11 research outputs found

    On block diagonal and block triangular iterative schemes and preconditioners for stabilized saddle point problems

    Get PDF
    We review the use of block diagonal and block lower/upper triangular splittings for constructing iterative methods and preconditioners for solving stabilized saddle point problems. We introduce new variants of these splittings and obtain new results on the convergence of the associated stationary iterations and new bounds on the eigenvalues of the corresponding preconditioned matrices. We further consider inexact versions as preconditioners for flexible Krylov subspace methods, and show experimentally that our techniques can be highly effective for solving linear systems of saddle point type arising from stabilized finite element discretizations of two model problems, one from incompressible fluid mechanics and the other from magnetostatics

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth

    Reduced basis method for parametrized optimal control problems governed by PDEs

    Get PDF
    This master thesis aims at the development, analysis and computer implementation of effcient numerical methods for the solution of optimal control problems based on parametrized partial differential equations. Our goal isfto develop a new approach based on suitable model reduction paradigm --the reduced basis method (RB)-- for the rapid and reliable solution of control problems which may occur in several engineering contexts. In particular, we develop the methodology for parametrized quadratic optimization problem with either coercive elliptic equations or Stokes equations as constraints. Firstly, we recast the optimal control problem in the framework of mixed variational problems in order to take advantage of the already developed RB theory for Stokes-type problems. Then the usual ingredients of the RB methodology are provided: a Galerkin projection onto a low-dimensional space of basis functions properly selected by an adaptive procedure; an affine parametric dependence enabling to perform competitive Offine-Online splitting in the computational procedure; an efficient and rigorous a posteriori error estimation on the state, control and adjoint variables as well as on the cost functional. The reduction scheme is applied to several numerical tests conrming the theoretical results and demonstrating the efficiency of the proposed technique. Moreover an application to an (idealized) inverse problem in haemodynamics is discussed, showing the versatility and potentiality of the method in tackling parametrized optimal control problems that could arise in a a broad variety of application contexts

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore