression built of mental state

queries and π is a plan. The context may be null (in which case

the “:” may be omitted), but each plan instance must be justified

by at least one reason. The reason and the context are evaluated

against the agent’s mental state and both must return true for π to

be selected. Firing an object rule gives rise to a new instance of the

plan π that forms the right hand side of the rule which is justified

by the atom instances matching the reasons.

Meta-rules To update the agent’s state, specify which plan in-

stances to adopt as intentions and select which intentions to execute

in a given cycle an agent uses meta-rules. The syntax of a meta-rule

is given by:

meta-context→ m1; . . . ;mn

where meta-context is a boolean expressions built of mental state

and plan state queries and m1, . . . ,mn is a sequence of mental

state and/or plan state actions. When a meta-rule is fired, the ac-

tions that form its right hand side are immediately executed.

Meta-APL Programs A meta-APL program (D,R1, . . . ,Rk,
A) consists of a set of clause and macro definitions D, a sequence

of rule setsR1, . . . ,Rk, and a set of initial atom instances A. Each

rule setRi is a set of object rules or a set of meta-rules that forms a

component of the agent’s deliberation cycle. For example, rule sets

can be used to update the agent’s mental and plan state, propose

plans or create and execute intentions.

2.2 Meta-APL Core Deliberation Cycle
The meta-APL core deliberation cycle consists of three main

phases. In the first phase, a user-defined sense() function updates

the agent’s mental state with atom instances resulting from percep-

tion of the agent’s environment, messages from other agents etc.

In the second phase, the rule sets comprising the agent’s program

are processed in sequence. The rules in each rule set are run to

quiescence to update the agent’s mental and plan state. Each rule

is fired once for each matching set of atom and/or plan instances.

Changes in the mental and plan state resulting from rule firing

directly update the internal (implementation-level) representations

maintained by the deliberation cycle, which may allow additional

rules to match in the same or subsequent rule sets. Processing a set

of object rules creates new plan instances. Processing a set of meta-

rules may involve updating the agent’s beliefs and goals, deleting

intentions for achieved goals, deleting unintended plan instances

from the previous deliberation cycle, updating the agent’s inten-

tions or selecting which intention(s) to execute at this cycle, etc.

Finally, in the third phase, the next step of all scheduled object-

level plans is executed. The deliberation cycle then repeats. Cycles

are numbered starting from 0 (initial cycle), and the cycle number

is incremented at each new cycle.

3. OPERATIONAL SEMANTICS
In this section, we give the operational semantics of meta-APL

in terms of a transition system. We first present the configuration

of meta-APL agent programs (henceforth agent configuration) be-

fore presenting the transition rules. Each transition transforms one

configuration into another and corresponds to a single computa-

tion/execution step.

Meta-APL Configuration An agent configuration is a tuple

〈D,R1 . . .Rk, A,Π, J, S, p, n〉 where D is a set of clause and

macro definitions, each Ri, 1 ≤ i ≤ k is a either a set of object

rules or a set of meta-rules, A is a set of atom instances, Π is a set

of plan instances, J ⊆ (ID×ID) is a justification relation between

plan instance ids and justification ids, S ⊆ (ID×ID) is a sub-goal

relation between plan instance ids and subgoal ids, 0 ≤ p ≤ k + 2
is a phase indicator (where 0 is the sense phase, 1 ≤ p ≤ k corre-

spond to the rule sets, and k+1, k+2 correspond to the exec phase),

and n ∈ N is the current deliberation cycle. An atom instance

α ∈ A is a tuple (i, a, c) where: i is the id of the instance, a is the

atom of which i is an instance, and c is the cycle at which the in-

stance was created. A plan instance ρ ∈ Π is a tuple (i, π, π′, f, c)
where: i is the id of the instance, π is the plan of which i is an

instance, π′ is the remainder of i, f is the set of execution state

flags of i (a subset of {failed, stepped, scheduled, intended}
and any user-defined flags), and c is the cycle at which the in-

stance was created. Since the agent’s clause and macro definitions,

and object and meta-rules do not change during execution, we use

〈A,Π, J, S, p, n〉 to denote the configuration when no ambiguity

can arise.

The initial configuration of an agent is defined by its initial atom

instances A0, and execution starts in the sense phase: 〈A0, ∅, ∅, ∅, 0, 0〉.
Mental & Plan State Queries The evaluation of a query with

respect to a configuration results in a substitution θ which is the

most general unifier (mgu) of the query and some element of the

configuration. Given t1 and t2, we write t1 = t2 | θ iff t1 and t2
unify with mgu θ.

