

Improving Compute & Data Efficiency of Flexible Architectures

Citation for published version (APA):
Waeijen, L. J. W. (2022). Improving Compute & Data Efficiency of Flexible Architectures. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Eindhoven University of Technology.

Document status and date:
Published: 22/09/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/284de6f1-741c-4cb6-9646-2e4841716560

Improving Compute & Data Efficiency of
Flexible Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen op donderdag 22
september 2022 om 13:30 uur

door

Luc Johannes Wilhelmus Waeijen

geboren te Roermond

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr.ir. J. Voeten
promotor: prof.dr. H. Corporaal
copromotor: dr.ir. Y. He (Reconova Technologies Co. Ltd.)
leden: dr.ir. S. Stuijk

prof.dr.ir M. Verhelst (Katholieke Universiteit Leuven)
prof.dr. R.V. van Nieuwpoort (Universiteit van Amsterdam)

adviseurs: dr.ir. M. Peemen (Thermo Fisher Scientific - FEI)
dr.ir. S. Sioutas (GrAI Matter Labs)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.

Improving Compute & Data Efficiency of Flexible
Architectures

Luc Johannes Wilhelmus Waeijen

Committee:

prof.dr. H. Corporaal (promotor, TU Eindhoven)
dr.ir. Y. He (copromotor, Reconova Technolo-

gies Co. Ltd.)
prof.dr.ir. J. Voeten (chairman, TU Eindhoven)
dr.ir. S. Stuijk (TU Eindhoven)
prof.dr.ir M. Verhelst (Katholieke Universiteit Leuven)
prof.dr. R.V. van Nieuwpoort (Universiteit van Amsterdam)
dr.ir. M. Peemen (Thermo Fisher Scientific - FEI)
dr.ir. S. Sioutas (GrAI Matter Labs)

Improving Compute & Data Efficiency of Flexible Architectures

Luc Johannes Wilhelmus Waeijen

A catalogue record is available from the Eindhoven University of Tech-
nology Library.
ISBN 978-90-386-5565-9
NUR-code: 959

Printed by Ridderprint

Copyright © 2022 by Luc Waeijen. All Rights Reserved. Reproduction
in whole or in part is prohibited without the written consent of the
copyright owner.

Abstract

Man’s ambition to construct machinery that can match, or even exceed, his
own intelligence has driven over half a century of research into computer ar-
chitectures. Enabled by an exponential increase in compute power, the past
decades bore witness to several major advancements towards achieving such
artificial intelligence. Exemplary are the many applications that have started
to emerge in our daily lives: autonomous vehicles navigate the roads on our
behalf, digital assistants manage our agendas, and recommender systems auto-
matically determine the next products we should want to buy. However, the
silicon-based brains that execute these deep-learning applications still leave much
to be desired, both in intelligence and energy efficiency, when compared to their
organic counterparts. This relatively poor energy efficiency is in fact what limits
the acceptable compute complexity of deep-learning applications, limiting their
potential in practice. To advance the capabilities of deep-learning applications
it is therefore imperative to improve the energy efficiency of the machines that
evaluate them. This is particularly challenging in the highly volatile context of
deep-learning algorithms, which require a certain degree of flexibility from the
compute architecture to effectively adapt to modifications in the core algorithms.

This thesis focusses on improving the energy efficiency of modern computing
machinery in general, and for deep-learning applications in particular. The ap-
proach is split into three distinct parts: improving compute efficiency, improving
data efficiency, and finally a study into the flexibility of compute architectures.
Combined these parts contribute towards increased energy efficiency, i.e., the
number of computations per Joule, achievable in the evaluation of deep-learning
applications mapped to flexible compute platforms.

The first step towards improved compute efficiency is one of a computer-
organisational nature. From the conceptual Turing machine to modern-day
specialised processors, a common denominator between all computers is the
fundamental cycle of instruction selection and evaluation, of which both steps
typically consume energy. A classic approach to reduce the energy required for
instruction selection is to evaluate a single instruction for multiple data elements
(simd), effectively amortizing the cost. This concept is taken to the extreme
in a wide-single instruction multiple data (simd) machine and, crucially, com-
bined with an explicit datapath to reduce the energy consumption by avoiding

VI

accesses to register files in each lane of the simd machine. Experimental results
show that explicit datapaths are particularly effective in wide-simd machines,
improving the compute energy efficiency of the baseline machine by 27 % on
average. Experiments show that, on a 40 nm node, the proposed 128-lane simd
machine improves the compute efficiency by a factor 2× on average compared to
a reduced instruction set computer (risc), while accelerating 3× 3 convolution
by about 200×.

The second step towards improved compute efficiency focusses on the multiply
accumulate (mac) operation which, being a cornerstone of deep-learning applica-
tions, forms a prime candidate for optimisation. The computation efficiency of
this operation is improved by two techniques: data-width aware multiplication,
and parallel accumulation without dedicated hardware. A data-width aware
multiplier is proposed, which dynamically improves energy efficiency when its
operands do not occupy the full width of the datapath. For deep-learning net-
works, where the filter parameters and feature-map data often consist of small
numbers, this technique has the potential to improve the energy efficiency of a
multiplication up to a factor 2.25× while preserving support for wide parameters.

Application of these data-width aware multipliers has an area penalty, which in
part is compensated by a parallel-reduction technique applied in the context of
the proposed wide-simd machine. Amongst other reduction operations, parallel
accumulation is supported by this technique, saving 6.8 % in silicon area compared
to a dedicated adder-tree without compromising the energy efficiency. This
concludes the compute efficiency optimisations incorporated in this thesis.

Part two of the thesis introduces advanced scheduling techniques to improve
the data efficiency of deep-learning applications, i.e., minimising the average
energy spent per data use. To achieve this, the data-memory hierarchy has
to be exploited efficiently, serving as many data uses as possible from small,
local memories. The number of data uses is determined by the application, but
within the given data dependencies they can be scheduled in various orders. For
deep-learning applications with their associative mac operations, this scheduling
space is vast. To assist the selection of those schedules that efficiently use
a particular memory system, the scheduling space and its data efficiency are
precisely modelled. In contrast to most existing approaches, this scheduling
space includes layer fusion, which significantly improves the data efficiency of the
schedule for large networks on platforms with large local memories. Experimental
results show that compared to a straightforward schedule the energy required
for evaluating a network can be reduced by an order of magnitude.

VII

To efficiently support future developments in deep learning a degree of flexibility
is required from the compute system. However, flexibility as a measure is ill-
defined, which obstructs appropriately balancing the architecture. The third
and final part of this thesis focusses on investigating and properly defining the
concept of compute flexibility. In this thesis an initial attempt is made to qualify
and quantify flexibility, and investigate its relation to energy efficiency and other
system properties in a rigorous manner. This definition and investigation may
deepen the understanding of computer architectures in general, and ultimately
lead to new, even more efficient designs.

Combined these three parts improve the compute and data efficiency of pro-
grammable compute architectures, and provide an initial guideline on objectively
determining the flexibility of architectures.

VIII

Contents

Abstract . V

1 Introduction . 1
1.1 Problem Statement . 5

1.1.1 Compute Efficiency . 6
1.1.2 Data Efficiency . 8
1.1.3 Flexibility . 9

1.2 Contributions . 9
1.3 Thesis Overview . 10

I Compute Efficiency 13

2 Wide-SIMD with Explicit Datapath 15
2.1 Introduction . 16
2.2 Proposed Wide SIMD Architecture 18

2.2.1 Datapath . 20
2.2.2 Interconnect . 25
2.2.3 CP Broadcast . 27
2.2.4 Predication . 28
2.2.5 Configurable Framework 29

2.3 Experimental Setup . 30
2.3.1 Architecture Configurations 30
2.3.2 Benchmarks . 31

2.4 Results and Analysis . 35
2.4.1 SIMD versus RISC . 36
2.4.2 Explicitly versus Implicitly Bypassed 41

2.5 Related Work . 53
2.6 Conclusions . 55

3 Reduction Operator for Wide-SIMDs Reconsidered 57
3.1 Introduction . 57
3.2 Context . 58

3.2.1 Target Architecture . 59

X CONTENTS

3.2.2 Data Layout . 59
3.2.3 Dedicated Reduction Hardware 61

3.3 Software Approaches . 61
3.3.1 Straightforward Reduction 61
3.3.2 Pipelined Reduction . 63
3.3.3 Diagonal Access Reduction 65

3.4 Analysis and Evaluation . 67
3.5 Related Work . 71
3.6 Conclusions . 72

4 Datawidth-Aware Multiplication 73
4.1 Introduction . 73
4.2 Viability of Datawidth-Aware Multipliers 75

4.2.1 Relation between Energy and Operand Properties 76
4.2.2 Operand Width Distribution 79
4.2.3 Relation between Energy and Operand Width 83

4.3 Datawidth-Aware Multiplier Designs 83
4.3.1 Subword mode — Separated 85
4.3.2 Subword mode — Integrated 86
4.3.3 Alternative Data Representation 88

4.4 Evaluation . 90
4.4.1 General Observations . 92
4.4.2 Subword — Separated . 94
4.4.3 Subword — Integrated . 95
4.4.4 Sign Magnitude . 95

4.5 Related Work . 96
4.6 Conclusions . 99

II Data Efficiency 101

5 ConvFusion . 103
5.1 Introduction . 103
5.2 Related Work . 106
5.3 Scheduling Space . 108

5.3.1 Loop Reordering . 111
5.3.2 Loop Tiling . 112
5.3.3 Store & Compute Levels 112
5.3.4 Layer Fusion . 115

CONTENTS XI

5.3.5 Recomputation . 116
5.3.6 Formal Schedule . 118

5.4 Cost Models . 119
5.4.1 Prerequisites . 119
5.4.2 Internal Memory Footprint 121
5.4.3 External Memory Accesses 124
5.4.4 Compute . 126
5.4.5 Layer Fusion . 127
5.4.6 Complete Network Model 128

5.5 Automated Design Space Exploration 128
5.5.1 Space Traversal . 128
5.5.2 ConvFuser . 130

5.6 Model Validation & Evaluation 132
5.6.1 Micro benchmarks . 133
5.6.2 Real World Networks . 136

5.7 Energy Consumption . 139
5.7.1 Single-Bank SRAM . 139
5.7.2 Multi-Bank SRAM . 142
5.7.3 Multi-Level SRAM . 143

5.8 Discussion & Open Issues . 147
5.8.1 Intelligent Design Space Exploration 147
5.8.2 Targeting Real Hardware 148
5.8.3 Schedule Space Limitations 152

5.9 Conclusions . 152

III Flexibility 155

6 Compute System Flexibility . 157
6.1 Introduction . 157
6.2 Survey of Flexibility in Literature 161

6.2.1 Definitions of flexibility as an intrinsic static property . . 162
6.2.2 Definitions of flexibility as an extrinsic mutable property . 163

6.3 Defining Flexibility . 166
6.3.1 Qualitative Definition . 166
6.3.2 Quantitative Definition 169
6.3.3 Flexibility Scope . 172

6.4 Normalization to Intrinsic Work 173
6.5 Experimental Setup . 176

XII CONTENTS

6.5.1 Selected Systems . 176
6.5.2 Benchmark Set . 180
6.5.3 Compiler Directives . 180
6.5.4 Intrinsic Workload Estimator 182
6.5.5 Applied Methodologies . 185
6.5.6 Customized Processors . 187

6.6 Results and Analysis . 190
6.6.1 Commercial Off the Shelf Processors 190
6.6.2 Customized Processors . 194

6.7 Comparison with Existing Definitions 198
6.7.1 Flexibility and Versatility 199
6.7.2 Flexibility and VersaBench Versatility 202

6.8 Discussion & Open Issues . 203
6.8.1 From qualitative to quantitative 203
6.8.2 Intrinsic Workload . 206
6.8.3 The most flexible machine? 209

6.9 Conclusions . 211

7 Conclusions & Future Work . 213
7.1 Conclusions . 213
7.2 Future Work . 215

A SIMD Instruction Set . 219

B Flexibility Related Lemmas . 223

Abbreviations . 227

Bibliography . 231

Acknowledgments . 253

About the Author . 257

Chapter 1
Introduction
“Give me a place to stand and with a lever I will move the world”1 This quote
is attributed to Archimedes [182], who realised that with a long enough lever,
and a solid foundation to place it on, he could move the world. But whereas the
physical world may be moved by a lever and fulcrum, the modern digital world
does not yield to such instruments. Instead, it can be argued that to move the
modern world, a fast and powerful computer is required.

The introduction of ENIAC, the first programmable, general-purpose computer
in 1945 has set off a digital revolution that is still ongoing today. Figure 1.1
shows, besides how overpriced the iPad2 was for its processing power, how the
inflation corrected price for compute has decreased exponentially since 1945.
To put this in perspective, if the typical worker in 1982 wanted to purchase
something with the compute power of an iPad2, it would have cost more than 360
years worth of wages [117]. This rapid price decrease has propelled computers
out of the lab and into the core of our daily lives and society. Objects around us
are increasingly equipped with flexible processors that handle a wide range of
tasks. Watches tell us how we are feeling, and if we are getting enough quality
sleep. Noise cancelling headphones ensure we do not have to talk to strangers
in public transport. Voice-controlled assistants save us the effort of pressing a
button if we want to turn on the lights.

Increased compute capacity was also a catalyst for the neural network revolution
that started in 2012 [81]. Since the conceptualisation of computing machinery,
man has aspired to build intelligent machines [151]. Naturally this desire has
triggered research into mimicking human brains, which are the most intelligent
of brains2. Building upon the first mathematical model of an artificial neuron
by McCulloch and Pitts [101] many computational models for artificial neural
networks (anns) have been proposed over the past century as shown in figure 1.2.
During this period the popularity of anns has heavily fluctuated, as progress has

1“Πᾷ βῶ, καὶ χαριστίωνι τὰν γᾶν κινήσω πᾶσαν”
2according to the human brain

2 INTRODUCTION

1940 1950 1960 1970 1980 1990 2000 2010 2020
1

100

10k

1M

100M

10B

1T

100T

10Q

Year of Introduction

20
10

D
ol

la
rs

($
)

Figure 1.1: Cost of computing power equal to an iPad2 (1600 MIPS) normalised to 2010
dollars based on release price (data source: The Hamilton Project [117]).

3

1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s

1943
Artificial
Neuron
Model
McCulloch &
Pitts[101]

1950
Intelligent
Machines
Turing[151]

1958
Perceptron
Rosenblatt[128]

1969
XOR prob-
lem
Minsky &
Papert[103]

1970
Backpropa-
gation
Werbos[166]

1982
Recurrent
Networks
Hopfield[64]

1986
Multi-Layer
Perceptrons
Rumelhart
& McClel-
land[129]

1990
LeNet
Le Cun et
al.[89]

1997
LSTM
Hochreiter
& Schmidhu-
ber[63]

2006
Deep Belief
Networks
Hinton et
al.[62]

2012
AlexNet
wins
ILSVRC
Krizhevsky et
al.[81]

2014
Generative
Adversarial
Nets
Goodfellow et
al.[42]

2017
Transformers
Vaswani et
al.[153]

Figure 1.2: Timeline of selected important events in artificial neural network research.

halted on several occasions when barriers needed to be overcome. An important
barrier was the required compute capacity for neural network models of sufficient
complexity to perform useful tasks. The latest surge of interest in artificial
neural networks has been sparked by the work of Krizhevsky et al., who in 2012
greatly outperformed their direct competition in the ImageNet large scale visual
recognition challenge (ilsvrc) [85] using an ann coined “AlexNet” [81]. In
this challenge teams competed to automatically classify images into one of a
thousand categories. AlexNet improved classification accuracy by 70 % relative
to the best competitor using classical methods. Part of their success is directly
attributed to the availability of flexible commercial of the shelf (cots) graphics
processing units (gpus) that could be programmed to perform the training of
AlexNet [81]. Since then intensified research into anns has yielded a plethora of
applications: medical diagnosis, speech recognition, recommender systems, and
image enhancement in televisions and games to name but a few.

Despite such successes, many applications today are still restricted by a lack of
compute power. Especially the compute complexity of modern anns is rather
excessive compared to traditional applications, which incurs high costs in terms
of processing time and energy requirements. This limitation holds in particular
for embedded devices which have strict power and energy budgets. Some
application designers attempt to work around these restrictions by offloading
work to centralized compute capacity in data centres. This solution is far
from ideal however, as transferring workload inevitably also requires energy

4 INTRODUCTION

for communication, and the added delay between input and result may be
unacceptable for latency-sensitive applications. Also, from a privacy perspective
it is undesirable for certain applications to send everything across the world-wide
web to a server ‘somewhere’. This approach is merely shifting rather than solving
the problem, since centralized compute inherently does not scale. Furthermore,
the compute load on central machines is also pushed to the limit as demonstrated
by the expensive cooling installed in the typical data centre.

To enable more complex algorithms on either embedded devices or in centralized
data centres, it is imperative to improve the energy efficiency of computing
machinery without (excessively) sacrificing speed or flexibility. Only by per-
forming more useful work per Joule can complex algorithms be kept within
their energy budgets. The objective of the work presented in this thesis is to
improve the energy efficiency of flexible computing systems in general, with
a focus on artificial neural network evaluation. This task is approached by
tackling several sources of inefficiency in modern architectures and application
mapping techniques alike. A well-known method to improve efficiency is through
specialisation, e.g., in the form of application-specific instruction-set processors
(asips) or even application-specific integrated circuits (asics). Consensus is
however that specialisation reduces flexibility of the system, especially when
specialisation is taken to a point where applications outside of the target set are
no longer supported. Loss of flexibility is generally undesirable, in particular for
systems that are to execute anns since the underlying algorithms mutate heavily
in the context of intense research in this field. A proper quantitative definition of
system flexibility does not exist however, making it difficult to objectively assess
the flexibility of a compute system. To overcome this gap in compute theory,
this thesis also includes an attempt to systematically provide both a qualitative
and quantitative definition of compute system flexibility.

Just like Archimedes recognized the need for a solid foundation to place his lever
upon, this thesis builds upon the work of those who came before. Starting from
state of the art architectures and techniques, contributions are made to improve
compute efficiency and data efficiency as further elaborated in section 1.1.1
and section 1.1.2 respectively. Finally, an attempt is made to solidify the
theoretical base of the field by introducing a quantitative metric for compute
flexibility as discussed in section 1.1.3. The contributions made in this thesis are
summarized in section 1.2, and section 1.3 provides an overview of the remainder
of this thesis.

1.1 PROBLEM STATEMENT 5

Instruction Fetch (33.58 %)

Data Cache (19.22 %)

Pipeline(21.99 %)

Control (9.70 %)

Register File (9.70 %)

Function Unit (5.82 %)

Figure 1.3: Energy distribution in a four core chip multiprocessor based on data by Hameed
et al. [50, Table 3].

1.1 Problem Statement
To advance the complexity of algorithms that can be executed cost-effectively
on flexible compute systems, it is necessary to improve the energy efficiency of
these systems. This holds especially for artificial neural networks because of
their compute intensive nature, and requirement for flexible systems to cope
with the highly volatile context in which the machine learning field currently
finds itself. The objective of the work described in this thesis is to improve the
efficiency of compute systems in general, but with a focus on artificial neural
networks in particular.

To improve energy efficiency of compute systems, first the sources of inefficiency
should be understood. An important benchmark in this area is the paper titled
“Understanding Sources of Inefficiency in General-Purpose Chips” by Hameed
et al. [50]. Based on Table 3 of this paper, the pie-chart in figure 1.3 can be
constructed which contains a breakdown of the energy usage in a baseline quad
core multiprocessor. With the function unit, the logic which performs the actual
computation, only contributing 5.82 % of the total energy consumption, it is
evident there is much to be gained by reducing the other sources of energy
consumption.

The efforts towards improving the energy efficiency of flexible compute systems
captured in this thesis are logically divided into three distinct parts:

1. Compute Efficiency - The first part addresses compute efficiency, which
deals with improving the general energy efficiency of computations. This

6 INTRODUCTION

topic is investigated both at the logic block level, as well as an architectural
viewpoint concerning instruction flow (section 1.1.1).

2. Data Efficiency - The second part covers scheduling techniques that focus on
reducing data movement, which, due to the gap between logic and memory
scaling, can have a significant impact on the overall energy efficiency of a
system (section 1.1.2).

3. Compute System Flexibility - The third and final part of this thesis treats
the concept of compute system flexibility, and how this property is affected
by various architectural choices, enabling designers to make conscious,
balanced trade-offs when constructing a compute system (section 1.1.3).

1.1.1 Compute Efficiency
Compute efficiency refers to the energy efficiency with which computations
are executed on a system. This includes both the energy spent on the actual
computation of the result of an operation, as well as the energy used for the
supporting control logic. Or, in terms of figure 1.3, everything except the data
cache which is explicitly covered separately in the second part of this thesis as
described in section 1.1.2.

From the conceptual Turing machine to modern-day specialised processors, a
common denominator between all flexible computers is the fundamental cycle of
instruction selection and evaluation, which typically both consume energy. It can
be seen in figure 1.3 that in modern multi-core processors the energy consumed
by the instruction fetch dominates, and is almost six times higher than the energy
used by the function unit. A well-know mitigation to this problem is to employ a
single instruction multiple data (simd) machine [2, 56, 93, 116, 132, 173], which
fetches one instruction and applies it in parallel to many elements. Apart from
amortising the instruction fetch and control energy, this scheme also increases
parallelism. A major advantage of this increased execution parallelism is that
the same throughput can be achieved at a lower clock frequency, potentially
enabling supply voltage scaling further improving energy efficiency. When an
application contains sufficient data-level parallelism (dlp), a wide-simd machine
can greatly improve the energy efficiency compared to a multi-core machine
without vector extensions.

With instruction fetch and control amortised over many parallel operations in
simd machines, the energy consumption of the datapath and register file become
dominant as will be demonstrated in chapter 2. The datapath burns a large

1.1 PROBLEM STATEMENT 7

amount of energy by moving values through a pipeline every clock cycle, even
when certain control bits or results may not be relevant for every instruction.
On top of this, a typical reduced instruction set computer (risc) machine
instruction accesses the register file with two reads and one write per evaluation.
These sources of energy consumption in the datapath remain the same across all
processing lanes in an simd machine, and as such are not amortised. Resolving
these two energy bottlenecks is one of the challenges that need to be tackled to
increase the compute efficiency of simd machines.

Apart from the register file accesses and pipeline registers, wide-simd machines
suffer from an issue specific to this architecture; As long as the operations that
are executing in parallel are truly independent, there is no limit to the scaling of
an simd machine. When communication between the lanes is required, however,
this may become a bottleneck in scaling. A dedicated communication network
that links all simd lanes directly is expensive in area and does not scale. For
a truly scalable solution, the communication network should only rely on local
connections. When not used in a smart manner, only local links may slow down
communication significantly, up to the point that it kills all performance and
energy gains from scaling to a wider simd machine. An important case where
simd lanes need to communicate is the reduction operation seen in convolutional
neural networks (cnns), at the time of writing the most popular subclass of
artificial neural networks. Rather than adding a costly communication network
or dedicated reduction logic, the challenge to be solved is maintaining high
performance using a communication network that only depends on local links.

Assuming the energy consumption of the pipeline and register file can be reduced,
the compute itself starts to become relevant for further optimisation. As will be
detailed later in chapter 4, there is a general inefficiency in standard functional
units which makes that a relatively simple calculation such as 1×−2 consumes
about the same energy as 149132× 24132, i.e., the energy consumption barely
depends on the operands. Intuitively it should be possible to perform the
former operation with less energy than the latter. This is especially interesting
for multiplication, which is a dominant part of the operation energy in many
applications including cnns. The last challenge regarding compute efficiency that
is addresses in this thesis, is the dynamic exploitation of the lower complexity of
certain operations based on the data-width of their operands.

8 INTRODUCTION

1.1.2 Data Efficiency

With the compute efficiency addressed in the previous part, what remains in
terms of inefficiency sources in figure 1.3 is the data-cache and memory accesses
in general. Note that the energy cost of accessing a large main memory is not
included in the numbers by Hameed et al. [50] on which figure 1.3 is based. This
will add a large additional source of inefficiency to the overall picture, since
compared to an arithmetic logic unit (alu) operation, accessing an on-chip
static random-access memory (sram) requires about 5× the energy, and going
to external dynamic random-access memory (dram) about 200× [124]. To make
matters worse, this phenomenon which is commonly referred to as the memory
wall [177] will only aggravate with further technology scaling.

A major challenge is to decrease the energy consumed by loading, storing,
and moving data. The common approach is to employ multi-level memories,
which exploit properties of various types of physical memories. Generally, large
memories which allow dense storage require more energy and time to access than
small memories built in standard logic. By creating a memory system of several
layers, it is generally possible to perform the majority of accesses on the fast,
cheaper to access, low-level memories. Such a hierarchical system depends on the
concept of reuse, where a single data element is used in multiple computations.
Without reuse, the smaller, faster memories would not provide any advantage
over going to main memory directly.

Fortunately many applications exhibit data reuse. The challenge, however, is to
expose and exploit this reuse optimally. Often there is freedom in selecting the
order of execution of operations in an application. Different execution schedules
will result in different reuse distances, i.e., the number of unique accesses between
the uses of a specific data element. The selection of the right schedule can improve
the reuse captured in the lower memory levels, and as such reduces the energy
consumption of the overall application. The number of data uses is determined by
the application, but within the given data dependencies they can be scheduled in
various orders. For deep learning applications in particular, with their associative
multiply accumulate (mac) operations, this scheduling space is vast. This makes
finding efficient schedules a non-trivial task which needs to be solved to improve
the energy efficiency of anns.

1.2 CONTRIBUTIONS 9

1.1.3 Flexibility
The term flexibility and claims regarding its relation to other architectural
properties such as energy efficiency are thrown around a lot [75, 76, 105, 126,
171]. In particular there appears to be some consensus on how higher flexibility
is related to supporting a wider set of applications, or changing applications,
but also with a lower energy efficiency. However, flexibility as a property is
ill-defined. If for example the set of supported applications is taken as a measure
of flexibility, then any Turing-complete system will be maximally flexible by
definition. It does not relate this property of ‘support’ in any form with how
well it is supported, or how well a set of, potentially changing, applications
is supported, and therefore does not provide a solid way to compare system
flexibility.

The lack of an objective, quantifiable definition of flexibility hampers discussion
and the appropriate balancing of computer architectures. To design a system
that is ‘sufficiently flexible’, first flexibility has to be defined in a systematic
manner that finds a following within the computer architecture community. This
challenge is larger than this single thesis, but an attempt at such a definition is
made nonetheless with the hope that it will start a broader discussion within
the community. Eventually an established definition will help designers better
understand the machines they architect, and enable an informed trade-off between
flexibility and energy efficiency, assuming such a relation in fact does exist.

1.2 Contributions
The contributions of this thesis include:

• A configurable wide-simd architecture with minimal, but sufficient, inter-
connect and explicit datapath to reduce register file energy consumption.
Extensive experimental results show that an instance with 128 processing
elements is capable of speeding up an application by 206× compared to
a reference RISC processor while reducing energy consumption by 48.3 %
on average. 27 % of these energy savings can be attributed to the ex-
plicit datapath, which is particularly effective in wide-simd architectures
(chapter 2).

• Reduction algorithms that require only minimal interconnect on simd
machines. These algorithms provide an alternative to dedicated reduction
hardware such as applied in an adder tree. Results show that at a perfor-

10 INTRODUCTION

mance penalty of 7.1 % the algorithms save 6.8 % in logic area in a 128
wide-simd machine compared to a solution employing an adder tree, while
maintaining generality of the reduction operator (chapter 3).

• Several data-width aware multiplier designs which improve the energy
efficiency of traditional hardware by dynamically exploiting the effective
data-width of the operands. In particular a sign-magnitude based design is
presented which, even when transparently integrated in two’s complement
datapath, is shown to improve energy efficiency by 1.38−2.25× (chapter 4).

• A fast mathematical model of the scheduling space of convolutional neural
networks and accompanying open source tool for fast automated design
space exploration. The model estimates the memory and compute re-
quirements of a wide range of neural network schedules, and provides
designers with a Pareto graph [113] to trade-off internal buffer size versus
the number of required external accesses and the number of mac operations.
Experimental results show improvements in energy efficiency of an order
of magnitude can be achieved (chapter 5).

• In lack of a proper definition of compute flexibility, a systematic attempt
is made to provide both a qualitative an quantitative metric for flexibility.
The proposed metric is extracted for 25 platforms with varying compute
architectures, and compared to common notions of flexibility found in
literature. The hope is that this chapter sparks a broader discussion in
the computer architecture community, and leads to a single, commonly
accepted metric for flexibility (chapter 6).

1.3 Thesis Overview
A graphical overview of the thesis structure is provided in figure 1.4. As can
be seen, the remainder of this thesis is organised as follows. In chapter 2 a
configurable, wide-simd architecture is introduced, which employs explicit data-
path techniques to improve its compute efficiency. Chapter 3 discusses how the
minimal, scalable interconnect of the proposed simd can be used efficiently to
perform reduction without the need for dedicated reduction hardware, achieving
good performance without specialisation for this important operator. Finally,
chapter 4 concludes the work on improving compute efficiency by investigating
how to dynamically exploit the data width of operands to reduce energy con-
sumption. Next, chapter 5 presents mathematical models to enable fast schedule

1.3 THESIS OVERVIEW 11

Chapter 1
Introduction & Overview

Part I
Compute Efficiency

Wide-SIMD with Explicit
Datapath (Chapter 2)

Reduction Operator for Wide-
SIMDs Reconsidered (Chapter 3)

Datawidth-Aware Multiplication (chapter 4)

Part II
Data Efficiency

ConvFusion (Chapter 5)

Part III
Flexibility

Compute System Flexibility (Chapter 6)

Chapter 7
Conclusions & Future Work

Figure 1.4: Thesis structure.

space exploration for cnns. The last part, defining compute system flexibility, is
covered in chapter 6. Where each individual chapter is ended with self-contained
conclusions, chapter 7 finally concludes the overall thesis.

12 INTRODUCTION

Part I
Compute Efficiency

Chapter 1
Introduction & Overview

Part I
Compute Efficiency

Wide-SIMD with Explicit
Datapath (Chapter 2)

Reduction Operator for Wide-
SIMDs Reconsidered (Chapter 3)

Datawidth-Aware Multiplication (chapter 4)

Part II
Data Efficiency

ConvFusion (Chapter 5)

Part III
Flexibility

Compute System Flexibility (Chapter 6)

Chapter 7
Conclusions & Future Work

Chapter 2

Wide-SIMD with Explicit
Datapath

This chapter is based on the work published in “SIMD made explicit” [159]
and “A Low-Energy Wide SIMD Architecture with Explicit Datap-
ath” [157].

From the conceptual Turing machine to modern-day specialised processors,
a common denominator between all computers is the fundamental cycle of
instruction selection and evaluation, both which consume energy. A classic
approach to reduce the energy required for the instruction selection is to evaluate
a single instruction for multiple data elements (simd), effectively amortizing the
cost of the instruction selection. This concept is taken to the extreme in the
configurable wide single instruction multiple data (simd) machine proposed in this
chapter, and, crucially, combined with an explicit datapath to reduce the energy
consumption by avoiding accesses to register files in each lane of the simd machine.
Extensive experimental results show that the proposed architecture is efficient
and scalable in terms of area, performance, and energy. In particular, a 128
processing element (pe) instance of the proposed architecture is shown to achieve
an average speedup of 206×, while reducing the energy dissipation by 48.3 %
on average and up to 94 % in the best case compared to a reduced instruction
set computer (risc) processor. The results show that explicit datapaths are
particularly effective in wide simd machines. Compared to the corresponding
simd architecture without explicit bypassing, an average of 64 % of all register
file accesses is avoided by the 128-pe instance, improving the compute energy
efficiency of the baseline machine by 27 % on average, and up to 43.0 % in the
best case.

16 WIDE-SIMD WITH EXPLICIT DATAPATH

2.1 Introduction
When high compute performance is required under a limited energy budget, a
solution may be found in wide-single instruction multiple data (simd) architec-
tures [116, 2, 172, 74]. In simd machines, a single instruction operates on multiple
data elements in parallel. This enables simd machines to exploit the data-level
parallelism (dlp) present in an application. Because multiple operations are
carried out simultaneously, high computational throughput can be delivered at a
very low clock frequency and thus low voltage, thereby greatly improving energy
efficiency [56, 118]. Another important energy efficiency enhancing feature of
wide-simds is the sharing of a significant portion of the control and datapath
between multiple processing elements (pes).

The particular wide-simd proposed in this chapter consists of a control processor
(cp) and a configurable number of pes. Since the pes execute the same instruction
in each cycle, the instruction fetch (if) and instruction decode (id) hardware
can be shared between all pes. The energy usage of the instruction memory
(imem), a significant part of the total energy usage in a single core processor [50],
is amortized over multiple pes. Furthermore the control flow is shared, as it is
managed by the cp. For a wide-simd with hundreds of pes, the energy used by
these shared parts, i.e., if, id, and control flow, becomes almost negligible on
the overall energy usage. The largest amount of energy is dissipated in the pe
datapath [56, 118] which performs most of the useful computations, resulting
in a high energy efficiency. Because of this, techniques that improve the energy
efficiency of the pe datapath are particularly effective in wide-simds.

Since the energy usage of a wide-simd is dominated by pes, and the register
file (rf) is one of the main contributors to the pe’s energy dissipation, as will
be further elaborated in section 2.4, reducing the energy dissipation of the rf
has a large impact on the overall energy usage of wide-simd architectures. It is
therefore imperative to reduce the energy usage of the rf in order to improve
the overall energy efficiency of a wide-simd architecture.

Explicit bypassing is a well-known technique that can reduce the energy usage
of an rf [57, 45, 39, 179]. Traditional pipelined architectures usually have
hardware bypassing1 mechanisms to mitigate/remove the penalty of read-after-
write hazards. This bypassing is dynamically performed by hardware, and thus
completely transparent to software. In this thesis, this hardware controlled form
of bypassing is referred to as implicit bypassing. Explicit bypassing, on the

1Also known as ‘forwarding’

2.1 INTRODUCTION 17

contrary, directly controls the bypassing network in software. Explicit bypassing
has the potential to greatly reduce the number of accesses to the rf, resulting
in a higher energy efficiency [57, 45, 39].

In this chapter a programmable, highly energy efficient, configurable wide-simd
architecture that exploits the explicit datapath concept is proposed. A comple-
mentary tool flow composed of compiler, simulator, and hardware description
language (hdl) generator, is also developed for the proposed architecture. To
demonstrate the efficiency of the proposed architecture, and the effectiveness of
explicit bypassing in wide-simds, multiple instantiations of the proposed wide-
simd architecture and its implicitly bypassed counterpart, as well as a baseline
reduced instruction set computer (risc), are synthesized with a commercial
40 nm low-power library. Eleven representative kernels are chosen to examine the
proposed architecture. These kernels contain different types of communication
and memory access patterns, namely point-to-point, neighbourhood-to-point,
global-to-point, and global-to-global (described in section 2.3), which represent
a wide range of applications. Additionally, fast focus on structures (ffos) [58,
53], a complete industrial computer vision application, is used to evaluate the
proposed architecture.

The experimental results show that in a 128-pe instance of this simd processor
is able to achieve an average speedup of 206× and reduces the total energy
dissipation by 48.3 % on average and up to 94 %, compared to the baseline
risc machine at the same clock speed and supply voltage. Compared to the
corresponding simd architecture with implicit bypassing, an average of 64 % of
all rf accesses is avoided by the 128-pe, explicitly bypassed simd. This results
in an average reduction of 27.5 % on the overall energy consumption.

The key contributions reflected in this chapter are:

• Proposal of a configurable, highly energy efficient, wide-simd processor
architecture with explicit datapath.

• Systematic evaluation of this architecture in terms of silicon area, perfor-
mance, energy, and scalability using benchmarks with different communi-
cation and memory access patterns.

• Analysis of an industrial case study demonstrating the effectiveness of the
proposed architecture.

The remainder of this chapter is organised as follows: Section 2.2 introduces
the proposed architecture and elaborates the differences between explicit and

18 WIDE-SIMD WITH EXPLICIT DATAPATH

Instruction Memory

CP Instr. PE Instr.

Decoder Decoder

Control
Processor

(CP)
PE 1 PE 2 PE N

Scalar Data
Memory

Data
Mem

Data
Mem

Data
Mem

...

Vector Data Memory

Circular
Neighbourhood

Network

Figure 2.1: High-level structure of the proposed wide-simd. A single control processor runs
in lock-step with an array of processing elements.

implicit bypassing. Section 2.3 describes the experimental setup and benchmarks.
Experimental results that show the effectiveness of the proposed architecture
are provided in section 2.4. Related work is discussed in section 2.5. Finally,
section 2.6 concludes this chapter.

2.2 Proposed Wide SIMD Architecture
As discussed in section 2.1, a wide-simd architecture is an excellent candidate
for an energy efficient compute platform. In a wide-simd, many pes execute
the same instruction. Hence if and id overhead are amortized over all pes.
Additionally, wide-simds are able to meet high compute demands at low clock
frequencies and voltages, further improving their energy efficiency.

The proposed processor architecture as shown in figure 2.1 consists of two parts;
a cp, and a wide one-dimensional array of pes which runs in lock-step with the
cp. This essentially makes up a very long instruction word (vliw) processor
with one scalar issue slot for the cp, and one (wide) vector issue slot for the pe

2.2 PROPOSED WIDE SIMD ARCHITECTURE 19

array. Dlp is exploited in the pe array, while instruction-level parallelism (ilp)
is exploited through issuing scalar and vector operations simultaneously. This is
particularly effective in an simd context, where without the exploitation of ilp
by the cp, a single scalar instruction would require the whole pe array to execute
this one scalar instruction. By executing scalar instructions in parallel to vector
instructions, an ideal speedup of two can be gained over any speedup already
obtained by exploiting dlp in the pe array. The cp and pe array operate in
lock-step, such that the control flow for both entities is uniform. This enables
the cp to handle the control flow, while the pe array processes data in parallel.

In the proposed architecture each pe has a private data memory (dmem) with its
own address generator, i.e., per-pe local addressing. Despite the higher area and
logic cost compared to global addressing for all pes, per-pe addressing results
in much better programmability [60]. Many applications, such as histogram
calculation and Hough transform can benefit from this independent address
generation [59, 60], offsetting the overhead compared to globally addressed
memory. In line with the pes, the cp also has a private scalar dmem.

