15 research outputs found

    Design and synthesis of reversible logic

    Get PDF
    Energy lost during computation is an important issue for digital design. Today, all electronics devices suffer from energy lost due to the conventional logic system used. The amount of energy loss in the form of heat leads to immense challenges in nowadays circuit design. To overcome that, reversible logic has been invented. Since properties of reversible logic differ greatly than conventional logic, synthesis methods used for conventional logic cannot be used in reversible logic. In this dissertation, we proposed new synthesis algorithms and several circuit designs using reversible logic

    Design of efficient reversible floating-point arithmetic unit on field programmable gate array platform and its performance analysis

    Get PDF
    The reversible logic gates are used to improve the power dissipation in modern computer applications. The floating-point numbers with reversible features are added advantage to performing complex algorithms with high-performance computations. This manuscript implements an efficient reversible floating-point arithmetic (RFPA) unit, and its performance metrics are realized in detail. The RFP adder/subtractor (A/S), RFP multiplier, and RFP divider units are designed as a part of the RFP arithmetic unit. The RFPA unit is designed by considering basic reversible gates. The mantissa part of the RFP multiplier is created using a 24x24 Wallace tree multiplier. In contrast, the reciprocal unit of the RFP divider is designed using Newton Raphson’s method. The RFPA unit and its submodules are executed in parallel by utilizing one clock cycle individually. The RFPA unit and its submodules are synthesized separately on the Vivado IDE environment and obtained the implementation results on Artix-7 field programmable gate array (FPGA). The RFPA unit utilizes only 18.44% slice look-up tables (LUTs) by consuming the 0.891 W total power on Artix-7 FPGA. The RFPA unit sub-models are compared with existing approaches with better performance metrics and chip resource utilization improvements

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics

    Cutting Edge Nanotechnology

    Get PDF
    The main purpose of this book is to describe important issues in various types of devices ranging from conventional transistors (opening chapters of the book) to molecular electronic devices whose fabrication and operation is discussed in the last few chapters of the book. As such, this book can serve as a guide for identifications of important areas of research in micro, nano and molecular electronics. We deeply acknowledge valuable contributions that each of the authors made in writing these excellent chapters

    Improving Compute & Data Efficiency of Flexible Architectures

    Get PDF
    corecore