Below we state how each primitive query type is evaluated against

a configuration C = 〈A,Π, J, S, p, n〉

• C ⊢ atom(i, a) |θ iff ∃(i1, a1, c1)∈A: (i1, a1)=(i, a) |θ

• C ⊢ cycle(c) iff c = n

• C ⊢plan(i,π) |θ iff ∃(i1,π1,π1
′,f1,j1)∈Π:(i1, π1)=(i,π)|θ

• C ⊢ plan-remainder(i, π) | θ iff ∃(i1, π1, π
′

1, f1, j1) ∈ Π
such that (i1, π

′

1) = (i, π) |θ

• C ⊢ justification(i, j) |θ iff ∃(i1,j1)∈J :(i1,j1)=(i,j) |θ

• C ⊢ substitution(i, µ) | θ iff ∃(i1, π1, π
′

1θ
′

1, f1, j1) ∈ Π
such that (i1, θ

′

1) = (i, µ) | θ

• C ⊢ subgoal(i, j) |θ iff ∃(i1,j1)∈S: (i1,j1)=(i,j) |θ

• C⊢state(i,f) |θ iff ∃(i1,π1,π1
′,f1,j1)∈Π:(i1,f1)=(i,f) |θ

• C ⊢ not(q) | θ iff there is no θ′ for the variables in q left

unsubstituted by θ such that C ⊢ q | θθ′

• C ⊢ q1, q2, . . . , qn | θ iff ∃θ1, . . . , θn such that θ = θ1 . . . θn
and C ⊢ q1 | θ1, . . . , C ⊢ qn | θ1 . . . θn

• C ⊢ q | θ where q ← q1, . . . , qn iff C ⊢ q1, q2, . . . , qn | θ

Mental & Plan State Actions For each mental and plan state

action act, we define a binary relation
act
−→ on configurations that

describes the resulting configuration when act is performed.

• 〈A,Π, J, S, p, n〉
add-atom(i,a)
−→ 〈A∪{(i, a, n)},Π, J, S, p, n〉where

i is a new id

• 〈A,Π, J, S, p, n〉
delete-atom(i)
−→ 〈A′,Π′, J ′, S′, p, n〉 where

A′ = A \ {(i′, _, _) ∈ A | (i, i′) ∈ (S ∪ J−1)∗}

Π′ = Π \ {(i′, _, _, _, _) ∈ Π | (i, i′) ∈ (S ∪ J−1)∗}

S′ = {(i′, j′) ∈ S | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}

J ′ = {(i′, j′) ∈ J | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}

(above, R∗ denotes the reflexive transitive closure of a binary

relation R).

• 〈A,Π, J, S, p, n〉
set-substitution(i,θ)

−→ 〈A,Π′, J, S, p, n〉where Π′ =

Π \ {(i, π, π′θ′, f, c) ∈ Π} ∪ {(i, π, π′θ, f, c)}

• 〈A,Π, J, S, p, n〉
set-state(i,σ)
−→ 〈A,Π′, J, S, p, n〉where Π′ = Π\

{(i, π, π′, f, c)} ∪ {(i, π, π′, σ, c)}

• 〈A,Π, J, S, p, n〉
delete-plan(i)
−→ 〈A′,Π′, J ′, S′, p, n〉 where Π′ =

Π \ {(i′, _, _, _, _) ∈ Π | (i, i′) ∈ (S ∪ J−1)∗}

A′ = A \ {(i′, _, _, _) ∈ A | (i, i′) ∈ (S ∪ J−1)∗}

S′ = {(i′, j′) ∈ S | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}

J ′ = {(i′, j′) ∈ J | (i′, _, _, _, _) ∈ Π′, (j′, _, _) ∈ A′}

Action sequences Given the definitions of actions above, we
can now specify the effects of sequences of actions and macros.
Both are defined by non-empty sequences m1; . . . ;mk where each
element mi is a primitive or macro-defined mental or plan state
query or action.

〈A0,Π0, J0, S0, p, n〉
m1; ... ;mk−→ 〈Aj ,Πj , Jj , Sj , p, n〉

iff 〈Ai−1,Πi−1, Ji−1, Si−1, p, n〉
mi−→ 〈Ai,Πi, Ji, Si, p, n〉 for ev-

ery 1 ≤ i ≤ j, and either j = k or j < k and there is no mj+1

transition out of 〈Aj ,Πj , Jj , Sj , p, n〉.

3.1 Transition Rules
The execution of a meta-APL agent program modifies its initial

configuration by means of transitions that are derivable from the

transition rules given below.
Sense In the sense phase, the agent’s mental state is updated

by the user-defined sense() function

A′ = sense(env,A)

〈A,Π, J, S, 0, n〉 −→ 〈A′,Π′, J, S, 1, n〉

The definition of sense() depends on the nature of the agent’s

interaction with its environment and its deliberation cycle, but typ-

ically results in the addition and/or removal of atom instances.

Apply In the apply phase the rules in each rule set Ra, 1 ≤
a ≤ k are run to quiescence to update the agent’s mental and plan

state.
If Ra contains object rules, a plan instance is created for each

applicable object rule. An object rule (r : c → π) ∈ Ra is appli-
cable if its condition evaluates to true in the current configuration
under substitution θ, and if there is no plan instance in the plan base
with exactly the same plan body and justifications

∃(r : c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 ⊢ (r : c) | θ ∧
∄(i, πθ, _, _, _) ∈ Π : {(i, j) | j ∈ ids(rθ)} ⊆ J,
Π′ = Π ∪ {(inew, πθ, πθ, { }, n)} where inew is a new id,
J ′ = J ∪ {(inew, j) | j ∈ ids(rθ)}

〈A,Π, J, S, a, n〉 −→ 〈A,Π′, J ′, S, a, n〉

The new plan instance πθ is added to the plan base, and its justifi-
cations recorded. The function ids(q) collects the ids of the atom
instances used to answer the query r = q1, q2, . . . , qn. When no
more object rules can be applied, the phase is advanced to a+ 1

∀(r : c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 ⊢ (r : c) | θ
=⇒ ∃(i, πθ, _, _) ∈ Π : {(i, j) | j ∈ ids(rθ)} ⊆ J

〈A,Π, J, S, a, n〉 −→ 〈A,Π, J, S, a+ 1, n〉

IfRa contains meta-rules, the actions in the body of each appli-
cable meta-rule in Ra are executed. A meta-rule (c → π) ∈ Ra

is applicable if its condition evaluates to true in the current config-
uration.