The imem is shared between the cp and the pe array. Each instruction stored in
the imem contains a pair of operations, i.e., one cp (scalar) operation and one
pe-array (vector) operation. The vector part of the instruction is fetched from the
shared imem, partially decoded in the shared id stage, and broadcast to all pes.
The broadcasting of these signals across the chip could in a silicon implementation
negatively affect the maximum achievable clock frequency. Synthesis results
show that this is not an issue for the target frequency of 100 MHz. In case a
higher clock frequency is required, a solution may be found in pipelining these
long wires at the penalty of increased branch delay slots. This in turn may be
alleviated by employing an accurate branch predictor, of which the energy cost
will anyway be amortised over all pes.

The instruction set architecture (isa) of both the cp and the pes is based on
a 24-bit risc-like isa, similar to the one used by She et al. [133], but with two
extra bits for neighbourhood communication as detailed in section 2.2.2, and two
extra bits for predication as detailed in section 2.2.4. The instruction width for
both the cp and the pes is therefore 28-bit instead of the original 26-bit [133].
An overview of the isa is provided in appendix A.

20 WIDE-SIMD WITH EXPLICIT DATAPATH

2.2.1 Datapath
The proposed wide-simd framework supports different datapath configurations
(section 2.2.5), e.g., a 4- or 5-stage pipeline. For brevity, this chapter describes
the 4-stage risc-like datapath version only.

One of the properties of simds is that the if and part of the id logic are shared
among all pes. The remaining parts of the decoding logic, such as rf accesses
and operand selection, are performed locally in each pe. The execution stage (ex)
contains an arithmetic logic unit (alu), a multiplier unit (mul), and a load store
unit (lsu). The write back stage (wb) commits the results to the rf if necessary.
To optimize the datapath for low energy usage, each functional unit (fu) in the
execution stage has its own input registers. This is to isolate/clock-gate fus,
such that an fu does not dissipate dynamic power if it is not the target fu of
the current operation. Another important reason to introduce input registers for
each fu is to extend the available time of fu outputs in the bypassing network
which can improve the efficiency of the explicit datapath Before moving to the
main focus of this chapter, i.e., the explicit datapath, the next section first
presents a conventional implicit bypassing datapath.

Implicit Bypassing Datapath

Conventional pipelined architectures typically have an implicit bypassing mecha-
nism to mitigate the penalty of read-after-write hazards. This bypassing is
transparent to software. In an implicitly bypassing datapath, hardware keeps
track of all the uncommitted results in the pipeline and determines whether a
bypass is required. Figure 2.2 depicts a 4-stage datapath with implicit bypassing.
In this datapath there are two bypass sources, i.e., the result of the ex stage
and the output of the wb stage.

Despite being widely used, implicit bypassing has two major disadvantages with
respect to energy efficiency:

1. Speculative Reads
The detection of bypass situations is typically performed in the id stage,
in parallel with the operand fetching from the rf. Therefore, the operands
specified by an instruction are usually speculatively fetched from the rf.
If a bypass is required, the operand fetched from the rf is invalid and will
be discarded. The energy used to fetch the discarded operand from the rf
is thus wasted.

2.2 PROPOSED WIDE SIMD ARCHITECTURE 21

Op A

Imm

ID
E

X
W

B

Bypass

>>

>

Op B

ALU LSUMUL

RF

Figure 2.2: Datapath with implicit bypassing. Hazard detection logic (not shown) dynamically
controls the bypass mux to resolve pipeline hazards.

2. Speculative Writes
In programs with short-lived values, computed results may be consumed
through a bypass. If all uses of this result are bypassed, writing this result
back to the rf is not necessary. In an implicitly bypassing datapath,
however, the hardware cannot determine whether a variable is going to
be referenced in the future or not. Therefore, the dead result is always
written back to the rf, speculating it will be used in the future. Writing a
variable to the rf that is never referenced again wastes energy.

Speculative reads are caused by the lack of time to detect such bypass situations
dynamically before the rf is accessed. These reads may be avoided by the
addition of an extra pipeline stage, but as will be detailed in the next section
an explicitly bypassing datapath is a far more elegant solution. Speculative
writes find their origin in the fact that hardware has no liveness information of
the variables, since it can only observe those variables that are currently in the
pipeline.

22 WIDE-SIMD WITH EXPLICIT DATAPATH

Explicit Bypassing Datapath

Explicit bypassing is a technique that can be used to reduce the energy usage
of an rf [57, 45, 39, 179, 54]. The key idea of explicit datapath architectures
is to expose more details of the datapath to the compiler, thereby enabling
fine-grained control over the datapath in software.

The disadvantages of implicitly bypassed datapaths originate from the lack of
liveness information and limited time to detect bypass situations. If the compiler
is given information on the architecture of the datapath, however, the situations
that require bypassing can be easily detected at compile time. By keeping
track of where all the variables are in the pipeline, the compiler can determine
what bypasses are required. Furthermore, the compiler has a full view of the
liveness of all the variables. Given that the compiler can detect and control
what values/operands to bypass in the pipeline, it can also determine whether a
variable is dead before it is committed to the rf. In that case it can prevent
the speculative write that implicit bypassing needs to perform. In this way the
disadvantages of implicit bypassing can be overcome by shifting the control of
the bypass logic from hardware to the compiler.

To enable the compiler to control bypassing, the actions required to perform
a bypass need to be encoded in the isa. In the proposed datapath this is
achieved by mapping bypass sources to the register address space. When a
bypass is needed from a certain bypass source, the compiler inserts the address
associated with that source into the corresponding operand field. Furthermore,
if a variable does not need to be written to the register file, the compiler will
replace the destination address with r0, or its notational alias --, which is used
for readability in the remainder of this thesis. Register r0 always reads zero,
and when the hardware encounters it as a write destination no actual write is
performed.

Figure 2.3 depicts the explicit datapath of the proposed architecture. There are
four bypass sources, namely the alu output, mul output, lsu output, and wb
output. These sources are mapped to the end of the 5-bit register space. To
enhance readability of code, an alias is defined for each of the bypasses. ALU
indicates the result of the alu, MUL of the multiplier, LSU of the load store unit,
and WB indicates the writeback stage bypass source.

Compared to an explicit datapath implementation with less bypass sources, such
as the work of Yan et al. [179], multiple bypass sources can further reduce the
traffic to/from the rf, as will be shown in an example later in this section. In

2.2 PROPOSED WIDE SIMD ARCHITECTURE 23

Op A Op B

Imm

ID
E

X
W

B

Bypass

>> > > > > >

>

ALU LSUMUL

RF

Figure 2.3: Datapath with explicit bypassing. Software explicitly controls the bypass mux,
which compared to the implicit datapath can select from more bypass sources.

the proposed architecture, since the bypass sources are mapped to the end of
the 5-bit register space and rf-write removal is achieved by writing to a virtual
register r0, no extra bit(s) need to be added to the instruction format. The cost
of this encoding is the loss of four entries in the rf.

Another low-energy optimization featured in the proposed architecture are the
private input registers for each fu in the execution stage. These input registers
are only updated when the fu is active. Not only does this prevent unnecessary
toggling in these units, but it also preserves the output of the fu when not in
use. This extends the time results remain in the pipeline, increasing bypass
opportunities. The remainder of this section discusses these features in more
detail.

For an example of explicit bypassing, consider code 2.1. The first operand (r1)
of the add instruction on line 2 needs to be bypassed from the output of the
multiplier (MUL) to the input of the alu. The compiler will in this case insert the
register address associated with the MUL bypass source as shown in code 2.2. The
hardware will in this case fetch the operand from the output of the multiplier.
Because the bypass situation can be directly extracted from the instruction, the
rf does not need to be accessed. Additionally the result of the mul instruction

24 WIDE-SIMD WITH EXPLICIT DATAPATH

1 mul r1, src1, src2
2 add dest, r1, src2

Code 2.1: Simple bypassing situation.

1 mul --, src1, src2
2 add dest, MUL, src2

Code 2.2: Explicitly bypassed version of code 2.1

on line 1 does not need to be written to the rf, because after the bypass the
variable is dead. The compiler can analyse this and insert the -- address as the
destination to avoid the write.

The explicit datapath increases the bypass opportunities by exposing more
bypass sources compared to the implicitly bypassed pipeline. Essentially, the
bypass source of the execution stage in figure 2.2 is split into three separate
sources, ALU, MUL and LSU, as shown in figure 2.3. The input operands of
these units are furthermore only updated when a unit needs to be active. This
avoids unnecessary toggling of inactive units. It also ensures the output of a unit
remains unchanged until the next operation that uses it. As the input operands
do not change, the output of the logic holds the output value of the previous
operation. This enables bypassing of these outputs as long as the associated unit
is not used, increasing bypass opportunities.

To demonstrate the effect of adding more bypass sources, consider code 2.3,
which would only have one bypass with the bypass sources from figure 2.2. By
adding the bypass sources as depicted in figure 2.3 this code is transformed into
code 2.4. The difference is significant, from only one read avoided by bypassing
in code 2.3, the added bypass sources avoid another six reads, yielding a total of
seven avoided reads. On top of this the additional sources avoid four writes to
the rf, halving the number of writes.

The drawback of adding extra bypass sources is the additional locations they
take up in the rf address space. The implicit datapath has 32 registers, while
the explicit datapath has only 28, because four locations are used to address the
bypass sources. However, as has already been shown in various related work,
explicit bypassing can largely mitigate the increased rf pressure as no registers
need to be reserved for variables that are consumed through bypassing [39, 31,
146, 134, 179]. This can also be observed when comparing code 2.3 and code 2.4.

2.2 PROPOSED WIDE SIMD ARCHITECTURE 25

1 lw r2, r1, 0
2 add r1, r1, 1
3 mul r3, WB, 4 // r2 is bypassed with WB
4 lw r4, r2, 0
5 sw r0, r1, 1
6 add r5, r3, r1
7 mul r6, r3, r4

Code 2.3: Code snippet that has only one bypass when there is only a single bypass source
for the ex stage as described in figure 2.2

1 lw --, r1, 0
2 add --, r1, 1
3 mul --, LSU, 4
4 lw --, LSU, 0
5 sw r0, ALU, 1
6 add r5, MUL, ALU
7 mul r6, MUL, LSU

Code 2.4: Same code as in code 2.3, but now bypassed with the additional bypass sources as
in figure 2.3

In the original situation six registers are used. After adding the additional bypass
sources only three general registers are required.

A long-standing issue of explicit datapath is the much larger state that needs to be
saved for interrupts and context switching [29]. When the proposed architecture
is used in its intended setting as an accelerator it may not be required to support
interrupts. When interrupts are required, a possible solution is to use a scan
chain to stream out the current state without a large hardware overhead.

2.2.2 Interconnect
One of the main challenges of wide-simds is the interconnect between pes.
Many practical applications require some form of communication between the
processing units. For example to access input data or processed results stored in
the dmem of a different pe, or for synchronization between the pes. From an
application point of view, the most convenient form of interconnect is a fully
connected network. Such networks scale extremely poorly in hardware, however,
due to their logic complexity and long wires. A number of interesting solutions
have been proposed for wide-simd, such as a modified crossbar [125], an X-RAM
swizzle network [131], and dynamic communication for simds [35]. Although

26 WIDE-SIMD WITH EXPLICIT DATAPATH

these networks mitigate the problem to a degree, certain shortcomings remain.
Some are optimized for only a few specific applications. DC-SIMD [35], e.g.,
is mainly tuned for kernels such as lens distortion correction. Other solutions
require a large amount of additional hardware [125, 131]. In all cases scalability
is limited, which is undesirable for application in a generic wide-simd.

Circular Neighbourhood Communication Network

In the proposed architecture, a circular neighbourhood network is employed which
is highly similar to the neighbourhood network of the Xetal simd processor [2].
The main difference is that the neighbourhood network in the Xetal processor
has constrained access to data of its direct neighbours, e.g., a pe can access
data in the data memory of its direct neighbour, but all pes have to access
with the same address/index to its neighbour’s memory. This is because the
Xetal processor does not support per pe addressing and it also lacks predication
support. The circular neighbourhood network in the proposed architecture has
more flexible access to data of its direct neighbours as both per pe addressing
and predication/execution guarding are supported.

In a circular neighbourhood network, the units are logically connected in a ring
where each unit can communicate with its left and right neighbours as shown
in figure 2.4. Such a network requires exclusively short wires, allowing virtually
unlimited scaling. This is backed up by the results presented in section 2.4.1 and
section 2.4.2. To support neighbourhood communication, two additional bits
are added to the isa, indicating from which source (i.e., left neighbour, right
neighbour, or ‘self’) the operand should be read.

The neighbourhood network performs extremely well for local, short distance
communication as encountered in many typical kernels on simds, such as box
filters, convolution, and motion estimation. In the target application domains of
wide-simds, such as image and video processing, many kernels show high locality
in their communication, making a neighbourhood network highly suited.

When two pes which are not direct neighbours need to communicate, data
must be moved through all units in between. This is especially costly if long-
distance communication is required extensively. Unfortunately, these kinds of
applications are by no means rare. Examples of kernels that require long-distance
communication between pes are: partial histogram merging, row projection (sub
kernels in the industrial benchmark application described in section 2.3.2), max
vector element, and sum of vector elements (categorized as global-to-point kernels

2.2 PROPOSED WIDE SIMD ARCHITECTURE 27

PE 1 PE 2

CP

PE N

Op A

RF & Bypass

...

Left Right

Figure 2.4: Circular neighbourhood communication network. Processing elements are
connected to their direct neighbourhoods in a ring which optionally can include the control
processor.

in section 2.3.2). To efficiently handle these kernels on a wide-simd with only a
circular neighbourhood network, two novel reduction algorithms are introduced
in chapter 3, pipelined reduction and diagonal access reduction, which do not rely
on complex communication networks or any dedicated hardware. The key idea
of both approaches is to utilize inter-vector parallelism instead of intra-vector
parallelism. Experimental results show that the performance of the proposed
algorithms is comparable to dedicated reduction hardware.

As can be seen in figure 2.4, the cp takes a special place in the circular neigh-
bourhood network to facilitate both communication among pes and between
pe-array and cp. By dynamically programming the border pes of the pe-array,
it is possible to eliminate the cp from the circular network. Furthermore the
border pes can be programmed to not read from each other, but reading a
fixed value instead. This is useful for automatic insertion of image borders for
example.

2.2.3 CP Broadcast
In addition to the circular neighbourhood network described in the previous
section, direct broadcasting from the cp to all the pes in the pe-array is also
supported. Some applications require that the exact same data is sent from
the cp to all pes. For example a centrally computed threshold. Although it

28 WIDE-SIMD WITH EXPLICIT DATAPATH

would be possible to use the neighbourhood communication network for this
purpose, the total number of required hops would make this an highly inefficient
approach. Instead the cp is given the ability to broadcast data that can be read
by pes in a manner similar to reading neighbouring operands. This mechanism
does introduce long wires to the design again, which negatively affects scalability.
However, these wires can be pipelined to not harm the achievable clock frequency
at the cost of increased broadcast delay. In particular because wide-simds target
low frequencies, the number of required pipeline stages is likely low as well.
Also strategic placement of the cp close to the centre of the die will enable a
reasonably efficient tree-like broadcast structure.

2.2.4 Predication
Strictly speaking the simd paradigm applies exactly the same instruction to
multiple data elements in parallel. This is however not always desired. Sometimes
it is required by the program flow that some pes do not perform a certain
operation for example. To facilitate this diverseness in program flow, each
instruction is prefixed with two predication bits. Each pe can set and clear two
predication flags with compare operations in the alu. An instruction will only
be executed on a particular pe if its corresponding flags are set, otherwise a
no-operation (nop) is inserted. This enables for example the implementation
of if-then-else constructs on the pes. Each pe can determine whether it
needs to execute the then or else code block.

Note that when predicates are used to support diverging program flows, care
has to be taken in context of the explicit datapath when divergent execution
flows join. After all, in the explicit bypassing code the state of the pipeline
is presumed to be known, and equal for all active compute elements. When
execution paths between pes first diverges through the use of predicates, the
state is still equal for all paths. During the execution of the different paths the
executed instructions may be different between the divergent paths however.
When two divergent paths eventually converge, the state of the pipelines of the
pes of each branch may not be consistent. To solve this, it may be necessary
to perform additional operations to equalize the different pipeline states. The
straightforward, but also costly approach is to ensure that before any join in
the control flow the pipeline states are flushed by inserting dummy instructions
ensuring all state inside the pipelines is committed to memory. This overhead
may be prohibitive to performance when it occurs in the inner loops of critical
code. Typically we find however that this drastic measure is not required, and

2.2 PROPOSED WIDE SIMD ARCHITECTURE 29

HDL
Template

Tempate
Engine

HDL
Code

HDL
Synthesis

Post-Synth
Simulator

Program
Code

LLVM Based
Compiler

Program
Binary

Cycle
Accurate
Simulator

Architecture
Config

Figure 2.5: The framework capable of generating instances of the proposed wide-simd
architecture based on a configuration file. A single architecture configuration file controls
hardware & and code generation, and the behaviour of a cycle-accurate simulator.

imbalanced paths can aligned using only one or two additional operations. In
the code of the benchmarks further detailed in section 2.3.2, only one benchmark
required additional instructions to align diverging paths, and this was in a
non-critical part of the code resulting in negligible performance loss. Note that
although this is true for the proposed 4-stage datapath, it likely does not hold
generically for more deeply pipelined architectures.

2.2.5 Configurable Framework
To enable fast design space exploration and to tailor the proposed architecture for
different target applications, a design framework is developed to easily generate
different instantiations of the architecture with, for example, varying number
of pes, 4-stage or 5-stage datapath, explicit or implicit bypassing, as well as
different datapath widths. The complete set of parameters varied in this chapter
is presented in table 2.1.

Figure 2.5 shows the high-level diagram of the developed framework. The
architecture configuration file is a human readable json file that specifies an
instance of the wide-simd architecture. The hardware toolflow is visualized at
the top half of figure 2.5. An hdl template is combined with the architecture
configuration file to generate corresponding hdl code of the instance specified in
the configuration file. After this step, conventional hardware design tools can
be used for simulation, synthesis, and post-synthesis analysis. For the software
toolflow, an efficient compiler is developed [135], which supports both C and

30 WIDE-SIMD WITH EXPLICIT DATAPATH

Table 2.1: Configurations of the target architecture.

Property Options

Bypassing {implicit, explicit}
Datapath width 32b
Pipeline stages 4
Number of pes {8, 16, 32, 64, 128}
imem 56b × 2k
pe dmem 32b × 1k
cp dmem 32b × 1k

OpenCL. This compiler takes the same architecture configuration into account
and produces the proper binary. Furthermore, a cycle-accurate simulator is
generated based on the configuration file.

2.3 Experimental Setup
This section describes the experimental setup used to quantify the efficiency
of the proposed architecture in general, and the effectiveness of an explicit
datapath in th context of a wide-simd architecture. Section 2.3.1 describes the
configurations of the target architecture as well as a reference risc architecture.
Section 2.3.2 presents the benchmarks used for the evaluation.

2.3.1 Architecture Configurations
To evaluate the effectiveness of the proposed design, both the explicitly and
implicitly bypassed versions of the simd architecture proposed in section 2.2
are implemented in hdl. The configurations used in the experiments are shown
in table 2.1. Since the proposed architecture is configurable, the hdl code of
each configuration is automatically generated from an architecture template.
For a complete analysis, the proposed simd architecture is also compared to a
reference risc architecture. The configuration of the reference risc processor is
given in table 2.2.

To exclude any interference a memory hierarchy could introduce in the mea-
surements due to data misses, the evaluated designs assume only one level of
memory. This memory can be accessed within a single cycle. The sizes of
the data memories of the risc and simd are chosen such that all data of the
benchmarks can be contained.

2.3 EXPERIMENTAL SETUP 31

Table 2.2: Configuration of the reference risc processor.

Property Setting

Datapath width 32b
Pipeline stages 4
imem 24b × 4k
dmem 32b × 4k

Table 2.3: Energy dissipation of different memory accesses.

Mem. Config 32b × 1k 24b × 4k 32b × 4k 56b × 2k
pJ/Access 2.02 2.49 2.92 3.37

The core part of each configuration, that is the whole system with the exception
of the memories, is synthesized for 1.1V, 25 ◦C, typical case, with a 40 nm
commercial low-power complementary metal oxide semiconductor (cmos) digital
standard cell library. The target frequency is set to 100 MHz. Energy dissipation
is estimated using the physical information in the technology library and circuit
toggle rate generated by post-synthesis simulation on the gate-level netlist. The
energy dissipation of the memory part is estimated with CACTI [149]. The
CACTI tool provides an average access energy for a given memory configuration.
The estimated access energy of the corresponding memory configuration is given
in table 2.3. The number of accesses to each memory is extracted from simulation.

2.3.2 Benchmarks
To have a comprehensive evaluation of the proposed design across various types
of applications, a total of eleven representative kernels are chosen, which are
divided into four categories based on their communication and memory access
patterns (table 2.4). The four kernel categories are:

1. point-to-point
Binarisation is a typical example of this type of kernel. To calculate an
output at Dout(x, y), a pe only needs to read the input data, Din(x, y),
at the same location. Since this type of kernels does not need to access
data in the other memory banks, no communication to neighbouring pes
is required.

2. neighbourhood-to-point
To calculate an output at Dout(x, y), a pe only needs to read the current

32 WIDE-SIMD WITH EXPLICIT DATAPATH

Table 2.4: Benchmark categories and their kernels.

point-to-point global-to-point

Binarisation Find Max. Element in a Vector
Colour Conversion Sum of Vector Elements

Vector-Vector Addition
neighbourhood-to-point global-to-global

Convolution 3× 3 Matrix Rotation
Erosion 3× 3 Matrix Mirroring

5-tap FIR Matrix Transpose

input data, Din(x, y), and its surrounding data, Din(x ±m, y± n), where
m and n are small (≤ 7). These data are either in the pe’s own memory
bank, or in its nearby memory banks, so only local communication is
required. A 3× 3 low-pass filter is an example of this type of kernel.

3. global-to-point
To calculate an output at Dout(x, y), a pe needs to read the data far away
from its corresponding input data, i.e., global communication. This global
communication is either in the X direction, i.e., Din(x ± p, y), or in the
Y direction, Din(x, y± q), where p and q are large (> 7). One paradigm
that falls into this category is reduction, in which all the elements of a
vector are combined into a single element by a certain operator such as
add, min/max, logic and/or.

4. global-to-global
To calculate an output at Dout(x, y), a pe needs to read the data far away
from its corresponding input data, i.e., global communication. This global
communication can be in both the X and Y directions, i.e., Din(x ± p, y± q),
where p and q are large (> 7). For this type of kernels, every input data
element is still mapped to an output data element, i.e., no reduction op-
erator is involved. These kernels are often mapped in such a way that
one dimension is handled when reading the required input data, and the
other dimension is handled when writing the output. Matrix rotation by
90 degrees is an example of this type of kernel.

Evaluation based on such patterns is interesting in context of the proposed
wide simd with neighbourhood communication network. This is because kernels
with only local communication can be efficiently mapped onto such a design,
while kernels with global access will spend a significant amount of cycles on

2.3 EXPERIMENTAL SETUP 33

data transfers between pes that are far apart. To reduce the overall cost of
long-distance communication, two custom reduction algorithms are employed:
pipelined reduction and diagonal access reduction. These algorithms do not rely
on complex communication networks or any dedicated hardware. Chapter 3
further introduces these algorithms in detail. The key idea of both approaches is
to utilize inter-vector parallelism instead of intra-vector parallelism, which can
be applied to both global-to-point and global-to-global kernels.

Besides kernel-level evaluation, we also map the fast focus on structures (ffos)
application [58] to profile the proposed architecture. Ffos is the complete vision
processing pipeline of an industrial application; organic light-emitting diode
(oled) screen printing. Its purpose is to find the centre of oled cells at high
speed in the manufacturing process. It consists of the following four parts:

1. Otsu
With the input image shown in figure 2.6a, the optimal threshold for
binarisation is determined by means of Otsu’s method [112]. Otsu’s method
exhaustively searches for a class that minimizes the intra-class variance.
In order to achieve this, partial histograms per column are first calculated
in the pe-array, which are then merged into a combined histogram. The
optimum threshold is calculate based on this histogram. In order to achieve
this 256 divisions are required, which are performed in parallel on the
pe-array.

2. Binarisation
Once the optimal threshold is determined, the input image is binarized to
value 0 or 1. The result of this process can be seen in figure 2.6b.

3. Erosion
In order to remove noise and small objects from the binarized image, an
erosion kernel is applied to the binarized image. The eroded output image
is shown in figure 2.6c.

4. Row and column projection
Finally, by projection, i.e., summation, of both the rows and columns and
determining the local peaks in the resulting vectors, the boundaries of the
oled cells can be determined. In figure 2.6d, bounding boxes are drawn
around the detected cells.

As the number of cores scales up according to the pe parameters in table 2.1 it
is important to decide how to scale the problem size accordingly. One option is
to keep the problem size fixed while the number of parallel cores scales. This

34 WIDE-SIMD WITH EXPLICIT DATAPATH

(a) Input image of oled cells. (b) Binarized image.

(c) Eroded image. (d) Bounding boxes.

Figure 2.6: Ffos images at different stages of the algorithms. Centres of the bounding boxes
are obtained through row/column projection and subsequently determining the centres of the
projected regions.

methodology is in line with Amdahl’s law [8]. Amdahl’s law predicts a maximum
speedup as given by equation (2.1), where s is the sequential fraction of a
program, p is the parallel fraction and N is the number of cores in the system.
The implication of this law is that the achieved speedup rapidly diminishes if
s is not very small. Therefore, if applied to the proposed simd, the expected
speedup for 128 cores is limited by s.

Speedup = 1
s + p/N

(2.1)

Not only is the speedup predicted by Amdah’s law limited, it is also unrealistic
for practical purposes as reasoned by Gustafson [46]. Gustafson argues that for
realistic applications of multi-core systems, it is unlikely that the problem size is
kept constant. Instead, a higher number of cores is typically used to solve bigger
problems. For example in video processing a higher resolution can be used, or
a weather prediction system can be applied to a larger area. Assuming the
problem size scales with the number of cores leads to an alternative to Amdahl’s
law know as Gustafson’s scaled speedup, which is given in equation (2.2).

Speedupscaled = N + (1−N) · s, (2.2)

where N represents the number of processing cores, and s is the serial fraction of
the application. Because Gustafson’s scaled speedup is arguably more appropriate

2.4 RESULTS AND ANALYSIS 35

for real-life applications than Amdahl’s law, in this chapter we choose to scale
the problem size with the number of cores. In particular the kernels operate on
an N×N matrix, where N is the number of pes. Note that Gustafson postulates
that the amount of work scales linearly with the number of processors, yet in
this work the input is scaled quadratically with the number of pes. This is
done because for image and matrix oriented benchmarks this is a more natural
choice. When both the width and height are scaled with N , the mapping of the
problem to the processor can remain unchanged. For example if the row of an
input image matches the number of pes, it will match across all scaled versions.
Otherwise some form of wraparound would be required, which would introduce
a variable overhead in some mappings, but not in others. This would lead to
unwanted noise in the speedup measurements, and skew any speedup results.

As an exception to the quadratic scaling, the input to ffos is chosen to scale
linearly. Since ffos detects the centres of oleds in a production process, it is
only interesting to increase the number of cells which are detected in the width
of the input. The cells are moved underneath the camera so it is not useful to
detect cells at a large number of rows simultaneously, yet detecting the centres
of all cells in a row is the real goal of the application. Therefore it operates on
input images of size 1024×Npe, where Npe is the number of pes. In this way
the ffos application is modelled in the most realistic way, and remains true to
Gustafson’s original approximation that the problem size increases linearly with
the number of cores.

2.4 Results and Analysis

In section 2.4.1, the proposed architecture is first compared to a reference risc
processor in terms of area, performance, and energy dissipation. Performance and
energy dissipation figures are obtained using the four types of kernels described
in section 2.3.2. The purpose of this comparison is to demonstrate the scalability
and energy efficiency of the proposed architecture. To examine the energy
and performance impact of explicit bypassing in simds, the proposed explicitly
bypassed architecture is compared to its implicitly bypassed counterpart in
section 2.4.2. The energy and performance analysis are done for all kernel
categories as well as a realistic application, ffos. By varying the number of pes,
the effects of explicit bypassing in an simd architecture are discussed in detail.

36 WIDE-SIMD WITH EXPLICIT DATAPATH

2.4.1 SIMD versus RISC
In this section the performance, area, and energy dissipation of the proposed
explicit simd architecture is compared with that of a reference risc architecture,
which is described in section 2.3.1.

In terms of runtime the proposed simd has a significant speedup over the risc
in each kernel category as is shown in figure 2.7. For the point-to-point kernels
as can be seen in figure 2.7a, the relation between the number of pes and the
speedup is almost linear. This is expected as the point-to-point kernels have no
data dependencies between different pes.

Figure 2.7b shows the speedup for the neighbourhood-to-point kernels. Interest-
ingly, the speedup of the neighbourhood-to-point kernels is greater than that of
the point-to-point kernels. This is because instead of only exploiting more dlp
by adding more pes also data reuse is exploited in a more efficient manner. If
a neighbourhood is to be processed on the risc, the processor will load every
pixel inside the neighbourhood window and calculate a result. When the window
shifts a couple of pixels can be reused and do not need to be reloaded, but also
some pixels will be lost that are needed for a future computation. These pixels
will have to be reloaded by the risc once an overlapping window is processed.
On the simd the image is loaded row by row and all windows in a line are
processed in parallel. Since each pe has its own rf it is possible to keep a couple
of complete rows in the rf at the same time. Therefore, once a pixel is loaded,
it is used in all relevant neighbourhood calculations it belongs to and does not
need to be loaded again. This saves extra operations and memory accesses which
will also be visible later in the energy comparison.

For the global-to-point category the speedup is typically less than point-to-point
and neighbourhood-to-point kernels as can be seen in figure 2.7c. Especially the
max and reduction kernels have a lower speedup. This is explained by the fact
that when the number of pes increases, the data from these kernels need to travel
further to reach their destination. Both the max and reduction kernels operate
on data which is spread out across the pes. More pes means a longer path trough
the neighbourhood network which somewhat counteracts the gain of exploiting
more parallelism. The vectoradd kernel is the exception in this category. This is
because the max and reduction kernels have data movement across the pe-array,
i.e., reduction of the elements in a row, while the vectoradd kernel only has data
movement within the pes, i.e., reduction of the elements in a column. While
the max and reduction kernels combine an element from every pe in the array,

2.4 RESULTS AND ANALYSIS 37

8 16 32 64 128
0

100

200

300

400

Number of PEs

Sp
ee

du
p

(×
)

Binarisation
Colourconversion

(a) Point-to-Point.

8 16 32 64 128
0

200

400

600

Number of PEs

Sp
ee

du
p

(×
)

Erosion
Fir
Convolution

(b) Neighbourhood-to-Point.

8 16 32 64 128
0

100

200

300

400

Number of PEs

Sp
ee

du
p

(×
)

Max
Reduction
Vectoradd

(c) Global-to-Point.

8 16 32 64 128
0

20

40

Number of PEs

Sp
ee

du
p

(×
)

Rotate
Mirror
Transpose

(d) Global-to-Global.

Figure 2.7: Speedup of the proposed simd architecture with respect to a baseline risc
machine. The communication dominated global-to-global kernels scale very poorly compared
to the other kernel types.

38 WIDE-SIMD WITH EXPLICIT DATAPATH

Table 2.5: Relative core area of explicitly bypassed simd compared to risc.

risc Explicit Bypassed simd
8 16 32 64 128

1.00× 8.16× 15.2× 29.4× 57.8× 115×

the vectoradd kernel only combines elements which are within the dmem of
a pe. Therefore, when the array becomes larger, there is no communication
penalty such as the ones for the max and reduction kernels. As mentioned in
the previous sections, to reduce the overall cost of long-distance communication,
two reduction algorithms are introduced that exploit inter-vector parallelism
instead of intra-vector parallelism, which will be further detailed in chapter 3.
These approaches can also be applied to the global-to-global kernels.

Finally the global-to-global kernels show the least amount of speedup by adding
more pes, as is shown in figure 2.7d. For these kernels data elements need to
move both between pes and inside the data memories of the pes, i.e., row- and
column-wise. The communication patterns that arise from this are not always
regular, making the neighbourhood network the main bottleneck when more pes
are added. Because of the more irregular patterns the global-to-global kernels
pay an even higher penalty.

The core area of different instantiations of the explicitly bypassed simd, as well
as that of the reference risc processor, are shown in table 2.5. The area of the
8-pe simd is slightly larger than eight times that of the risc processor. This is
because an 8-pe simd consists of a vector array of eight pes and a cp. The area
of a pe itself is smaller than its risc counterpart as the if and part of the id
logic are shared among all pes. When the number of pes increases, the cp area
is amortized over more pes. Table 2.5 shows that the proposed simd architecture
scales well in area.

In this analysis the energy of both the core and memory are considered. The
reduction of the overall energy dissipation of the proposed simd architecture
compared to the reference risc is shown in figure 2.8.

Figure 2.8a shows the results of the point-to-point kernels. It can be seen that
the reduction in energy dissipation of the binarisation kernel keeps on increasing
when more pes are used. For the colour conversion kernel, however, increasing
the number of pes beyond 32 starts to degrade the efficiency. It seems that for
the colour conversion kernel after a certain number of pes the energy overhead

2.4 RESULTS AND ANALYSIS 39

8 16 32 64 128
0

20

40

60

80

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Colourconversion
Binarisation

(a) Point-to-Point.

8 16 32 64 128
0

20

40

60

80

100

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Convolution
Fir
Erosion

(b) Neighbourhood-to-Global.

8 16 32 64 128
0

20

40

60

80

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Vectoradd
Reduction
Max

(c) Global-to-Point.

8 16 32 64 128

−300

−200

−100

0

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Transpose
Mirror
Rotate

(d) Global-to-Global.

Figure 2.8: Energy dissipation compared to risc. Most kernel types demonstrate high energy
reductions with the notable exception of global-to-global kernels where the energy efficiency is
lower than that of the baseline.

40 WIDE-SIMD WITH EXPLICIT DATAPATH

of additional hardware, such as neighbourhood communication network and
predication logic, is not compensated sufficiently by the speedup it provides.

For the neighbourhood-to-point kernels, it can be seen in figure 2.8b that
increasing the number of pes always leads to an increased energy efficiency. The
reason for this is twofold: on one hand the speedup of these kernels is slightly
higher than for the colour conversion kernel. On the other hand, because of
better exploitation of the locality of the data, the number of external memory
accesses of the neighbourhood-to-point kernels decreases more than for the colour
conversion kernel when the number of pes increases. Accessing the dmem is
expensive in terms of energy, so reducing the accesses to this memory has a
profound effect on the overall energy dissipation.

The global-to-point kernels seem to benefit especially when going from a relative
low number of pes to a higher amount. In particular the kernels that gather
elements from all different pes exhibit this effect. In figure 2.8c, the biggest
increase in energy efficiency is observed when increasing the number of pes from
16 to 32. For lower numbers of pes, there is only a small reduction of the energy
dissipation. The overhead of the control of the array is hardly compensated
by the exploited dlp at this point. When the number of pes increases, more
dlp can be exploited, while the control overhead remains similar. This leads
to an increased energy efficiency. When more and more pes are added, the
neighbourhood network starts to become a bottleneck. The positive effect of
exploiting dlp is partly counteracted by the longer communication distances
across the neighbourhood network.

Finally the global-to-global kernels show the least reduction in energy dissipation,
which is shown in figure 2.8d. However, this is to be expected as their overall
speedup as shown in figure 2.7d is also much less than the other kernel categories.
More importantly, unlike the risc processor, which can directly access its
complete memory space, a pe within an simd processor requires extra operations
to access data in other memory banks. This communication overhead significantly
reduces the benefit of the increased exploitation of dlp. The mirror kernel is
an extreme in these kernels, the simd actually performs worse than its risc
counterpart. These kernels exhibit a similar behaviour as the max and reduction
kernels of the global-to-point category. When going up from a small number of
pes, first the efficiency is low. Then it increases due to the exploitation of dlp.
And in the end this is counteracted by the increased communication distances
across the pe array.

2.4 RESULTS AND ANALYSIS 41

Overall, the examined kernels show a significant reduction in energy dissipation
compared to the reference risc machine. In all of these kernels, a significant
speedup in performance is achieved in the proposed simd architecture due to
efficient dlp exploitation. For a design that focuses on low energy, techniques
like dynamic voltage frequency scaling (dvfs) can be applied to further improve
the energy efficiency, while still meeting the same performance requirement as
the risc.

2.4.2 Explicitly versus Implicitly Bypassed
The goal of this section is to analyse the effectiveness of explicit bypassing
over implicit bypassing in simds. First energy breakdowns are presented which
provide insight into where energy is being dissipated in both the explicit and
implicit simd. Furthermore five aspects are discussed and analysed per kernel
category, namely number of rf-accesses, rf energy dissipation, overall energy
dissipation, performance, and area.

Energy Breakdowns

This section presents the energy breakdowns for one selected kernel out of each
category in the benchmark. The breakdowns are given for each tested number of
pes and provide a comparison between the implicit and explicit bypassed simds.

Each breakdown features six parts, the mem accounts for the energy dissipated
in both the imem and all the dmems. pe_rf represents the energy dissipated
in the rfs of all the pes. Similarly pe_ex and pe_id represent the energy
dissipated in the execution stage and local decode stage of all the pes respectively.
The pe_if_id category includes both the energy dissipated in the if for the
pes, and the shared part of the instruction decode. Finally the part labelled cp
represents the energy dissipated by the cp.

The energy breakdown for binarisation from the point-to-point category is given
in figure 2.9. As expected the shared parts, such as the if, global decode and cp
become less important when the number of pes increases. In figure 2.9a it can
be seen that for the implicitly bypassed simd the rf starts to play a bigger role
in the overall energy dissipation as the number of pes increases. In the explicit
simd the energy dissipation in the rf is reduced to such an extent that it is no
longer the dominating part in the overall energy dissipation as can be seen in
figure 2.9b.

42 WIDE-SIMD WITH EXPLICIT DATAPATH

CP PE_IF_ID PE_ID PE_EX PE_RF MEM

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(a) Implicitly Bypassed simd.

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)
(b) Explicitly Bypassed simd.

Figure 2.9: Energy Breakdown for Binarisation. The energy consumed by the register file is
heavily reduced by explicit bypassing.

