221 research outputs found

    Overcurrent relays coordination optimisation methods in distribution systems for microgrids: a review

    Get PDF
    Electric power networks connected with multiple distributed generations (microgrids) require adequate protection coordination. In this paper, the overcurrent relay coordination concept in distribution system has been presented with details. In this available literature, the previous works on optimisation methods utilised for the coordination of over current relays; classification has been made based on the optimisation techniques, non-standard characteristics, new constraints that have been proposed for optimal coordination and dual setting protection schemes. Then a comprehensive review has been done on optimisation techniques including the conventional methods, heuristic and hybrid methods and the relevant issues have been addressed

    State-of-the-Art Renewable Energy in Korea

    Get PDF
    Nowadays, renewable energy plays an important role in our daily lives. This Special Issue addresses the current trend in the use of renewable energy in South Korea. The first aspect is a renewable-based power system, where both main and ancillary supplies are sourced from renewable energies; the second aspect is a distribution network for renewable energy; and the last aspect is a nanogrid network technology. Renewable energy requires many innovations over existing power infrastructure and regulation. These articles show the changing trend in various sectors in Korea

    Computational Intelligence Application in Electrical Engineering

    Get PDF
    The Special Issue "Computational Intelligence Application in Electrical Engineering" deals with the application of computational intelligence techniques in various areas of electrical engineering. The topics of computational intelligence applications in smart power grid optimization, power distribution system protection, and electrical machine design and control optimization are presented in the Special Issue. The co-simulation approach to metaheuristic optimization methods and simulation tools for a power system analysis are also presented. The main computational intelligence techniques, evolutionary optimization, fuzzy inference system, and an artificial neural network are used in the research presented in the Special Issue. The articles published in this issue present the recent trends in computational intelligence applications in the areas of electrical engineering

    An Adaptive Protection for Radial AC Microgrid Using IEC 61850 Communication Standard : Algorithm Proposal Using Offline Simulations

    Get PDF
    The IEC 61850 communication standard is getting popular for application in electric power substation automation. This paper focuses on the potential application of the IEC 61850 generic object-oriented substation event (GOOSE) protocol in the AC microgrid for adaptive protection. The focus of the paper is to utilize the existing low-voltage ride through characteristic of distributed generators (DGs) with a reactive power supply during faults and communication between intelligent electronic devices (IEDs) at different locations for adaptive overcurrent protection. The adaptive overcurrent IEDs detect the faults with two different preplanned settings groups: lower settings for the islanded mode and higher settings for the grid-connected mode considering limited fault contributions from the converter-based DGs. Setting groups are changed to lower values quickly using the circuit breaker status signal (XCBR) after loss-of-mains, loss-of-DG or islanding is detected. The methods of fault detection and isolation for two different kinds of communication-based IEDs (adaptive/nonadaptive) are explained for three-phase faults at two different locations. The communication-based IEDs take decisions in a decentralized manner, using information about the circuit breaker status, fault detection and current magnitude comparison signals obtained from other IEDs. However, the developed algorithm can also be implemented with the centralized system. An adaptive overcurrent protection algorithm was evaluated with PSCAD (Power Systems Computer Aided Design) simulations, and results were found to be effective for the considered fault cases.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Highly sensitive multifunction protection coordination scheme for improved reliability of power systems with distributed generation (PVs)

    Get PDF
    The high penetration of distribution generators (DGs), such as photovoltaic (PV), has made optimal overcurrent coordination a major concern for power protection. In the literature, the conventional single or multi‐objective function (OF) for phase overcurrent relays (OCRs) scheme faces challenges in terms of stability, sensitivity, and selectivity to handle the integration of DGs and ground fault scenarios. In this work, a new optimal OCR coordination scheme has been developed as a multifunction scheme for phase and ground events using standard and non‐standard tripping characteristics. This research introduces and validates a coordinated optimum strategy based on two new optimization approaches, the Tug of War Optimization algorithm (TWO) and the Charged System Search algorithm (CSS), to mitigate the effects of DGs on fault currents and locations across the power network. Industrial software is used to create a case study of a CIGRE power network equipped with two 10 MW PV systems, and the results of the proposed new optimum coordination scheme are compared to traditional schemes. The findings show that the proposed multifunction OCR scheme is able to reduce the tripping time of OCRs over different fault and grid operation scenarios and increase the sensitivity of the relays in islanding operation mode