∃(c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 ⊢ c | θ

〈A,Π, J, S, a, n〉
πθ
−→ 〈A′,Π′, J ′, S′, a, n〉

〈A,Π, J, S, a, n〉 −→ 〈A′,Π′, J ′, S′, a, n〉

When no more meta-rules can be applied, the phase is advanced to
a+ 1

∀(c→ π) ∈ Ra : 〈A,Π, J, S, a, n〉 6⊢ c

〈A,Π, J, S, a, n〉 −→ 〈A,Π, J, S, a+ 1, n〉

Exec The exec phase consists of two sub-phases. In the first
p = k+1 sub-phase, the stepped flags of plan instances executed
at the previous cycle are deleted, and the phase is advanced to k+2

Π′ = Π \ {(i, π, π′, f ∪ {stepped},m) ∈ Π} ∪
{(i, π, π′, f,m) ∈ Π | (i, π, π′, f ∪̇ {stepped},m) ∈ Π}

〈A,Π, J, S, k + 1, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

where ∪̇ denotes the disjoint union operator over sets.

In the second p = k+2 sub-phase, one step of each scheduled

plan instance is executed. If the step completes successfully, the

scheduled flag is replaced by stepped; if the action fails, scheduled

is replaced with failed.
External actions are performed in the agent’s environment. We

assume that each external action can signal whether the action suc-
ceeded or failed. The first transition handles the case in which the
action succeeds

∃(i, _, ea;π, f,m) ∈ Π : scheduled ∈ f ∧ ea succeeds
Π′=Π\{(i,_,ea;π,f,m)}∪{(i,_,π,f \{scheduled}∪{stepped},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

The second transition handles the case where the action fails

∃(i, _, ea;π, f,m) ∈ Π : scheduled ∈ f ∧ ea fails
Π′=Π\{(i,_,ea;π,f,m)}∪{(i,_,π,f \{scheduled}∪{failed},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

Mental state tests are evaluated against the configuration. If the
test is successful, the resulting substitution is applied to the plan
instance

∃(i, _, ? b;π, f,m) ∈ Π:scheduled∈f∧〈A,Π, J, S, k + 2, n〉⊢b |θ
Π′=Π\{(i,_,?b;π,f,m)}∪{(i,_,πθ,f \{scheduled}∪{stepped},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

If the test fails, the scheduled flag is replaced by failed

∃(i, _, ? b;π, f,m) ∈ Π:scheduled∈f∧〈A,Π, J, S, k + 2, n〉0b |θ
Π′=Π\{(i,_,?b;π,f,m)}∪{(i,_,?b;π,f \{scheduled}∪{failed},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π′, J, S, k + 2, n〉

A mental state action ma, where ma is add-atom or delete-atom,
updates the agent’s configuration

∃(i, _,ma;π, f,m) ∈ Π : scheduled ∈ f

〈A,Π, J, S〉
ma
−→ 〈A′,Π′, J ′, S′〉

Π′′=Π′\{(i,_,ma;π,f,m)}∪{(i,_,π,f \{scheduled}∪{stepped},m)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A′,Π′′, J ′, S′, k + 2, n〉

The evaluation of a subgoal results in the creation of a new in-
stance of the goal atom (with the substitution of the plan instance
applied to any variables in the goal), together with a subgoal rela-
tion associating the atom and plan instances

∃(i, _, ! g;πθ, f,m) ∈ Π : scheduled ∈ f
A′ = A ∪ {(inew, gθ, n)} where inew is a new id

Π′=Π\{(i, _,!g;πθ,f,m)}∪{(i,_,πθ,f \{scheduled}∪{stepped},m)}
S′ = S ∪ {(i, inew)}

〈A,Π, J, S, k + 2, n〉 −→ 〈A′,Π′, J, S′, k + 2, n〉

When all scheduled plan instances have been processed, the
sense phase of the next deliberation cycle begins

∀(i, _, a;π, f, j) ∈ Π : scheduled /∈ f

〈A,Π, J, S, k + 2, n〉 −→ 〈A,Π, J, S, 0, n+ 1〉

4. CORRECT TRANSLATION
In this section we show how Jason and 3APL programs (and

their associated deliberation strategies) can be translated into meta-

APL to give equivalent behavior under weak bisimulation equiva-

lence.