For the Convolution kernel from the neighbourhood-to-point category, the energy
breakdown is shown in figure 2.10. From the figure it is clear that the rf
dominates the energy dissipation even more, especially in the implicitly bypassed
simd. The neighbourhood-to-point kernels generally store data elements from
the neighbourhood in the rf, and update it as the neighbourhood window slides
over the input. This explains why the rf in this case is used more, and thus
dissipates relatively more energy than the point-to-point kernels. The positive
effect of explicit bypassing on the energy dissipation of the rf can be clearly
seen in figure 2.10b. The rf still accounts for a larger portion of the total energy
dissipation as the number of pes increases, but the explicit datapath techniques
significantly reduce the energy dissipation relative to the implicitly bypassed
simd.

The breakdown of the Vector-Vector Addition kernel from the global-to-point
category is given in figure 2.11. Comparable with the Convolution kernel, the
Vector-Vector Addition kernel uses the rf heavily to exploit locality. This is why
the rf again accounts for such a large amount of the total energy dissipation in
the implicitly bypassed simd, as can be seen in figure 2.11a. However, the vast
majority of variables in the Vector-Vector Addition kernel are short-lived, since
each loaded element is just added to a sum without any other computations.
This enables explicit bypassing to achieve high savings in energy dissipation, as a
large number of accesses to the rf can be avoided. Given that the computation

2.4 RESULTS AND ANALYSIS 43

CP PE_IF_ID PE_ID PE_EX PE_RF MEM

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(a) Implicitly Bypassed simd.

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(b) Explicitly Bypassed simd.

Figure 2.10: Energy Breakdown for Convolution. The relative contribution of the register
file in the implicit datapath is even larger than for the binarisation kernel.

of the Vector-Vector Addition is so simple, and the rf is almost not accessed
due to explicit bypassing, the memory accesses dominate the energy dissipation
of the explicit simd in figure 2.11b.

Finally, an energy breakdown is provided for Matrix Transpose from the global-to-
global category. In this kernel data predominantly moves between the pes. Since
the pes communicate by accessing each other’s operands, every communication
will result in a read and write of the rf in the implicitly bypassed simd. This is
why also here the rf plays such a dominant role in the implicitly simd, as shown
in figure 2.12a. Furthermore, when the number of pes increases, so does the
average communication distance. Therefore there are relatively more accesses
to the rf for larger number of pes, making the rf even more important for
an increasing number of pes. Explicit bypassing avoids a large amount of the
rf accesses during long distance communication. After all, data is passed from
neighbour to neighbour and never needs to be committed into the rf. This is
why also here explicit bypassing is so effective at reducing the contribution of
the rf to the total energy dissipation, as is visible in figure 2.12b.

Overall it can be seen that the rf plays an increasingly more dominant role
in the implicitly bypassed simd when the number of pes increases. Yet the
explicit bypassing techniques significantly reduce the contribution of the energy
dissipation of the rf. In the following sections the implicitly bypassed and

44 WIDE-SIMD WITH EXPLICIT DATAPATH

CP PE_IF_ID PE_ID PE_EX PE_RF MEM

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(a) Implicitly Bypassed simd.

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(b) Explicitly Bypassed simd.

Figure 2.11: Energy Breakdown for Vector-Vector Addition. The reduction of the contribution
of the register file is highly similar to the binarisation kernel.

CP PE_IF_ID PE_ID PE_EX PE_RF MEM

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(a) Implicitly Bypassed simd.

8 16 32 64 128
0

20

40

60

80

100

E
ne

rg
y

C
on

tr
ib

ut
io

n
(%

)

(b) Explicitly Bypassed simd.

Figure 2.12: Energy Breakdown for Matrix Transpose. The contribution of the register file
grows as the vector size increases, and the communication distances grow.

2.4 RESULTS AND ANALYSIS 45

binari
sat

ion

col
ou

r con
ver

sio
n

ero
sio

n fir

con
vol

utio
n

max

red
ucti

on

vec
tor

ad
d

rot
ate

mirr
or

tra
nspose ffos

0

20

40

60

80

100

A
cc

es
se

s
(%

)

Remaining reads Remaining writes Avoided reads Avoided writes

Figure 2.13: Breakdown of the rf accesses per benchmark. In particular the global-to-global
kernels benefit significantly as long communication no longer needs to access the rf.

explicitly bypassed simd will be compared for each of the kernel categories with
respect to the absolute number and type of rf accesses, energy dissipation in
the rf, and the overall energy dissipation.

Point-to-Point

The main cause of reduction in energy dissipation in an explicitly bypassed
simd processor is the reduction of traffic to the register file. Figure 2.13 shows
how many rf accesses (both rf reads and writes) are avoided compared to the
implicitly bypassed simd.

The point-to-point kernels only read and write to the private data-memory of a
pe. Each data element is updated based on only its current value. Therefore,
most variables are short-lived and can be bypassed. This is shown in terms
of avoided accesses (figure 2.13). For the binarisation kernel, the number of
remaining rf writes is even reduced to zero. Each pixel is loaded, compared to
a threshold and written back to the main memory. The lifespan of the pixel is

46 WIDE-SIMD WITH EXPLICIT DATAPATH

Remaining reads Avoided reads Remaining writes Avoided writes

8 16 32 64 128
0

0.5

1

1.5

2

Number of PEs

(a) Binarisation.

8 16 32 64 128
Number of PEs

(b) Colour
Conversion.

8 16 32 64 128
Number of PEs

(c) Erosion.

8 16 32 64 128
Number of PEs

(d) FIR.

8 16 32 64 128
0

0.5

1

1.5

2

Number of PEs

(e) Convolution.

8 16 32 64 128
Number of PEs

(f) Max.

8 16 32 64 128
Number of PEs

(g) Reduction.

8 16 32 64 128
Number of PEs

(h) VectorAdd.

8 16 32 64 128
0

0.5

1

1.5

2

Number of PEs

(i) Rotate.

8 16 32 64 128
Number of PEs

(j) Mirror.

8 16 32 64 128
Number of PEs

(k) Transpose.

8 16 32 64 128
Number of PEs

(l) FFoS.

Figure 2.14: rf reads and writes per cycle. The neighbourhood-to-point kernels have a
relatively high read activity, while the global-to-point kernels are on the other side of the
spectrum.

2.4 RESULTS AND ANALYSIS 47

short enough to avoid involving the rf. The rf is only used to hold memory
addresses and the threshold for binarisation.

If a large kernel has only one rf access, avoiding that access hardly brings
any reduction of energy dissipation. Therefore it makes sense to analyse the
effectiveness of explicit bypassing by looking at the average number of read/write
accesses per cycle in figure 2.14, rather than just the normalised accesses in
figure 2.13. Figure 2.14a and figure 2.14b show the absolute number of reads
and writes per cycle for the point-to-point kernels. The red/violet bars indicate
the extra accesses required by the implicitly bypassed simd over the explicitly
bypassed simd.

Figure 2.14a and 2.14b show that for the colour conversion kernel, relatively more
reads are avoided than for the binarisation kernel. However, binarisation almost
completely avoids all writes. Since rf writes consume more energy than rf reads,
this explains why binarisation saves more rf energy as shown in figure 2.15a.
For the overall energy dissipation, i.e., including the core, rf and memories,
the colour conversion kernel has a higher reduction as shown. This is because
the colour conversion has both a larger number of reads, and a larger number
of writes per cycle to start with (figure 2.14b), which means the percentage of
rf energy dissipation within the complete processor is higher. Although the
reduction of energy dissipation in the rf is less than for binarisation, the total
energy reduction in the colour conversion kernel is still higher.

Explicit bypassing results in significant reduction in energy dissipation for the
point-to-point kernels. The reduction of overall energy usage increases when the
number of pes increases. This is because, as previously shown in section 2.4.2,
the datapath, including the rf, of an simd processor plays an increasingly more
important role in the overall energy dissipation when more pes are added. This
again shows that reducing the rf energy dissipation is particularly effective in
(wide) simds.

Neighbourhood-to-Point

For the neighbourhood-to-point kernels, behaviour similar to that of the point-
to-point kernels is observed. Roughly around 60 to 70 % of the original rf
accesses are avoided when explicit bypassing is applied in the erosion, FIR, and
convolution kernels (figure 2.13). Out of these, the largest reduction in accesses
is observed for the erosion kernel.

48 WIDE-SIMD WITH EXPLICIT DATAPATH

8 16 32 64 128
0

20

40

60

80

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Colourconversion
Binarisation

(a) rf energy usage reduction.

8 16 32 64 128
0

5

10

15

20

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Colourconversion
Binarisation

(b) Overall energy usage reduction.

Figure 2.15: Energy usage reductions by explicit bypassing: point-to-point kernels. The
gains on the rf are higher for binarisation, but the colour conversion kernel still profits most
on the overall application.

This is also reflected in the number of accesses per cycle, as shown in figure 2.14c,
2.14d, and 2.14e. Among these kernels, the number of writes per cycle of the
convolution kernel decreases the most. This is also the reason the convolution
kernel has the largest reduction of energy dissipation, both in the rf and overall.

Compared to the point-to-point category, it can be seen in figure 2.15b and
figure 2.16b that in the neighbourhood-to-point category the overall energy dissi-
pation reduces the most. This is due to the inherent nature of the neighbourhood-
to-point category. Since the kernels in this category gather surrounding pixels
and merge them into a single value, a lot of short-lived variables exist. Pixels
are moved around the neighbourhood and absorbed quickly. Moving the pixels
around typically requires a large number of rf accesses in the implicitly bypassed
datapath. In the explicit datapath, these short-lived variables provide an excel-
lent opportunity to reduce rf accesses, incurring a large reduction in the overall
energy usage. This can also be observed by comparing the initial number of
accesses per cycle of the neighbourhood-to-pixel category in figure 2.14c, 2.14d,
and 2.14e to the corresponding figures of the other kernel categories. No other
category has such a large amount of accesses per cycle in the implicit datapath
and reduces the number of accesses by this much.

2.4 RESULTS AND ANALYSIS 49

8 16 32 64 128
0

20

40

60

80

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Convolution
Fir
Erosion

(a) rf energy usage reduction.

8 16 32 64 128
0

20

40

Number of PEs
E

ne
rg

y
R

ed
uc

tio
n

(%
)

Convolution
Fir
Erosion

(b) Overall energy usage reduction.

Figure 2.16: Energy usage reductions by explicit bypassing: neighbourhood-to-point kernels.
Despite the very similar read/write intensities shown in figure 2.14, the overall energy benefits
are spread out much more than the gain on the rf would suggest.

Global-to-Point

From the register file access numbers of the global-to-point kernels, i.e., max,
reduction, and vectoradd, in figure 2.13, it can be seen that the max and
reduction kernel both reduce the number of accesses by a significant amount.
The vectoradd kernel is an outlier however, and avoids almost all accesses. This
is because the max and reduction kernels combine data elements that are spread
out across the pe-array. Therefore, they cause a large amount of communication
and control overhead, in order to coordinate the data transfers. The vectoradd
kernel, however, only combines data elements that are already located in the
same pe data memory. Because all data elements are already located in the
private data memory of a pe, the values only need to be loaded and added to a
sum variable located in the rf. In the implicit datapath, each load induces a
write to the rf, and summing the loaded value causes two reads. Since loading
and adding a pixel can be done in just a couple of instructions, these accesses to
the rf can be almost completely avoided. This is why in figure 2.13 vectoradd
reduces the rf accesses much more than the other two global-to-point kernels. It
is therefore no surprise that the vectoradd kernel reduces the energy usage most
of all kernels in the global-to-point category (figure 2.17). The energy dissipated
in the rf is significant with implicit bypassing for the vectoradd kernel, but with
explicit bypassing the energy used in the rf is reduced by more than 90 %.

50 WIDE-SIMD WITH EXPLICIT DATAPATH

8 16 32 64 128
0

20

40

60

80

100

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Vectoradd Max
Reduction

(a) rf energy usage reduction.

8 16 32 64 128
0

20

40

60

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

) Vectoradd Max
Reduction

(b) Overall energy usage reduction.

Figure 2.17: Energy usage reductions by explicit bypassing: global-to-point kernels. There
appears to be a global optimum at 64 pes, after which the overhead of explicit bypassing is
starting to dominate the added gains.

Global-to-Global

The global-to-global kernels require a large amount of long distance communica-
tion. In pe-to-pe communications, variables only pass through the pes, hence
they do not need to be stored in the rf. This is the reason that explicit bypassing
avoids a significant amount of the rf accesses in the global-to-global kernels,
as can be seen from figure 2.14i, 2.14j, and 2.14k. When the number of pes
increases, the percentage of pe-to-pe communications increases accordingly. This
directly translates into an increasing energy efficiency for the global-to-global
kernels, as is shown in figure 2.18.

FFoS

In this section the industrial ffos application is benchmarked. The size of
the input image is 1024×Npe, where Npe is the number of pes in a particular
simd instantiation. Because the number of rows of the input image is fixed,
the number of avoided rf reads and rf writes per cycle is hardly influenced
when more pes are added (figure 2.14l). As a result, the reduction of the energy
dissipation in the rf is around 48 %, as is shown in figure 2.19a.

The ffos application is particularly memory intensive. In order to clearly show
the effects of explicit bypassing, which does not affect energy used in the data
memories, figure 2.19b only shows the reduction in energy dissipation in the

2.4 RESULTS AND ANALYSIS 51

8 16 32 64 128
0

20

40

60

80

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Transpose
Mirror
Rotate

(a) rf energy usage global.

8 16 32 64 128
0

20

40

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Transpose
Mirror
Rotate

(b) Overall energy usage global.

Figure 2.18: Energy usage reductions by explicit bypassing: global-to-global kernels. The
gains of these kernels grows linearly with increasing vector width. This happens because the
communication distance in these kernels grows proportionally to the vector width as well, and
without explicit bypassing communication traverses through the rf.

8 16 32 64 128
0

20

40

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Ffos

(a) rf energy usage global.

8 16 32 64 128
0

5

10

15

20

Number of PEs

E
ne

rg
y

R
ed

uc
tio

n
(%

)

Ffos

(b) Overall energy usage application.

Figure 2.19: Energy usage reductions by explicit bypassing: ffos. The overall energy gains
follow the patterns of the global-to-point kernels (figure 2.17), with an optimum at 64 pes.

52 WIDE-SIMD WITH EXPLICIT DATAPATH

Table 2.6: Cycle count of each kernel on 128-pe simds.

Kernel Explicit Implicit

Binarisation 527 526
Colour Conversion 4383 4382
Erosion 3×3 747 747
5-tap FIR 1411 1411
Convolution 3×3 2452 2452
Find Max. Element in a Vector 1100 1099
Sum of Vector Elements 844 843
Vector-Vector Addition 268 268
Matrix Rotation 5671 5542
Matrix Mirror 11273 11015
Matrix Transpose 5606 5477
ffos 32961 32961

Average performance loss 0.62 %

core/logic part of the processor. It is interesting that the ffos application shows
an overall improved energy efficiency for the logic part when the number of pes
is increased, even though the number of avoided rf reads and writes per cycle is
hardly influenced. This is due to the fact that the register file, percentage-wise,
contributes a larger part to the total energy dissipation, because the instruction
fetch and decode are amortized over more pes. This makes the register file’s
contribution to the energy dissipation larger, so even though the reduction in the
register file is nearly constant, overall the energy usage reduces as the number of
pes increases.

Performance

Table 2.6 shows the cycle count of each kernel on both the 128-pe simd with
explicit bypassing and the 128-pe simd with implicitly bypassing. Because ex-
plicit datapath architectures maintain state in the pipeline, sometimes additional
instructions are required to explicitly flush this state at the points where control
flow merges. The results in table 2.6 shows however, the overhead of these
additional cycles is almost negligible for the proposed architecture.

Area

The core area of the implicitly bypassed simds is shown in table 2.7. Compared
to table 2.5, it can be seen that the explicitly bypassed simds occupy slightly

2.5 RELATED WORK 53

Table 2.7: Core area of implicitly bypassed simd compared to a single-core risc.

risc Implicit Bypassed simd
8 16 32 64 128

1.0× 8.31× 15.6× 30.3× 59.3× 117×

less area. This is because the explicitly bypassed simds have slightly smaller
physical register files and simpler bypassing logic.

2.5 Related Work
Reducing the energy dissipation of the register file has always been considered
important in improving processor energy efficiency [57, 172]. About 15 % of
the core energy within a typical single-issue risc processor is dissipated by the
register file, and an even higher percentage for processors that exploit more
instruction-level or data-level parallelism [56, 163, 172]. Earlier work has shown
that optimizing the bypassing network can reduce this large energy usage [45].
For example, in vliws it has been shown that storing short-lived values in pipeline
registers can reduce energy usage while sustaining the compute performance [39].
Similarly, in a transport triggered architecture (tta), which is considered to be a
superset of the vliw architecture [29], the reduction of energy dissipation in the
rf induced by explicit bypassing has been shown to be as much as 80 %, leading
to a reduction of the overall energy dissipation of 11 % [57]. A compiler was
developed for this tta [134]. It fully automates explicit bypassing and achieves
the same amount of energy reduction. This proves the practical value of explicit
bypassing. However, none of the related works provide a detailed head-to-head
comparison in terms of energy efficiency between explicit and implicit bypassing
in an simd setting.

Explicit bypassing is also used to improve performance by mitigating rf pressure
on both size and number of read/write ports. The MOVE work [31] and the TCE
work [146], both of which are ttas, studied this thoroughly. Yan et al. introduce
a similar concept, called virtual register, which exploits the short-lived variables
and the data bypassing network to minimize the demand on real registers [179].
Instead of focusing on power dissipation, this work is mainly aimed at achieving
higher performance without enlarging the rf physically. Compared to this
work, the proposed architecture exploits the same principle, but with a more

54 WIDE-SIMD WITH EXPLICIT DATAPATH

compact instruction format, resulting in smaller instruction memory and less
expensive memory access in terms of energy dissipation. Moreover, in the
proposed architecture, data stays available longer for bypassing. This is because
input latches are introduced to each functional unit (fu), such that an fu
output is preserved till the same fu is used by another instruction. Since data
is available longer for bypassing, more variables can be bypassed, reducing the
traffic from/to the rf [57].

Wide simd architectures are widely used in embedded processors. The Xetal
from NXP [2] is an simd processor with 320 pes that is designed for smart
camera data processing. The pes in Xetal are connected by a neighbourhood
network. However, Xetal has one large vector memory (called frame memory).
It does not have any small memory (e.g., a register file) in between to exploit
data locality. Because of this, energy dissipation of data accesses is high. He
et al. address this issue in Xetal-Pro [56, 118]. By introducing an extra level of
memory, as well as aggressive voltage scaling, a much more efficient architecture
is obtained. This work shows that to achieve ultra-low power, improving the
efficiency of data movement is of crucial importance in simds, which motivated
the introduction of explicit datapath techniques in this chapter. The IMAPCAR
from NEC [84] is another example of a wide simd processor. The IMAPCAR
has 128 pes connected with a ring network. A key difference in IMAPCAR
compared to Xetal is that it has independent address generation for each pe.
While the memory is more complex in such a configuration, it also results in
much better programmability. Since many applications, such as histogram and
Hough transform, can benefit from independent address generation [59, 60], the
proposed architecture supports independent address generation for each pe.

Woh et al. propose AnySP, a wide simd targeting wireless and multimedia
applications [172]. The pe interconnect in AnySP is a reconfigurable RAM-based
crossbar, which is more flexible compared to Xetal, IMAPCAR, and the work
presented this chapter. The energy usage of the vector register file in AnySP
is reduced by introducing an extra 4-entry small register file. AnySP also uses
explicit bypassing. However, instead of using a small rf to increase the bypass
opportunities and reduce the rf pressure, we achieve these goals by increasing
the number of bypassing sources in the proposed architecture.

In another work of Woh et al., the evolution from SODA to Ardbeg is pre-
sented [173]. It is noted that the rf is the largest power consumer in SODA,
accounting for 30 % of the total power. To mitigate this problem, Ardbeg intro-
duces 2-issue long instruction word (liw) support, allowing a restricted set of

2.6 CONCLUSIONS 55

operations to run in parallel. In order to facilitate liw, the rf requires two read
and two write ports, making the rf more complex, and therefore presumably
more power hungry. Yet the performance gained by the 2-issue liw results in an
overall better energy-delay product. This technique is orthogonal to the explicit
datapath approach evaluated here, and it would be interesting to investigate
how much energy can be saved by combining the two techniques.

In our work, the proposed architecture is similar to the Xetal-Pro [56]. The
main differences are that the proposed architecture uses per-pe register files,
independent addressing, and a pe datapath with explicit bypassing. Compared
to the pe micro architecture of Xetal-Pro, which supports limited operation
types due to its simplicity [56], the pe micro architecture of this chapter is
risc-like and supports more operation types.

2.6 Conclusions
In this chapter a low-energy wide-simd architecture with explicit datapath
is proposed. The proposed architecture is fully programmable and features a
configurable number of processing elements and pipeline stages. Scalar operations
and (wide) vector operations are issued in parallel to exploit dlp and ilp at the
same time.

To show the effectiveness of the proposed architecture an instantiation of the
explicitly bypassed architecture with 128 pes is compared with a reference risc
architecture. The experimental results show that the simd processor reduces the
energy dissipation by up to 94 % in the erosion kernel and by 48.3 % on average
for the total of eleven tested kernels. The proposed simd processor also achieves
an average of 206× speedup compared to the reference risc even though it only
has 128 pes. This is because in the proposed simd architecture scalar operations
and (wide) vector operations are issued in parallel to exploit dlp and ilp at the
same time and enhanced exploitation of data locality.

To demonstrate the effectiveness of explicit bypassing in an simd environment
multiple instantiations of the proposed architecture are implemented. Eleven
representative kernels and one industrial application are mapped onto all these
instantiations, as well as their implicitly bypassed counterparts. Detailed compar-
ison and analysis are carried out. The experimental results show that compared
to the implicit bypassing counterpart a considerable number of rf accesses are
avoided by using explicit bypassing. In particular 64 % on average for 128 pes.

56 WIDE-SIMD WITH EXPLICIT DATAPATH

For total energy dissipation, an average of 27.5 %, and maximum of 43.0 %,
reduction is achieved.

Chapter 3
Reduction Operator for
Wide-SIMDs Reconsidered

This chapter is based on the work published in “Reduction operator for
wide-SIMDs reconsidered” [158].

In various application domains, including deep learning, reduction is a frequently
encountered operation, where multiple input elements need to be combined into a
single element by an associative operation, e.g., addition or multiplication. There
are many applications that require reduction such as: partial histogram merging,
matrix multiplication, min/max-finding, and accumulation over neural network
feature maps. To efficiently support reduction operations on the wide-simd with
minimal interconnect as described in chapter 2, two novel reduction algorithms
are introduced which do not rely on complex communication networks or any
dedicated hardware. The proposed approaches are compared with both dedicated
hardware and other software solutions in terms of performance, area, and energy
consumption. A practical case study demonstrates that the proposed software
approach has much better generality, and no additional hardware cost. Compared
to a dedicated hardware adder tree, the proposed software approach saves 6.8 %
in logic area with a performance penalty of only 7.1 %, while supporting a variety
of reduction operations as opposed to only accumulation.

3.1 Introduction
Reduction is a higher order function which combines a given list of input elements
through the use of an associative operation, constructing a single return value.
Examples of reduction are calculating the sum of the elements of a vector, finding
the maximum or minimum element in a list, and logic operations such as and and
or over a vector. Reduction is encountered so frequently that many programming
languages such as C++, Python, OCaml, Perl and Ruby, have built-in support for
it, although often under different names including reduce, fold, aggregate,

58 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

compress and inject. Amongst others, reduction is required for kernels such
as Partial Histogram Merging, Sum of Absolute Differences, Row Projection,
Min/Max-finding, Matrix Multiplication, and 2D Convolution layers in neural
networks.

Because the operator used in reduction is associative, the different combine
operations can be performed independently. Thus, reduction inherently possesses
a large amount of data-level parallelism (dlp). This dlp can be exploited by the
wide-single instruction multiple data (simd) architecture introduced in chapter 2.
Given that reduction is such an important part of the target domains of this
wide-simd, and plays such a dominant part in the evaluation of convolutional
neural networks, it is imperative to support reduction in an efficient manner.
This is particularly challenging given the minimal interconnect present on this
simd, as described in section 2.2.2.

In this chapter two reduction algorithms optimized for wide-simds with minimal
interconnect are proposed. These algorithms do not rely on any additional
hardware and require only local communication with short wires, making this
approach extremely scalable. Furthermore this software approach is completely
agnostic to the type of reduction operation. To demonstrate the effectiveness
of the proposed algorithm, implementations on the wide-simd with limited
connectivity as presented in chapter 2 are compared to both a straightforward
mapping and a solution with dedicated hardware. A case study shows that
dedicated hardware is only 7.1 % faster, while it consumes 6.8 % more chip area.

The remaining parts of this chapter are organised as follows. First the context
of the problem at hand is discussed in section 3.2. Next a single straightforward,
and the two proposed reduction algorithms, are presented in section 3.3. The
novel reduction algorithms are analysed and compared with reference approaches
in section 3.4, including the results of a case study. Finally, related work and
conclusions are provided in section 3.5 section 3.6 respectively.

3.2 Context
This section briefly describes the target platform used to benchmark the novel
reduction algorithms. Furthermore the data layout on this platform and a
dedicated hardware approach are described.

3.2 CONTEXT 59

3.2.1 Target Architecture
The experiments in this chapter are based on the wide simd with explicit datapath
introduced in chapter 2. Of particular interest is the circular neighbourhood
network described in section 2.2.2 (page 27), which is an extremely minimal type
of interconnect. In this network, all processing elements (pes) are connected in a
circular fashion as shown in figure 2.4 (page 27). To communicate, a pe is able
to access one of its neighbouring pe’s operands.

Note that the control processor (cp) can be a part of the loop or not, depending
on the configuration of the first and last pe. It is also possible to ‘break’ the
loop and let the boundary pes read a predefined value. This configuration can
be changed at runtime.

All the wires of this neighbourhood network are local and there is no com-
plex/global network control involved, which make this network highly scalable.
This scalability comes at the price of degraded performance for long distance
communication. The key concept is that when a pe needs to exchange data
with a pe not directly adjacent to it, that data will have to pass through all
pes in between. Every hop in this chain takes one cycle, hence long distance
communication is slow and inefficient. Therefore the challenge of this network is
to map algorithms in such a way that communication is kept local as much as
possible.

3.2.2 Data Layout
The goal of the reduction techniques is to combine the elements of a vector which
is distributed over the data memories of the pe array. In particular we assume
Nvect vectors of size Vsize elements are stored in the Npe data memories of the
target simd. The Nvect reduced outputs have to end up in the cp. In terms of
data layout in the pe array two cases can be distinguished:

case 1, Vsize ≤ Npe:
If the vector size is smaller or equal to the number of pes, each vector has at
most one element in the data memory (dmem) of each pe. The vectors are
assumed to be stored in rows, and in case Vsize < Npe the last pes in the array are
assumed to hold no elements and can be left out of consideration. In figure 3.1
the position of 4 vectors in the dmem of the target architecture is illustrated.

case 2, Vsize > Npe:
If the vector has more elements than there are pes, a wrap around is required.

60 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

PE0
[4]
[6]
[1]
[9]

PE1
[2]
[8]
[1]
[5]

PE2
[2]
[7]
[0]
[6]

PE3
[7]
[8]
[3]
[1]

Vector 0

Vector 1

Vector 2

Vector 3

Figure 3.1: Case 1: Vsize ≤ Npe.

PE0
[3]
[1]
[3]
[3]

PE1
[2]
[0]
[7]
[4]

PE2
[1]
[1]
[7]
[]

PE3
[7]
[4]
[4]
[]

0

1

(a) Initial situation.

PE0
[4]
[6]
[]
[]

PE1
[2]
[8]
[]
[]

PE2
[2]
[7]
[]
[]

PE3
[7]
[8]
[]
[]

0

1

(b) After column reduction.

Figure 3.2: Conversion from case 2 to case 1 Vsize > Npe. N.B., here addition is arbitrarily
chosen as the combine operator for illustration purposes. The choice of operation is completely
free.

Therefore the dmem of a pe will contain at least one element of the vector and
possibly more. It is relatively easy to convert this case to case 1, by letting each
pe locally reduce all elements associated to the same vector in its private dmem.
This leads to the same layout as in case 1 where each pe has one element per
vector. The conversion from case 2 to case 1 is illustrated in figure 3.2.

The conversion from case 2 to case 1 is a simple procedure, since there is no
communication required between pes. Given that a pe contains a maximum of⌈

Vsize
Npe

⌉
elements of a single vector, converting case 2 to case 1 would take

⌈
Vsize
Npe

⌉

loads,
⌈

Vsize
Npe

⌉
− 1 combine operations and 1 store operation. This gives a total

of 2×
⌈

Vsize
Npe

⌉
.

All the algorithms and techniques discussed hereafter assume a data layout as
shown in figure 3.1. To compensate for the conversion from a layout such as in
figure 3.2a, an additional 2×

⌈
Vsize
Npe

⌉
cycles should be added to all running times

given in the remainder of this chapter.

3.3 SOFTWARE APPROACHES 61

3.2.3 Dedicated Reduction Hardware
To benchmark the novel reduction algorithms they are compared with dedicated
reduction hardware. Although dedicated hardware is not as scalable as a software
approach, and fixes the supported combine operation at design time, it has been
used in the past in wide-simds as will be discussed in section 3.5. Therefore it is
important to compare the novel algorithms with such an approach.

Since dedicated hardware fixes the type of supported combine operations, a
choice has to be made on what to support. Calculating the sum of the elements
of a vector is one of the most common types of reduction, and can be found in
many kernels. Therefore the focus is on this type of reduction and an adder tree
is added to the target architecture as dedicated hardware.

The used adder tree is fully pipelined and can start a new computation every
cycle. It is as wide as the pe array and contains ⌈log2 Npe⌉ stages. The adder
tree inputs and output are memory mapped. The pes can write input elements
to the reserved address, and the sum of those elements can be accessed by the
cp.

3.3 Software Approaches
This section contains three software approaches to map reduction to the tar-
get architecture. Straightforward reduction is an attempt to exploit the dlp
within a single reduction operation, and is intended as a reference for the novel
algorithms. The pipelined reduction and diagonal access reduction are the two
novel algorithms that map reduction efficiently to the target architecture using
no dedicated hardware extensions or complicated interconnect requirements.

3.3.1 Straightforward Reduction
In typical cases the dlp in a reduction operation is exploited by performing
the operations in a tree-like fashion, i.e. all operations in one layer of a binary
reduction tree are executed in parallel. The mapping of such a tree to the pe
array is illustrated in figure 3.3. As can be seen in figure 3.3, directly mapping
such a reduction tree onto the target architecture results in a mismatch with the
neighbourhood network. Per cycle, data can only be transferred either one pe to
the left or to the right. The red arrows in figure 3.3 require communication over
more than one pe, resulting in additional cycles to perform the communication.
Per layer of the tree, the branches become longer and the overhead increases.

62 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7

1 1 1 1

2 2

4

Figure 3.3: Reduction tree mapped to the pe array. The numbers indicate the number of
required cycles to perform the communication. Red lines require more than one step and
severely degrade the performance of the reduction tree.

The number of operations for layer i, consisting of one reduction operation plus
communication operations is given in equation (3.1).

OperationsPerLayer (i) = 2i, with i = 0, 1, . . . (3.1)

The number of layers in a reduction tree for vectors of size Vsize is given in
equation (3.2).

layers (Vsize) = ⌈log2 Vsize⌉ (3.2)
Combining equation (3.1) equation (3.2), the number of required operations can
be calculated, as is shown in equation (3.3).

Operations(Vsize) =

=
layers(Vsize)−1∑

i=0
OperationsPerLayer(i)

=
⌈log2 Vsize⌉−1∑

i=0
2i

= 2⌈log2 Vsize⌉ − 1
≥ Vsize − 1

(3.3)

From this inequality it can be concluded that the number of cycles required by
the straightforward implemented reduction tree is the same or even more than
using a sequential algorithm that simply performs the Vsize − 1 combinations
required to reduce one vector.

3.3 SOFTWARE APPROACHES 63

From equation (3.3) it can be concluded that instead of mapping the reduction
tree to the simd, it would be just as fast, or even faster, to implement a sequential
type of algorithm. This is accomplished by shifting the elements to the CP and
in parallel combine them one by one as they arrive. The pseudo code for this
straightforward method is given in algorithm 1. In the pseudo code right(x) is
used to indicate that element x is being read from the right neighbouring pe.

Algorithm 1 Straightforward Approach.
LoadAddr ← addressF irstV ector
for i = 0 to Nvect do

v ← load(loadAddr)
for j = 0 to Vsize do

CP: combine(right(v))
v ←right(v)

end for
LoadAddr ← LoadAddr + 1

end for

3.3.2 Pipelined Reduction

Since it is impossible to exploit the DLP within a single vector with a neigh-
bourhood network as shown in the previous section, the parallelism has to be
found elsewhere. In this section the novel pipeline reduction and diagonal access
reduction algorithms are introduced that exploit parallelism in the number of
vectors that have to be reduced. Using this parallelism the communication
pattern is transformed such that only local transactions are required, and the
whole pe array can perform combine operations on the input data.

The pseudo code for the pipelined reduction algorithm is given in algorithm 2.
The key of this algorithm is that it operates on multiple vectors in parallel,
i.e., at any given moment in time all the pes perform combine operations for
different vectors. After a pe has performed a combine operation, the result is
passed to the next pe. This pe will then load the element from its dmem that
corresponds to the vector of the received data, and repeat the process. For
clarity a visualisation is given in figure 3.4.

64 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

CP
[0]
[0]
[0]
[0]
RF
[]

PE0
[4]
[6]
[1]
[9]
RF
[]

PE1
[2]
[8]
[1]
[5]
RF
[]

PE2
[2]
[7]
[0]
[6]
RF
[]

PE3
[7]
[8]
[3]
[1]
RF
[7]

Disabled

(a) Last pe loads top element. Rest of the pes
is disabled by predicating their instructions
based on the ID of the pe.

CP
[0]
[0]
[0]
[0]
RF
[]

PE0
[4]
[6]
[1]
[9]
RF
[]

PE1
[2]
[8]
[1]
[5]
RF
[]

PE2
[2]
[7]
[0]
[6]
RF
[7]

PE3
[7]
[8]
[3]
[1]
RF
[0]

Disabled

(b) Increase load address in active pes, enable
next pe and shift loaded value to the left.

CP
[0]
[0]
[0]
[0]
RF
[]

PE0
[4]
[6]
[1]
[9]
RF
[]

PE1
[2]
[8]
[1]
[5]
RF
[]

PE2
[2]
[7]
[0]
[6]
RF

[7+2]

PE3
[7]
[8]
[3]
[1]
RF

[0+8]

Disabled

(c) Load next value and reduce it with the
element just received.

CP
[0]
[0]
[0]
[0]
RF
[]

PE0
[4]
[6]
[1]
[9]
RF
[15]

PE1
[2]
[8]
[1]
[5]
RF
[23]

PE2
[2]
[7]
[0]
[6]
RF
[3]

PE3
[7]
[8]
[3]
[1]
RF
[1]

(d) Repeat until all pes are active. The
‘pipeline’ is now filled.

CP
[15]
[29]
[0]
[0]
RF
[]

PE0
[4]
[6]
[1]
[9]
RF
[4]

PE1
[2]
[8]
[1]
[5]
RF
[7]

PE2
[2]
[7]
[0]
[6]
RF
[]

PE3
[7]
[8]
[3]
[1]
RF
[]

(e) When a pe is done with all vectors in its
dmem, disable it again.

CP
[15]
[29]
[5]
[21]
RF
[]

PE0
[4]
[6]
[1]
[9]
RF
[]

PE1
[2]
[8]
[1]
[5]
RF
[]

PE2
[2]
[7]
[0]
[6]
RF
[]

PE3
[7]
[8]
[3]
[1]
RF
[]

Disabled

(f) Repeat until all sums have ended up in
the CP.

Figure 3.4: Visualisation of the pipelined reduction Algorithm. For this Figure summation is
used as the combine operator.

3.3 SOFTWARE APPROACHES 65

Algorithm 2 Pipelined Reduction.
LoadAddr ← addressF irstV ector
for i = 0 to Nvect + Vsize − 1 do

if (peid ≥ Vsize − i) and (loadAddr < endAddr) then
v ← load(loadAddr)
s←combine(left(s), v)
CP: store(left(s)) {if i > Vsize − 1}
loadAddr ← loadAddr + 1

end if
end for

In this pipelined reduction algorithm, three phases can be recognized:

1. Filling the pipeline:
In this phase not all pes are active. It takes Npe steps before pe0 receives
its first element. This phase corresponds with figure 3.4a – 3.4c.

2. Maximum occupancy:
If Nvect ≥ Vsize, then there will be a point where all the pes are active. In
this phase Vsize pes will perform a useful combine operation per step in
the algorithm. See figure 3.4d.

3. Emptying the pipeline:
Once the last pe in the array has processed the last vector, it can be
disabled. From this point on the remaining pes will finish one by one until
the first pe in the array completes. This corresponds with figure 3.4e –
3.4f.

3.3.3 Diagonal Access Reduction

If Nvect < Vsize, the pipelined reduction algorithm never enters the most efficient
phase (phase 2). Therefore, if Nvect is much smaller than Vsize it is better to
take a different approach. By accessing the elements in a diagonal pattern from
the start and using wrap-around, efficient reduction is possible for all situations
where Nvect ≤ Vsize. The pseudo code for the diagonal access reduction algorithm
is given in algorithm 3. A visualization is provided in figure 3.5.

66 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

CP
[0]
[0]
[0]
RF
[]

PE0
[4]
[6]
[1]
RF
[4]

PE1
[2]
[8]
[1]
RF
[8]

PE2
[2]
[7]
[0]
RF
[0]

PE3
[7]
[8]
[3]
RF
[7]

(a) Set load address to peID mod Nvect (red
squares) and load first element.

CP
[0]
[0]
[0]
RF
[4]

PE0
[4]
[6]
[1]
RF
[8]

PE1
[2]
[8]
[1]
RF
[0]

PE2
[2]
[7]
[0]
RF
[7]

PE3
[7]
[8]
[3]
RF
[]

(b) Shift left.