    Directional Detection for Over current Protection without Voltage Sensors in Systems with Distributed Generation

    Get PDF
    As the yearly electric energy demand grows, there is a significant increase in the penetration of distributed generation (DG). Since the conventional sources of energy such as coal, petroleum and natural gas etc. are fast disappearing, a study of distributed renewable generation systems becomes very important. Integration of a DG into an existing distribution system has many impacts on the system, with the power system protection being one of the major issues. Short circuit power of a distribution system changes when its state changes. It also changes when some of the generators in the distribution system are disconnected. This may result in elongation of fault clearing time and hence disconnection of equipment’s in the distribution system or unnecessary operation of protective devices. This thesis mainly deals with the protection algorithms that are to be met in order to avoid false tripping problem because of bidirectional power flow

    Proof-of-Concept on Next Generation Hybrid Power Plant Control

    Get PDF

    Fault analysis and protection for wind power generation systems

    Get PDF
    Wind power is growing rapidly around the world as a means of dealing with the world energy shortage and associated environmental problems. Ambitious plans concerning renewable energy applications around European countries require a reliable yet economic system to generate, collect and transmit electrical power from renewable resources. In populous Europe, collective offshore large-scale wind farms are efficient and have the potential to reach this sustainable goal. This means that an even more reliable collection and transmission system is sought. However, this relatively new area of offshore wind power generation lacks systematic fault transient analysis and operational experience to enhance further development. At the same time, appropriate fault protection schemes are required. This thesis focuses on the analysis of fault conditions and investigates effective fault ride-through and protection schemes in the electrical systems of wind farms, for both small-scale land and large-scale offshore systems. Two variable-speed generation systems are considered: doubly-fed induction generators (DFIGs) and permanent magnet synchronous generators (PMSGs) because of their popularity nowadays for wind turbines scaling to several-MW systems. The main content of the thesis is as follows. The protection issues of DFIGs are discussed, with a novel protection scheme proposed. Then the analysis of protection scheme options for the fully rated converter, direct-driven PMSGs are examined and performed with simulation comparisons. Further, the protection schemes for wind farm collection and transmission systems are studied in terms of voltage level, collection level wind farm collection grids and high-voltage transmission systems for multi-terminal DC connected transmission systems, the so-called “Supergrid”. Throughout the thesis, theoretical analyses of fault transient performances are detailed with PSCAD/EMTDC simulation results for verification. Finally, the economic aspect for possible redundant design of wind farm electrical systems is investigated based on operational and economic statistics from an example wind farm project

    Metering and adaptive protection for a microgrid with distributed generation

    Get PDF
    The main objective of this project is to develop an adaptive relaying system that will protect the microgrid both in connected and isolated modes. Therefore the settings for the different relays will be observed for the two modes of operation. This will determine whether they are correctly coordinated in order to operate as an adaptive relaying system. A secondary but also important objective is to identify load management techniques through smart metering that could facilitate power system operation and in turn power system protection. To achieve the goal of this project the proposed relaying system will have to prove appropriate in all the test cases. Based on the results obtained in the simulations, conclusions about the relaying scheme were drawn. Based on cases where the scheme seemed inappropriate or could be improved, recommendations were made. The relaying scheme proposed in this project proved highly successful in detecting abnormalities and protecting the power system when necessary

    Distributed photovoltaic systems: Utility interface issues and their present status

    Get PDF
    Major technical issues involving the integration of distributed photovoltaics (PV) into electric utility systems are defined and their impacts are described quantitatively. An extensive literature search, interviews, and analysis yielded information about the work in progress and highlighted problem areas in which additional work and research are needed. The findings from the literature search were used to determine whether satisfactory solutions to the problems exist or whether satisfactory approaches to a solution are underway. It was discovered that very few standards, specifications, or guidelines currently exist that will aid industry in integrating PV into the utility system. Specific areas of concern identified are: (1) protection, (2) stability, (3) system unbalance, (4) voltage regulation and reactive power requirements, (5) harmonics, (6) utility operations, (7) safety, (8) metering, and (9) distribution system planning and design
    corecore