First we introduce the notion of weak bisimulation and justify

using it to compare agent programs. The notion was introduced in

[19] and applied to agent programs in [14]. The formal definition of

weak bisimulation is given below. A transition system consists of

a set of states/configurations S and a set of transitions
a
−→ between

states as specified by the operational semantics of the language,

where the label a of the transition is either an external action or

any other transition/internal action τ . The set of possible transition

labels for a program with a set of external actions Act is denoted

by Actτ (it corresponds to Act ∪ {τ}). We use an abbreviation

s
l
=⇒ s′ to say that there is a path from s to s′ labelled with a

sequence of labels l, and skip all τs from the label (so that if the

path from s to s′ contains only τ transitions, we say that s
ǫ
=⇒ s′

(the label of the path is the empty string ǫ). The function observe
returns observable or meaningful properties of the agent’s state, for

example beliefs.

DEFINITION 1 (WEAK BISIMULATION). Let (S, {
a
−→| a ∈

Actτ}) and (T, {
a
−→| a ∈ Actτ}) be two transition systems. A

relation∼=⊆ S×T is a weak bisimulation if for any s ∼= t, it is the

case that:

1. observe(s) = observe(t),

2. if s
τ
−→ s′, then there exists t′ ∈ T such that t

ǫ
=⇒ t′ and

s′ ∼= t′; if s
a
−→ s′ where a ∈ Act , then there exists t′ ∈ T

such that t
a
=⇒ t′ and s′ ∼= t′, and

3. if t
τ
−→ t′, then there exists s′ ∈ S such that s

ǫ
=⇒ s′ and

s′ ∼= t′; if t
a
−→ t′ where a ∈ Act , then there exists s′ ∈ S

such that s
a
=⇒ s′ and s′ ∼= t′.

The reason for using weak rather than strong bisimulation (which

matches all properties of states and all transitions) is that the latter

notion is not informative when comparing programs written in dif-

ferent languages. Clearly, the same behaviour in two different lan-

guages may have to be implemented using a different number and

type of internal operations, and the sets of state variables used by

the two programs will probably be different. We want to match only

the external actions produced by the two programs, and ‘meaning-

ful’ properties of states, such as beliefs. The translations given

below generate agent programs that are equivalent in this sense.

4.1 Jason
We assume the syntax and operational semantics defined in [3,

Ch.10]. Given a Jason program (bs, ps), where bs are the agent’s

initial beliefs and ps are the agent’s plans, we translate it into a

meta-APL program (A,D,R1,R2,R3). D defines macros for

adding beliefs and goals and a query for plan triggering events:

add-belief(b) = add-atom(belief(b)); add-atom(+belief(b))

delete-belief(b) = delete-atom(belief(b)); add-atom(-belief(b))

trigger-event(i)← atom(i, e), plan-trigger(e), not justification(_, i)

R1 contains meta-rules to remove non-intended plan instances

from the previous cycle, to remove completed intentions, and to

select an event to process at this cycle:

plan(i, _), not intention(i)→ delete-plan(i)

intention(i), plan-remainder(i, ǫ), justification(i, j),

not subgoal(_, j)→ delete-atom(j)

intention(i), plan-remainder(i, ǫ), justification(i, j),

subgoal(k, j), substitution(i, si), substitution(k, sk)

→ set-substitution(k, si ∪ sk), delete-atom(j)

cycle(c), not selected-event(_, c), trigger-event(i)

→ add-atom(selected-event(i, c))

R3 contains meta-rules to nondeterministically select a plan in-

stance for the selected event, to select an intention to execute at

this cycle, and to generate a test goal addition event if the intention

selected at this cycle starts with a test goal that evaluates to false:

cycle(c), selected-event(i, c), not (justification(j′, i), intention(j′)),

justification(j, i)→ add-intention(j)

not scheduled(_), executable-intention(i)→ schedule(i)

scheduled(i), plan-remainder(i, ?q ;π), not q

→ set-remainder(i, !(+test(q)) ;π)

Together D,R1 andR3 define the Jason deliberation cycle, and

are common to all Jason programs.

A and R2 are specified by a translation function tr. tr trans-

forms each belief b ∈ bs into two atom instances tr(b) = (ib,
belief(b), 0), (i′b, +belief(b), 0) representing the belief b and the

corresponding belief addition event. tr transforms each Jason plan

tei : ci ← hi ∈ ps into an atom instance plan-trigger(tr(tei))
(where tr(tei) is given below) in A and a corresponding meta-

APL rule inR2, with the translations of tei, ci and hi forming the

reason, context and plan respectively. The translation of tei de-

pends on its type and is given by: tr(+b) = +belief(b), tr(-b) =
-belief(b), tr(+!g) = +goal(g) and tr(+?g) = +test(g). Each el-

ement of the plan context ci = c1i& . . .&cki is transformed into a

corresponding mental state query: tr([not]cji) = [not]belief(cji)
(with “&” replaced by “,”). The definition of the plan body trans-

lation tr(hi) is similarly straightforward. External actions and sub-

goals are unchanged. Test goals are translated into correspond-

ing mental state tests, and the addition and deletion of beliefs are

translated into corresponding type specific mental state actions de-

fined using macros: tr(ea) = ea, tr(!g) = !+goal(g), tr(?b) =
?belief(b), tr(+b) = add-belief(b), tr(-b) = delete-belief(b) and

tr(h1
i ; . . . ;h

n
i) = tr(h1

i); . . . ; tr(hn
i).