CP
[0]
[0]
[0]
RF
[4]

PE0
[4]
[6]
[1]
RF

[6+8]

PE1
[2]
[8]
[1]
RF

[1+0]

PE2
[2]
[7]
[0]
RF

[2+7]

PE3
[7]
[8]
[3]
RF
[8]

(c) Increase load address and use warp-around
if required (pe2). Load element and combine
with shifted value. CP: store received value.

CP
[4]
[0]
[0]
RF
[14]

PE0
[4]
[6]
[1]
RF
[1]

PE1
[2]
[8]
[1]
RF
[9]

PE2
[2]
[7]
[0]
RF
[8]

PE3
[7]
[8]
[3]
RF
[]

(d) Shift left.

CP
[4]
[14]
[2]
RF
[]

PE0
[4]
[6]
[1]
RF
[11]

PE1
[2]
[8]
[1]
RF
[15]

PE2
[2]
[7]
[0]
RF
[3]

PE3
[7]
[8]
[3]
RF
[]

(e) Repeat until every input element is
touched.

CP
[4]
[14]
[2]
RF
[]

PE0
[4]
[6]
[1]
RF
[11]

PE1
[2]
[8]
[1]
RF
[15]

PE2
[2]
[7]
[0]
RF
[3]

PE3
[7]
[8]
[3]
RF
[]

(f) Shift left. CP: combine incoming with
stored elements.

CP
[15]
[14]
[2]
RF
[]

PE0
[4]
[6]
[1]
RF
[15]

PE1
[2]
[8]
[1]
RF
[3]

PE2
[2]
[7]
[0]
RF
[]

PE3
[7]
[8]
[3]
RF
[]

(g) Shift left. CP: combine incoming with
stored elements.

CP
[15]
[29]
[5]
RF
[]

PE0
[4]
[6]
[1]
RF
[]

PE1
[2]
[8]
[1]
RF
[]

PE2
[2]
[7]
[0]
RF
[]

PE3
[7]
[8]
[3]
RF
[]

(h) Repeat until all elements are reduced.

Figure 3.5: Visualisation of Diagonal Access Reduction, again summation is chosen as the
combine operation.

3.4 ANALYSIS AND EVALUATION 67

Algorithm 3 Diagonal Access Reduction (Nvect < Npe).
LoadAddr ← addressF irstV ector + (peID mod Nvect)
s← load(loadAddr)
for i = 0 to Nvect − 1 do

loadAddr ← wrap(loadAddr + 1) {no modulo required!}
v ← load(loadAddr)
s← combine(v + right(s))

end for
for i = 0 to Vsize do

s← right(s)
CP: combine(Result[i mod Nvect],right(s))

end for

3.4 Analysis and Evaluation
In this section the two novel reduction methods and the reference methods
are analysed and evaluated in terms of running time, chip area and energy
consumption.

First running times of the various approaches are obtained by using a cycle
accurate simulator which is verified against register-transfer level (rtl) code.
The measured running times are plotted as continuous lines in figure 3.6. The
vector size (Vsize) is fixed at 128 elements. Apart from the measured values,
the specific constants for the complexity formulas of the algorithms are derived
from the source code to approximate the running times for any combination of
Nvect and Vsize (equations (3.4) to (3.7)). To demonstrate the accuracy of the
formulas, the approximated lines also plotted in figure 3.6.

Straigthforward(Vsize, Nvect) = 10 + 12×Nvect + 11
8 × Vsize ×Nvect (3.4)

Pipelined(Vsize, Nvect) = 26 + Vsize × 4 + Nvect ×
19
8 (3.5)

DiagonalAccess(Vsize, Nvect) =

12 + 11×Nvect + log2
Vsize

Nvect
× (37.5 + Nvect) + Vsize × 0.5

(3.6)

68 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

Number of Input Vectors (#)

N
um

be
r

of
C

yc
le

s
(#

)

Adder Tree (sim) AdderTree (Approx.)
StraightFwd (sim) StraightFwd (Approx.)
Diagonal Access (sim) Diagonal Access (Approx.)
Pipelined (sim) Pipelined (Approx.)
Pipelined Vsize=65 (sim)

Figure 3.6: Measured and approximated running times of the various methods for varying
number of vectors (Nvect) and fixed vector size (Vsize = 128). The approximated lines are
very close to the measured results. The largest deviations can be seen in the diagonal access
algorithm, where a repeating irregularity is not captured in the approximation.

3.4 ANALYSIS AND EVALUATION 69

adderTree(Nvect, Npe) = 14 + α + Nvect ×
(

6
α

+ 2
)

,

with α = nextPowerOfTwo (⌈log2 Npe⌉)
(3.7)

Since the adder tree requires exactly the same amount of cycles for 64 < Vsize ≤
128, the same line would hold for Vsize = 65. The software approaches would
however need to do less work and would thus finish faster. To illustrate this a
purple line is added for the pipelined algorithm for Vsize = 65. This line can
thus be compared directly to line of the adder tree, indicating how much the
performance difference can vary if Vsize is between two consecutive powers of
two.

As can be seen in figure 3.6 the pipelined and Diagonal Access algorithms provide
an enormous speedup compared to the straightforward method for more than
a couple of vectors. When analysing the runtime expressions for fixed vector
size on both these algorithms, i.e., equation (3.5) and equation (3.6), it can be
seen that both asymptotically converge to a runtime of O(Nvect). However, the
pipelined algorithm has a smaller constant in front of this term (19/8), whereas
the Diagonal access algorithm comes in at 11. A factor 4.6× difference, which can
also roughly be observed as the difference in slope between these algorithms in
figure 3.6. This larger constant is caused by the more complex control overhead
that is required by the Diagonal Access algorithm, which keeps coming back every
cycle. The advantage is however that the Diagonal Access algorithm immediately
engages all pes. The pipelined approach on the other hand has a high initial
cost as it fills the pipeline, and pes are involved more gradually. But once filled,
the recurring control complexity is much lower than that of the Diagonal Access
algorithm. The results in the Diagonal Access algorithm outperforming the
pipelined method for small Nvect, while for large Nvect the pipelined approach
is favourable. Based on the cross-over point, a hybrid approach can be taken
where based on Nvect dynamically the optimal algorithm is selected.

Interesting is that the running time of the adder tree grows at about the same
rate as the pipelined reduction algorithm. In fact, as can be derived from the
running time formulas, in the used implementation the pipelined reduction
algorithm grows at about 2.38 cycles per vector while the adder tree grows at
2.75. At some point the software reduction would thus even be faster than the
dedicated adder tree.

70 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

Table 3.1: Area Overhead, Running Time, Power and Energy comparison for the various
approaches obtained by post-synthesis simulation. Nvect = 100 and Vsize = Npe = 128.

Approach Area Speed Power Energy
Overhead (cycles) (µW) (pJ)

Straightfwd. 0 % 18814 51 2398
Diagonal 0 % 1377 63 217
Pipelined 0 % 786 56 110
Adder Tree 6.5 % 294 82 60

This effect though is highly dependent on the target architecture. Both algorithms
have the same complexity and are theoretically able to grow at a rate of one cycle
per vector. In the selected target architecture however, one cycle is required to
load the vector from memory, one to do the actual reduction, and the rest is
control overhead shared over a number of vectors. An expansion of the target
architecture with zero overhead loop support and dual issue pes would enable a
growth of only one cycle per vector for both the dedicated hardware, and the
pipelined reduction method.

Table 3.1 shows the area overhead, and energy results for a fixed input size. These
numbers are obtained by synthesizing the simd for 400 MHz with a commercial
40 nm library. Post synthesis simulation is used to obtain the power and energy
results. As can be seen in the table, the adder tree consumes less energy, but these
numbers are excluding memories. If the data memories are chosen to be 16-bit
wide, 1 kB large and also built in 40 nm technology, the CACTI memory tool [149]
calculates an access energy of 76× 10−2 pJ. For the tested configurations this
would result in an additional energy of 98× 102 pJ, making the energy difference
between dedicated hardware and the novel algorithms negligible.

Case Study — Fast Focus on Structures
To evaluate the effectiveness of the novel reduction algorithms in a practical
application, the Fast Focus on Structures application [53] was mapped to the
target platform as a case study.

In the fast focus on structures (ffos) algorithm the centres of organic light-
emitting diodes (oleds) have to be detected from an image. In order to do so,
reduction is used in two parts of the algorithm. Once to merge partial histograms
and convert them to a cumulative histogram (ch) and cumulative intensive area

3.5 RELATED WORK 71

Table 3.2: Cycles times for both the adder tree and the novel reduction algorithms for ffos
on a 120× 45 input image.

Application Adder Tree Novel Algorithm

ch/cia calculation 2580 2540
Row Projection 379 970

(cia), and once to obtain the sum of the rows of the image and detect peaks in
that projection. More information on ffos is provided in section 2.3.2.

The cycle counts for the various parts of the application with both the novel
software techniques and a dedicated adder tree are given in table 3.2. As is shown
in the table, for this practical example, the software reduction technique is even
faster for the ch/cia calculation. This is due to the flexibility of the software
approach. Where the adder tree always gives its result directly to the cp, the
software approach is able to do some post processing in parallel with the cp,
reducing the running time. For row-projection, the detection of peaks in the row
projection on the cp takes so much time that the reduction operations on the pes
are completely hidden. It is only the initial start-up cost that makes the software
reduction technique slower here. Overall the ffos application with dedicated
hardware is only 7.1 % faster than with the software reduction techniques.

3.5 Related Work
Reduction is encountered frequently in the target domains of wide-simds and
multiple solutions to support reduction have been proposed in the past. The
most common approach is to implement dedicated hardware to support a fixed
type of reduction. For example Seo et al. [132] suggest a dedicated adder tree as
an extension to AnySP [172] in order to support the h.264 video codec efficiently.
Other examples of simds optimized for video processing that include dedicated
hardware include SIMD-2D [115] and the work by Li et al. [90].

In the SLiM-II [21] a dedicated interconnect is used to support reduction.
Essentially the red lines in figure 3.3 are implemented as direct, one cycle latency,
connections between pes. To perform one reduction operation with this network
⌈log2 Vsize⌉ communication steps are required. This approach is flexible in type
of operation, but a single reduction operation takes O(⌈log2 Vsize⌉) operations, as
consecutive operations cannot be pipelined. Furthermore implementing the red

72 REDUCTION OPERATOR FOR WIDE-SIMDS RECONSIDERED

lines as connections would result in pe0 having ⌈log2 Vsize⌉ additional connections,
which the instruction set must support.

It is clear that efficient reduction support for wide-simds is a relevant topic for
many applications. The proposed solutions in the related works all use additional
hardware to support reduction causing them to either lose generality, or end
up with an inherently slower and more complex design. The novel reduction
algorithms introduced in this chapter avoid the downsides of dedicated hardware
and offer an interesting trade-off between pure performance, flexibility, scalability,
and chip area.

3.6 Conclusions
In this chapter two reduction algorithms are proposed which are optimized for
highly scalable, low-power interconnects that provide only minimal connectivity.
It has been shown that the algorithms are much more effective than a straight-
forward approach and can even compete with dedicated hardware solutions.
The added flexibility of the algorithms can in practical cases give an edge over
hardware solutions. Since there is no additional hardware involved and only
short local wires for communication are required, these software approaches
are cheaper in area and can scale virtually unlimited. As almost all types of
interconnect provide the required connectivity, these algorithms can be mapped
to existing processors that lack hardware support. For future designs it should
be a reason to reconsider adding hardware support at all.

Chapter 4
Datawidth-Aware Multiplication

This chapter is based on the work published in “Datawidth-Aware Energy-
Efficient Multipliers: A Case for Going Sign Magnitude” [155].

The multiplication operator is used in many application domains, including
linear algebra, image/signal processing, and deep learning. Despite hardware
support present in most modern cores, multiplication remains one of the most
energy hungry arithmetic operations. The energy efficiency of current multipliers
can be improved, however, by taking into account that the operands typically do
not utilize the full width of the datapath. Many applications, such as quantized
neural networks, rarely require the full datapath width of the machines they
execute on [37], and could benefit tremendously from multipliers that have
reduced energy consumption for narrow operands.

This chapter explores the inefficiencies in typical multipliers, and evaluates seven
datawith-aware multiplier designs. Post-layout energy analysis is performed to
obtain the energy efficiency of each design for a number of representative bench-
marks targeting the consumer market. Results show a significant improvement
in energy efficiency compared to a 32-bit Baugh-Wooley baseline multiplier. A
32-bit sign-magnitude based design, integrated in a two’s complement datapath,
is shown to have a 1.38 times better energy efficiency than a baseline two’s
complement multiplier. In the best case (jpeg encoding), the energy efficiency
is increased by a factor 2.25, demonstrating that a sign-magnitude multiplier,
and datawidth-aware multipliers in general, are an attractive option for ultra
low-energy designs.

4.1 Introduction
Many application domains contain algorithms that heavily use the multiplication
operator. Therefore, almost all real-world processors contain hardware multi-
pliers, despite their complex circuits compared to many other arithmetic units.
The high complexity of hardware multipliers, and the high frequency at which

74 DATAWIDTH-AWARE MULTIPLICATION

multiplications occur, contribute to the high energy usage of multipliers relative
to other hardware in a system. In particular the integer unit can represent from
10 % for high-end central processing units (cpus) [43] to as much as 20-49 % for
digital signal processor (dsp) type of processors [80], of the total energy usage.
Therefore it is important to improve the efficiency of multiplications to achieve
a high energy efficiency of the overall system.

Since multipliers have such a significant impact, already many techniques have
been developed to improve their energy efficiency. To identify further optimisation
opportunities, this chapter investigates in general the relation between operands
and energy consumption of a standard multiplier. In particular the relation
between effective operand width and energy consumption is shown to be a
promising direction to improve the energy efficiency of multiplication. In image
processing, e.g., pixels often are represented by only eight bits. Operations on
these pixels typically do not increase the effective bit width of the data elements
by much. When such an image processing application is executed on a 32/64-bit
datapath, the upper bits of the datapath do not need to be involved in the
majority of the operations.

In this chapter a cycle accurate simulator is used to obtain the real operand
width distribution of six representative benchmarks. From these measurements it
is concluded that the majority of real-world multiplications indeed have operands
with an effective operand width much narrower than the full datapath width
(section 4.2.2). Furthermore it is shown that the minimum energy required for
such operations is significantly lower than full-width multiplications, although
standard multipliers fail to capitalize on this (section 4.2.3).

After identification and classification of various opportunities to exploit this
potential with datawidth-aware techniques, seven different multiplier designs
are implemented in 40 nm technology. Post-layout energy analysis is performed
to obtain the energy efficiency of each design. The results show a significant
improvement in energy efficiency for various computing kernels.

To summarize, the key contributions contained in this chapter are:

1. The relation between selected operand properties and energy consumption
as claimed by related work [36, 6] is qualitatively investigated.

2. The concept of datawidth-aware computing is validated by investigating
the relation between operand width and energy consumption.

4.2 VIABILITY OF DATAWIDTH-AWARE MULTIPLIERS 75

3. Identification, classification, and evaluation of different datawidth-aware
techniques for multipliers using post-layout energy estimation.

4. Proposal to integrate a sign magnitude multiplier in a standard two’s
complement datapath, and demonstration that this design has a superior
energy efficiency.

The remainder of this chapter is organised as follows. Section 4.2 analyses the
viability of datawidth-aware multipliers, and investigates the relation between
several multiplication operand properties and energy usage. Seven datawidth-
aware multiplier designs are introduced in section 4.3. Energy and area of these
designs are evaluated in section 4.4. Related work is discussed in section 4.5,
and section 4.6 finally concludes this chapter.

4.2 Viability of Datawidth-Aware Multipliers
To improve upon the classic multiplier design is not trivial as much research has
already gone into optimizing this important building block. Opportunities for
improvement can be found in specific scenarios however, rather than improving
the general case. Specific operands may inherently require less energy than
typical hardware consumes [36, 6, 17, 18].

The relations between various operand properties and energy consumption are
investigated in detail in section 4.2.1. Out of these, the most promising direction
is shown to be the relation between operand width and energy consumption.
The intuition behind this datawidth-aware computing is that operations on
narrow operands can be completed with less energy than the same operation on
wider operands. There are two criteria that need to be met if datawidth-aware
techniques are to improve on the energy efficiency of standard designs:

1. Multiplications with operands that are narrower than the width of the full
datapath frequently occur in realistic applications.

2. Standard hardware multipliers do not (fully) exploit multiplications with
narrow operands to obtain a higher energy efficiency.

In section 4.2.2 and 4.2.3 respectively validate both these criteria, confirming
the viability of datawidth-aware multipliers to improve energy efficiency.

76 DATAWIDTH-AWARE MULTIPLICATION

4.2.1 Relation between Energy and Operand Properties
Related work suggests several relations between operand properties and energy
consumption [36, 6]. These relations might provide hints for optimization of the
multiplier circuit, hence this section investigates these claimed relations.

To determine the relation between the operand properties and energy usage,
a 5b × 5b baseline multiplier is constructed. The baseline design is an energy
efficient two’s complement (2c) multiplier. In most cases, 2c multiplier designs
either follow the Baugh-Wooley algorithm [14] or the Booth algorithm [98].
Compared to a Booth-based multiplier, a Baugh-Wooley based multiplier of the
same bit width typically has a higher energy efficient [140, 82]. Therefore a
Baugh-Wooley based design is selected as the baseline (figure 4.7a).

The energy usage of a multiplication depends on two things, being the operands
of the multiplication, but also the state the circuit is in at the start. For example,
when the same operands are multiplied consecutively there will be no toggling
in the circuit the second time, vastly reducing the consumed energy. To capture
these relations every pair of A×B followed by C×D multiplications is simulated
on this 5b× 5b multiplier, after which post-layout energy estimation is used to
determine the energy usage of C ×D.

Next, several operand features are handcrafted (table 4.1), and machine learning
is used to assess their relation with energy consumption. In particular the
following operand features are defined:

1. The hamming distance between consecutive operands A, C and B, D, as
proposed by Fujino and Moshnyaga [36].

2. Ahn and Choi [6] propose to use the difference in sign bits of consecutive
operands with the intuition that it is indicative for the difference in leading
bits of the operands. Rather than using only the difference in sign bit, in
this chapter the feature is extended to count the total number of matching
leading bits, which is slightly stronger and does not rely on the intuition
that many of the leading bits will be the same. Note: this would hold for
many real world data, as demonstrated in section 4.2.2, but not for the
exhaustive 5-bit experiment conducted here.

3. Finally the number of zeroes in the individual operands is used, following
the intuition that numbers with many zeroes probably cause less carries
and internal toggling.

4.2 VIABILITY OF DATAWIDTH-AWARE MULTIPLIERS 77

Table 4.1: Correlation coefficient of individual operand features and complete models, and
learned linear regression coefficients.

Feature Correlation Coef. Lin. Reg. Coef.

Hamming(A,C) 0.08 -0.02
Hamming(B,D) 0.22 0.38
Leading(A,C) -0.14 -0.29
Leading(B,D) -0.19 -0.17
Zeroes(A) -0.09 -0.21
Zeroes(B) -0.19 -0.44
Zeroes(C) -0.16 -0.37
Zeroes(D) -0.16 -0.37

Linear Regression 0.41 —

To qualify how indicative these features are for the energy consumption of the
multiplier, the Pearson correlation coefficient is calculated between each of the
features and the measured energy. This coefficient measures the linear correlation
between two variables, and results in a number between −1 and 1. Here minus
one represents perfect negative correlation, zero means no correlation, and 1
means perfect correlation. The correlation coefficient for each of the features is
presented in table 4.1. The highest correlation is with the hamming distance
between B and D, as might be expected based on the intuition presented by
Fujino and Moshnyaga [36]. Surprising is however that the hamming distance
between A and C has almost no correlation, which is most likely due to the
asymmetric nature of multipliers. A similar, yet weaker, trend can be observed
for the number of matching leading bits. Also here the B and D operands
have higher correlation with the energy. Finally the number of zeroes feature
proposed in this chapter shows reasonable correlation with the energy, although
the strongest correlation remains with the hamming distance between B and D.

In order to find out if a combination of these features has a higher indicative value,
linear regression is applied to the proposed features. The resulting correlation
coefficient, i.e., 0.41, is much higher than the individual metrics, showing a
combination of these features holds some predictive value for the energy usage.
This is visualized in figure 4.1, where figure 4.1a is measured energy versus
measured energy to resemble the perfect prediction, a diagonal line. Note that
the colours in the figure indicate the number of measurements on a given location.
The diagonal has the highest concentration of measurements in the centre, as
the energy distribution essentially fits a normal curve. The energy predicted by
the linear regression model is visualized in figure 4.1b. Here it becomes clear the

78 DATAWIDTH-AWARE MULTIPLICATION

0 1 2 3
0

1

2

3

Measured Energy

P
re

di
ct

ed
E

ne
rg

y

(a) Oracle predictor.

0 1 2 3
0

1

2

3

Measured Energy

(b) Linear Regression
on features of table 4.1.

0 1 2 3
0

1

2

3

Measured Energy

(c) Linear Regression
on operands A, B, C, D.

Figure 4.1: Measured versus predicted energy. Ideal is figure 4.1a. Linear regression on
the proposed features is not very accurate, and appears to have a bias to predict too low in
figure 4.1b. Linear regression directly on the input operands in figure 4.1c however mainly
predicts the median energy, and ignores the input operands altogether, demonstrating that,
although far from perfect, the proposed features do hold some predictive value.

predictive value of the model is not particularly high, as most points seem to
cluster around a central area. The learned coefficients of each metric are given
in the last column of the table. Interestingly it is not the hamming distance
between B and D that has the highest absolute coefficient, but rather the number
of zeroes appear to have a strong negative correlation with the energy consumed.
The smallest coefficient (in absolute sense) is assigned to the hamming distance
of A and C, confirming the observation that this feature has almost no influence.

The somewhat disappointing predictive value of the operand features raises the
question if these features add anything over a linear regression on the operands
directly. Direct linear regression over A, B, C, and D shows however that the
model simply ends up predicting the average energy as shown in figure 4.1c.
The coefficients assigned to A, B, C, and D are extremely small, as linear
regression fails to find a direct linear correlation between the operands and
energy consumption. This demonstrates the added value of the manually crafted
features described in table 4.1.

The results presented in this subsection show some promise for further optimisa-
tion, in particular the number of zeroes appears to be a reasonable indicator of a
low-energy operation. The energy models remain relatively inaccurate however.
To encourage research in this direction, the exhaustive measurements (over one
million post placement and route energy measurements) have been made freely

4.2 VIABILITY OF DATAWIDTH-AWARE MULTIPLIERS 79

Table 4.2: Benchmarks by domains and type of operations.

Coding Filtering

Audio mp3 Encode [86] 128-tap fir Bandpass [1]

Graphics jpeg Encode [73] Sobel Edge Detect [141]
H264 Encode [48] yuv to rgb conversion [28]

available [156], accompanied with the scripts to generate the results presented
here.

4.2.2 Operand Width Distribution
The ‘number of zeroes’ features investigated in the previous subsection hints at
opportunities for improving the energy efficiency of multipliers using datawidth-
aware techniques, but it is far from conclusive. The next two sections investigate
if the principle of datawidth-aware computing can be applied to multipliers. The
first step is to investigate the operand with distribution in the real world, which
is done in this subsection.

Related work on datawidth-aware computing assumes a distribution of operands
where each bit has equal probability to be either a one or zero [180, 51]. This
assumption might not hold for typical workloads. Therefore in this chapter the
true operand width distribution is determined by tracing the multiplications
that occur in real applications. Six benchmarks are selected from two impor-
tant domains in consumer market devices: audio and graphics. Within these
domains two common types of operations are selected, i.e., encoding and filtering
(table 4.2). The coding benchmarks are based on the consumer section of the
MiBench benchmark set v1 [47], but with updated versions of h.264 and the
lame MP3 encoder.

To obtain traces of multiplications and their operands in the selected benchmarks,
the cycle accurate simulator of OpenRISC [110] is used. The simulator is adapted
to generate a trace of all the multiplications that occur in a benchmark. To avoid
capturing multiplications from an operating system (os), the benchmarks are
executed bare-metal on the simulator. This procedure is illustrated in figure 4.2
in the Multiplication Tracing box.

For a 32 bit datapath like the OR1K architecture, all input operands of the
multiplication are 32 bit 2c numbers. However, the effective data-width (ew) of

80 DATAWIDTH-AWARE MULTIPLICATION

Synthesis & Layout

Multiplication Tracing Power Est.
File I/O

Emulation
Library

openrisc
gcc

Compiler

Modified
openrisc
Simulator

Trace of
Multipli-
cations

ncsim rtl
Simulator

Benchmark
C-source

Toggle
Information

hdl
Testbench Cadence edi

Multiplier
hdl Source

Cadence rtl
Compiler Cadence edi Layout

Netlist
Power

& Area

Trace of
Multipli-
cations

Figure 4.2: Tool flow for multiplication extraction and post-layout power/area estimation.
The top part shows how multiplications operands are extracted from the benchmarks. The
lower part details the hardware description language (hdl) complication. The part on the
right shows how the results of both are combined to perform activity based power estimation
on the synthesized netlist.

4.2 VIABILITY OF DATAWIDTH-AWARE MULTIPLIERS 81

these operands is often less than 32-bit, were we define the ew of a 2c number
as the minimum required number of bits to represent its absolute value in 2c
notation. E.g., the effective datawidth of −5 is three (101). As an exception,
the width of 0 is defined to be one. Since the largest operand of an operation
presumably has the largest influence on the required energy for the operation,
the maximum effective data-width (mew) of the input operands is used to define
the effective width of the entire operation. The mew of a multiplication of two
binary numbers N and M is defined as:

mew(N, M) = max (ew(N), ew(M)) (4.1)

Using this definition and traces of the benchmarks, histograms of the mew
are constructed (figure 4.3). Note that using all traced multiplications for the
power estimation is too time consuming, so they are subsampled by taking
one thousand windows of one thousand consecutive multiplications. This is
done to maintain the relation between consecutive multiplications while also
covering multiple modes of the application. The histograms in figure 4.3 are
based on the subsampled traces, although their shapes are virtually identical
to the histograms over the full traces. The sampled versions are shown here
because these represent the exact traces used to perform post-synthesis power
estimation later in section 4.4.

From figure 4.3 it is clear that multiplications with a mew smaller than the
full width occur at a high frequency. In fact, multiplications with at least one
operand that uses the full width are very rare, and are only encountered in
mp3 and h.264 encoding (figure 4.3e-4.3f). These are the two benchmarks that
use floats which are emulated on the standard OpenRISC architecture, which
explains the higher mews for these benchmarks. The distribution of the mew is
not exponential, as a switching probability of 0.5 would lead to as was assumed
by related work [180, 51]. In practice many applications only have operands with
an ew of 16-bit or less. In general two peaks can be observed in the histograms:
left of 8-bit, and left of 16-bit. This is to be expected, considering that the
benchmarks are written in the C language, which provides data types of 8, 16,
and 32-bit wide.

Overall it can be concluded that multiplications with operands that are narrower
than the width of the full datapath occur frequently in real-world applications.
Furthermore, there is a bias imposed by the programming language that favours
multiplications with an mew close to 8, 16, and 32-bit.

82 DATAWIDTH-AWARE MULTIPLICATION

0 4 8 12 16 20 24 28 32
100

102

104

106

Effective Width

O
cc

ur
en

ce
s

(a) jpeg Encode.

0 4 8 12 16 20 24 28 32
100

102

104

106

Effective Width

O
cc

ur
en

ce
s

(b) yuv to rgb Conversion.

0 4 8 12 16 20 24 28 32
100

102

104

106

Effective Width

O
cc

ur
en

ce
s

(c) Audio Filter.

0 4 8 12 16 20 24 28 32
100

102

104

106

Effective Width

O
cc

ur
en

ce
s

(d) Sobel Filter.

0 4 8 12 16 20 24 28 32
100

102

104

106

Effective Width

O
cc

ur
en

ce
s

(e) mp3 Encode.

0 4 8 12 16 20 24 28 32
100

102

104

106

Effective Width

O
cc

ur
en

ce
s

(f) h.264 Encode.

Figure 4.3: Maximum effective width distribution per benchmark. The height of the bars
indicates the absolute occurrences on a logarithmic scale. The ratio (N.B., on a linear scale!)
between the blue and the red parts of each bar represents the fraction of multiplications
which involve at least one negative operand (red part) among all multiplications.

4.3 DATAWIDTH-AWARE MULTIPLIER DESIGNS 83

4.2.3 Relation between Energy and Operand Width
To relate the energy of a multiplication to its mew, artificial inputs are con-
structed that have a mew ranging from 1 to 31. The magnitude and sign of
the operands are chosen randomly from the range dictated by the mew. For
each mew value, one million multiplications are performed on a post-layout
implementation of the baseline multiplier. To estimate the energy used by these
multiplications, the tool flow as shown in figure 4.2 is used, with the exception
that the synthetic operands with a fixed mew are used as input, instead of the
multiplication traces extracted from realistic applications. The baseline design,
a 2c Baugh-Wooley multiplier, is synthesized for 100 MHz with a commercial
40 nm library. Both a 16-bit and a 32-bit version of the baseline design are tested
as shown in figure 4.4.

As can be seen in figure 4.4, multiplications on randomized operands (the baseline
16b/32b trends) with a mew of 16 or less can be performed with ∼ 2.5 pJ on
the 16-bit baseline multiplier. However, on the 32-bit baseline multiplier, the
same multiplications use ∼ 3.5 times more energy1.

This proves that multiplications with a narrow mew can be performed with less
energy than those with a high mew. However, the 2c baseline design is unable
to exploit this. In fact, the energy cost of a multiplication is almost constant for
all mew values on a given multiplier design. Only for very low mew values, the
energy is somewhat less than a full width multiplication.

4.3 Datawidth-Aware Multiplier Designs
In the previous section it is shown that there is a significant potential for
datawidth-aware designs to improve the energy efficiency of 2c multiplications. In
this section, the domain of datawidth-aware computation is explored and various
datawidth-aware techniques are classified. It is investigated how datawidth-aware
techniques can be used to improve the energy efficiency of the baseline multiplier,
and a sign magnitude (sm) multiplier integrated in a 2c datapath is proposed.

1As multipliers scale quadratically in logic with respect to the input operand size, operations
with half the mew require about 4 times less logic. Provided there is some additional logic
surrounding the multiplier, such as input and/or output registers, which does not scale
quadratically, achieving an energy improvement with a factor of 3.5 is realistic when the mew
is halved.

84 DATAWIDTH-AWARE MULTIPLICATION

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Maximum Effective Width (bits)

E
ne

rg
y

pe
r

M
ul

tip
lic

at
io

n
(p

J)

Baseline 32b
Baseline 32b - positive
Baseline 16b
Baseline 16b - positive
Signed Magnitude

Figure 4.4: Relation between operand width and energy usage for standard two’s complement
multipliers (Baseline trends) and a sign magnitude multiplier. For mixed sign operands above
a mew of five, the energy per multiplication is almost constant for the baseline multipliers.

4.3 DATAWIDTH-AWARE MULTIPLIER DESIGNS 85

16x16 32x32

>

Operand A Operand B
Width

Dection
Logic

Result

> > >

Select

Figure 4.5: 32/16-bit mixed width multiplier.

Baseline
2C BW

Subword
Operation

Alternative
Repre-

sentation

Separated Integrated

Figure 4.6: Classification of
datawidth-aware techniques.

4.3.1 Subword mode — Separated
Based on figure 4.4, it is clear that on the 32-bit baseline multiplier, subword
operations such as a multiplication with a mew of 16, are supported very poorly
energy-wise. A first approach to improve the 32-bit baseline design is to add
better support for subword operations. In this chapter two methods based on
this approach are considered.

One method is to extend the baseline multiplier by adding separate smaller
multipliers that are optimised for the subword operations. In the extreme case
a dedicated multiplier is added for every n ×m, for any number of bits n, m.
Such a design quickly grows in area complexity, and is highly impractical. A
slightly less extreme approach is to add a dedicated multiplier for each possible
mew (n× n), which is exactly what is proposed by Bhardwaj et al. [15], in an
attempt to find the theoretical optimum energy efficiency of a datawidth-aware
design. In practice this design would consume a lot of area, and the overhead
logic to select between the separate multipliers also consumes energy. Therefore,
in this chapter, an even more practical version of this type of datawidth-aware
multiplier is selected. The baseline 32-bit multiplier is extended with only one
extra multiplier of either 16× 16 or 8× 8 (figure 4.5). The decision to support
subwords of 16 or 8-bit based on the observation that there are peaks for these
widths in the mew histograms of the benchmark applications (figure 4.3). This
type of datawidth-aware multiplier can be classified as separated subword mode
multipliers. These designs correspond to the left most leaf in the datawidth-aware
classification tree in figure 4.6.

86 DATAWIDTH-AWARE MULTIPLICATION

4.3.2 Subword mode — Integrated
Using separate multipliers to improve the energy efficiency of subword operations
is one method. However, this method incurs large area and leakage energy
overheads. Another way of adding a subword mode to the baseline multiplier is
to reuse the already available hardware, but isolate parts to prevent unneces-
sary switching. This is referred to as integrated subword mode (centre leaf in
figure 4.6). Within the integrated subword class there are many possible designs.
In this chapter four different designs are presented that implement a half-width
mode.

Baseline Multiplier

The baseline multiplier is a 32-bit, 2c, Baugh-Wooley signed multiplier, of
which the partial-product bits have been reorganised according to Hatamian’s
scheme [52]. The layout of the partial products of the baseline is visualized
in figure 4.7a. In the figure, a white dot represents the partial product of the
corresponding bits of a multiplicand and a multiplier, while a red dot represents
an inverted partial product bit. The designs with integrated subword mode are
derived from this baseline design.

Least-Significant-Bit (LSB) Multiplier

To enable half-width mode in a full-width multiplier, one option is to use the
upper-right quadrant of the partial products, while isolating the rest of the
multiplier logic. This design is referred to as the Least-Significant-Bit multiplier,
and is depicted in figure 4.7b. The changes required to enable correct half-width
calculation are highlighted in blue. When working in the default/full-width mode,
the Least-Significant-Bit multiplier behaves exactly the same as the baseline
reference. When both operands are detected as half width or less, half-width
mode is engaged. The higher half of both operands, namely the extended sign
bits, are zeroed to avoid unnecessary logic toggling.

Most-Significant-Bit (MSB) Multiplier

Instead of using the upper-right quadrant of the multiplier, the bottom-left
quadrant can also be used to perform a half-width multiplication. This Most-
Significant-Bit multiplier design is depicted in figure 4.7c. When half-width
mode is triggered, the lower half of the input is routed to the upper half, and
zeros are inserted into the lower half. Compared to the Least-Significant-Bit

4.3 DATAWIDTH-AWARE MULTIPLIER DESIGNS 87

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

X5

Y5

S0S1S2S3S4S5S6S7S8S9S10S11

1

1

(a) Baseline multiplier.

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

X5

Y5

S0S1S2S3S4S5S6S7S8S9S10S11

1 1 0
1 0 0

1 0 0
1 0 1 0 0 0

1 0 0 0 0 0
1 0 1 1 1 1 1

0/1

1

(b) LSB multiplier.
X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

X5

Y5

S0S1S2S3S4S5S6S7S8S9S10S11

1 1 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 0
0 0 0

0 0 0
1 1 1 1

(c) MSB multiplier.

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

X5

Y5

S0S1S2S3S4S5S6S7S8S9S10S11

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0

0 0 0
1

0 0
0

0

0 0 0

0/1

(d) Modified MSB multiplier.
X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

X5

Y5

S0S1S2S3S4S5S6S7S8S9S10S11

0
0 0

0 0
0 0 0

0 0 0
1

0 0
0

0

0 0 0
1

0/1

0/1

(e) Twin multiplier.

= XiYj

= XiYj

(f) Legend.

Figure 4.7: Baseline and datawidth-aware multiplier designs. To simplify the view, partial
products of 6×6 multiplier instances are shown. For the datawidth-aware designs (figure 4.7b-
4.7e), only half-width mode is depicted. When working at full-width mode, they are equivalent
to the baseline design (figure 4.7a).

88 DATAWIDTH-AWARE MULTIPLICATION

multiplier, the Most-Significant-Bit multiplier requires a bit more hardware due
to operand routing. However, the benefit of using the bottom left quadrant of
the multiplier is that fewer partial products need to be disabled or modified.

Modified Most-Significant-Bit Multiplier

The modified Most-Significant-Bit multiplier is based on the Most-Significant-Bit
multiplier. In the modified Most-Significant-Bit multiplier, inverted partial
products are further zeroed (highlighted in blue) to reduce unnecessary toggling
when the multiplier operates in half-width mode at the cost of a bit more control
hardware. The design of the modified MSB multiplier is given in figure 4.7d.

Twin Multiplier

The Twin multiplier (figure 4.7e) is based on the work of Själander et al. [139], and
is a combination of the Least-Significant-Bit and modified Most-Significant-Bit
multipliers, enabling two half width multiplications in parallel, which is referred
to as twin-mode. Dynamically enabling twin mode at runtime would require
complex control logic, and is undesirable for an in-order processor. Therefore
this is not considered for low-energy processors. The benchmarks used in this
chapter have a dynamic mix of operand widths, which prevents the unconditional
use of twin-mode. Therefore twin-mode is disabled in the experiments.

4.3.3 Alternative Data Representation
From the baseline trends in figure 4.4 it is concluded that the energy usage
does not scale with the mew for regular 2c hardware. In the previous sections,
various techniques are introduced which potentially add better support for 2c
multiplications with a small mew. However, they all use the traditional 2c
multiplication algorithm. In this section, it is shown why the energy usage
of traditional 2c multiplication does not scale, and a design based on signed
magnitude notation is proposed.

An important observation to be made is that in two’s complement notation,
negative numbers have leading ones, and positive numbers have leading zeroes.
Thus, if the input of a multiplier changes sign between consecutive multiplications,
all the leading bits (all bit positions above the ew of the operand) of the
multiplier’s input toggle. The hypothesis is that in this way even operands with
a small ew can cause a lot of switching, increasing energy usage. This is verified
by testing with only positive operands of different mews, such that the sign bits

4.3 DATAWIDTH-AWARE MULTIPLIER DESIGNS 89

Table 4.3: Energy usage breakdown (pJ/op) of the baseline multipliers with mixed and
positive-only inputs at an mew of 16.

Sequential Combinational Clock Total

Baseline 32b 1.26 7.19 0.23 8.68
Baseline 32b positive 0.88 1.78 0.23 2.99
Baseline 16b 0.54 1.90 0.07 2.53
Baseline 16b positive 0.54 1.79 0.07 2.39

are static. The results are shown in the baseline positive trends figure 4.4. The
trends show that when only positive operands are used, the energy per operation
scales much better with the mew.

The baseline positive trends show that at a mew of 16, the 32-bit multiplier is
almost as efficient as the dedicated 16-bit multiplier. The energy breakdowns
of this interesting point at a mew of 16 are given in table 4.3. It can be
seen in the table that for positive inputs the 16-bit and 32-bit baseline require
about the same amount of energy. There is still a small energy gap which is
attributed to the energy spent on the clock and the sequential logic (input and
output registers). For the mixed inputs however, the energy consumption of the
combinatorial parts of the 32-bit baseline is much higher than that of the 16-bit
baseline. The results in table 4.3 and figure 4.4 confirm that the mew-insensitive
energy consumption of the baseline design can be fully attributed to the toggling
of the leading sign bits.

Sign-Magnitude Multiplier With Conversion

The inefficiency of 2c can be mitigated by the use of a different data representa-
tion, such as sign magnitude (sm) notation. sm only uses one bit for the sign,
and the remainder of the bits is used to represent the magnitude. Since the
resulting magnitude is the multiplication of the, by definition always positive,
input magnitudes, a sm multiplier should not suffer from the same inefficiency
as a 2c multiplier. As an additional benefit the hardware of a sm multiplier is
in itself simpler than that of a 2c multiplier. The sign can be computed with a
single XOR gate, and the resulting magnitude can be found using an unsigned
multiplier of size (n− 1)×(n− 1).

These claims are supported by the energy-mew relation of a sign magnitude
multiplier, which is shown in figure 4.4. For a mix of positive and negative
numbers the curve follows the line of the positive-only 32-bit baseline, proving

90 DATAWIDTH-AWARE MULTIPLICATION

Table 4.4: Corner cases for multiplication A×B = C.

A B |C|
-(2N-1) b |b| << (N -1)

a -(2N-1) |a| << (N -1)
-(2N-1) -(2N-1) 22N-2

that sm notation does not have the same inefficiency as 2c notation. The amount
of energy used by the input and output registers is about equal for both the
sm multiplier and the 32-bit baseline. Therefore, at very small mews, where
the input and output registers are the dominant source of energy usage, the
energy of the sm multiplier is about equal to that of the positive-only baseline.
When the mew increases, the advantage of the smaller and simpler magnitude
multiplication starts to pay off, which is why the sm multiplier uses even lower
energy at a mew of 32-bit than the baseline 2c multiplier.

The energy advantages of using sm for multiplication are clear. However, as
practical processors predominantly use a 2c datapath, a pure sm multiplier is of
not much use. Therefore a design is proposed that integrates a sm multiplier in
a 2c datapath, with a relatively small overhead.

A complication of such a design is the range mismatch between sm and 2c. The
range of an N -bit 2c number is defined as [-(2N-1), . . . , 2N-1-1], while the range
of sm is [-(2N-1)+1, . . . , -0, +0, . . . , 2N-1-1]. This mismatch causes three corner
cases for the multiplication of A×B=C, where either A, B, or both are the most
negative value representable in 2c as shown in table 4.4. These corner cases can
all be dealt with efficiently, by detecting them and exploiting the fact that the
result is either 22N−2, or can be computed by shifting by N -1 bit positions. The
full design of the sign-magnitude multiplier, including hardware for conversion
and corner case handling, is shown in figure 4.8.

4.4 Evaluation
In this section, the various presented multiplier designs are evaluated for their
area and energy efficiency using the tool flow shown in figure 4.2. The designs
were mapped to 40 nm technology, and post-layout area and energy estimation
was performed.

4.4 EVALUATION 91

MUL
Shift left

N-1
Shift left

N-1

b2N−3· · ·b1, b0b2N−2Sign

xor and

0

SM to 2C
conversion

compare
−

(
2N−1

) compare
−

(
2N−1

) 2C to SM
conversion

2C to SM
conversion

Sign Mag Sign Mag

2C Operand A 2C Operand B

2C Result

mux

1
1 N-1

1 1

2N-1

2N

2N

N

2N-1 2N-1

1

N

1 N-1

2N-1

Select

Figure 4.8: sm multiplier with additional logic to enable integration in a 2c datapath.

92 DATAWIDTH-AWARE MULTIPLICATION

Table 4.5: Area overhead of the datawidth-aware multipliers.

Multiplier Design Area Overhead (%)

Mixed Width 32/8 14.7
MSB 2.18
Modified MSB 8.04
Twin 5.61
Mixed Width 32/16 33.0
LSB 1.50
Sign-Magnitude 12.3

Area of the 32-bit Baseline 6210 µm2

The area reported by the Cadence EDI tool for the layout of the 32-bit baseline
multiplier in 40 nm technology is 6210 µm2. For the other designs, the area
overhead with respect to the baseline is given in table 4.5. As can be seen, the
baseline occupies the smallest area. This is expected since the other designs
are extensions of the baseline design. In particular the sign magnitude design
requires more area as it requires extra hardware to fit into a 2c datapath.

In order to evaluate the real-world energy efficiency of the datawidth-aware
multiplier designs the benchmark applications listed in (table 4.2) are used. The
multiplications in these applications, which were extracted with the modified
OR1K simulator and subsampled as described in section 4.2.2, are used as the
inputs for post-layout energy estimation. The estimated energy efficiency of each
application-multiplier pair is given in figure 4.9, and additionally the overall
energy efficiencies of the multipliers is given in table 4.6. The presented energy
numbers include detection logic which selects between full and half width nodes
where necessary.

4.4.1 General Observations
The effectiveness of the datawidth-aware designs varies per benchmark, as can
be seen in figure 4.9. The effectiveness is correlated with the histograms of the
mews shown in figure 4.3. With the exception of the sign magnitude multiplier,
the datawidth aware designs only improve energy efficiency if the mew of a
multiplication is less than, or equal to, half-width (or quarter-width for the Mixed
Width 32/8 design). The MP3 encode benchmark in particular contains many
multiplications with a high mew (figure 4.3e). Consequently, the datawidth-aware
designs have the lowest energy efficiency for this benchmark. Each datawidth-

4.4 EVALUATION 93

JPEG
Encode

YUV to RGB
Conversion

Audio
Filter

Sobel Edge
Detection

H264
Encode

MP3
Encode

Arithmetic
Mean

0

1

2

3

4

5

6

7

E
ne

rg
y

pe
r

M
ul

tip
lic

at
io

n
(p

J)

Baseline 32 Mix32/8 MSB Modified
Twin Mix32/16 LSB Signed Magnitude 2C

Figure 4.9: Energy efficiency of the various multiplier designs. The Sign-Magnitude multiplier
has the lowest energy per multiplication for all benchmarks except h.264 and MP3 encoding.
These applications also have high activity in the high mew region (figure 4.3), explaining why
in these cases the gains are less, and the overhead of the Sign-Magnitude integration can not
be compensated sufficiently.

Table 4.6: The overall energy efficiency over all benchmarks.

Multiplier Energy per Op. Energy Eff. Improvement
Design

(pJ
op

) (
op
nJ

)
Factor (×)

Mixed Width 32/8 3.14 319 0.97
MSB 3.02 331 1.01
Modified MSB 2.95 338 1.03
Twin 2.93 341 1.04
Mixed Width 32/16 2.64 379 1.16
LSB 2.45 408 1.24
Sign-Magnitude 2.21 452 1.38

Baseline 3.05 328 1.00

94 DATAWIDTH-AWARE MULTIPLICATION

aware design introduces some extra logic which consumes energy. The design
can only improve the efficiency when this overhead is compensated by enough
multiplications with smaller mew. For the MP3 encode benchmark no design
overcomes the overhead of the extra hardware, which shows datawidth-aware
designs are not always better than straightforward 2c multiplication.

The mew histograms are only part of the story. Specifically, the datawidth-aware
designs also perform poorly for the h.264 benchmark, while the number of
multiplications with a high mew (figure 4.3f) is not as high as in MP3 encode.
The datawidth-aware designs profit most when the inefficiency of 2c notation,
as described in section 4.3.3, is triggered by a mix of positive and negative
operands. As can be seen in figure 4.3, where the ratio between the blue and
orange bars indicates the ratio of multiplications with only positive operands
and multiplications with at least one negative operand, most applications have
such a mix of positive and negative operands. The exception is h.264, which
has significantly fewer negative operands (figure 4.3f). Therefore, the datawidth-
aware designs do not improve the efficiency as much as in the other cases.

In conclusion, the datawidth-aware designs benefit most when there are many
operations with small mews, and a mix of positive and negative operands, which
is the case for the benchmarks which are integer based.

Some peculiarities remain however. In particular, the overall energy usage on the
baseline can not be predicted solely based on the mew distributions. E.g., MP3
Encode runs much more efficiently on the baseline than jpeg Encode (figure 4.9),
even though the mew distribution of jpeg Encode shows mainly small mews. The
cause is likely to be found in the relation between consecutive operands. When
multiplications are executed on the same hardware, an earlier multiplication
leaves the circuit in a state, which influences the energy consumption of the
current multiplication. Exactly how consecutive operands influence the energy
usage for multipliers is not known. Related work suggests different heuristics to
estimate the energy consumption, such as the hamming distance[36], or the sign
of the operands[6]. The accuracy of these heuristics is however not measured, and
their application in our setting did not provide any additional insight, indicating
further research into this relationship is required.

4.4.2 Subword — Separated
The designs that support subword modes by adding dedicated hardware for
smaller mew multiplications have the largest area overhead, with 14.7 % and

4.4 EVALUATION 95

33.0 % for the 32/8 and 32/16-bit designs respectively. Which of the mixed
multipliers is more efficient depends on the mew histograms. Unsurprisingly
the 32/8-bit has an advantage when many mews are below 8, such as the yuv
to rgb benchmark, and the Sobel filter (figure 4.3b figure 4.3d). For the other
benchmarks the 16/32-bit counterpart is more efficient. Compared to other
datawidth-aware multipliers, the mixed multipliers are still attractive candidates
for energy-efficient computing, although their major drawback is the relatively
large area overhead compared to the other datawidth aware designs.

4.4.3 Subword — Integrated
The designs with integrated subword support score much better on area than
the designs with separate dedicated hardware. The area overhead of the Least-
Significant-Bit and Most-Significant-Bit multipliers is only 1.50−2.18 %. The
modified Most-Significant-Bit design adds some extra isolation logic to the Most-
Significant-Bit design in order to lower the energy per operation from 3.02 to
2.95 pJ/op, at the penalty of increasing the area overhead to 8.04 %. However,
the Least-Significant-Bit design has the lowest area overhead and the highest
energy efficiency of all the designs in this class, making it the preferred design.
For colour conversion and the audio filter, the Least-Significant-Bit multiplier
increases the energy efficiency by a factor greater than 1.3 compared to the
baseline, while in the jpeg encode application, the efficiency is even improved
1.7×.

The twin multiplier is a combination of the Least-Significant-Bit and modified
Most-Significant-Bit multipliers. Since the width of the operands is detected at
runtime, twin mode is not used in this chapter. Unsurprisingly, the area overhead
of the twin multiplier is larger than that of the Least-Significant-Bit design, and
because of the extra logic it is unable to improve on the Least-Significant-Bit
multiplier in the experiments. However, when a compiler could insert vector
instructions such that twin mode becomes feasible, it has the potential to have a
higher energy efficiency than the Least-Significant-Bit design. Therefore, the use
of a twin multiplier can be an interesting option if half-width vector operations
can be supported by software.

4.4.4 Sign Magnitude
The area overhead of the sign-magnitude multiplier is high at 12.3 % compared
to the integrated subword designs. This is caused by the extra logic required

96 DATAWIDTH-AWARE MULTIPLICATION

Table 4.7: Energy overhead for the sm multiplier with conversion.

Benchmark Overhead (%)

mp3 Encode 21.0
jpeg Encode 19.2
h.264 Encode 19.8
fir 27.5
Sobel 38.0
yuv to rgb 26.7

Average 25.4

to convert between 2c and sm. In itself, the sign-magnitude multiplier requires
less logic than the baseline, since only an (n-1)×(n-1) unsigned multiplier is
required. The sign-magnitude multiplier is inherently datawidth-aware, and
can benefit at each EW. Even with the extra logic for the integration in a 2c
datapath, it has the highest energy efficiency overall (452 · 109 op/J), as listed
in table 4.6. The actual energy overhead for the conversions between 2c and
sm as listed in table 4.7 is measured by comparing a pure sm multiplier with
the sign-magnitude multiplier design proposed in section 4.3. On average the
added conversion logic consumes 25.4 % extra energy compared to a pure sm
multiplier, which is quite a lot, yet overall is compensated by the benefit of the
datawidth effect. For jpeg encoding the energy efficiency is even increased by a
factor 2.25, demonstrating the significant amount of energy that can be saved
by a datawidth-aware multiplier despite the added overhead for conversion.

4.5 Related Work
Multiplication has always been an important operator in computing systems.
In this section, an overview of the most important works of datawidth-aware
computation, and in particular datawidth-aware multiplication, is given.

Power awareness is quantified in the work of Bhardwaj et al. [15], by constructing
a theoretically optimal power-aware system. In their work, Bhardwaj et al. define
power-awareness as a scenario-aware system, which is able to minimize energy
usage based on different scenarios. Specifically, these different scenarios are
defined as the datawidth of the input operands. The work sets a good framework
for designing datawidth-aware systems, and inspired the design of the more
practical mixed multipliers evaluated in our work.

4.5 RELATED WORK 97

Another important work that demonstrates the potential of datawidth-aware
design is carried out by Brooks et al. [17, 18]. Based on the observation that
over half of the integer operations require 16-bit or less across the SPECint95
benchmarks [142], a design which latches the input operands into segmented
latches is proposed, thereby allowing to control which part of the inputs gets
updated.

As discussed in section 4.3, the sign-magnitude representation is inherently
datawidth-aware. This feature of SM representation is partially used to realize a
low power multiplier by Zheng and Albicki [180]. In their work the multiplicand
is converted to sign-magnitude representation, while the multiplier is kept in
two’s complement. The rationale behind this is that by keeping the multiplier
in two’s complement, booth recoding can still be used, while the generation of
the negative partial products requires lower energy than with two’s complement.
This use of sign magnitude differs from our design presented in section 4.3,
where both operands are converted, and no booth recoding is used, but the
multiplication as a whole is performed in sign magnitude. The energy analysis
presented by Zheng and Albicki are based on the estimated switching activity
(ESA). Their assumption is that every bit has equal probability of being one
or zero. This does not hold for real-world workloads as is demonstrated in this
chapter in section 4.2.

The earlier discussed work of Bhardwaj et al. [15] states that a datawidth-aware
design can be built by selecting the optimal hardware for each scenario/datawidth
and constructing the final design as a combination of those elements. Although
such a theoretical system is convenient to reason about the maximum energy
efficiency, in order to get to a practical design, only certain scenarios should be
selected. A good example of a datawidth-aware system, which is such a practical
composition, is the twin multiplier by Själander et al. [139]. The twin multiplier
can perform either one full-width multiplication, or two half-width multiplications
in parallel. The power overhead for adding a twin-mode to a regular multiplier
is shown to be only marginal for full width multiplications, while the power
gains for half-width multiplications are substantial. This design is therefore an
attractive candidate for a datawidth-aware, energy-efficient multiplier. As an
extension to the work of Själander, the energy efficiency of this twin-multiplier is
evaluated using post-layout simulation. Additionally the comparison with other
datawidth-aware multipliers presented here shows that the twin design is an
attractive design. However, some form of compiler support or offline analysis is
required to effectively exploit twin mode.

98 DATAWIDTH-AWARE MULTIPLICATION

Somewhat similar to the approach of Själander et al. is the work of Garofalo et
al. [37]. In their work Garofalo et al. specifically re-target a RISC-V core for
quantized neural networks. To efficiently support operations on small operand
sizes, they introduce dedicated narrow 2-bit and 4-bit wide vector units, next to
the existing 8-bit and 16-bit single instruction multiple data (simd) lanes. As in
the work of Själander et al., compiler support is required to statically select the
appropriate units. Furthermore, instead of (partly) reusing the existing wider
hardware available, dedicated narrow units are instantiated, much like the mixed
precision designs presented in this work. For this particular use-case, the design
by Själander et al. may have provided area benefits not explored by Garofalo et
al. The fundamental difference with the design proposed in our work, however,
is the inability to dynamically profit from narrow operands, requiring dedicated
compiler support and vectorisation.

An alternative datawidth-aware approach is proposed by Fujino and Mosh-
nyaga [36]. Instead of defining the different possible datawidths as the scenarios
to optimise for, the hamming distance between the current and previous input is
exploited to improve energy efficiency. The idea is that if the hamming distance
between the previous and current inputs is large, a significant amount of switch-
ing activity will occur in the multiplier. When the hamming distance is larger
than a threshold, the input operands are dynamically transformed to a different
representation in an attempt to reduce the energy usage. A possible downside
of this approach is the requirement of a hardware hamming distance calculator,
which may use a substantial amount of energy. Furthermore our analysis sec-
tion 4.2.1 shows that although the hamming distance is the best single feature, it
in fact not a very good indicator for the energy consumption with a correlation
coefficient of only 0.22. Additional research into more predictive operand features
might help improve upon the work of Fujino and Moshnyaga [36].

Another approach to enhance the energy efficiency by manipulating the input
operands is proposed by Ahn and Choi [6]. Instead of using hamming distance
as an indicator for the energy usage of a multiplication, Ahn and Choi recognize
that many bits tend to have the same value as the sign bit in two’s complement
notation. Therefore, the sign bit can be used as an indicator for the most
significant bits (msbs). Based on the sign of the previous and current inputs,
swapping the operands is argued to be beneficial for reducing the internal
switching activity. The method proposed by Ahn and Choi is more suitable for
real implementation than the method proposed by Fujino and Moshnyaga due to
the lower logic complexity of the indicator. The analysis provided in section 4.2.1
shows however that the difference in sign bits, or even the number of equal

4.6 CONCLUSIONS 99

leading bits, is not a very good indication for energy consumption. Although
this method addresses the same 2C inefficiency as discussed in section 4.3.3, it is
not a datawidth-aware approach.

4.6 Conclusions
In this chapter the validity of using datawidth-aware techniques to improve the
energy efficiency of hardware multipliers is proven. It is shown that multipli-
cations with small operations occur frequently in real-world applications, but
traditional multiplier designs fail to capitalize on this.

The opportunities of datawidth-aware techniques are explored by detailed analysis
of different datawidth-aware designs, as well as characterization of six real-world
applications. Based on this analysis, three main datawidth-aware techniques are
identified with the potential to increase energy efficiency.

In this chapter the domain of datawidth-aware techniques is classified based
on the identified techniques. To quantify the potential of datawidth-aware
techniques, seven designs are selected from these classes, including a novel design
that uses signed magnitude internally. Each design is fully implemented up to
the layout phase, and analysed for its area and energy efficiency on six real-world
benchmarks. A comparison is provided with a baseline 32-bit 2c multiplier.

It is found that datawidth-aware design is a promising approach to increase the
energy efficiency of hardware multipliers. In particular the energy efficiency is
improved by 38 % on average compared to the baseline when a sign-magnitude
multiplier integrated into a 2c datapath is used, despite the 25 % energy overhead
introduced by the conversion logic. In the best case (jpeg encoding) the energy
efficiency is even increased by a factor 2.25. Due to integration in a 2c datapath
the sign-magnitude multiplier has an area overhead of 12.3 %. When area is a
concern the presented Least-Significant-Bit multiplier is an attractive alternative.
With an area overhead of merely 1.5 % compared to the baseline, it is still able
to improve the energy efficiency by 24 % on average.

100 DATAWIDTH-AWARE MULTIPLICATION

Part II
Data Efficiency

Chapter 1
Introduction & Overview

Part I
Compute Efficiency

Wide-SIMD with Explicit
Datapath (Chapter 2)

Reduction Operator for Wide-
SIMDs Reconsidered (Chapter 3)

Datawidth-Aware Multiplication (chapter 4)

Part II
Data Efficiency

ConvFusion (Chapter 5)

Part III
Flexibility

Compute System Flexibility (Chapter 6)

Chapter 7
Conclusions & Future Work

Chapter 5
ConvFusion

This chapter is based on the work published in “Automatic Memory-
Efficient Scheduling of CNNs” [161] and “ConvFusion: A Model for
Layer Fusion in Convolutional Neural Networks” [162].

The superior accuracy and appealing universality of convolutional neural networks
(cnns) as a generic algorithm for many classification tasks have made the design
of energy efficient cnn accelerators an important topic in both academia and
industry. Of particular interest in the design and use of cnn accelerators is the
scheduling of the computational workload, which can have a major impact on
the quality of the final design. The many inherently independent operations
in cnns result in a vast scheduling space however, rendering the selection of
the optimal schedule(s) non-trivial. To aid in this complex task, this chapter
introduces a generic mathematical cost model of the external memory accesses,
internal memory footprint, and compute load for cnn execution schedules. The
model enables fast exploration of the scheduling space, including loop tiling,
loop reordering, explicit data transfer scheduling, recomputation, and, crucially,
layer fusion, which recently has attracted interest as a method to reduce external
memory accesses. An accompanying open source tool is released to perform
schedule space exploration for cnns using the introduced cost model. Leveraging
the code generation capabilities of this tool the proposed model is validated on
six real world networks, demonstrating that layer fusion can reduce the external
memory accesses by more than two orders of magnitude compared to the best
non-fused schedules. Confusing at first glance however, a high-level energy
analysis shows that the practical benefits of layer fusion may be overestimated if
other parts of the system are not tuned accordingly.

5.1 Introduction
There is no longer any debate regarding the advantages of the class of convolu-
tional neural network (cnn) algorithms. Many important problems, previously

104 CONVFUSION

deemed difficult if not impossible to compute, are now being solved by cnns.
The plethora of application domains includes: control systems, pattern recog-
nition, power systems, robotics, forecasting, manufacturing, art, and medical
diagnosis [4].

Despite their successful application to many computational problems over the
last decade, cnns also have several major drawbacks. In particular, they are
both compute and memory intensive algorithms. In the early years this kept the
execution of cnns confined to data centres, as evaluation on available general
purpose, embedded processors required too much energy to be practical in mobile,
energy constrained devices. To overcome this, many dedicated cnn accelerators
have been proposed since to bring cnns to the edge, and in general reduce
cnn energy consumption [127]. In modern technology nodes the main challenge
in achieving a high energy efficiency for such accelerators is not so much the
compute complexity, but rather the required memory accesses. Compared to
an ALU operation, accessing an static random-access memory (sram) requires
about 5× the energy, and going to external dynamic random-access memory
(dram) about 200× [124]. This phenomenon, commonly referred to as the
memory wall [177], will only aggravate with further technology scaling. To attain
high energy efficiency it is therefore imperative that compute devices use their
memory systems optimally.

Apart from techniques at the algorithmic level to reduce the total required
memory accesses, minimizing the energy spent on the memory system constitutes
of maximizing data reuse captured in small local memories. In essence this
reduces the problem to finding a beneficial execution schedule for a given cnn.
Due to the massive amount of independent operations in cnns many valid
schedules exist however, and finding the optimal schedule(s) for a given network
and compute platform is exceedingly complex. In particular, the combination
and parametrisation of scheduling techniques such as loop tiling [22], loop
reordering [92], and more recently loop/layer fusion [7, 91, 165, 40], results in a
vast scheduling space. To deal with this vast space existing research typically
restricts itself to a subset of the complete space. This leads to the selection of
potentially suboptimal schedules, and prohibits the generic application of the
obtained results across different compute platforms.

This chapter introduces a generic cost model which can efficiently compute the
cost of a cnn schedule in terms of external memory accesses, required internal
buffer space, and total multiply accumulates (macs). The model is platform
agnostic, and capable of handling cnn schedules that can be created using loop

5.1 INTRODUCTION 105

tiling, loop reordering, explicit scheduling of memory transfers, and layer fusion.
This enables a fast search through possible schedules for cnns without the
need to perform profiling runs to obtain the cost of a particular schedule. The
model is generic, and as such can be integrated in auto-schedulers for various
accelerators and architectures by adequately bounding the schedule space based
on specific architectural properties. A proof of concept, open source tool is
developed building upon Keras/TensorFlow [23] as a front-end, and Halide [124]
as a back-end. This tool is capable of performing exhaustive design space
exploration for selected cnns using the proposed model. Furthermore the Halide
back-end generates code for each schedule, and instruments that code such that
the modelled costs can be verified.

Various related works have demonstrated the potential of schedules that employ
layer fusion to reduce external memory accesses [7, 91, 165, 40]. However, the
effect of these reductions on the net energy efficiency is typically overlooked. This
chapter includes a high-level energy analysis based on the introduced schedule
cost model, which results in some potentially surprising conclusions regarding
the benefits of layer fusion.

The main contributions of this chapter are:

• Introduction of a platform agnostic, mathematical model of the cost of a
cnn schedule in terms of memory accesses, memory footprint, and compute
load, considering the vast scheduling space defined by loop interchange,
loop tiling, loop fusion, recomputation, and explicit data transfer scheduling
(section 5.3 & 5.4).

• An open source tool that implements the introduced model, enabling
exhaustive design space exploration for cnns [154] (section 5.5).

• Validation of the proposed models accompanied with detailed analysis
of the effects of various scheduling techniques on six real-world networks
(section 5.6).

• Generic energy evaluation using the modelled schedule costs, which shows
that the reduction in external memory accesses achieved by layer fusion does
not automatically translate to significant net energy reduction (section 5.7).

The remainder of this chapter is organised as follows. First, the related work on
cnn scheduling is discussed in section 5.2. Next, the scheduling space is formally
defined in section 5.3. The cost model defined on this space is introduced in
section 5.4. Section 5.5 details the open source tool and experimental setup.

106 CONVFUSION

Results on model validation and design space exploration are provided and
analysed in section 5.6. Section 5.7 contains an energy evaluation of the discovered
schedules for a platform with a multi-level memory hierarchy. Finally, section 5.8
discusses current limitations and future work, and section 5.9 concludes the
work.

5.2 Related Work
Deep neural networks are both compute and memory intensive algorithms, and
only have become viable methods by the merit of increased compute capacity
about a decade ago. The recent renewed interest in deep neural networks was
initiated by the successes in image classification of general purpose computing on
graphics processing units (gpgpu) based implementations of cnns [25, 81] circa
2011-2012. Since then tremendous effort has been made to enable the efficient
execution of deep neural networks on energy-constrained (embedded) devices.
Because the basic algorithm does not change much over different applications,
cnns in essence provide a universal solution to many compute tasks. This makes
them a highly eligible target for dedicated hardware solutions, and as such has
inspired the design of many cnn hardware accelerators [127].

Because cnns have a large memory footprint, these accelerators typically require
a form of external memory to store the network parameters and intermediate
results. One of the first published accelerator designs to recognize the importance
of minimizing accesses to this external memory was the Eyeriss by Chen et al. [22].
Based on manual analysis an execution schedule of cnns is proposed for Eyeriss,
which exploits spatial features of the architecture, and leverages strip-mining
(a subset of tiling) to handle networks that do not match naturally with the
dimensioning of the compute elements inside the accelerator. The iteration order
over the cnn operations is fixed however, and tailored towards the architecture.

Rather than fixing the iteration order, SmartShuttle [92] takes more of the
scheduling space into account by defining three iteration strategies, each targeting
capturing reuse of different data. In particular, there are schedules that primarily
optimise capturing parameter/weight reuse, input feature map data reuse, or
output feature map reuse. Selecting between these schedules depends on the
dimensions of the network layers. This choice already starts to outline the
trilemma of selecting of which data elements to capture the reuse in local buffers,
and the difficulty of finding the schedule that minimises the overall external

5.2 RELATED WORK 107

memory accesses, as optimising for one subset of the data typically hurts the
captured reuse of other parts.

To address the selection of a schedule based on tiling Peemen et al. [114] introduce
generic formulas to enable fast schedule space exploration. The proposed formulas
require manual tuning for different loop orders however, which is addressed by the
model proposed by Waeijen et al. [160]. This model can generically compute the
cost of schedules that include loop reordering, loop tiling, and explicit scheduling
of data transfers. A very extensive framework that combines the same scheduling
techniques with multi-level memory mapping is ZigZig [102]. Missing in these
models and framework, however, is the capability to handle loop fusion, or layer
fusion as first introduced by Alwani et al. [7].

Alwani et al. [7] introduce the concept of fusing the computation of two con-
secutive layers in order to avoid the transfer of intermediate results to external
memory. In essence this is an on-demand computation of the intermediate results,
which are immediately consumed by the next layer. Because of overlap in tiles,
as the authors note, there is the option to recompute intermediate results of
which not all uses fall within a single tile, or to store this subset of intermediate
results. Eventually only schedules without recompute are considered however.
The layer fusion proposed by Alwani et al. [7] suffers from another shortcoming,
aptly dubbed the computation pyramid by the authors. This term refers to the
phenomenon that when more layers are fused, the number of points a tile in the
output layer depends on expands rapidly, creating a pyramid of dependencies
towards the input of the network. The AivoTTA accelerator [68] exhibits this
very same imperfection.

This particular issue is addressed by Li et al. [91] by modifying the cnn algorithm
and removing several dependencies between layers, while maintaining acceptable
accuracy. An arguably preferable solution which does not require changes to the
cnn algorithm is proposed by Goetschalckx et al. [40], who employ line buffers
to fuse layers, or execute depth-first in their terminology. This solution is more
attractive as the functionality of the network remains unchanged, while large
gains can be achieved in particular for networks with large layer dimensions.
However, the proposed approach prohibits tiling in the channel dimension, and
requires to always store the entire weight set on-chip, which may be highly
suboptimal for networks with relatively small layer dimensions, i.e., layers of
which the memory footprint is not dominated by data, but by weights. Despite
these shortcomings, the depth-first methodology of Goetschalckx et al. [40] sets

108 CONVFUSION

Table 5.1: Set of structural parameters of a convolution layer.

Parameter Description

Dx Width of output (Y) feature maps
Dy Height of output (Y) feature maps
Dz Number of output (Y) feature maps
Di Number of input (X) feature maps
Dm Convolutional kernel width
Dn Convolutional kernel height

the standard for schedules with layer fusion, and will be used as an important
benchmark throughout this chapter.

Finally, several recent works have included layer fusion in graphics processing
unit (gpu) code generation [137, 181]. These works clearly show the potential
gains of layer fusion, although both rely on heuristics to find good schedules,
and require profiling runs on the target hardware. The models proposed in this
chapter can be adapted towards single instruction multiple data (simd) and gpu
execution as is further discussed in section 5.8, and can give insight into the
performance of a schedule without execution on a target machine. Consequently
they may be used to speedup and expand the design space searches of such
heuristic (gpu) auto-schedulers.

5.3 Scheduling Space
To facilitate the definition of the cost models later in section 5.4, first the covered
scheduling space is formally defined in this section. This definition starts with a
high-level description of cnns, followed by detailed descriptions of the considered
scheduling techniques.

In a nutshell, a convolutional neural network functionally consists of a series
of parallel, convolutional filters, or layers, connected by non-linear activation
functions. The weights of these filters are determined during a learning phase in
such a way that the network can perform its intended classification task. Once a
suitable set of weights has been established, it remains static throughout the
classification, or inference, phase, which is the focus of this chapter. Readers left
desiring a more detailed description can find an excellent in-depth introduction
to convolutional neural networks in the ‘Deep Learning’ book by Goodfellow et
al. [41].

5.3 SCHEDULING SPACE 109

X Y

Dm

Dn

Ti

Di Dz
Tx

Ty
Dy

Dx

Tz

Figure 5.1: Single convolutional layer with input array X of and output array Y. Dimensional
notation shown here is used throughout this chapter, where Dn and Dm denote the kernel
height and width, Di and Dz the number of feature maps in the input and output array, and
finally Dx and Dy the width and height of the output array, respectively. Furthermore, Ti, Tz ,
Ty and Tx denote a tile size in the input feature maps, output feature maps, and output array
height and width, respectively.

A single convolution layer consists of a set of convolution filters which are to
be applied to a set of input surfaces to produce a set of output surfaces. These
surfaces are referred to as feature maps. In the general case, a filter is applied for
each pair of input and output feature maps, which is also the type of convolutional
layer considered in the remainder of this chapter. More advanced layer types,
such as depthwise convolution, are not directly considered, although possible
model extensions are discussed in section 5.8.3.

Structurally a standard convolution layer is completely defined by the set of
parameters listed in table 5.1. Figure 5.1 is a visual representation of such a layer,
and its various dimensions. Convolutions are applied to the source feature maps
on the left (X), and their results, after application of a non-linear transformation,
are aggregated in the feature maps on the right (Y). From an implementation
viewpoint, a convolutional layer is a deep loop nest. The pseudocode of a single
layer is shown in code 5.1. Here variables Sx and Sy represent the stride of the
filter on the input, which typically is one. A complete neural network consists
of several of these layers connected through their feature maps. As such, a
neural network can can represented as a directional graph G(V, E) with the
network layers V as nodes, and directional edges E to indicate their producer —
consumer relationships.

110 CONVFUSION

1 for(int z=0; z<Dz; z++)
2 for(int y=0; y<Dy; y++)
3 for(int x=0; x<Dx; x++){
4 Y[z][y][x]=bias[z];
5 for(int i=0; i<Di; i++)
6 for(int n=0; n<Dn; n++)
7 for(int m=0; m<Dm; m++)
8 Y[z][y][x]+= \
9 X[i][y*Sy+n][x*Sx+m] \

10 * W[z][i][n][m];
11 Y[z][y][x]=act(Y[z][y][x]);
12 }

Code 5.1: Loop nest for a single convolution layer.

From code 5.1 it can be seen that the mac operations (lines 8 − 10) within
a layer are completely independent. As such they may be executed in any
order, yielding (Dz × Di × Dy × Dx × Dm × Dn)! scheduling options, ignoring the
bias initialisation and the application of the activation function which even
further increase the scheduling space. Reordering these operations will result in
different reuse-distance distributions for the input data elements X, output data
elements Y, and weights W. A smart reordering will capture more data-reuse in
an internal buffer of given size, and as such minimize the accesses to an external
memory. However, many of these schedules are highly irregular, and impossible
to capture within reasonable code size. Therefore, this chapter only considers
those schedules that can be generated using loop reordering and loop tiling at the
layer level, as will be further discussed in section 5.3.1, section 5.3.2 respectively.

Apart from scheduling the compute operations, the data transfers between
memory levels can also be explicitly scheduled. For accelerators that typically
use scratchpad memory such scheduling is imperative, but machines using
caches can also benefit from grouping data transfers. Explicitly scheduling
these transfers consists of specifying what data will be stored and reused, and
when this data is loaded from the external memory. To specify this, the store
level and compute level concepts of the Halide language [124] are used, and
made part of the considered scheduling space as described in section 5.3.3.
Apart from scheduling the data transfers these concepts also allow for a precise
expression of recomputation of intermediate results; a scheduling technique which
provides a trade-off between (external) memory accesses and compute workload,
as described in section 5.3.5.

5.3 SCHEDULING SPACE 111

Finally the scheduling space is expanded beyond scheduling individual layers
by allowing layer fusion. Assume two convolutional layers A and B, which
are connected in a network in such a way that B consumes the output of A.
Following the dependencies, it is clear that some operations in B can already be
executed, even if not all operations that belong to A are completed. Therefore
it is possible to move (part of) the production of layer A into the loop nest of
layer B using loop fusion. In this manner the results of layer A can potentially
be consumed and discarded by B shortly after their production, effectively
reducing their lifetime. Compared to an approach without layer fusion this has
the potential to significantly reduce the accesses to a large external memory.
The technique can furthermore be applied recursively, allowing any number of
consecutive convolutional layers to be fused. Details on how this affects the
overall scheduling space are provided in section 5.3.4.

5.3.1 Loop Reordering
To formally define the loop order of a schedule, let L denote the set of all loop
variables in a convolutional layer. In accordance to code 5.1, L = {z,y,x,i,m,n}.
The loop order O ⊆ L × L defines a set of binary relations over L, where,
with l,l’ ∈ L, l ≺ l’ yields true iff l is inner to l’ in the loop nest,
resulting in a total ordering of L. In code 5.1, the following expression holds:
m ≺ n ≺ i ≺ x ≺ y ≺ z.

Loop order O ⊆ L×L always results in a total ordering. To indicate a position in
this ordering, we define the term loop level, which is independent of a particular
ordering. E.g, in code 5.1 loop m has taken the inner most loop level. The inner
most level indicates the inner most loop, independent of which loop (variable) is
assigned to this inner most position by the loop order.

With this definition of loop order in place, consider the reuse distance of data
elements in the X and Y arrays. Note that the accesses to array Y are independent
of loop variable i (line 8 in code 5.1), while those to array X (line 9 in code 5.1)
are dependant on i. Henceforth, because i ≺ z in code 5.1, the accumulations
to a single z-coordinate in the Y array on line 8 are relatively close in time.
However, for each of these accumulations an element from a unique i index has
to be loaded from the X array on line 9. Therefore the reuse distances on array X
are relatively long, while those on array Y are relatively short. Yet, when loops
i and z are interchanged, i.e., z ≺ i, the reverse holds. Which of these orders
is favourable depends, amongst other factors, on the particular dimensioning of
the layer. To complicate matters further, the other loops can also be reordered,

112 CONVFUSION

and the data reuse of array W is also significant, rendering a complex trade-off.
Nonetheless, it can be stated that moving kernel loops m and n will likely not be
beneficial, as typically Dm and Dn are very small (common values encountered in
practice include one, three, and five). As such, loop reordering in this chapter is
restricted to the remaining loop levels.

5.3.2 Loop Tiling

Tiling is a classic scheduling technique to alter the execution order of operations.
As discussed in the previous section, a particular loop order may decrease the
reuse on one data array, but increase it in another one. A different loop order
may achieve the reverse. Loop tiling enables a hybrid approach, allowing a
balanced average reuse distance for all data accesses. By splitting a loop l ∈ L
that iterates over a complete dimensions into an inner part li, and outer part
lo, it is possible to only compute part of a dimension inner to the iteration over
another dimension.

For cnn layers in particular, each loop in code 5.1 can be split. Again, because
the kernel dimension Dm and Dn are typically very small, tiling loops m and n
are not considered. However, the remaining loops, i.e., {i,x,y,z}, can all be
tiled into parts of size Tl, where l ∈ {i,x,y,z}. Since Tl can be set to one, it
is possible to rewrite code 5.1 into code 5.2 without loss of generality.