Before stating the weak bisimulation result for the Jason trans-

lation into meta-APL, we need to define which properties of the

states of Jason and meta-APL programs are observable (the func-

tion observe). For a Jason configuration s, we stipulate that if the

phase of s is ProcMsg, observe(s) returns (Bs,Es, Is), where

Bs are (suitable representations of) the agent’s beliefs, Es the rele-

vant events in the event base, and Is are the uncompleted intentions

in the intention base. Otherwise observe(s) = ⊤ where ⊤ is an

empty observation. For a meta-APL configuration t we stipulate

that observation of t is possible if the value of the stage counter is 0

(the agent is in 0 phase). Then observe(t) = (Bs,Es, Is) where

Bs are instances of beliefs, Es of relevant events in the atom base,

and Is of uncompleted intentions in the intention base. Otherwise

observe(t) returns ⊤.

THEOREM 1. Every Jason program (bs, ps) is weakly bisimilar

to its meta-APL translation tr(bs, ps) = (A,D,R1,R2,R3).

The proof (and the proof of Theorem 3 below for 3APL) uses a

general result which states that if there is a strong bisimulation be-

tween cycles in two transition systems (where cycles intuitively

correspond to agent deliberation cycles, starting and ending with

the sense phase), then there is a weak bisimulation between the two

transition systems. We state the main definitions needed for this

result, and the theorem itself, below.

Let (S, {
a
−→| a ∈ Actτ} be a transition system and s0 the initial

state in this transition system. Consider a tree unravelling of the

system starting in s0. Let us denote the states in the tree unravelling

by RC(s0) and let SC(s0) ⊆ RC(s0) be the set of configurations

which correspond to the beginning of a deliberation cycle (sensing,

processing messages etc.).

DEFINITION 2 (DELIBERATION CYCLE). A deliberation cy-

cle of RC(s0) is a finite sequence of transitions s1
a1−→ . . .

an−1

−−−→
sn (n > 1) where:

• si ∈ RC(s0) for all 1 ≤ i ≤ n,

• ai ∈ Actτ for all 1 ≤ i < n,

• s1, sn ∈ SC(s0), and

• si /∈ SC(s0) for all 1 < i < n.

For a cycle c = s1
a1−→ . . .

an−1

−−−→ sn, we define first(c) = s1
and last(c) = sn. If s = si for some i ∈ {1, . . . , n}, we write

label(c|s) to denote the label of the prefix of c from first(c) until

s, i.e., label(c|s) = label(s1
a1−→ . . .

ai−1

−−−→ si).
Let DC(s0) denote the set of all deliberation cycles of RC(s0).

We define transitions between consecutive deliberation cycles in

RC(s0) as follows. Given c, c′ ∈ DC(s0), c
l
−→ c′ iff last(c) =

first(c′) and l = label(c). For any c ∈ RC(s0), observe(c) =
observe(first(c)). Slightly abusing notation, we write s ∈ c if s
occurs in c. We also lift the notation c ∼ d from pairs of cycles to

pairs of sets of cycles by setting C ∼ D iff for ∀ c ∈ C, ∃ d ∈ D
such that c ∼ d, and ∀ d ∈ D, ∃ c ∈ C such that c ∼ d.

THEOREM 2. Let s0 and t0 be two initial configurations. If

there exists a strong bisimulation ∼⊆ DC(s0) × DC(t0) where,

for any c ∼ d, the following conditions hold:

1. ∀ s ∈ c where s 6= last(c), ∃ t ∈ d such that t 6= last(d),
label(c|s) = label(d|t), observe(s) = observe(t) and

{c′ ∈ DC(s0) | first(c) = first(c′), s ∈ c′} ∼ {d′ ∈
DC(t0) | first(d) = first(d′), t ∈ d′},

2. ∀ t ∈ d where t 6= last(d), ∃ s ∈ c such that s 6= last(c),
label(d|t) = label(c|s), observe(t) = observe(s) and

{c′ ∈ DC(s0) | first(c) = first(c′), s ∈ c′} ∼ {d′ ∈
DC(t0) | first(d) = first(d′), t ∈ d′} ,

then, RC(s0) and RC(t0) are weakly bisimilar.

This technical result is useful since it allows us to prove weak

bisimulation equivalence between two transition systems if we can

prove that there is a strong bisimulation between the cycles. The

main idea of constructing such a strong bisimulation between de-

liberation cycles of a Jason program and its meta-APL translation,

is to determine the selections that have been made within the delib-

eration cycles of both agents. In particular, each Jason deliberation

cycle has at most three selections: a selected event for which there

is at least one relevant plan; an applicable plan among these rele-

vant plans to add to the set of intentions; and an intention from the

set of intentions to execute. Similarly, each deliberation cycle of its

meta-APL translation also has at most three selections: a selected

event by the fourth meta rule in R1; a new plan instance (corre-

sponding to an applicable plan in Jason) to become an intention by

the first meta rule in R3; and an intention to be executed by the

second meta rule in R3. The strong bisimulation is constructed by

matching deliberation cycles of a Jason agent and its meta-APL

translation based on the selections made in each deliberation cy-

cle. In the proof, we show that such a construction yields a strong

bisimulation which also satisfies the two conditions stated in The-

orem 2. This gives us the proof that there is a weak bisimulation

between the two transition systems.

4.2 3APL
A similar translation can be defined for 3APL. We assume the

syntax and operational semantics given in [8]. We translate a 3APL

program (cs, bs, gs, pg, pr), where cs are the capabilities (i.e., be-

lief update actions), bs are the initial beliefs, gs are the initial goals,

pg are the planning goal rules and pr are the plan revision rules,

into a meta-APL program (A,D,R1,R2,R3,R4) whereR1 and

R4 implement the 3APL deliberation strategy, and A, D, R2 and

R3 are specified by a translation function tr. The translation of A
and D are similar to Jason except that capabilities are translated

into macros in D defined in terms of mental state actions. In the

interests of brevity we focus on the translation of the planning goal

and plan revision rules that constitute a 3APL agent’s program, and

the meta-APL rules that implement the 3APL deliberation strategy.

R1 and R4 are common to all 3APL programs. R1 contains

meta-rules to remove goals which are believed, non-intended plan

instances from the previous cycle and completed intentions.

goal(g), belief(g)→ delete-atom(goal(g))

revise-plan(i, p)→ delete-atom(revise-plan(i, p))

plan(i, _), not(intention(i))→ delete-plan(i)

intention(i), plan-remainder(i, ǫ)→ delete-plan(i)

R4 contains meta-rules to select a plan instance to revise, a plan

instance for each goal or belief, and an intention to execute at this

cycle.

cycle(c), not selected-PR(_, c), revise-plan(i, pb)

→ add-atom(selected-PR(i, c)), set-remainder(i, pb)

cycle(c), not selected-PG(_, c), justification(i, r),

not (justification(j, r), intention(j))

→ add-atom(selected-PG(i, c)), add-intention(i)

not scheduled(_), intention(i), not failed(i)→ schedule(i)

R2 and R3 contain the translation of the 3APL program. The

translation function tr transforms each 3APL planning goal rule

κ ← β | π ∈ pg into a corresponding meta-APL rule in R2, with

the translations of κ, β and π forming the reason, context and plan

respectively. The translation of κ is given by tr(κ) = goal(κ).
Each element of the belief condition β is transformed into a corre-

sponding mental state query. When translating the plan body tr(π),
external actions are unchanged tr(ea) = ea, test goals are trans-

lated into corresponding mental state tests, tr(b?) = ?b and mental

actions are translated into corresponding mental state macros in D.

Abstract plans are translated as corresponding ‘external’ actions

which always fail (causing the plan to block). tr translates each

plan revision rule πh ← β | πb ∈ pr as a meta-rule inR3

plan(i, πh), intention(i), tr(β)→ add-atom(revise-plan(i, πb))

where tr(β) is a set of mental state queries corresponding to β,

and the atom revise-plan(i, πb) indicates that plan instance i can be

revised with πb.

Before stating the equivalence result, we need to define the observe
function used in stating weak bisimulation equivalence. For a 3APL

configuration s, we stipulate that s is observable if it is in Message
phase. Then observe(s) = (σ, γ, I) where σ are beliefs in the be-

lief base, γ are goals in the goal base and I are intentions in the

intention base. Otherwise observe(s) = ⊤. For a meta-APL con-

figuration t which is in 0 phase, observe(t) = (Bs,Gs, Is) where

Bs are beliefs in the atom base, Gs are goals in the atom base,

and Is are uncompleted intentions in the intention base. Otherwise

observe(t) = ⊤.

THEOREM 3. Every 3APL program (bs, gs, pg, pr) is weakly

bisimilar to its meta-APL translation tr(bs, gs, pg, pr) = (A,D,

R1,R2,R3,R4).

The proof uses Theorem 2 and a construction of strong bisimulation

between cycles in the transition system of a 3APL program and

cycles in the transition system of its meta-APL translation. Similar

to the translation of Jason, such a strong bisimulation is constructed

by matching deliberation cycles of the 3APL agent and its meta-

APL translation. Here, each deliberation cycle of 3APL has at most

three selections: an applicable PG rule to apply; an applicable PR

rule to apply; and an intention to execute. Correspondingly, each

deliberation cycle of the meta-APL translation makes at most three

selections: a new plan instance (generated by the translation of a

PG rule in R2) to become an intention by the second meta-rule of

R4; an intention to be revised by the translation of a PR rule in R3

and the first meta-rule of R4; and an intention to be executed by the

third meta rule of R4. We show that this construction gives rise to

a strong bisimulation which satisfies two conditions of Theorem 2.

5. VERIFICATION
Translation of the individual agent programs comprising a het-

erogeneous multi-agent program results in a set of meta-APL pro-

grams that interact through a common environment. As shown in

the previous section, the meta-APL translations have equivalent be-

havior under weak bisimulation equivalence to the original hetero-

geneous multi-agent program.

In this section, we briefly outline how we verify properties of this

set of meta-APL programs using Maude [6] and its associated LTL

model checker. Maude has previously been used both to prototype

agent languages and for verification, e.g., [24, 11, 23]. It can model

check systems whose states involve arbitrary algebraic data types—

the only assumption is that the set of states reachable from a given

initial state is finite. Compared to propositional model checkers,

this greatly simplifies modeling of the agents’ (first-order) rules and

deliberation strategies.