For the remainder of this chapter, code 5.2 will be used to define schedules of a
single layer. As such, a tiled schedule formally consists of an ordering O on the
set of tiled loop variables TL = {zo,yo,xo,io,zi,yi,xi,ii,n,m}, and a set
of tile sizes T = {Tz,Ty,Tx,Ti}.

5.3.3 Store & Compute Levels

Besides the computations, transfers between external memory and local buffers
can be scheduled explicitly as well. To capture these memory operations the
store and compute level concepts from the Halide language [124] are employed.
These levels are defined for each array X, Y, and W, and dictate respectively what
data volume is transferred when.

5.3 SCHEDULING SPACE 113

1 //outer tile loops
2 for(int zo=0; zo<Dz; zo+=Tz)
3 for(int yo=0; yo<Dy; yo+=Ty)
4 for(int xo=0; xo<Dx; xo+=Tx)
5 for(int io=0; io<Di; io+=Ti)
6 //inner tile loops
7 for(int zi=zo; zi<zo+Tz; zi++)
8 for(int yi=yo; yi<yo+Ty; yi++)
9 for(int xi=xo; xi<xo+Tx; xi++){

10 if(io==0)
11 Y[zi][yi][xi]=bias[zi];
12 for(int ii=io; ii<io+Ti; ii++)
13 for(int n=0; l<Dn; n++)
14 for(int m=0; m<Dm; m++)
15 Y[zi][yi][xi]+= \
16 X[ii][yi*Sy+n][xi*Sx+m] \
17 * W[ii][zi][m][n];
18 if(io+Ti>=Di)
19 Y[zi][yi][xi]= \
20 act(Y[zi][yi][xi]);
21 }

Code 5.2: Tiled loop nest for a single convolution layer.

Let ARR = {X,Y,W} denote the set of all data arrays in a layer. The store level
is then defined as follows:

The store level SLarr ∈ TL for array arr ∈ ARR determines that
at all data accesses to elements in X inside a single iteration of loop
SLarr have to be served from local memory after an initial load.

In code 5.2, for example, if SLX is set to the loop level assigned to xi on line 9,
the data required for the (Ti × Dn × Dm) operations inside one iteration of xi
need to be served from local memory. Note that there is also data reuse of
elements in X between two iterations of loop xi, as illustrated in figure 5.2.
In particular, there is an overlap of (Ti × Dn × (Dm − 1)) elements between two
consecutive iterations1. The store level does not specify to capture this reuse in a
local memory. To capture this reuse, the store level has to be moved one loop level
up, to yi. Since one iteration of loop yi encapsulates Tx iterations of loop xi,
the reuse between these iterations must now be captured by the internal buffer
as well. As a consequence the volume of data that needs to be captured increases
from (Ti × Dm × Dn) to (Ti × Dn × (Tx + Dm − 1)), as visualised in figure 5.2.

1Assuming stride Sx = 1 for simplicity

114 CONVFUSION

X Y

Tx+Dm-1
Ti Tz

xi=k xi=k+1

Tx
1

Dm-1

Dm 1

Dn

Figure 5.2: Overlap of (Ti × Dn × (Dm − 1)) elements in the input data X between iter-
ations ‘n’ and ‘n+1’ of loop xi in code 5.2. N.B. The volume required for SLX = yi is
(Ti × Dn × (Tx + Dm − 1)), yet a rotating buffer of size (Ti × Dn × Dm) is sufficient.

Note that Tx is defined on the output layer, and because of the kernel size Dm a
tile of size (Tx+Dm−1) is thus required of the input layer. This demonstrates the
trade-off between required on-chip buffer size and number of external memory
accesses that can be explored using the store level.

Apart from the store level SLarr ∈ TL, also a compute level is defined:

The compute level CLarr ∈ TL determines at what loop iteration
new data is produced/loaded for each array arr ∈ ARR.

This additional directive enables an optimization known as buffer folding. For
SLX = yi the data volume that has to be delivered by on-chip memory is equal
to (Ti × Dn × (Tx + Dm − 1)) elements1, but that does not require that this data
is all live at the same time. In fact, as the (Ti × Dm × Dn) kernel moves from
left to right as the xi loop proceeds, old data to the left will no longer be
reused within the current iteration of loop yi. By selecting xi as the compute
level of array X, i.e., CLX = xi, new data is only produced, i.e., fetched from
external memory, at each iteration of xi. Since there are (Ti × Dn × (Dm − 1))
elements overlap between each iteration, as discussed before, for each iteration
only Ti×Dn new elements are required. These can be kept in a rotating buffer of
only (Ti×Dm×Dn) elements. Note that the reuse captured by the internal buffer
is unchanged, and dictated only by the store level. The addition of the compute
level enables folding of buffers, such that the same reuse can be captured with
less buffer space. Combined, the store and compute levels respectively dictate
what data is transferred when.

5.3 SCHEDULING SPACE 115

Unlike loop ordering and tiling, the store and compute levels can not be chosen
freely. In particular, data dependencies dictate that the production of the weights
and input must be scheduled before, or in parallel with, the production of the
feature maps, i.e., SLY ⪯ SLW and SLY ⪯ SLX. Furthermore, the store level is
always to be selected from one of the inner loops, or one level higher, i.e., any
loop in code 5.2 between lines 5–12. Setting the store level any higher would
encompass at least one outer and inner loop of the same dimension, cancelling
the effect of tiling. The same can be achieved by equating the tile size to the
dimension, and as such these schedules are covered without the need to consider
the remaining outer loop levels.

Finally the compute level of a data array should always be equal to, or lower than
the store level of that array, i.e., CLarr ⪯ SLarr. This requirement originates
from the trivial dependency between the production of an element and the
allocation of its storage. If no storage is allocated, the element can not be
produced.

5.3.4 Layer Fusion
Apart from reordering computations within a layer, as performed by loop reorder-
ing and tiling, there is also the possibility to reorder operations between layers.
In particular, if one layer is computed partially, some of the computations of the
succeeding layer may already have all their input operands ready, enabling their
execution. This concept is best described in terms of producers and consumers,
where a first layer produces data which is consumed by a second layer. Rather
than computing the producer completely before starting the computation of the
consumer, the computation of the producer can be inlined to the computation of
the consumer. Again, these transformations alter reuse distances and lifetimes
of the various data arrays. Critically, the results from the producer can be con-
sumed much earlier. Unless there is already sufficient on-chip memory to buffer
an entire layer, loop fusion can be used to consume the results of intermediate
layers, rather then sending them out to external memory only to be retrieved
again later.

The data dependencies between two convolutional layers are illustrated in fig-
ure 5.3. Note that for a layer v fused into a layer u, the output array Y of layer
v is the same as the input array X of u. Generically, Yk = Xk+1 Therefore, in
figure 5.3, the Y arrays have been named by their X array equivalent. In this
figure a tile of size Tz × Tx × Ty is to be produced in array X2. Assume X1 is
not yet computed. When the production of Tz × Tx × Ty is about to start, first

116 CONVFUSION

a tile in X1 of size Ti × (Tx + Dm1 − 1)× (Ty + Dn1 − 1) is produced. Once this
tile is ready, the computation of Tz × Tx × Ty in X1 commences.

The basic code of two fused layers is given in code 5.3. As can be seen, the
production of a Ti × (Tx + Dm1 − 1)× (Ty + Dn1 − 1) sized tile X1 is inlined in
the loop nest of X2. This technique is generically known as loop fusion. Since in
this particular context it is applied to loop nests of cnn layers the term layer
fusion is used.

Although not shown for simplicity in code 5.3, it is entirely possible to also
tile and reorder the production of the inlined producer. From this perspective,
tiling and reordering are orthogonal concepts to layer fusion. Furthermore, layer
fusion can be applied recursively, fusing an unlimited number of consecutive
layers. This increases the scheduling space tremendously, complicating the task
of finding an optimal schedule for a given network.

The connections between layers in a neural network can generically be captured
in a directed graph G(V, E) where V represents the set of individual layers and
their associated structural parameters as listed in table 5.1, and E is a set of
tuples (src, dst) with src, dst ∈ V that define a directional relation from src to
dst. The production of a layer may be fused into one of its direct successors
in this network graph G or it may not be fused at all. To denote this, each
layer v ∈ V is assigned a fuse target Fuse(v) ∈ successors(v) ∪ {v}, where
successors(v) = {v′ | (v, v′) ∈ E} is the set of all direct successors of layer v in
G(V, E). The production of layer v is then scheduled inline into the production
of Fuse(v). When the fuse target is set to layer v itself, the layer is consequently
not fused.

5.3.5 Recomputation
Apart from shortened data lifetimes, layer fusion also introduces another inter-
esting trade-off. As discussed, depending on tiling and store levels not all data
reuse may be captured from a local buffer. The same naturally holds for the
data of an intermediate, fused layer. In figure 5.3 the data of X1 has multiple
uses in the production of X2. If not all uses of an element are captured, there is
the option to store the intermediate value of X1 in external memory and reload
it for future uses. Alternatively it can be discarded, and recomputed from X0
when it is needed again. In this way a trade-off can be made between compute
load and external memory traffic. This is particularly interesting for modern and

5.3 SCHEDULING SPACE 117

1 //outer tile loops of X1->X2
2 for(int zo=0; zo<Dz; zo+=Tz)
3 for(int yo=0; yo<Dy; yo+=Ty)
4 for(int xo=0; xo<Dx; xo+=Tx)
5 for(int io=0; io<Di; io+=Ti){
6 //Inline production of X0->X1
7 for(int z=0; z<Ti; z++)
8 for(int y=0; y<Ty+Dn1-1; y++)
9 for(int x=0; x<Tx+Dm1-1; x++){

10 X1[z][y][x]=bias[z];
11 for(int i=0; i<Di0; i++)
12 for(int n=0; n<Dn0; n++)
13 for(int m=0; k<Dm0; m++)
14 X1[z][y][x]+= \
15 X0[i][y*Sy0+n][x*Sx0+m] \
16 * W01[z][i][n][m];
17 X1[z][y][x]=act(X1[z][y][x]);
18 }
19 //inner tile loops of X1->X2
20 for(int zi=zo; zi<zo+Tz; zi++)
21 for(int yi=yo; yi<yo+Ty; yi++)
22 for(int xi=xo; xi<xo+Tx; xi++){
23 if(io==0)
24 X2[zi][yi][xi]=bias[zi];
25 for(int ii=io; ii<io+Ti; ii++)
26 for(int n=0; n<Dn1; n++)
27 for(int m=0; k<Dm1; m++)
28 X2[zi][yi][xi]+= \
29 X1[ii][yi*Sy1+n][xi*Sx1+m]\
30 * W12[ii][zi][m][n];
31 if(io+Ti>=Di)
32 X2[zi][yi][xi]= \
33 act(X2[zi][yi][xi]);
34 }
35 }

Code 5.3: Code for 2 fused layers as illustrated in figure 5.3.

118 CONVFUSION

X0 X1 X2

Tx

Ty

TzTi
Tx+Dk1-1

Dk1

Tx+Dk1+Dk0-2

Dk0
Dl0

Figure 5.3: Three state arrays X of two consecutive convolutional layers. To produce tile
Tz × Tx × Ty on X2, a tile of Ti × (Tx + Dm − 1)× (Ty + Dn − 1) is required from array X1. In a
fused schedule, this tile of X1 is produced in-line to the production of the tile in X2, rather
than first computing X1 completely.

Table 5.2: Layer schedule s of a convolution layer v ∈ V .

Parameter Description

O ⊆ TL× TL* Loop ordering
Tz,Ty,Tx,Ti ≤ Dz,Dy,Dx,Di Tile sizing
SLX, SLY, SLW ∈ TL Store levels
CLX, CLY, CLW ∈ TL Compute levels
F use ∈ successors(v) ∪ {v}** Fuse target
* Recall, TL = {zo,zi,yo,yi,xo,xi,io,ii}
denotes the set of all tiled loop levels in a con-
volution layer.

** Note, when F use = v the layer is not fused.

future technology nodes, where (re)compute typically can be orders of magnitude
cheaper in both time and energy than re-accessing external memory [124].

5.3.6 Formal Schedule
As stated, a convolutional layer is structurally defined by the set of parameters
listed in table 5.1. For each layer v ∈ V , where V represents the complete
set of layers that make up a particular cnn, a layer schedule s can be defined
according to the various scheduling options discussed in this section. Such a
scheduled layer s consists of the parameters listed in table 5.2. A network
schedule S = {(v, s) | v ∈ V } is consequently defined as the set of tuples of layers
and accompanying layer schedules for each layer in the network.

5.4 COST MODELS 119

Table 5.3: Model Summary.

Function Description

BufW, BufX, BufY Buffer sizes of the weight, input, and output
arrays respectively.

AccW, AccX, AccY Number of weight, input and output elements
respectively transferred from/to external mem-
ory.

MACS Total number of macs.

5.4 Cost Models
For real-world neural networks, merely iterating through the entire scheduling
space as described in section 5.3 already presents a significant task. Benchmarking
each of these schedules on a target machine to find the best match is simply
intractable. This section describes a set of mathematical expressions which, given
a network schedule, accurately model the required number of external memory
accesses, the required internal buffer space, and the number of computations
measured in macs, as summarized in table 5.3. These expressions only require a
handful of computations compared to benchmarking a network schedule on a
target machine, and as such enable fast design space exploration. The remainder
of this section defines these expressions precisely. Readers primarily interested
in applying these models may skip ahead to section 5.5 which introduces the
open source implementation of these equations in the form of the ConvFuser
tool [154]. Also the final results in section 5.6 can be interpreted without in-depth
understanding of the detailed model presented in this section.

5.4.1 Prerequisites
To aid the formulation of these models, a number of notational shorthands
and auxiliary functions are defined first. In general, the multiplication of each
element in an arbitrary set S will be abbreviated to

∏
S, i.e.,

∏
S =

∏

s∈S

s.

Note that in accordance with the common definition of the product operator,
the product of the empty set ∅ is defined as one.

Given a layer and an associated schedule (v, s) ∈ S, the (sub)set of structural
dimensions of layer v ∈ V as defined in table 5.1, and the (sub)set of tile sizes in

120 CONVFUSION

schedule s as defined in table 5.2, that belong to a given (sub)set of loop levels
L’ ⊆ L, is defined by the following two auxiliary functions respectively:

D (v,L’) = {Dl | l ∈ L’ ∧ Dl ∈ v} ,

T (s,L’) = {Tl | l ∈ L’ ∧ Tl ∈ s} .

Furthermore a translation function κ (v,l) is defined, with layer v ∈ V and loop
level l ∈ {x,y}. This function converts loop levels x and y to their spatially
related kernel dimensions Dm and Dn respectively:

κ (v,l) =
{
Dm ∈ v l = x
Dn ∈ v l = y

.

The corresponding set operator K, which translates all loop levels in a set L’ ⊆ L,
is defined as:

K (v,L’) = {κ (v,l) | l ∈ L’} .

Another helper function translates a loop level l ∈ L into the corresponding
inner tiled loop level li ∈ TL:

inner (l) = li.

Since for many models it matters whether or not the inner loop of a particular
loop level l ∈ L is preceded by the store level in a given layer schedule s, the set
of all loop levels in set L’ ⊆ L which are preceded by the store level SLarr of
array arr ∈ ARR, i.e., the collection of loop levels below/inner to the store level
for array arr, is defined as:

LTarr (s,L’) = {l | l ∈ L’ ∧ inner (l) ≺ SLarr},

where SLarr ∈ TL ∈ s, ≺∈ O, and O ∈ s.

The complement of this set, i.e., the set of loop levels which are equal to or
above/outer to the store level, is defined as:

GEarr (s,L’) = L’− LTarr (s,L’) .

Furthermore the set of folded loop levels F , i.e., the levels between the store and
compute level is defined as:

Farr (s,L’) = {l | l ∈ L’ ∧ CLarr ⪯ inner(l) ≺ SLarr},

5.4 COST MODELS 121

Table 5.4: Helper Functions Summary.

Function Description

D (v,L’) Set of loop dimensions Dl belonging to loop levels l ∈ L’ ⊆ L
T (s,L’) Set of tile dimensions Tl belonging to loop levels l ∈ L’ ⊆ L in

schedule s

κ (v,l) Translation of loop level l ∈ {x,y} to loop dimension of corre-
sponding kernel in layer v

K (v,L’) Application of κ(v,l) to complete set of loop levels l ∈ L’ ⊆ L
inner (l) = li Translates a non-tiled loop level l ∈ L into the corresponding inner

tiled loop level li ∈ TL
LTarr (s,L’) Set of loop levels in L’ ⊆ L that are below or equal to the store

level in layer schedule s

GEarr (s,L’) Set of loop levels in L’ ⊆ L that are above the store level in layer
schedule s

Farr (s,L’) Set of loop levels in L’ ⊆ L that are in between the compute and
store level in layer schedule s

F useSel(
v, s, A, B)

If layer v is fused in layer schedule s return set A, else return set
B.

where SLarr, CLarr ∈ TL ∈ s, ≺∈ O, O ∈ s, and the operator (l ⪯ l’) =
(l ≺ l’ ∨ l = l’). Finally a set selection function is defined, which selects set
A if the layer is fused, or set B otherwise.

FuseSel(v, s, A, B) =
{

A fuse ̸= v

B o.w.
,

with fuse target fuse ∈ s.

For all these helper functions, when it is clear only a single layer v or schedule s
is described, the v and s arguments are omitted for further brevity. An overview
of these helper functions is provided in table 5.4.

5.4.2 Internal Memory Footprint
With this notation in place, the required internal buffer size of a single scheduled
layer (v, s) ∈ S can be concisely and accurately modelled. This buffer size is
comprised of three parts, the sum of the memory footprints of the X, Y, and
W arrays respectively. All these footprints can be obtained by computing the

122 CONVFUSION

Table 5.5: Memory footprint contributions of W for all loop levels.

Loop Lvl (l) SLW ≺ l SLW ⪰ l
x 1 1
y 1 1
m Dm —
n Dn —
z Tz 1
i Ti 1

volume of data below the respective store level SLarr, since this is the volume
that will be loaded by the scheduled external memory access.

In general, for each loop level l ∈ {x,y,z,i,m,n} a selection has to be made
between two options for each data array arr ∈ {X,Y,W}, one contribution to
the data volume if said dimension is below SLarr, and one when it is equal or
above. The product of these contributions yields the complete data volume.

Weight Array

For weight array W these options for the dimensions are explicitly listed in
table 5.5. Since the accesses to W are independent of loop levels x and y, as
can be seen in section 5.3 of code 5.1, these loop levels do not contribute to the
memory footprint of W (set to 1 for unit operation in the final product). For loop
levels m and n the full dimension Dm and Dn has to be counted respectively, since
these loops are excluded from tiling in the defined schedule space, and they are
also always below the store level. More interesting are loop levels z and i, which
require a full tile Tz or Ti to be counted when they are below the store level,
or only a single slice if they are not. The product of all correct contributions
in table 5.5 yields the initial memory footprint of the W array. However, care
has to be taken when the compute level CLW is below the store level, and buffer
folding is applied. In the case that z and/or i are folded (below the store level,
but above or equal to the compute level), they only contribute as if they were
above the store level.

Using the introduced notation, the memory footprint of the weight array W of a
single convolution layer can be expressed as follows:

BufW =
∏

T (LTW(Λ)− FW(Λ))×
∏

D({m,n})× FuseSel(Di, 1),

5.4 COST MODELS 123

where Λ = FuseSel({z}, {z,i}). I.e., for the kernel loops m and n the full
dimensions Dm and Dn are counted. For the non-fused case as described in
table 5.5, the tile sizes of loop dimensions z and i are taken into account,
provided they are below the store level and not folded. When the layer is fused
into a successor however, the computation changes slightly because dimension
i can no longer be tiled. Considering the nonlinear activation function on
section 5.3 of code 5.1, all contributions in the i dimension have to be reduced
before this activation can be applied, and the next layer can start its dependent
computations. This can be more clearly seen in code 5.3, where, due to the
activation function on section 5.3.4, the complete (untiled) i loop on section 5.3.4
has to be computed before the next layer can start production on section 5.3.4.
Thus, i can not be tiled and instead the full Di dimension is required, as is
covered by the FuseSel selection function.

Input Array

For input array X a similar equation can be derived. The notable differences are
that X is independent of loop level z, and that at loop levels x and y at least Dm
and Dn input elements are required. When a tile is required in these dimensions,
i.e. x ≺ SLX or y ≺ SLX, the kernel size also comes into play and, as illustrated
in figure 5.2, a contribution of Tx +Dm− 1 or Ty +Dn− 1 is required respectively.
Another complicating factor is formed by the strides in the x and y dimensions,
which change these terms to (Tx−1)×Sx+Dm and (Ty−1)×Sy+Dn respectively.
The resulting memory footprint of a single layer is captured by the following
expression:

BufX =FuseSel
(
Di,
∏

T (LTX ({i})− FX ({i}))
)
×

∏
K (GEX ({x,y}) ∪ FX ({x,y}))×

∏
{(Td − 1)× Sd + κ(d) |

d ∈ LTX ({x,y})− FX ({x,y})}.

Again, FuseSel is used to account for the full dimension in i when the layer
is fused, for the same reason as in BufW, i.e., due to the nonlinear activation
function on section 5.3 in code 5.1.

124 CONVFUSION

Output Array

Finally, the memory footprint of the output array Y is relatively straightforward,
and depends on x, y, and z. For each of these dimensions the contribution is
equal to the tile size, unless the dimension is above the store level or folded.
That is, unless the current layer will be fused into the next layer, in which case
the output array Y is effectively replaced by data array X of the next layer,
yielding no memory contribution for Y. Furthermore it is important to note that
once an output is complete, i.e., all Di contributions of the preceding layer have
been processed and the activation function is applied, there is no need to keep
the completed output on-chip. From a memory viewpoint this resembles buffer
folding, which is also how this optimization is taken into account in the final
equation. The footprint contributions of those loop levels in {x,y,z} which are
above i fold to one, resulting in:

BufY =FuseSel
(

0,
∏

T (LTY({x,y,z})− FY({x,y,z}))
)

5.4.3 External Memory Accesses
The number of required external memory accesses can be derived in a similar
manner as the internal memory footprint. The crucial difference is to not only
account for the data volume transferred, but also how many times such a transfer
takes place. These two terms can be considered separately, such that for data
array arr ∈ ARR, the external memory accesses Accarr are expressed as the
volume of a data transfer Volarr, multiplied by the number of those transfers
Transarr:

Accarr = Volarr × Transarr.

Weight Array

For weight array W, the volume of a transfer VolW is nearly identical to its internal
memory footprint BufW, with the notable exception that for the transfer volume
buffer folding has no effect. The fact that the buffer is smaller due to liveness
of the variables does not invalidate the requirement to transfer the complete
volume eventually. The transfer volume of array W can therefore be expressed as:

VolW =
∏

T (LTW (Λ))×
∏

D ({m,n})× FuseSel(Di, 1),

5.4 COST MODELS 125

where Λ = FuseSel({z}, {z,i}). Note that when the current layer is fused into
the next, all inputs Di need to be handled before the results can be passed to the
next layer. Again, the nonlinear activation function on section 5.3 of code 5.1
prevents partial updates of only Ti inputs to be consumed.

Next the number of transfers is to be determined. In general, if a loop level l is
above or equal to the store level, the associated volume needs to be transferred
for every Dl iterations. When l is beneath the store level however, that volume
will have to be transferred only

⌈
Dl
Tl

⌉
times. The ceiling operator is used here

to arrive at a conservative bound, which accounts for a full tile transfer in case
tile size Tl is not an exact multiple of Dl. For weight array W the number of
transfers is given by:

TransW =
∏

D (GEW (Λ))×
∏{⌈Dd

Td

⌉ ∣∣∣∣ d ∈ LTW (Λ)
}

,

where Λ = FuseSel({x,y,z}, {x,y,z,i}) is used to compensate when due to
fusion the entire volume is transferred.

Input Array

For data array X the transfer volume resembles the internal buffer size of array
X, BufX, again ignoring any buffer folding:

VolX =FuseSel
(
Di,
∏

T (LTX ({i}))
)
×

∏
K (GEX ({x,y}))×

∏
{(Td − 1)× Sd + κ(d) | d ∈ LTX ({x,y})} .

The number of transfers for X is in fact equal to those of W (TransW), apart from
checking against the store level of X instead of W, i.e.,

TransX =
∏

D(GTX(Λ))×
∏{⌈Dd

Td

⌉ ∣∣∣∣ d ∈ LTX(Λ)
}

,

where Λ = FuseSel({x,y,z}, {x,y,z,i}).

Output Array

Finally, for the number of external memory accesses for array Y, it is easier to
deviate from the volume/transfer approach used above. When a layer is fused,

126 CONVFUSION

the output simply does not contribute to the external transfers, as the outputs
are stored directly in the X array of the layer that is being fused into. When a
layer is not fused, eventually the complete output, i.e. DxDyDz elements, have to
be transferred at least once to the external memory. More than one transfer per
output element may be required if partial results are stored in (and later loaded
from) external memory. Here, a partial result is a partial sum in array Y which
is not yet ready to be passed to the nonlinear activation function. For internal
buffer space it could be interesting to evict some of these partial results from
the local buffer, and load them back later. This happens only if tiling is applied
to the i loop. In that particular case the partial output elements have to be
transferred twice for each tile in i, once for storing the partial results externally,
and once for loading them back (excluding the first update of Y). Combined this
yields the following expression for the number of elements transferred for output
array Y:

AccY =DxDyDz ×
(⌈Di

Ti

⌉
× 2− 1

)
.

5.4.4 Compute
The final part of the model represents the number of macs required to complete
a schedule. Without recompute, this number is trivial to obtain by multiplying
all dimensions of a layer Dx × Dy × Dz × Dc × Dn × Dm. However, to account
for recompute due to overlap of input tiles detailed later in section 5.4.5, this
formula is split into three terms: the number of MACs to produce a single output
pixel PMACs, the volume of a produced output tile OVol, and the number of
such output volumes in a layer.

The number of MACS for a single output pixel is fairly straightforward, and is
determined by the number of input feature maps multiplied by the kernel size:

PMACs =
∏

K({x,y})× Di.

The produced volume in number of features for every transfer is also straight-
forward, and amounts to those tiles which are below the store level of array
X:

OVol =
∏

T (GEX({x,y,z})).
Note that the store level of array X is used, since the input volume determines
the produced output volume. Consequently, the number of such volumes is
simply equal to the number of transfers of array X, TransX.

5.4 COST MODELS 127

The total number of MACS is thus given by:

MACS = PMACS×OVol× TransX.

5.4.5 Layer Fusion
Now that models have been established for the memory footprint, external
memory accesses, and number of mac operations per layer for each of the W, X,
and Y arrays in the preceding sections, these models can be combined to provide
the same properties for complete sets of fused layers. This is achieved by ‘chaining’
the provided layer models in a recursive fashion. This is best understood by
observing the consumption of X0 in figure 5.3 used to produce X1. Instead of
producing complete array X1, i.e., Dx1 × Dy1 × Di1 as the output size of X0, in a
fused schedule only a single tile (Tx +Dk1− 1)× (Ty +Dl1− 1)×Di1 needs to be
produced at a time. Substituting Dx,Dy,Dz with (Tx+Dk1−1)×(Ty+Dl1−1)×Di1
respectively in the models provides the costs of this intermediate tile:

• Multiply accumulates: The number of macs required to produce the tile
from x0 to X1 are simply given by PMACs(L01), where L01 represents
the layer that consumes X0 and produces X1.

• Memory footprint: The local memory footprint of the tile in X0 is given by
BufX(L01), the required footprint of the tile in X1 is given by BufX(L12).
The footprints of the weights can used without any substitution.

• Accesses: The intermediate tile in X0 of course does not require any
external data accesses, as it is produced and consumed in a fused fashion.
However, the number of transfers TransX(L12) specify how many times the
tile needs to be produced in the case of recomputation, and tile overlap in
general. For the overall cost of the fused set of layers, the macs for the tile
are to be multiplied with the number of productions. Same holds for the
loads of the weights required to produce the tile, unless they are completely
stored in the local buffer. Also, this number of required productions moves
further up the set of fused layers, as consequently any producers of this
tile may in turn need to be produced multiple times if they are not stored
for the complete lifetime of the network depending on their store level
and tile sizes. Only the first layer of a set of fused layers, has external
memory accesses. If this first layer needs multiple transfers of its own, i.e.,
not all uses of the data elements are captured on first load, the number
of additional accesses can grow quite quickly due to the recomputation
effect. The more profitable schedules therefore typically ensure the input is

128 CONVFUSION

loaded only once, such that the cost of recomputation indeed only affects
the compute cost, and does not increase the number of external accesses.

Hence, using substitution of tile dimensions for the output dimensions, and
propagation of the number of productions required for each tile, the total cost of
a fused segment can be derived from the individual cost models presented in the
previous sections.

5.4.6 Complete Network Model
The total costs of a complete network are now trivial. The network schedule
effectively partitions the layers into groups of fused layers. These groups contain
one or multiple layers, for which the costs can be derived using the fusion approach
described in the previous section. The total number of multiple accumulates
required by a network schedule is simply obtained by adding the macs of all
groups. Same holds for the number of external accesses, the sum of the accesses
of each group forms the cost for the entire network. The memory however only
requires the maximum buffer size over all groups, since only a single group is
active at any given time during network evaluation assuming no pipelining of
the execution. Using these simple rules, the costs of an entire network can be
computed.

5.5 Automated Design Space Exploration
The formal model introduced in section 5.4 enable automated exploration of the
vast scheduling space described in section 5.3. To achieve complete automation
section 5.5.1 describes a strategy to efficiently traverse the entire scheduling
space. Section 5.5.2 introduces ConvFuser [154], an open source tool which
implements the presented traversal strategy and cost models, enabling automated
design space exploration and verification of any neural network described in the
popular Keras framework [23].

5.5.1 Space Traversal
To effectively explore the scheduling space as described in section 5.4 four steps
are required:

5.5 AUTOMATED DESIGN SPACE EXPLORATION 129

A B C D E F

Figure 5.4: Example layer graph with sequence [B,C,D,E], and a residual connection
between A and F.

Identification of sequences

Since the proposed models do not include provisioning to handle residual/skip
connections, only consecutive layers without forks or joins are considered for
fusion. The first step of a design space exploration (dse) is therefore to select
sets of layers that may be fused. Such a set of eligible layers is referred to as a
sequence, an example of which is shown in figure 5.4.

Segmentation

Within each sequence it needs to be decided which layers to fuse (if any) to
obtain the Pareto optimal schedules of the network. A set of fused layers within
a sequence is referred to as a segment. The sequence [B,C,D,E] of figure 5.4
contains the following valid segments: B, C, D, E, BC, CD, DE, BCD,
CDE, BCDE. Each of these segments is evaluated individually, yielding a vector
of schedules S per segment.

Partitioning

Once all possible segments have been identified and their costs have been
evaluated, those segments that cover the entire sequence need to be combined.
For example segments BC and DE cover sequence [B,C,D,E], but also segments
B, C, and DE, as well as many more. Combining the schedule vectors S
of each segment into an overall schedule vector SS for the sequence is done
by taking their product, and using the rules outlined in section 5.4.6. Note
that this procedure can be significantly accelerated by first Pareto-filtering the
segment schedule vectors S. It can be trivially proven that considering only the
Pareto points of each segment is sufficient to yield all the Pareto points of the
entire partition, since the combining (reduction) functions of section 5.4.6, i.e.,
summation and maximum selection, are monotonically increasing.

130 CONVFUSION

Network Schedule Cost Computation

Finally the costs of all valid partitions are combined using the same rules of
section 5.4.6 to obtain the cost of the entire network. Similarly to the partition
cost computation, segment schedule vectors SS can be Pareto-filtered before
combination with other partitions to yield a Pareto optimal scheduling of the
entire network.

5.5.2 ConvFuser
An embodiment of the automated design space exploration described in this
chapter is provided in the form of an open source tool: ConvFuser [154]. Apart
from automated dse, ConvFuser also features code generation for any selected
schedule, enabling reliable validation of the models.

ConvFuser builds upon the popular Keras/TensorFlow framework [23] to
read standard HDF5 graph models (See figure 5.5). After loading a network
using Keras/TensorFlow, a graph is constructed from the network layers, and a
custom canonicalisation pass is employed to normalize the network description.
An important part of this canonicalisation is performing trivial layer merges,
including but not limited to:

• merging of batch normalization layers into convolutional layers, which can
be achieved by modification of the weights of the target convolutional layer.

• merging of activation layers into convolutional layers.

Note that some literature refers to these trivial layer merges as layer fusion. This
term is apt in the case of merging activation layers, which also involves loop
fusion, but it should not be confused with the much more complicated fusing of
consecutive convolutional layers as described in this chapter.

After canonicalisation, design space exploration can be performed. Many smart
search strategies could be employed here, but by virtue of the mathematical
models and their fast evaluation, straightforward exhaustive search is feasible
for smaller networks. Additionally the tool provides several options to restrict
the design space, such as limiting the number of layers considered for fusion,
selection of tile sizes such as only exact multiples of their respective dimension,
or only powers of two, and whether to consider recomputation.

Finally, to enable validation of the found schedules, a hybrid back end based
on the Halide language [124] and Keras/TensorFlow [23] is provided. Any non-

5.5 AUTOMATED DESIGN SPACE EXPLORATION 131

Network
Model
(h5)

Front End

Keras/
TensorFlow

Graph/
Canonicaliser

Layer
DiGraph

(dot)

Design Space Exploration

Sched. Space
Iterator

Cost
Estimator

Pareto
Filter

Cost
Annot.
Sched
(json)

Back End

Layer
Scheduler

Halide
Pipeline

Keras/
TensorFlow

Halide
JIT Comp.

Validator

C++

Figure 5.5: Schematic overview of the ConvFuser tool. Green boxes are developed for
this chapter. The tool consists of a Front-End which translates keras/tensorflow networks
into an internal representation, a design space exploration component which uses the models
introduced in this chapter, and a Back-End which generates Halide and C++ code for the
selected schedule. Source code is made freely available [154].

132 CONVFUSION

convolutional layers are evaluated directly by Keras/TensorFlow. The scheduled
convolutional layers however are implemented using a modified version of Halide.
In particular this modification consists of additional python bindings to be
able to insert instrumentation code. This code utilizes Halide’s internal tracing
mechanism to keep track of accesses to buffers, and sizes of allocated buffers.
To emulate an external memory and internal buffers, a construct similar to
Halide’s recently added in operator is used. This construct adds an extra layer
of buffering, where one large buffer essentially mimics external memory, and
working data is loaded into a smaller, internal buffer. By keeping track of the
accesses to these two levels of buffering, the required external accesses can be
exactly monitored. An optional validation step can be used to check the external
accesses, internal buffer size, and macs measured from Halide execution with
the values predicted by the models.

5.6 Model Validation & Evaluation
The validity of the models introduced in section 5.4 is confirmed experimentally
using the ConvFuser tool introduced in section 5.5. The experiments consist
of a design space exploration for several synthetic and real-world networks,
followed by code generation for each of the Pareto optimal schedules. This code
is automatically instrumented by the ConvFuser tool to measure the number
of macs, required internal memory size, and number of external accesses, which
are then compared against the modelled values.

Besides this model validation, the tool also enables the evaluation of the impact
of various scheduling techniques. In essence, the scheduling space described
in section 5.3 can be restricted to subsets by disallowing or limiting certain
scheduling techniques. For this evaluation four progressively inclusive scheduling
spaces are defined:

1. Baseline: The baseline scheduling space follows the straightforward im-
plementation in code 5.1 for each layer. It thus excludes loop reordering,
tiling, and fusion, but does allowing different store and compute levels.

2. Tiling & Reorder: This space adds both loop tiling and reordering to the
allowed options to the baseline space. Tiling is restricted to sizes that are
integer factors of the dimensions to keep the space to a size that can be
completely traversed in reasonable time. Other tiling options are built into
ConvFuser, but are not further evaluated in this section.

5.6 MODEL VALIDATION & EVALUATION 133

3. Goetschalckx et al.: This space extends the tiling and reorder options with
layer fusion. The allowed fusion however does not recompute any elements.
Furthermore weights are not tiled, and are always stored on-chip for a
fused section. This space matches the work of Goetschalckx et al. [40],
enabling direct comparison. One notable exception for this space is that
the tiling factor is not limited as is the case in the work of Goetschalckx
et al., since for this particular design space it is possible to use a fast
branch and bound algorithm on the tiling factor while still guaranteeing
an optimal result.

4. Fusion & Recomputation: This extends the Goetschalckx et al. space with
tiling of weights and recomputation. The addition of tiling the weight
accesses however disallows the previously mentioned branch and bound
technique on the tiling factor without losing optimality. Therefore this
space again is constrained to the same tiling limitations as the Tiling &
Reorder space, i.e., integer factors of the dimensions.

This partitioning of the scheduling space enables the investigation of the impact
of tiling, loop reordering, fusion, and recomputation on MAC count, required
on-chip memory, and external accesses.

5.6.1 Micro benchmarks
In order to validate the models introduced in section 5.4, and obtain insight into
the effect of different scheduling techniques, first a number of micro benchmarks
is performed. To this end two synthetic networks, L2Net and L3Net, are defined.
These networks consists of respectively two or three convolutional layers with a
3× 3 kernel. This enables a study into the effects on the resulting scheduling
space when deepening networks. The dimensions of these layers are shown in
table 5.6 for both a 20 × 20 input and a 4K input, used to see the effects of
network input size on the resulting schedules. Finally the number of feature
maps of these two nets is increased, yielding L2NetWide and L3NetWide in
table 5.6, to examine the effect of this parameter on the effect of the modelled
scheduling techniques.

The results of the schedule space exploration for L2Net and L3Net with 20× 20
and 22 × 22 inputs respectively are shown in figure 5.6a figure 5.6b. For all
schedules of a network the number of macs is constant, with the exception of
those schedules that include recomputation. To indicate the number of required
macs, a colour coding is added for the Fusion & Recomputation schedules. The

134 CONVFUSION

Table 5.6: Layer dimensions of L2Net and L3Net for 20× 20 and 4K inputs.