The Maude encoding of meta-APL consists of two parts: a set of

Maude modules defining types, equations and rules that encode the

meta-APL operational semantics, and a set of additional modules

generated by the tr function that encode the concrete meta-APL

program of each agent. The encoding of the meta-APL operational

semantics requires approximately 60 equations and 15 rules (about

300 lines of Maude code).

5.1 Example
As an example of our approach, we present verification results

for a variant of the ‘Mars scenario’ [5]. In the Mars scenario,

two robots cooperate to remove garbage from the surface of Mars.

Robot r1 searches for two pieces of garbage randomly positioned

in a grid environment. When it finds a piece of garbage, it brings

the piece to robot r2 which incinerates the garbage. Jason pro-

grams for r1 and r2 are given in [5]. We replaced the program for

r2 with an equivalent 3APL program. Both programs and their de-

liberation cycles were translated as described in Section 4, and we

used Maude to verify the six properties given in [5]. As expected,

all properties hold of the combined heterogeneous multi-agent pro-

gram.

Bordini et al. [5, 2] also give the time required to model check

the property

((Int r1 continue(check) ∧ (Bel r1 checking(slots)))

using both the SPIN and Java Pathfinder (JPF) model checkers. The

SPIN approach relies on an encoding of Jason programs and delib-

eration strategy in the SPIN modeling language PROMELA. With

JPF, the model checker is used to model check the Java code im-

plementing the Jason interpreter as it executes the agent programs.

For SPIN, verification required 65.8 seconds, and with JPF verifi-

cation required over 18 hours. When the garbage is placed at fixed

positions on the grid (i.e., the system has a single initial state), ver-

ification requires 5.25 seconds for SPIN and 76.3 seconds for JPF.

The approaches presented by Bordini and colleagues are specific

to the Jason agent programming language. Dennis et al [10] ver-

ified a variant of the Mars scenario using their generic approach

to MAS verification which allows the verification of heterogeneous

multi-agent programs. They report a time of 9 hours to model check

the property above for a system in which the Jason programs for

r1 and r2 were translated into the agent programming language

GWENDOLEN.

Using our framework, verification with Maude requires 362 sec-

onds (for multiple initial states) and 1.8 seconds when the garbage

is at fixed positions in the grid. Although our approach is slower

than the SPIN encoding of the (homogeneous) Jason implementa-

tion of the Mars scenario for multiple initial states, it is significantly

faster than the AIL approach of Dennis et al to verifying heteroge-

neous multi-agent programs.

6. RELATED WORK
There is a considerable amount of work on verifying BDI agent

programs and multi-agent systems, e.g., [21, 1, 5, 2, 18]. However,

with the exception of the work on the Agent Infrastructure Layer

(AIL) [4, 9, 10], there has been relatively little work on verifica-

tion of heterogeneous multi-agent programs. AIL is a collection

of Java classes abstracting capabilities of BDI agent programming

languages. The interpreters of each language in a heterogeneous

multi-agent program are reimplemented using AIL, and programs

verified using the AJPF model checker. (In [11] a prototype im-

plementation in Maude of the AIL and a translation of AgentS-

peak(L) into the Maude AIL is described. However, no proof of

correctness of the translation is given, and subsequent work on AIL

focussed on AJPF.) To verify heterogeneous BDI programs using

AIL, an encoding of the target APL’s operational semantics must

therefore be defined in Java. In [10] the authors state that there

are currently no formal proofs that the AIL translations of the BDI

languages they consider (GOAL, SAAPL, etc.) are correct. Indeed

Dennis et al. note such correctness results would be a “significant

task”. A key advantage of our approach is that we can prove a cor-

respondence between the operational semantics of the target BDI

language and the operational semantics of its translation into meta-

APL, and hence guarantee that the meta-APL translation has identi-

cal behavior to the heterogeneous MAS being verified. In contrast,

with AIL, both the target of translation and the model-checker op-

erate on a lower level of abstraction, which makes it more difficult

to prove correctness of the translation and may also explain differ-

ences in model-checking performance.

Due to limited space, we can only acknowledge some of the re-

search which influenced the design of meta-APL, including work

on BDI agent programming languages which provide support for

programming their own deliberation cycle, e.g., [12, 15, 7, 8], ar-

chitectures and frameworks for programming BDI deliberation cy-

cles, e.g., [20, 10], and work on translating between BDI agent

programming languages, e.g., [16, 14].

7. CONCLUSIONS
We defined meta-APL, a BDI-based agent programming lan-

guage that allows both an agent’s plans and its deliberation strategy

to be encoded as part of the agent program. We gave the operational

semantics of meta-APL and showed that it is possible to give prov-

ably correct translations of Jason and 3APL programs into meta-

APL. We briefly outlined a verification framework for meta-APL

multi-agent programs based on Maude. The translations of Jason

and 3APL to meta-APL and from meta-APL to Maude are rela-

tively simple (much simpler than an encoding of a BDI language

for a model checker). Moreover, preliminary experimental results

indicate that our approach requires significantly less time to verify

properties compared to [10].

In future work, we plan to extend our approach to other BDI

agent programming languages. Based on our experience with Ja-

son and 3APL, we are confident that languages such as GOAL [17]

can translated in a straightforward way. While each additional lan-

guage will require a proof of the correctness of the translation into

meta-APL, our existing Maude verification framework can be used

without modification to model check the resulting translation.

8. REFERENCES
[1] R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.

Model checking AgentSpeak. In Proceedings of the 2nd

International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2003), pages 409–416. ACM,

2003.

[2] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge.

Verifying Multi-agent Programs by Model Checking.

Autonomous Agents and Multi-Agent Systems,

12(2):239–256, 2006.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming

multi-agent systems in AgentSpeak using Jason. Wiley, 2008.

[4] R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher.

Automated verification of multi-agent programs. In 23rd

IEEE/ACM International Conference on Automated Software

Engineering (ASE 2008), pages 69–78. IEEE, 2008.

[5] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge.

Verifiable multi-agent programs. In Programming

Multi-Agent Systems, volume 3067 of LNCS, pages 72–89.

Springer, 2004.

[6] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of

Maude. In J. Meseguer, editor, Electronic Notes in

Theoretical Computer Science, volume 4. Elsevier Science

Publishers, 2000.

[7] M. Dastani, F. de Boer, F. Dignum, and J. Meyer.

Programming agent deliberation: an approach illustrated

using the 3APL language. In Proceedings of the 2nd

International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2003), pages 97–104. ACM,

2003.

[8] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer.

Programming multi-agent systems in 3APL. In Multi-Agent

Programming: Languages, Platforms and Applications,

pages 39–67. Springer, 2005.

[9] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher. A

flexible framework for verifying agent programs. In

Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2008),

pages 1303–1306. IFAAMAS, 2008.

[10] L. A. Dennis, M. Fisher, M. P. Webster, and R. H. Bordini.

Model checking agent programming languages. Automated

Software Engineering, 19(1):5–63, 2012.

[11] B. Farwer and L. Dennis. Translating into an intermediate

agent layer: A prototype in Maude. In Proceedings of

Concurrency, Specification, and Programming CS&P2007,

pages 168–179, 2007.

[12] M. P. Georgeff and A. L. Lansky. Reactive reasoning and

planning. In Proceedings of the Sixth National Conference

on Artificial Intelligence, AAAI-87, pages 677–682, 1987.

[13] M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and

M. Wooldridge. The Belief-Desire-Intention model of

agency. In Intelligent Agents V, Agent Theories,

Architectures, and Languages, 5th International Workshop,

(ATAL’98), volume 1555 of LNCS, pages 1–10. Springer,

1999.

[14] K. Hindriks. Agent programming languages: programming

with mental models. PhD thesis, University of Utrecht, 2001.

[15] K. Hindriks, F. De Boer, W. Van der Hoek, and J. Meyer.

Agent Programming in 3APL. Autonomous Agents and

Multi-Agent Systems, 2(4):357–401, 1999.

[16] K. Hindriks, Y. Lespérance, and H. Levesque. An embedding

of ConGolog in 3APL. In Proceedings of the 14th European

Conference on Artificial Intelligence (ECAI’2000), pages

558–562, 2000. ECAI, IOS Press.

[17] K. V. Hindriks. Programming rational agents in GOAL. In

A. El Fallah Seghrouchni, J. Dix, M. Dastani, and R. H.

Bordini, editors, Multi-Agent Programming: Languages,

Tools and Applications, pages 119–157. Springer US, 2009.

[18] S.-S. T. Q. Jongmans, K. V. Hindriks, and M. B. van

Riemsdijk. Model checking agent programs by using the

program interpreter. In Proceedings of the 11th International

Workshop Computational Logic in Multi-Agent Systems

(CLIMA XI), volume 6245 of LNCS, pages 219–237.

Springer, 2010.

[19] R. Milner. Communication and concurrency. Prentice-Hall,

Inc., 1989.

[20] P. Novák and J. Dix. Modular BDI architecture. In

Proceedings of the 5th International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2006),

pages 1009–1015. ACM, 2006.

[21] S. Shapiro, Y. Lespérance, and H. Levesque. The cognitive

agents specification language and verification environment

for multiagent systems. In Proceedings of the 1st

International Joint conference on Autonomous Agents and

Multiagent Systems, pages 19–26. ACM, 2002.

[22] T. T. Doan, N. Alechina, and B. Logan. The agent

programming language meta-APL. In Proceedings of the

Ninth International Workshop on Programming Multi-Agent

Systems (ProMAS 2011), pages 72–87, 2011.

[23] M. B. van Riemsdijk, L. Astefanoaei, and F. S. de Boer.

Using the Maude term rewriting language for agent

development with formal foundations. In M. Dastani, K. V.

Hindriks, and J.-J. Ch. Meyer, editors, Specification and

Verification of Multi-agent Systems, pages 255–287.

Springer, 2010.

[24] M. B. van Riemsdijk, F. S. de Boer, M. Dastani, and J.-J. C.

Meyer. Prototyping 3APL in the maude term rewriting

language. In Proceedings of the 5th International Joint

Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2006), pages 1279–1281. ACM, 2006.