Net Dx Dy Di Dz Dn Dm

L2Net 18 18 3 4 3 3
16 16 4 4 3 3

L3Net
20 20 3 4 3 3
18 18 4 4 3 3
16 16 4 4 3 3

L2Net 4K 3838 2158 3 4 3 3
3836 2156 4 4 3 3

L3Net 4K
3838 2158 3 4 3 3
3836 2156 4 4 3 3
3834 2154 4 4 3 3

L2NetWide 18 18 3 1024 3 3
16 16 1024 4 3 3

L3NetWide
20 20 3 1024 3 3
18 18 1024 1024 3 3
16 16 1024 4 3 3

Pareto schedules for L2Net and L3Net with 4k inputs are shown in figure 5.6c
figure 5.6d respectively. Finally the Pareto fronts for L2NetWide and L3NetWide
are given in figure 5.6e figure 5.6f. Note that the verification with instrumented
Halide for the selected points in figure 5.6 showed a one to one match between
the models and the measurements, apart from some corner cases where Halide
failed to apply complete buffer folding. These results confirm the accuracy of
the models presented in section 5.4. The measured and modelled points have
not been plotted together, since their points would simply overlay each other.

From these figures five key observations can be made:

1. The baseline schedules are consistently poor over all networks, although
they always include a point that minimizes the external accesses when
fusion and recomputation are not considered. This naturally happens for
the store-level that cover all data uses, but due to the lack of tiling and
smart loop reordering these points typically require a huge amount of
memory.

2. Adding tiling and loop reordering on top of the baseline schedule results ex-
clusively in schedules that require less internal memory, and thus completely
Pareto dominate the baseline points.

5.6 MODEL VALIDATION & EVALUATION 135

Baseline Tiling & Reordering Goetschalckx et al. Fusion & Recomputation

102 103
103

104

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

7.19

7.48

7.77

8.06

8.35
·104

(a) L2Net — 20× 20 input.

102 103

104

105

Internal Memory Size [Features]
E

xt
er

na
lA

cc
es

se
s

[#
]

1.27

1.89

2.51

3.13

3.76
·105

(b) L3Net — 22× 22 input.

102 104 106
107

108

109

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

2.09

2.77

3.45

4.13

4.81
·109

(c) L2Net — 4K input.

102 105 108
107

108

109

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

3.27

4.49

5.7

6.91

8.12
·109

(d) L3Net — 4K input.

102 104

105

106

107

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

1.84

2.72

3.6

4.49

5.37
·107

(e) L2NetWide — 20× 20 input.

102 104 106

107

108

109

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

0.31

0.59

0.87

1.16

1.44
·1010

(f) L3NetWide — 22× 22 input.

Figure 5.6: Pareto schedules of the synthetic networks for the four defined scheduling spaces.
The colour map only applies to Fusion & Recomputation, and represents the number of mac
operations.

136 CONVFUSION

3. Fusion without recomputation and weight tiling, i.e., the space defined
by Goetschalckx et al. [40] does not add many interesting points for the
small input versions of L2Net and L3Net. The accesses saved by omitting
transfers on the small intermediate layers does not add much for these small
networks where the number of weights are relatively significant. When
applied to the 4k input networks however, some gains can be observed as
the weight transfers become insignificant compared to the data transfers.
However, the gains are still rather modest since the remaining transfers on
the input layer have also scaled with the input resolution. More interesting
are the points for L2NetWide, where fusion does yield larger gains as the
number of feature maps increases, and the intermediate transfers start to
dominate the remaining input transfers. However, as the weights are again
important in these networks, the ideal combination for the Goetschalckx
scheduling space, i.e., large inputs and wide intermediate layers, is not
achieved in these synthetic benchmarks.

4. Enabling weight tiling and recomputation however does yield some interest-
ing points. In particular for the wide networks with small input, i.e., those
networks where weights are significant, some schedules with even modest
recomputation are found to outperform the Goetschalckx schedules by an
order of magnitude in required memory size, demonstrating the added
value of the more generic models presented in this chapter.

5. As the input size and number of layers increases, recomputation becomes
more and more relevant, but only for very large memory sizes. Apart
from these extreme cases, the memory saved by heavy recomputation is
rather marginal compared to neighbouring schedules with minimal to no
recomputation.

5.6.2 Real World Networks
Although above synthetic micro benchmarks provide insight into general trends,
it is important to also evaluate the scheduling techniques in the context of
real world networks. To this end six widely used networks are selected for
experimentation: ResNet50, VGG16, InceptionV3, MobileNetv2, and XCeption
as implemented in the Keras framework [23], and DMCNN-VD, the demosaicing
as described by Syu et al. [144] and also evaluated by Goetschalkx et al. allowing
for direct comparison. The scheduling Pareto fronts of these networks are given
in figures 5.7a to 5.7d and 5.7f respectively. Because the complete design spaces
of these networks are exceptionally large, an exhaustive traversal of the design

5.6 MODEL VALIDATION & EVALUATION 137

space is infeasible even with the presented fast models. Therefore the exploration
of the design space of these networks was limited to ten million considered
schedules per segment2. This limitation particularly impacts the Fusion &
Recomputation space, since it is the largest of the four spaces. As a result the
Pareto fronts are less smooth than those of the micro-benchmarks which are
exhaustively searched. Nonetheless, the general trends can be easily observed,
and plenty of schedules remain on the Pareto fronts for practical purposes. From
figure 5.7 the following three observations are made:

1. For typical real-world networks with 224× 224 ImageNet input resolutions,
the gain of fusion and recomputation on top of tiling and reordering is
rather limited. This effect is expected based on the micro-benchmarks,
in particular keeping in mind that in real-world networks various layer
types prohibit the application of fusion with the presented models, limiting
the benefits of fusion even further. Only for very large memories do the
accesses decrease.

2. For networks with large input, and a straightforward structure of sequential
convolution layers such as DMCNN-VD, the story is slightly different. Here
extra memory can effectively be used for fusion to reduce the number of
external accesses significantly.

3. The Fusion Pareto front of DMCNN-VD matches the experiments of
Goetschalckx et al. [40], further validating the more generic models pre-
sented in this chapter. Moreover, more Pareto schedules are found as the
tiling factor was not limited in our experiments by virtue of a branch and
bound design space strategy on the tiling factor which still guarantees
optimality. This enabled exploration of the complete scheduling space of
DMCNN-VD as defined by Goetschalckx et al. [40] in a matter of minutes.

Based on comparison with the generated, instrumented code, it can be concluded
that the presented models are very accurate. Their added value over the state
of the art has been demonstrated, in particular for networks where the number
of weights is significant. Although for real-world networks the benefits of fusion
are somewhat limited due to complex connections and various layer types, the
external accesses can in most cases be reduced compared to loop reordering
and tiling only. The best observed reduction in external accesses was as high
as 99.75 % for DMCNN-VD. On average the gain of fusion over tiling and loop
reordering was 28.89 % for the six selected networks.

2See ‘segmentation’ in section 5.5 for the precise definition of a segment.

138 CONVFUSION

Baseline Tiling & Reordering Goetschalckx et al. Fusion & Recomputation

102 104 106
107

108

109

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

3.86

4.38

4.9

5.43

5.95
·109

(a) ResNet50.

102 104 106

108

109

1010

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

1.53

2.33

3.12

3.91

4.7
·1010

(b) VGG16.

102 104 106
107

108

109

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

5.43

6.21

6.99

7.77

8.55
·109

(c) InceptionV3.

102 104 106

107

108

109

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

2.54

3.29

4.05

4.8

5.56
·108

(d) MobileNetV2.

102 104 106
106

107

108

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

2.51

2.57

2.63

2.7

2.76
·108

(e) XCeption.

102 105 108

108

1010

1012

Internal Memory Size [Features]

E
xt

er
na

lA
cc

es
se

s
[#

]

5.53

5.67

5.81

5.95

6.09
·1012

(f) DMCNN-VD [144] with 4K input.

Figure 5.7: Pareto schedules of six Real-World networks for the four defined scheduling space.
The colour map only applies to Fusion & Recomputation, and represents the number of mac
operations.

5.7 ENERGY CONSUMPTION 139

5.7 Energy Consumption
The scheduling results presented in the preceding section expose the potential
to reduce the external memory accesses using advanced scheduling techniques.
This section extends these results with a short study into the effects of this
reduction in accesses, since for most practical designs not the raw accesses, but
the energy consumption is of interest. Building upon the metrics produced by
the models introduced in this chapter, the remainder of this section introduces
progressively more realistic energy models starting from a single level, single
bank sram internal memory in section 5.7.1 till a multi-level, multi-bank internal
memory model in section 5.7.3

5.7.1 Single-Bank SRAM

The energy required to evaluate a neural network according to a specific schedule
can be split into three distinct parts:

Multiply-Accumulate Operations

The first source of energy consumption is the execution of mac operations. The
energy required for a single mac depends on the data type of the operation,
the arithmetic architecture, the operating speed, and the technology node used
for implementation. How these parameters influence the energy consumption is
complicated, and instead of attempting to derive a generic model choices are made
for these parameters in this evaluation. In particular, a 40 nm node is assumed
for which energy numbers are available in the Aladdin tables [176], which are also
used by the state-of-the-art Accelergy energy estimation tool from MIT [174].
In alignment with the accelergy framework, the cost of a multiplication and
addition at 4 ns delay are summed to conservatively approximate a mac unit.
Although the model metrics are agnostic to the width of a neuron output or
weight value, a choice has to be made to be able to provide an energy estimate.
Since the listed numbers are for 32b operations, and the operations in neural
networks usually only require 16b, a scaling factor is applied. Specifically, the
energy of the addition is halved since adders scale approximately linearly, and
the multiplication energy is divided by four because of quadratic scaling of
multipliers. Following this method, the energy cost of a single mac operation is
approximated at 10.2 pJ.

140 CONVFUSION

Accessing External DRAM

The second factor influencing the energy consumption is accessing external
memory. dram is a typical choice for off-chip memory, and is also assumed
in this evaluation. According to the work of Malladi et al. [100] accessing a
single bit in DDR3 memory requires about 70 pJ. For simplicity it is assumed
that both the neuron outputs and weights are 16-bit wide, yielding an energy
cost of 1120 pJ per DDR3 dram access. Note that this number is taken to be
independent of the dram size, since the energy is dominated by input/output
(IO) logic rather than the size of the memory array.

Accessing Internal SRAM

For internal memory sram is assumed. Estimating the energy of an sram
access is slightly more involved, since the size of the memory array does matter
significantly for the access energy. To be able to provide accurate estimates, a
model is derived based on commercial-off-the-shelf sram modules on a 40 nm
technology node. Figure 5.8 shows available data points for these modules in
terms of access energy for 16b words based on the total module size in bits.
These numbers are based on the typical corner, 25 °C, 1.1 V, averaging a read
and write access. A square root function is fit through these points to enable
extrapolation, yielding the energy per access of an s-bit sram cell in pJ:

Esram(s) = 0.012 ·
√

s + 4.61

A square root function is chosen as the energy cost of larger banks mainly seems
to scale with the circumference of the array, and the additional sense amplifiers
used to partition the bank internally. This model is used to extrapolate the energy
cost of an sram bank in figure 5.8. Note that the range of the extrapolation is
rather extreme to be able to support the large memories required for some of
the fusion schedules. This already indicates a different approach to constructing
such large memories should be taken in practice, which will be further elaborated
in section 5.7.2. Although the selected square root function fits the relation
quite well (see also figure 5.10 which clearer shows the fit through the available
data-points), this model can easily be exchanged for more sophisticated and
accurate models when available.

Adding these three factors, i.e., mac energy, dram energy, and sram energy,
yields the total energy estimated by this basic model. For the number of macs
the MAC numbers from the model can be directly used, the accesses to dram are
also directly given by the various Acc terms, as is the size of the internal sram

5.7 ENERGY CONSUMPTION 141

24 210 216 222

0

50

100

Memory Size [16b words]

E
ne

rg
y

(p
J)

Modelled
Commercial

Figure 5.8: sram energy consumption based on commercial 40 nm sram modules at the
typical corner, 25 °C, 1.1 V. Power quickly grows for large srams blocks.

by taking the maximum of the required Buf formulas over all layers. This leaves
the number of accesses to the sram however, which are given by the number of
macs times four, since each MAC operation requires three reads and one write.
Note that this basic model lacks a register file or accumulation register, and
hence all accesses go to the internal sram. Finally each external read access will
also write to the internal sram, so these accesses are also added.

Applying this model to the scheduling front of the L3NetWide and L3Net 4k
networks presented in section 5.6 yields figure 5.9. Since the energy model
is monotonically increasing in all parameters, the Pareto schedules found in
section 5.6 are guaranteed to contain those schedules that are also Pareto in
terms of energy. The energy points are not Pareto filtered in this case however
to highlight an important drawback of the used energy model. Using the
simplistic Esram(s) approximation, the internal sram memory quickly becomes
very expensive to access as its size increases. In particular, past around 5 ×
103 features the reduction in external dram accesses no longer outweighs the
increased cost of accessing the internal sram, and the energy starts to increase
again. The problem is that the access energy of a single sram bank does not
scale very well, and for those schedules that require a large amount of internal
memory a more sophisticated memory model is required.

142 CONVFUSION

Baseline Tiling & Reordering Goetschalckx et al. Fusion & Recomputation

102 104 106

0

1

2

Internal Memory Size [Features]

E
ne

rg
y

(J
)

0.31

0.59

0.87

1.16

1.44
·1010

(a) L3NetWide.

102 105 108

0

5

10

15

20

Internal Memory Size [Features]

E
ne

rg
y

(J
)

3.27

4.49

5.7

6.91

8.12
·109

(b) L3Net 4k.

Figure 5.9: Energy front of L3Net based models using the single bank sram model outlined
in section 5.7.1. The colour map only applies to Fusion & Recomputation, and represents the
number of mac operations.

5.7.2 Multi-Bank SRAM
The shortcoming of the basic energy model is the assumption of a single sram
bank also for large internal memories. In practice, however, such large memories
will always be constructed out of several smaller sram banks. Such memories will
incur an area penalty compared to the single bank approach, but the access energy
is lowered significantly. In fact, the access energy is equal to the access energy
of a single small bank that makes up the larger memory, plus some overhead for
the bank selection logic. To correct for this energy overhead a scaling function
is fit based on the work of Mai et al. [99]. To minimize the impact of the area
overhead, and provide a pessimistic estimate of what can be achieved with a
banked sram memory, the largest available sram block from the commercial
40 nm library is selected. Combined with the energy overhead function this
yields the following model for the access energy of an s-bit multi-bank sram
memory:

EBankedsram(s) = Esram(min(s, 16× 104))×
(

1 + 3.05× 10−3 × log
⌈

s

16× 104

⌉)

This relation is visualized in figure 5.10, from which it is clear that the overhead
of the bank selection logic indeed is relatively small. Plugging this multi-bank

5.7 ENERGY CONSUMPTION 143

24 210 216 222

6

8

10

Memory Size [16b words]

E
ne

rg
y

(p
J)

Modelled
Commercial

Figure 5.10: Banked sram energy consumption based on commercial 40 nm sram modules
at the typical corner, 25 °C, 1.1 V. Large memories are constructed by replicating the largest
available sram block to create several banks, rather than extrapolating the energy of a single
block.

sram model into the energy model described in section 5.7.1, and again applying
it to the L3NetWide and L3Net 4k networks yields figure 5.11. It is immediately
clear for this figure that the multi-bank sram model largely solves the energy
problem for schedules that require large amounts of internal memory. For
L3NetWide the problem is gone entirely, while for L3Net 4k the optimum
memory size still lies around 1× 103 entries. In both cases it is clear however the
network schedules with larger internal memory requirements hardly benefit from
the reduction in external accesses, even while accessing the dram is relatively
expensive. Furthermore all schedules with recomputation always increase the
energy consumption. Both these observations can be explained by the lack of a
register file or other small localized memory, and as such each additional mac
incurs four accesses to the internal sram.

5.7.3 Multi-Level SRAM
To overcome the limitation of a single level internal sram memory, this section
expands the energy model with multi-level internal memory. This does present
a problem, however, since the models presented in this chapter do not support
multi-level memories in a precise manner. Section 5.8 contains notes on how
such support may be added as part of future work, but for this evaluation an
approximation is used instead. In particular, when a memory level of size s is

144 CONVFUSION

Baseline Tiling & Reordering Goetschalckx et al. Fusion & Recomputation

102 104 106
0

1

2

Internal Memory Size [Features]

E
ne

rg
y

(J
)

0.31

0.59

0.87

1.16

1.44
·1010

(a) L3NetWide.

102 105 108

0.5

1

1.5

2

Internal Memory Size [Features]

E
ne

rg
y

(J
)

3.27

4.49

5.7

6.91

8.12
·109

(b) L3Net 4k.

Figure 5.11: Energy front of L3Net based models using the multi-bank sram model outlined
in section 5.7.2. The colour map only applies to Fusion & Recomputation, and represents the
number of mac operations.

added, the best schedule available for that size is used to model the accesses to
that level. Furthermore the ‘external accesses’ modelled for this schedule will
now be added to the next level of memory. This next level is determined by a
sweep over the remaining schedules, and using their internal memory size for
this level. Using this methodology a register file with 64× 16b entries is added
to the energy model. For accessing this register file an average accesses energy
of 2.4 pJ is used in accordance with the findings of Wu et al. [175].

The resulting energy fronts of the L3NetWide and L3Net 4K networks are given
in figure 5.12. It can be seen that the addition of the register file ensures that
the energy does decrease when larger internal memory is used. Also in L3Net 4k
some of the schedules with recomputation have become beneficial, although the
effect is rather marginal.

In the real-world networks evaluated in section 5.6 similar trends can be observed.
For brevity only the energy fronts of VGG16 and DMCNN-VD are shown in
figure 5.13. Similarly to L3NetWide and L3Net 4k, layer fusion does result
in new energy Pareto schedules, although the benefits are not as large as the
reduction in external memory accesses in figure 5.7 imply. This is in particular
clear for the DMCNN-VD network, which has a significant reduction in dram
accesses using layer-fusion (figure 5.7f), but fails to capitalize on this in the energy
front (figure 5.13b). Furthermore, recomputation in the real-world networks

5.7 ENERGY CONSUMPTION 145

Baseline Tiling & Reordering Goetschalckx et al. Fusion & Recomputation

102 104 106

1

2

3

4
·10−13

Internal Memory Size [Features]

E
ne

rg
y

(J
)

0.31

0.59

0.87

1.16

1.44
·1010

(a) L3NetWide.

102 105 108

2

3

4
·10−13

Internal Memory Size [Features]
E

ne
rg

y
(J

)
3.27

4.49

5.7

6.91

8.12
·109

(b) L3Net 4k.

Figure 5.12: Energy front of L3Net based models using the multi-bank sram model outlined
in section 5.7.2 and a 64 × 16b register file. The colour map only applies to Fusion &
Recomputation, and represents the number of mac operations.

does generally not result in a reduction in energy, as can be seen for VGG16 in
figure 5.13a.

The limited gains of fusion may seem counter-intuitive at first, in particular for
the DMCNN-VD network which shows significant reduction in external memory
accesses in figure 5.7f. These reduced returns can easily be understood when
inspecting the detailed energy breakdown in figure 5.14 however, which lists
the energy spent on macs (Emac), the register file (Erf), the internal sram
(Esram), and the external dram (Edram), for each point in the energy Pareto
front. The reason the reduction in accesses does not result in a significant drop
in energy consumption is effectively Amdahl’s law applied to energy saving;
As the scheduling techniques reduce the amount of accesses to the dram, the
other parts of the system start to dominate. For the overall energy to improve
even further, it makes most sense to address the Emac and Erf components by
for example chaining units to avoid intermediate accesses to the register file,
dedicated accumulation registers, and quantization of the mac operands.

In conclusion the following statements can be made regarding the energy con-
sumption of the explored schedules:

1. Compared to the baseline schedules, many schedules that require less inter-
nal memory can be found which drastically reduce the energy consumption.

146 CONVFUSION

Baseline Tiling & Reordering Goetschalckx et al. Fusion & Recomputation

102 104 106

0.5

1

1.5

2 ·10−12

Internal Memory Size [Features]

E
ne

rg
y

(J
)

1.53

2.33

3.12

3.91

4.7
·1010

(a) VGG16.

102 105 108

0.5

1
·10−9

Internal Memory Size [Features]
E

ne
rg

y
(J

)

5.53

5.67

5.81

5.95

6.09
·1012

(b) DMCNN-VD.

Figure 5.13: Energy fronts of VGG16 and DMCNN-VD. The colour map only applies to
Fusion & Recomputation, and represents the number of mac operations.

Edram Esram Erf Emac

101 102 103 104 105

0

0.2

0.4

Internal Memory Size [Features]

E
ne

rg
y

(J
)

(a) L3NetWide.

101 103 105 107

0

200

400

600

Internal Memory Size [Features]

E
ne

rg
y

(J
)

(b) DMCNN-VC.

Figure 5.14: Detailed energy breakdown of energy Pareto front. For large srams, the dram
energy reduces drastically, while the register file (rf), mac, and sram energy remain roughly
constant.

5.8 DISCUSSION & OPEN ISSUES 147

2. Based on the energy evaluation a multi-banked and multi-level memory
approach is required to benefit from the gains of fusion and recomputation,
and even then energy gains are not always guaranteed.

3. The reduction in external accesses achieved by advanced scheduling tech-
niques such as recomputation and fusion do not automatically translate
in large improvements in energy, as other parts of the system become
dominant in this region of the scheduling space for the investigated neural
networks.

5.8 Discussion & Open Issues
By validation with instrumented Halide code, the introduced models are shown
to be correct for the micro-benchmarks when the layer dimensions are exact
multiples of the selected tile sizes. However, despite the low computational com-
plexity of the models, complete traversal of the scheduling space is still infeasible
for larger networks. This issue is discussed in further detail in section 5.8.1.

The models presented in this chapter are to a high degree hardware agnostic. A
downside of this approach is that certain schedules that look beneficial using
these models may be a bad fit on a particular target machine. Section 5.8.2
discusses approaches on how to adjust the design space to match with real
machines.

Finally section 5.8.3 discusses several scheduling space limitations of the current
work, and possible ways to improve.

5.8.1 Intelligent Design Space Exploration
For small networks the presented models are sufficiently fast to enable an
exhaustive schedule space exploration. However, in particular for networks with
larger eligible sequences3, the design space grows exponentially. This chapter
does not provide a ready solution to this problem, but some suggestions can be
made.

The presented models run in constant time per layer, so there is not much to
be gained by simplifying the models. Multithreading could be added since the
cost estimations are largely independent, but this will only provide a linear
improvement against the exponential growth in workload. The provided open

3See ‘Identification of sequences’ in section 5.5 for the precise definition of a sequence.

148 CONVFUSION

source tool [154] supports limiting the fusion depth, which can be used to mitigate
the problem. As mentioned in section 5.6, the exploration of the real world
networks was limited to ten million schedules per segment. Still the search
completed within a maximum of two days for the selected networks using a
fairly unoptimized python implementation of the models, running with only a
single thread. Since proper training of a neural network typically takes much
longer, and selecting the schedule only needs to be done once before deployment,
this may an acceptable runtime for many practical cases. Based on the found
scheduling spaces, it also seems unlikely a complete exploration would yield
significantly better schedules.

Nonetheless, for particularly large networks, or when schedule quality is extremely
important, this approach may not be desired. For those cases two suggestions
can be made:

Branch & Bound

When an upper and or lower limit for the internal memory size is known, a
‘branch and bound’ search strategy can be used to quickly eliminate large sections
of the design space. For example, if a schedule with a certain tile size does not fit
the available memory, the same schedule with a larger tile sizes will by extension
also not fit. Thus, by placing restrictions on the memory size, it is possible to
quickly eliminate large parts of the design space.

Heuristics

If the search space can not be sufficiently limited, it is recommended to inte-
grate the presented models into a heuristic based search strategy. For example
simulated annealing, genetic algorithms, or a greedy approach with handcrafted
heuristics. Another interesting approach is to use an artificial intelligence driven
search. Since the models are fast to evaluate, a large training set can be made
relatively quickly.

5.8.2 Targeting Real Hardware
The models presented in this chapter are almost completely hardware agnostic,
as the only assumption made is the presence of a two level memory hierarchy.
However, the ConvFuser [154] tool automates (C++) code generation for any
schedule within the design space, which allows easy compilation towards any
target with a C-compiler. However, the generated code will have no specialisation

5.8 DISCUSSION & OPEN ISSUES 149

towards the target hardware, and therefore either relies on a smart compiler,
or (manual) source-to-source transformations. The generality of the models
may even seem to adversely impact their applicability to real hardware which
supports features such as burst-transfers, and vectorisation. However, targeting
such hardware can be easily achieved by restricting the complete scheduling space
as described in section 5.3. The remainder of this section discusses how to restrict
the space with respect to burst transfers, vectorisation, and how to extend the
models to multiple memory levels. Furthermore it treats the possible extension
of the models to include throughput and latency, two hardware dependent
properties.

Burst Transfers

Burst transfers can amortize the addressing and synchronisation overhead of
memory accesses when the data is accessed in larger consecutive blocks. Without
adaptation the scheduling space will include schedules that access only one
memory element per transfer, and accesses consecutive in time may not at all be
consecutive in memory. These schedules may look promising based on number
of transfers and required memory size, but due to their inability to benefit from
burst transfers may in fact be worse than schedules that did not seem beneficial.
The straightforward method of dealing with this is to exclude such non-beneficial
schedules from the scheduling space. For example, if data is stored x-major in
memory, then it makes sense to enforce loop xi of code 5.2 to be inner to yi
and ii. The compute level should then also be kept above xi, to ensure a chunk
with size Tx will be scheduled for transfer. By limiting Tx to multiplies of the
burst size, it can be ensured that a block of continuous data is accessed every
time.

Vectorisation

Targeting hardware with vectorisation capabilities is identical to targeting burst
transfers. By selecting a loop for vectorisation, and limiting the tile size to
multiples of the vector width, only beneficial schedules will be selected. Note
that, depending on the capabilities of the target hardware, vectorisation can be
orthogonal to optimising for burst transfers. For burst transfers the data layout
in memory matters, while this restriction may not matter for vectorisation, or a
rearrangement of data upon load may be cheap. As such Tx could for example
be limited to match with a memory block size, while Ty is vectorised. This way
multiple hardware features can potentially be optimised orthogonally. Note that

150 CONVFUSION

if this is not possible, it does not mean both can not be addressed. On most
architectures one would expect that it is feasible to select a Tx that matches
both with the burst size and the vectorisation support.

Instruction Memory Pressure

One aspect that is not accounted for in the presented models is control flow
complexity when several layers are fused. With each layer that is added to a
fused segment, the loop nest becomes deeper. This is evident when observing
first code 5.2, which represents a single layer with tiling. After loop fusion, this
code expands as show in code 5.3. For each layer, another six loops are added
to the code. This inevitably increases the code size, which will put pressure
on the instruction memory. In particular the outer loops, who’s executions are
relatively far apart, will start to suffer from misses in any instruction cache.
However, based on the instruction cache size and inspection into the code size of
the generated loop nests, it may be possible to estimate which loop levels will be
pushed out of the instruction cache. For the iterations of the levels that do not
fit, a penalty can be added to the execution time based on the target platform’s
instruction cache hierarchy.

Multi-level Memories

As the energy evaluation in section 5.7 demonstrates, the benefits of fusion are
limited by the simple two-level memory hierarchy, i.e., one internal scratchpad
and one external main memory, captured in the models. In contrast to burst
transfers and vectorisation, handling multi-level memory is not a matter of
limiting the design space. However, it is possible to extend the models with
multiple levels of tiling, and multiple store/compute levels. If the target memory
system is hierarchical, i.e., each level progressively contains a subset of the data,
then the models can be updated to contain an explicit copy action. Essentially
each layer can be prefixed with a number of ‘dummy’ layers, which represent
the data of a layer in each memory level. The production of such a layer is
simply defined as a copy from the previous layer. In the memory hierarchy this
copy represents a transfer, as such these dummy layers will be referred to as
transfer layers. The models can use the available attributes for layer fusion to
fuse all transfer layers into the layer they belong to. The production of these
layers, which represents a data transfer from one level to another one, can then
be taken into account in the model for different tile sizes. Of course it is also

5.8 DISCUSSION & OPEN ISSUES 151

possible to skip a transfer layer altogether when layer fusion is used, such that
intermediate data does not need to go through the entire memory system.

Throughput & Latency Models

The presented models only address operation and access counts, but not per-
formance in terms of throughput or latency. Modelling these terms inherently
requires platform knowledge, which makes it difficult if not impossible to derive
a generic approach. However, given a specific platform, it may be possible to
extend the presented models to include throughput and or latency.

When modelling throughput, it is important to determine whether a solution is
compute bound, or memory bound. First both the compute and memory access
models have to be scaled from raw counts to cycle counts. In the case of compute,
this includes accounting for vectorisation, or other parallelisation techniques,
to arrive at an operations per cycle model assuming a compute bound system.
For the memory accesses, an analysis based on the target platform’s memory
hierarchy needs to be done in order to translate this to a bandwidth measure.
Burst transfers can be taken into account here as described above. Once these
two models have been obtained, roofline analysis can be performed to determine
whether for a particular schedule the given platform is compute or memory
bound. Based on the limiting factor, the system throughput can be estimated. If
the target platform does not employ efficient prefetching, accurately estimating
the bursty nature of memory traffic could be challenging. However, since the
execution schedule is known at compile time, software prefetching techniques
may be employed to spread memory accesses more evenly, countering this effect
while simultaneously improving throughput.

Latency estimates may follow a similar approach. Based on access times of
memory hierarchies at the target platform, a latency model can be derived.
Again the (bursty) nature of memory access will be a determining factor in the
accuracy of such a modelling. If (software) prefetching is applied effectively, it
may be possible to completely hide the latency of all memory accesses with the
exception of the very first couple of accesses. Since the schedule is statically
known, prefetching should be very effective, but it should be noted that it will
also come at a cost of increased memory footprint. The memory footprint models
could be adapted to account for a certain window in time ahead, to model this
loss accurately. In particular when software prefetching is applied, the scheduler
will have full control of the amount of memory that should be reserved for
prefetches.

152 CONVFUSION

5.8.3 Schedule Space Limitations
Although the presented models cover a vast design space, several limitations
apply. In particular, only regular convolutional layers with striding are considered
since most layers are of this type. However the models could be extended to cover
different convolutional layers types, such as dense and depthwise convolution,
and recurrent neural network layers. Dense layers can be modelled as a layer
where the kernel spans the entire input, i.e., Dm = Dx and Dn = Dy. For such
dense layers it could pay off to also consider tiling of these kernels. Depthwise
layers can be modelled by setting the number of input and output feature maps
to one, i.e., Di = Dz = 1, and multiplying the estimates by the number of original
feature maps to compensate. Recurrent layers are slightly more complicated,
since they use neuron states computed in a previous evaluation. This state could
either be stored entirely in on-chip memory, or it could be transferred back and
forth to external memory. In the latter case, it is probably possible to partly
reuse the models for loading input data at the first layer in a fused section, and
add them to the cost of an intermediate recurrent layer. The output state of
such a recurrent layer always has to be transferred out, which potentially could
be modelled by applying the output model to an intermediate recurrent layer.

Furthermore, fusion over skip, or residual, connections such as present in ResNet
for example are not supported by the developed open source tool. Support could
be provided by adding a binary choice to the network schedule per residual
connection whether it should be stored in external or internal memory, analogous
to the work by Goetschalckx et al. [40].

Finally one optimisation not covered by the presented models is the option
to keep part of a layer in internal memory while transitioning from one fused
segment to the next. This technique is included in the work of Goetschalckx et
al. [40] as part of an optimistic model for schedules without fusion, but could
be applied generically between fused segments as well. However, the resulting
control code is likely quite complex, as the iteration order of consecutive segments
needs to be reversed between layer transitions. For practical applications of this
optimisation more research is required.

5.9 Conclusions
A practical scheduling space of convolution layers in cnns has been outlined
in section 5.3, including loop reordering, tiling, recomputation, and fusion.

5.9 CONCLUSIONS 153

Generic models on this design space have been proposed in section 5.4 for
required external memory accesses, internal buffer space, and macs. An efficient
schedule space traversal method has been described in section 5.5, and an
embodiment of the proposed models and schedule space traversal method has
been described and published as open source tool [154]. Using this tool the
accuracy of the proposed models has been verified on synthetic networks using
instrumented Halide code [124]. The effects of various scheduling techniques, i.e.,
loop reordering and tiling, layer fusion, and recomputation, have been evaluated
on six real world neural networks in section 5.6. An evaluation of the impact on
energy consumption of these techniques has been provided in section 5.7.

Using code generation and instrumentation through Halide, the models have
been verified against measurements and found to be accurate. By covering both
layer fusion and tiling of weights, the proposed models have furthermore been
shown to provide additional Pareto points compared the state of the art. This
effect is most notable in networks which are weight dominated.

To capitalize on the benefits of fused scheduling techniques multi-level memory
appears to be required. Section 5.8 discusses how the presented models may be
extended to accurately model multi-level memory. The models presented in this
chapter are hardware agnostic, and suggestions have been made in section 5.8
on how to limit the scheduling space to target real hardware that supports
burst-accesses and vectorisation, increasing the applicability of the presented
models.

154 CONVFUSION

Part III
Flexibility

Chapter 1
Introduction & Overview

Part I
Compute Efficiency

Wide-SIMD with Explicit
Datapath (Chapter 2)

Reduction Operator for Wide-
SIMDs Reconsidered (Chapter 3)

Datawidth-Aware Multiplication (chapter 4)

Part II
Data Efficiency

ConvFusion (Chapter 5)

Part III
Flexibility

Compute System Flexibility (Chapter 6)

Chapter 7
Conclusions & Future Work

Chapter 6
Compute System Flexibility

This chapter is based on the work published in “How Flexible is Your
Computing System?” [66].

In literature, computer architectures are frequently claimed to be highly flexible,
typically implying the existence of trade-offs between flexibility and performance
or energy efficiency. Processor flexibility, however, is not very sharply defined,
and consequently these claims can not be validated, nor can such hypothetical
relations be fully understood and exploited in the design of computing systems.
This chapter is an attempt to introduce scientific rigour to the notion of flexi-
bility in computing systems. A survey is conducted to provide an overview of
references to flexibility in literature, both in the computer architecture domain
as well as related fields. A classification is introduced to categorize different
views on flexibility, which ultimately form the foundation for a qualitative def-
inition of flexibility. Departing from the qualitative definition of flexibility, a
generic quantifiable metric is proposed, enabling valid quantitative comparison
of the flexibility of various architectures. To validate the proposed method, and
evaluate the relation between the proposed metric and the general notion of
flexibility, the flexibility metric is measured for 25 computing systems, including
central processing units (cpus), graphics processing units (gpus), digital signal
processors (dsps), field-programmable gate arrays (fpgas), and 40 application-
specific instruction-set processors (asips) taken from literature. The obtained
results provide insights into some of the speculative trade-offs between flexibility
and properties such as energy efficiency and area efficiency.

6.1 Introduction
Arguably one of the most famous books in the field is “Computer Architecture —
A Quantitative approach” by John L. Hennessy and David A. Patterson [61].
The title itself is concise and apt, so it is interesting the authors opted to add
this particular subtitle: a quantitative approach. It implies the belief that

158 COMPUTE SYSTEM FLEXIBILITY

quantifying design choices ultimately leads to better computer architectures,
a message that certainly could be directed towards those who make claims
about flexible architectures without means of quantifying these claims, or even
without as much as a commonly accepted qualitative definition of flexibility.
With Moore’s law seemingly coming to an end, new advancements in computing
will have to be made on the architectural side. To advance the state of the art,
fundamental understanding of various trade-offs in computer design is vital. The
way forward, therefore, is a quantitative one.

Many key system properties such as performance, power dissipation, and energy
efficiency are all well defined in a quantitative manner. With these metrics in
place, quantitative, objective comparisons can be conducted between different
machines. For flexibility however, such a quantitative (and even qualitative!)
definition is lacking, despite its increasing importance in system design. In prod-
uct research and development, computing platforms are required to sufficiently
support new or updated algorithms, as algorithms are changing at a striking
speed. Exemplary are the current developments in artificial intelligence, which
result in new compute-intensive algorithms at a high cadence. Such rapidly
developing markets require systems that can deal with changing applications,
which is the property flexibility typically seems to refer to. However, in absence
of a proper definition, it is impossible to make solid statements, and compare
designs on flexibility.

Despite the lack of a formal definition of flexibility, there appear to be some
commonly accepted notions surrounding flexibility. In particular, flexibility seems
mainly used to refer to the adaptability of processors to different applications.
This leads to the common idea that a programmable processor which can be
reused across applications is ‘flexible’. On the other hand, a processor with
fixed logic such as an ASIC cannot adapt, exposing its inflexibility [106]. As
can be seen in figure 6.1 the authors of these figures appear to agree with
this sentiment. However there are also some contradictions to this view on
flexibility. For example in figure 6.1a, among programmable processors the
field-programmable devices are claimed by the authors to be less flexible than
software programmable processors due to their inadequate programmability [76].
Unfortunately the term “programmability” is also ill-defined here. Perhaps the
best definition of programmability in existence is to check Turing completeness of
a programmable device, but this would leave only two classes of programmability
making it a measure with low practical value. Another perspective on flexibility
refers to how well a processor supports different applications, in which case
field-programmable gate arrays (fpgas) could be seen as the most flexible, since

6.1 INTRODUCTION 159

any hardware, including digital signal processors (dsps), graphics processing
units (gpus), and central processing units (cpus), can be instantiated on fpgas.
Apart from this debate on how to rank the flexibility of architecture classes,
perhaps even more worrisome are the contradicting claims on relations between
flexibility and other metrics. In figure 6.1d A. Osman El-Rayis equates flexibility
to area, whereas Tobias Noll sees it as directly related to power dissipation in
figure 6.1a. While this is definitely not an exhaustive list of views on flexibility,
it painfully exposes how the lack of a formal definition leads to a wild-west of
claims and conflicting visions, none of which can be backed up with objective
measurements.

Despite the greatly varying interpretations of flexibility, many seem to agree
that there may be interesting relations and trade-offs between flexibility and
other properties, such as performance and energy efficiency. As illustrated in
figure 6.1, processing architectures alternatives have been evaluated and ranked
in terms of flexibility, performance, power dissipation, and area [75, 76, 105, 171,
126]. A variety of architectures have been developed which claim to balance
energy efficiency and flexibility. The development of domain-specific functional
units and a transition to heterogeneous multi-core systems are a testament to
this notion [83, 49, 32]. These hypothetical relations suggest that understanding
flexibility is beneficial when designing a system, enabling informed trade-offs.

To overcome the lack of understanding of flexibility, this chapter sets out to
provide both a qualitative and quantitative definition of flexibility. It should
be noted though that, with such a fragmented landscape of interpretations of
flexibility, the authors are under no illusion that it is possible to unify the field
and reach consensus without a wider discussion. Instead, this chapter is to be
seen as a first attempt, which does not so much aspire to provide a definitive
answer, as it hopes to be thought provoking and spark a discussion within the
community.

To arrive at a quantitative measure for flexibility, a qualitative definition is
established by exploring uses of the term flexibility in literature and then
examining various options. Based on this qualitative definition, a quantitative
measure is derived. In the translation of flexibility, from a qualitative term to a
quantitative definition, there exist several degrees of freedom. The final choices
made in this translation are motivated extensively. However, more importantly,
the alternatives are discussed systematically in similar detail. The intention is
that this systematic approach can provide an initial framework for a broader

160 COMPUTE SYSTEM FLEXIBILITY

PERFORMANCE

FL
EX
IB
IL
IT
Y

PO
WE
R
DI
SS
IP
AT
IO
N

General
Purpose

Processors
Domain
Specific

Processors
ASIPs

Field
Programmable

Devices

Application
Specific

ICs

Physically
Optimized

ICs

(a) Flexibility related to performance and
power according to T. Noll [75, 76]. Note
that according to this figure flexibility is
directly related to power dissipation.

ASIC

CGRA

FPGA

ASIP

GPP

Reconfigurable

PE
RF

OR
MA

NC
E

FLEXIBILITY

(b) Performance versus flexibility plot by
G. Ndu [105]. The ordering of the flexibility
of architecture classes aligns quite well with
the ordering given in figure 6.1a, although
the curve is quite different.

Hardwired
datapath

Programmable
datapath

Application-specific

Extensible processor

General purpose
microprocessor

AP
PL

IC
AT

IO
N

FL
EX

IB
IL

IT
Y

PERFORMANCE EFFICIENCY

ASIP

µP/DSP

(c) ‘Application Flexibility’ versus ‘Per-
formance Efficiency’ by M. Willems from
Synopsys [171]. Unfortunately no further
definition of both these metrics is provided
in the accompanying text.

FUNCTION DIVERSITY

PERFORMANCE

POWER CONSUMPTION

AR
EA

FL
EX

IB
II

TY

GENERAL
PURPOSE

DIGITAL SIGNAL PROCESSOR
FINE GRAIN RECONFIGURABLE

COARSE GRAIN
RECONFIGURABLE

RECONFIGURABLE
FABRIC

ASIC

(d) An interesting graph by A. Osman El-
Rayis [126] which relates many metrics in-
cluding flexibility. In contrast to figure 6.1a
flexibility is here claimed to be directly re-
lated to area.

Figure 6.1: Collection of published figures with claims about the flexibility of architecture
classes, and relations between flexibility and other metrics such as performance and power.
Note that none of the axis in these figures are labelled with units.

6.2 SURVEY OF FLEXIBILITY IN LITERATURE 161

discussion in the community on how flexibility should be defined, such that
eventually a standard accepted metric can be established.

To validate the metric proposed in this chapter, in total 14 applications are
benchmarked on 25 different commercial of the shelf (cots) platforms. It is
shown that results align with several common concepts of flexibility found in
literature. For example, gpus deliver the highest performance in general for
the used parallel benchmarks, but sacrifice in terms of flexibility, compared to
general purpose processors (gpps) in figure 6.1a. Furthermore the flexibility
of 40 application-specific instruction-set processors (asips) from literature is
determined to evaluate the relation between specialisation [33] and flexibility.

The remainder of this chapter is organised as follows: section 6.2 presents a
survey on flexibility definitions in the literature, both in the field of computer
architecture, as well as related technical fields. Section 6.3 introduces both
a qualitative and quantitative definition for processor flexibility based on the
collected views in the survey. A novel normalization method based on the
intrinsic workload of applications is included in section 6.4. Section 6.5 explains
the experimental setup, the implementation of the workload estimator, and the
methodologies applied in this chapter. The flexibility results are analysed in
section 6.6. Comparison with alternative definitions is provided in section 6.7.
In-depth reflection and extensive discussion are presented in section 6.8, which
places the proposed definition in context of the field. Finally, section 6.9 concludes
this chapter.

6.2 Survey of Flexibility in Literature
In the field of computer architecture few studies have striven to define and
quantify processor flexibility. Therefore, this section starts with discussing the
existing flexibility definitions in other fields.

Various other fields have more properly defined flexibility, as demonstrated by
the three following examples:

• A generic viewpoint on system flexibility is provided by Chryssolouris, who
defines flexibility as the sensitivity of a system to (external) changes [24].
Lower sensitivity is understood to indicate higher flexibility, as the system
is apparently able to operate relatively unaffectedly under the external
changes.

162 COMPUTE SYSTEM FLEXIBILITY

• Conceptually identical is the definition proposed by Kellerer et al. who
state that the flexibility of electronic networks refers to the ability to
support new requests, such as changes in the requirements or new traffic
distributions [78].

• In power systems, flexibility is also based on external changes. More
precisely it is defined as the ability of a power system to deploy its resources
in response to changes in the net load, which is the residual demand that
must be supplied after the depletion of renewable energy [88].

In general these examples consider flexibility as a system property and quantify
flexibility as the insensitivity of the system based on external changes, instead of
formulating flexibility as a function of diverse system parameters. This approach
is transferable to computing systems, as will be outlined in this chapter.

In literature related to computer architecture, approaches to define processor
flexibility can be divided in two categories:

1. Definitions that regard flexibility as an intrinsic static property of a system.

2. Definitions that regard flexibility as an extrinsic mutable property of a
system, dependent on and measured under the influence of external appli-
cations.

Works that fall into the first category are discussed in section 6.2.1, while the
second category is elaborated in section 6.2.2.

6.2.1 Definitions of flexibility as an intrinsic static property
One definition that regards flexibility as an intrinsic property is proposed by
Stigall et al. [143] as early as 1975. In their definition a computer is seen
as major memory/compute units and their datapath connections. The more
connections between the major components, the more options the machine has,
and thus the more flexible it is. The authors also quantify flexibility, namely as
the ratio of the number of data paths that connect major components to the
maximum possible number. The idea is interesting but does not seem to hold
for modern machines. For example, when directly applying this concept to an
single instruction multiple data (simd) machine and a multi-core with the same
number of cores, an simd processor that has fewer components (only a single
instruction memory and decoder, instead of one per core), would usually have
higher connectivity among components than a multi-core processor, implying
higher flexibility. This conclusion seems counter-intuitive however, since an simd

6.2 SURVEY OF FLEXIBILITY IN LITERATURE 163

can only execute a single instruction at a time on all compute elements, while a
multicore can execute different instructions on its compute units. Therefore the
set of operation modes of the multi-core is a superset of the simd modes, which
implies an simd can not be more flexible than a multi-core system.

Another intrinsic definition category is processor versatility as proposed by K.
van Berkel [77]. As shown in equation (6.1), processor versatility is defined as the
average number of instruction bits per useful operation. The amount of useful
operations is extracted according to a complexity analysis of a single algorithm.
Based on the intuition that when more bits are used to encode instructions, the
processor is more versatile as more options are available. Therefore versatility is a
property of the instruction set architecture (isa) and is independent of particular
implementations or executed applications. For instance, versatility increases if
the isa is extended with special instructions serving dedicated hardware, while
potentially being useless to accelerate the target applications. Although the work
by K. van Berkel [77] is the most rigorous attempt to formally define flexibility
to date, some aspects hinder its application. Conducting complexity analysis
of applications to obtain useful operations is challenging without manual effort.
Using operations as basic units implies that different operations are weighted
equally, such as multiplication and addition. This seems somewhat arbitrary
given that the area or energy footprint of a hardware multiplier for example is
many times that of an adder in the same technology. Another weakness of this
metric is that it can not be applied to all systems, such as processors that do
not execute clock-based instructions, e.g., fpgas.

versatility = average instruction size
number of useful operations per instruction (6.1)

However, the concept of measuring the required bits to execute a task is intriguing,
and possibly has a use of its own. Therefore this versatility metric is further
discussed in section 6.7.1.

6.2.2 Definitions of flexibility as an extrinsic mutable prop-
erty

Most flexibility definitions fall into the second, extrinsic category, and are
considered a property measured under the influence of external applications.
Sze et al., for example, provide the following view on flexibility: “Flexibility
refers to the range of deep neural network (dnn) models that can be supported
on the dnn processor and the ability of the software environment (e.g., the

164 COMPUTE SYSTEM FLEXIBILITY

mapper) to maximally exploit the capabilities of the hardware for any desired
dnn model.” [145]. Here the dnn models, i.e., extrinsic properties, are used to
define the flexibility of a system. Their conclusion on flexibility therefore also
is: “. . . to assess the flexibility of dnn processors, its efficiency (e.g., inferences
per second, inferences per joule) should be evaluated on a wide range of dnn
models”. Although not a quantifiable definition per se, the notion of defining the
flexibility of a system in relation to the influence of relevant extrinsic properties
is clearly present. Furthermore it is important to note that various forms of
flexibility are implied, since the effect of an extrinsic property can be expressed
in terms of performance (inferences per second), and energy efficiency (inferences
per joule). Also interesting is the inclusion of the software (mapper) into the
equation, i.e., system flexibility does not only depend on the hardware, but also
on the supporting software.

Tomusk et al. propose to quantify the flexibility of Single-ISA heterogeneous
processors with entropy-based diversity [150]. The idea is that different cores in
a flexible heterogeneous processor can cover more of the design space. Exploring
the design space is achieved by selecting the cores of the system that are Pareto
optimal for power and performance. Higher spread on these Pareto cores means
better flexibility. However, this definition is strictly limited to heterogeneous
processors, ruling it out as a general definition for all computing systems.

Fasthuber et al. propose a different model to define computer architecture
flexibility [32]. The proposed model extracts system requirements from a set
of applications to check if architectures provide sufficient flexibility to support
the minimum requirements in a true/false manner. For instance, in case a
hardware divider is imperative to reach the required performance for a division, a
processor performing division by software emulation fails to meet the performance
requirement. This model assesses architecture flexibility based on external
applications, examining how well architectures support diverse applications.
However, it is challenging to apply this model generically because of the need
for a set of hard boolean requirements. Moreover, the range of the scale is
severely limited, since the flexibility is the result of counting the number of met
requirements. If the set of requirements is small, distinguishing various systems
may be impossible.

Apart from the intrinsic versatility metric as proposed by Van Berkel [77], there
is a competing extrinsic definition for versatility by Rabbah et al. [123]. To
distinguish the two versatilities in this thesis, the metric defined by Rabbah et al.
in their VersaBench paper will be referred to as “VersaBench Versatility” or Vs.

6.2 SURVEY OF FLEXIBILITY IN LITERATURE 165

VersaBench Versatility is defined as the geometric mean (GM) of a processor’s
performance over a vector X = [x1 · · ·xn] of benchmark applications, normalised
to the best execution time known for each of those applications tfastest(xi), where
xi ∈X (equation (6.2)).

Vs =
(

n∏

i=1

tfastest(xi)
ts(xi)

) 1
n

(6.2)

This can be interpreted as the mean slowdown of a processor compared to an
idealized fastest known execution time per application. As such VersaBench
Versatility has a range of 0 < Vs ≤ 1. Compared to the definitions provided by
Tomusk et al. and Fasthuber et al., this approach resolves the limitations on
applicability of the metric to more diverse architectures. The use of only execution
time measurements further increases the practicality of the proposed metric.
However, improvements in VersaBench Versatility can result from an absolute
increase in performance, i.e., an increase in clock speed to boost performance can
effectively improve VersaBench Versatility. This makes VersaBench versatility
and performance directly related, which we argue should be distinct, orthogonal
features. In-depth analysis and comparison with the flexibility metric as proposed
later in this chapter are provided in section 6.7.2, and furthermore show that the
normalization proposed by Rabbah et al. [123] is a mathematical unit operation
and does not contribute to a change in the final Vs.

Although not explicitly targeting flexibility, the work of Fisher et al. [33] on
customizing processors exhibits interesting parallels with work on flexibility in
literature. In their work Fisher et al. set out to optimize a VLIW processor
for a set of tasks, which is again the extrinsic factor. It is argued that instead
of optimizing a processor for only one application, some performance may be
sacrificed for that application to achieve a better average performance for the
entire dataset. In essence, by sacrificing performance for one application to
benefit the overall benchmark set, it can be argued that the flexibility of the
processor has been improved. It is important to distinguish though that the
method applied by Fisher et al. still tries to obtain a higher overall performance,
and does not necessarily consider minimizing the impact of external changes. A
quantified analysis of this method and how it relates to the concept of flexibility
is provided in section 6.6.2.

The related work discussed in this section shows that there are tremendous
diversities in understanding and quantifying flexibility. Overall, flexibility has
more frequently been defined as an extrinsic metric based on external changes,

166 COMPUTE SYSTEM FLEXIBILITY

than an intrinsic property. However, it can also be observed that the inherent
properties of most of those definitions limit the scope of application. With this
in mind, the metric proposed in this chapter aims to avoid this pitfall, and also
be practical to apply generically.

6.3 Defining Flexibility
Despite a few valiant attempts to define flexibility for computing systems in the
existing literature, it can be concluded there is no consensus in the community as
to what flexibility exactly is, let alone how to objectively measure it. Unifying the
various views on the topic into a single coherent definition is a daunting task, yet
one that has to be faced if the rewards are to be reaped. This section outlines our
attempt at defining flexibility for computing systems. Starting from a qualitative
definition in section 6.3.1, a quantitative metric is then derived in section 6.3.2.
In section 6.3.2, several crucial properties of a universal flexibility metric are
defined and proven to hold for the proposed metric. Finally section 6.3.3 details
the scope of applying the proposed metric.

6.3.1 Qualitative Definition
Before determining a quantitative definition of flexibility, there has to be agree-
ment on a qualitative definition. As outlined in section 6.2, a recurring theme
when dealing with flexibility in literature is external changes, or in particular, a
system’s response to external changes. A natural translation of this notion to
computing systems is to regard changing applications as the external changes,
while any secondary metric, such as performance or energy efficiency, can be
used to express a system’s response. Consider for example the benchmark data
for two systems in figure 6.2. As applications change, so does the (normalised)
performance of these systems.

For the particular case in figure 6.2: Which system is more flexible?, Some
may argue System I is more flexible, as System I can maintain the highest
average performance when applications change. However, we postulate such
reasoning is a fallacy, and that performance has to be an orthogonal measure to
flexibility. Were this not the case, then flexibility would merely be a synonym
of “average performance”, and not an independent metric as appears to be the
common notion. Rather, we argue that the system which supports different
applications equally well is more flexible, regardless of its average performance. In
figure 6.2, System II obviously has lower performance than System I, however,

6.3 DEFINING FLEXIBILITY 167

A B C D
Applications

N
or

m
al

is
ed

Pe
rf

or
m

an
ce System I System II

Figure 6.2: Given the performance of two hypothetical systems I and II, normalised to some
baseline system. System I consistently outperforms System II. However, the performance of
System II is much less influenced by changing applications. Which system is more flexible?

it is stabler under application changes. This is a desirable property orthogonal
to performance. For example, during the design of a computing platform with
cost constraints, a processor has to be selected but the final applications are
still subject to change. In this case, it could be beneficial to select a processor
with overall lower, yet sufficient, performance, but higher flexibility, such that
the performance is likely to be still sufficient when applications do change.

In the case of figure 6.2 flexibility is defined in relation to performance variability.
However, other established metrics can be used freely, such as energy efficiency,
area efficiency, or a hybrid cost function. How much the secondary metric
changes resulting from changes in applications is an indication of the flexibility
of the platform in that regard.

Based on the reasoning above, we arrive at the following qualitative definition of
flexibility:

Compute system flexibility refers to the invariance of a system’s
normalised1 performance, energy efficiency, area efficiency (or other
secondary metrics), to change of application.

In particular, when the secondary metric is affected more by changes in an
application, the system is considered to be less flexible.

Although it is just a qualitative definition, some general observations as to how
it aligns with several notions regarding flexibility can already be made. Consider,
for example, an arbitrary set of benchmark applications that expose different
levels of data-level parallelism (data-level parallelism (dlp)). When mapped to

1N.B.: This ‘normalization’ is further clarified in section 6.3.2

168 COMPUTE SYSTEM FLEXIBILITY

a gpu, applications with high levels of dlp would benefit from the many vector
cores and achieve high performance. Applications with limited dlp, however,
would not be able to run efficiently on a gpu, and consequently, achieve low
performance in comparison. Thus, for a mixed, arbitrary benchmark set a gpu
would not be very flexible. In contrast, a simple single-core cpu without vector
extension would not provide an unbalanced advantage for applications with
high levels of dlp. Therefore, it would be ranked more flexible than the gpu,
which aligns with commonly accepted notions. Similar examples can be made for
various classes of architectures, such as cpus with advanced branch predictions
and applications with complex control flow, or DSPs and algorithms that require
multiple floating-point multiply accumulate (mac) operations. Specialization
towards only a subset of relevant applications may improve overall performance
but could degrade flexibility.

The preceding example also illustrates that the selection of benchmark appli-
cations is an important factor in determining a system’s flexibility. After all,
if a dedicated parallel benchmark set was selected, the gpu would be ranked
as more flexible. It is worth pointing out this is not a weakness nor flaw in
the definition of flexibility, but merely emphasizes that benchmarks should be
selected based on the application domain a system is targeting. Similarly, it
makes no sense to use a graphics benchmark on a cpu, when the system is
targeted for handling search engine queries. Proper benchmark set selection
is just as crucial to obtain meaningful flexibility results as it is for measuring
any other system property. When done properly though, the obtained flexibility
ranking will be representative for the selected application domains.

Finally, it is highly important to note that flexibility as defined here can be
artificially raised. By inserting nop operations in the fastest applications, the
performance of all applications can be lowered to match the lowest-performing
application. This would result in the most flexible system, although the overall
achieved performance is degraded. For real-time systems, such an approach may
not even be undesirable, as long as the performance requirements are still met.
However, to account for the loss in performance, energy efficiency, or any other
secondary metric, flexibility should always be reported coupled to these metrics.
One possible way to couple flexibility with other metrics is through a compound
metric, such as the classical energy-delay product (ed), or energy-delay-power
product (edp).

6.3 DEFINING FLEXIBILITY 169

6.3.2 Quantitative Definition
This section translates the qualitative definition of flexibility to a quantitative
measure. In particular, the focus is on how to quantify “the invariance of a
system’s response”. A measure has to be found which expresses variations in
system performance, energy efficiency, or other secondary metrics. Several such
measures for quantifying statistical variation among data points exist. This
section qualitatively explores these options, and finally selects the most suited
approach to quantify flexibility.

There are two classes of variation measures:

1. Robust measures are resilient to extreme values in a dataset, and in general,
try to reduce the effect of outliers in the data. A typical example of robust
measures is the median absolute deviation (mad) (equation (6.3)), defined
as the median of the absolute deviations from the median of the original
data. The mad ignores a small number of extreme values, and only focuses
on the median of the dataset.

MAD(X) = median (|xi −median(X)|) , (6.3)

where X = [x1 · · ·xn] is a vector of measurements.

2. Conventional measures, in contrast, are sensitive to extreme values [170].
Arithmetic standard deviation (asd) (equation (6.4)) and geometric stan-
dard deviation (gsd) (equation (6.5)) are two such conventional measures,
both of which describe the dispersion degree of a data set.

ASD(X) =

√√√√ 1
n

n∑

i=1
(xi −AM(X))2

, (6.4)

where AM(X) = 1
n

∑n
i=1 xi is the arithmetic mean.

GSD(X) = exp

√√√√ 1

n

n∑

i=1

(
ln xi

GM(X)

)2

 , (6.5)

where GM(X) = (
∏n

i=1 xi)
1
n is the geometric mean.

Robust measures are particularly suited for noisy measurements with plenty of
data points. In computer architecture, however, measurements are easily repeat-
able, allowing noise to be filtered by alternative means. Furthermore, the number

170 COMPUTE SYSTEM FLEXIBILITY

of applications in benchmark sets is often quite limited, and as such ignoring
points risks ignoring important data. Therefore the conventional measures are
more suited to represent dispersity in a set of benchmark applications.

The fundamental difference between the two conventional measures is the used
average: the arithmetic mean (am) versus the geometric mean (gm). The am
simply characterizes the average value of the dataset by dividing the sum of
all points by the length of the dataset. Thus, the asd indicates the average
distance of data points in the dataset to the am, and has the same unit as
the dataset. Since the am and asd are sum-based values, they are appropriate
for additive processes. Different from the am, the gm takes the product of
all numbers, and then raises it to the inverse of the length of the dataset.
Because of this, the gsd as defined in equation (6.5) is a multiplicative factor
and does not maintain the original dimension of the data [79]. When dealing
with multiplicative relationships such as growth rate and speedup, the asd
over-estimates data dispersity, while the gsd as a product-based value is the
correct average to use [34, 104].

Based on this, the gsd is selected as the measure of dispersity for flexibility.
In particular because, as also stated in the qualitative flexibility definition,
benchmark data is to be first normalised when deriving flexibility. In the case
of performance, the inverse of absolute runtime would not give an accurate
view of which applications are supported better than others. Some applications
may simply require more work than others, and thus the runtime needs to
be normalised (more on this normalization in section 6.4). Similarly, energy
efficiency is the energy consumption normalised to the amount of work performed
by each application. This normalization results in a multiplicative relation to the
normalization baseline, and thus gsd is the only correct measure of dispersity.

Concluding the quantitative definition of flexibility:

Compute system flexibility is defined as the inverse of the geometric
standard deviation of a system’s normalised performance, energy
efficiency, or other secondary metric, within a benchmark set with
measurement vector X = [x1, · · · , xn] (equation (6.6)).

Flexibility(X) = [GSD(X)]−1 = exp

−

√√√√ 1
n

n∑

i=1

(
ln xi

GM(X)

)2

 , (6.6)

where GM(X) = (
∏n

i=1 xi)
1
n is the geometric mean.

6.3 DEFINING FLEXIBILITY 171

Flexibility Metric Properties

Validation of a new metric is a paradox, as there is no established ground
truth available. However, it is possible to derive several necessary properties a
flexibility metric should adhere to. This section discusses these properties and
proves them for the proposed metric.

1. Flexibility in performance should be independent of scaling the platform
frequency (equally across all benchmarks). I.e., if a given platform executes
applications at F cycles per second, it should measure the same flexibility if
it for example runs at 0.5F for all applications. This holds for the proposed
metric as the gsd is invariant to multiplicative scaling (see lemma 3). Note
that this scaling over all benchmarks also holds for platforms that have a
difference frequency per application, such as fpgas. If all applications are
executed at half their original speed, the measured flexibility will be the
same.

2. Stricter than the previous property, flexibility should be independent of
performance. Indicated by lemma 1 and lemma 2, the increase of an
element in a positive dataset always results in an increasing gm. However,
the gsd value can increase or decrease, which depends on how the increase
of an element impacts dataset diversity.

The two properties described are absolutely essential for any flexibility metric.
Apart from these two, there are two properties which are nice to have, but not
strictly required. For completeness it is shown that these property hold for the
proposed metric.

3. Preferably, flexibility, as a multiplicative measure, is invariant to using the
reciprocal of the underlying metric. This property is particularly useful as
it decouples clock frequency, and with that to some degree the technology
node, from flexibility. Furthermore, in the case of flexibility in relation to
energy, the flexibility calculated over J/op will be the same as the flexibility
calculated over op/J. Lemma lemma 7 shows that this is the case for the
proposed definition, since GSD (X/Y) = GSD (Y/X).

4. It is convenient if the metric is bound to a fixed range. In the case of the
proposed metric it can trivially be shown that flexibility has a range of
(0, 1]. A flexibility of one is achieved when an architecture has the exact
same speedup for each application in the benchmark set compared to the
normalization reference, as further explained in section 6.4.

172 COMPUTE SYSTEM FLEXIBILITY

Compute System Independent

Compute System Dependent

Application
Set

Flexibility
Metric

Compiler 0 Compiler 1 ... Compiler N Flexibility
Measure

Processor 0 Processor 1 ... Processor N

Runtime,
Energy 0

Runtime,
Energy 1

... Runtime,
Energy N

Data Nor-
malisation

Figure 6.3: Framework for flexibility measurements. Note that the compilers are in the chain
of measurement, and are as such considered part of the total compute system.

6.3.3 Flexibility Scope
One aspect of flexibility that has not been addressed so far is the measurement
scope. In the case of performance measurements, it is not only the performance
of a processor that is measured, but also that of the surrounding memory
system, interfaces, and even the compiler. This is not exclusive to performance
measurements but also holds for energy, power, and many other metrics. The
fact that the compiler is part of the measured system is in fact common practice,
but often overlooked when publishing results. Therefore we like to explicitly
state the compiler used to perform benchmarking of a system should always be
part of the results.

For the flexibility measurements in this chapter, the system border is drawn at
the compiler, and the benchmark code itself is taken as universal for all platforms.
When measuring across different platforms this may not always be feasible, so
different choices can be made in specific situations. The recommendation is,
however, to use a cross-platform language benchmark such as OpenCL. A
benchmark set with multi-language support is a good alternative if no single
language can support the systems under test. In general, the procedure of
measuring flexibility will follow the flow illustrated in figure 6.3.

6.4 NORMALIZATION TO INTRINSIC WORK 173

inputs

outputs

Mul
Add

Div

Figure 6.4: Application expressed as a single combinatorial circuit.

The first step is to compile and run the same application set on the target
systems, and measure the desired secondary metrics such as performance and
energy consumption per benchmark. Next follows normalization of the obtained
results. Data normalization is a prerequisite to ensure benchmark results of
diverse applications are comparable, as further discussed in section 6.4. Finally,
the proposed flexibility metric is computed from the normalised data, resulting
in a flexibility ranking of the measured platforms.

6.4 Normalization to Intrinsic Work
Before the gsd can be computed, secondary metrics such as execution time and
energy consumption, measured from diverse applications, need to be normalised.
The reason is that typically applications in a benchmark set represent inequivalent
computational workloads. For instance, applying Gaussian filters with different
kernel sizes results in different workloads. Therefore, normalization based on
workload is required before any data analysis and comparison [111].

The general approach is normalizing to a reference set, i.e., a each application
xi of a vector of applications X = [x1, · · · , xn] is normalised according to:

mnorm_baseline(xi) = mtarget(xi)
mbaseline(xi)

,

where mtarget evaluates an arbitrary metric m for the target architecture for
application xi, and mbaseline does the same for xi on the baseline machine.
However, determining a proper baseline for flexibility poses a challenge. Simply
taking benchmark results of one system as reference implicitly makes the baseline
system “the most flexible” by definition. For instance, when using a basic reduced
instruction set computer (risc)-type processor as the baseline as is often done by
Hennessy and Patterson [61], normalizing to itself transforms each value in the
dataset to one, resulting in no deviation and a flexibility of one. Consequently no

174 COMPUTE SYSTEM FLEXIBILITY

system could then be more flexible than the baseline risc processor, or whichever
platform is selected as the baseline. This choice seems rather arbitrary, and a
more fundamental baseline is desirable.

The key concept is that normalization is applied to equalize an imbalance in
workload that each application represents. The underlying notion is thus that
applications describe a certain amount of work. Normalization on this intrinsic
workload Wint yields the following normalization procedure:

mnorm_intrinsic_workload(xi) = mtarget(xi)
Wint(xi)

This normalization results in measures as “intrinsic work per second” for per-
formance, and “energy per unit of intrinsic work” for energy efficiency, yielding
comparable numbers between various platforms. Unfortunately, a measure for
intrinsic workload also does not exist. There are many possible viewpoints on
how intrinsic workload could be defined, yet this section will focus only on the
one selected for normalization in this chapter. Section 6.8 will on the other hand
explore several alternatives.

Under the assumption that computation indeed is equivalent to work (something
that can be questioned from a physics point of view as will be discussed in
section 6.8), the problem condenses to finding a unit for this work. Something
often used in computer architecture is to count one risc instruction as one
unit of work. However, this implies multiplication and even division would
represent the same amount of work as an addition or a logic and-operation. This
is rather counter-intuitive, as the hardware complexity of a hardware divider is
significantly greater than that of a logic and-operation, i.e., O(b2) for a b-bit
wide division, versus O(b) for a logic and of b bits. The implies division is
fundamentally complexer than a logic operation. A possible way of weighting
risc instructions then is by the complexity of their equivalent combinatorial
circuits.

Taking this one step further, the division of work into risc operations is also
rather arbitrary. From a purely theoretical viewpoint, it can be argued that the
workload of an application is represented by its combinatorial circuit. I.e., the
combinatorial circuit that statically represents the entire application, reading
inputs and producing the final outputs without a (clocked) state in between as
illustrated in figure 6.4. Such a circuit would clearly be completely impractical,
but it can be argued than when written in a minimal form, i.e., with minimal
basic gate (2 input — 1 output) count, it represents the intrinsic workload of the

6.4 NORMALIZATION TO INTRINSIC WORK 175

application. The gates toggling during the execution of this circuit approximate
the minimum required toggles to complete the computation. Interestingly
memory and control flow operations are not required in such a completely
combinatorial, spatial circuit, demonstrating that such operations are in essence
an artefact of stateful Turing machines.

Note that this massive combinatorial circuit would have to be written in min-
imal form though, something intractable with modern technology since logic
minimization is proven to be non-polynomial [19]. From a theoretical point,
obtaining such a minimal circuit would be interesting, but to arrive at a practical
measure for flexibility as is the goal of this chapter, a more pragmatic approach
has to be employed. Rather than approaching this minimal circuit bottom up,
one solution is to return to the roots of practical computing and approach it
top down. Instead of finding the absolute minimal circuit, the circuit can be
divided into elementary blocks with common functionality. Optimizations are
not employed across these blocks to keep the design tractable. As the only
requirement for these elementary blocks is that the set is Turing complete,
there are many options. Here, however, it is possible to fall back on decades of
research in computer design. A natural choice would be risc-like elementary
operations, such as addition and multiplication. Essentially, this circles back to
the earlier idea of weighing risc operations by the complexity of their equivalent
circuitry, but with a notable exception: Those operations in an application that
deal with control flow operations should not be counted towards the intrinsic
workload. Since memory operations are also an artefact of stateful machines,
they could too be omitted, but since they play an ever more important role in
modern technology this chapter proposes several methods to still take memory
into account. The effect of memory operations is further investigated in the
experiments described in section 6.5.

Practically the intrinsic workload of an application as defined above can be
approximated automatically by leveraging the intermediate representation (ir)
of the llvm compiler framework. To be able to deal with many input languages
and target platforms, llvm front-ends translate code into a generic intermediate
instruction set, the ir. From this generic ir, the back-ends generate target-specific
code. This ir has to be very generic to support as many languages and platforms
as possible, and as such is a good candidate to use in an automated intrinsic
workload estimator. Furthermore, it has the advantage that operations related
to control flow and memory are distinguishable from other operations, and as
such can be rejected for the workload estimation. This particular approximation
gives rise to the following definition:

176 COMPUTE SYSTEM FLEXIBILITY

Approximated intrinsic workload is given by the dynamic ir instruc-
tion count of all operations not related to control flow (and optionally
memory), weighted according to the circuit complexity of the opera-
tions.

More details on how this procedure is automated, and the weighting of the
individual ir instructions used in this chapter can be found in section 6.5.4.

6.5 Experimental Setup
Now that a flexibility metric has been established, measurements of various
systems can be performed to both validate the metric against commonly accepted
ideas surrounding flexibility, as well as investigate hypothetical relations between
performance, energy, area, and flexibility. To achieve this a wide spectrum of
computer architectures is examined in this chapter, including cots cpus, gpus,
fpgas, and dsps. The selection 25 of these cots systems, the selected benchmark
set, and details regarding compiler settings and performed experiments are
described in sections 6.5.1 to 6.5.3 respectively. The workload estimation of the
benchmark set is captured in section 6.5.4. Section 6.5.5 describes the measured
properties and their relations. Inspired by the work of Fisher et al. [33] the
flexibility of custom, or asips is also investigated. The setup and parameters of
the related experiments are described in section 6.5.6.

6.5.1 Selected Systems
In this chapter flexibility measurements are conducted on 25 different systems.
Applications are directly executed on real gpus and cpus. For the embedded
dsps, cycle-accurate simulators form the manufacturer have been employed to
extract execution times. The fpgas, finally, have been characterized using high-
level synthesis (hls) combined with post place & route clock speed reporting.
Note that in contrast to the other considered systems, for the FPGAs the clock-
speed in fact varies per application, as measured using post place & route clock
speed estimation per application, target pair. Compilers, as a part of target
systems, are tuned for maximum optimization where possible, to exploit the
capability of the target processors as good as possible with the given code-base.

• GPU: Aimed at comprehending the difference of flexibility between desktop
and embedded gpus, one embedded gpu (Tegra K1) and three desktop
gpus are evaluated in this chapter by compiling the cuda [109] versions

6.5 EXPERIMENTAL SETUP 177

Table 6.1: Overview of used gpus.

Processor Chip Archi #Cores Compiler

Tegra K1 GK20A Kepler 192 nvcc 6.5
GTX 570 GF110 Fermi 480 nvcc 7.5
GTX TITAN GK110 Kepler 2688 nvcc 7.0
GTX 750 TI GM107 Maxwell 640 nvcc 7.0

Table 6.2: Overview of cpus.

Processor ISA Micro- Cores #Threads Compiler
architecture

i7-6700 x86_64 Skylake 4 8 gcc 4.8
i7-4770 x86_64 Haswell 4 8 gcc 4.8
i7-960 x86_64 Bloomfield 4 8 gcc 4.8
i7-950 x86_64 Bloomfield 4 8 gcc 4.8
i7-920 x86_64 Bloomfield 4 8 gcc 4.8
Pentium 4 x86_64 Northwood 1 2 gcc 4.8

Processor ISA System Cores #Threads Compiler
Cortex A15 ARMv7 Nvidia JTK1 4+1 4+1 gcc 4.8
Cortex A9 ARMv7 Odroid U3 4 4 gcc 4.8
Cortex A53 ARMv7 RPi3 Model B 4 4 gcc 6.3
ARM1176 ARMv6 RPi1 Model B 1 1 gcc 6.3

of the applications. Note that the default datasets in the provided C and
cuda version varies, hence the dataset sizes are modified to be equal,
ensuring the application workload is consistent over all platforms. The
precise platforms and used compilers are listed in table 6.1.

• CPU: In total 10 cpus are included, 6 Intel cpus and 4 ARM cpus, to
distinguish and compare the flexibility of embedded and desktop/server
cpus. The benchmarks are compiled with the gcc compiler [147]. Table 6.2
provides detailed information of the examined cpus and the used compilers.

• FPGA: As PolyBench/ACC does not include applications described in
hardware description languages, Vivado HLS [178] is utilized with it’s
default settings to transform C applications into register-transfer level
(rtl) code, which can be directly targeted to Xilinx programmable devices.
In Vivado HLS v2018.2 [178], when synthesizing a C function, a report is
generated which provides performance metrics, such as resource utilization,

178 COMPUTE SYSTEM FLEXIBILITY

estimated clock period, loop latency, and function latency in clock cycles.
To obtain more accurate estimates of resource utilization and the achieved
clock period, the resulting designs have been synthesized towards the target
fpga platforms.

Unfortunately, when the application involves a variable loop bound, Vivado
HLS fails to compute the iteration count required for performance analysis.
An example of code where Vivado HLS v2018.2 fails is shown in code 6.1,
where variable k causes the Vivado’s loop analysis to fail for the loops L2
and L3.

1 for(k = 0; k < m; k++) (L1)
2 for(i = k + 1; i < m; i++) (L2)
3 for (j = k + 1; j < m; j++) (L3)
4 A[i][j] = A[i][k] * A[k][j];

Code 6.1: Example loop-nest with bounds of L2 and L3 based
on variable k

Fortunately this scenario occurs only in four out of 14 benchmarks, specifi-
cally correlation, covariance, gramschmidt, and lu as described in table 6.5.
Nonetheless, for these four cases an alternative method is required to
obtain performance estimates. A possible solution would be to use C/rtl
Co-simulation in Vivado HLS, which simulates the application at the rtl
level. However, for the selected benchmarks the simulation runtimes are
prohibitively high, as well as the enormous amount of memory required for
the simulation, which renders this option infeasible. Since the benchmark
set targets polyhedral applications with strictly static control flow, man-
ual derivation of the iteration counts is fortunately quite straightforward.
Therefore, in this chapter manual static loop analysis is utilized to derive
an approximate cycle count.

As an example, the latency of the loop-nest in code 6.1 can be manually
derived as follows. The number of iterations of L2 and L3 depend on
variable k, which only varies in L1. Thus, their iteration counts can be
expressed as in equation (6.7), equation (6.8) respectively.

#L2 =
m∑

i=1
(m− i) = 1

2m(m− 1) (6.7)

6.5 EXPERIMENTAL SETUP 179

Table 6.3: Overview of fpgas.

Family Device LUTs FFs dsps BRAMs*

Artix7 xc7a200t 129000 269200 740 730
Kintex7 xc7k480t 597200 597200 1920 1910
Virtex7 xc7v2000t 1221600 2443200 2160 2584
Zynq xc7z100 277400 554800 2020 1510
Virtexuplus xcvu13p 1728000 3456000 12288 5376
Kintexu xcku115 663360 1326720 5520 4320
Zynquplus xczu19eg 522720 1045440 1968 1968
* 17kB per BRAM.

#L3 =
m∑

i=1
(m− i)2 = 1

6m(m− 1)(2m− 1) (6.8)

By using an artificially small input, i.e., small m, these equations for all
four affected benchmarks have been validated against short co-simulations
and found to be exact for the unoptimized loop-nests. When vivado HLS
optimizations are enabled through pragmas such as loop unrolling and
pipelining, these equations have to be adjusted accordingly and again
verified for small input sizes using co-simulation. These adjusted equations
were all exact with the exception of the gramschmidt application, where
the equations slightly deviated from the measured cycle count.

Aimed at exploring the impact of the amount and the type of resources on
flexibility, Xilinx fpgas from different device families, and with different
resources, are included in this study. The Virtexuplus, for example, is
an UltraScale+ version of the Virtex fpga, with many more resources
compared to a normal Virtex7. Table 6.3 lists the details of the selected
fpgas. All simulations were performed with Vivado hls v2018.2 [178].

• DSP: dsps are an important class of architectures that should be part of
this study. Two multi-threaded Hexagon dsps from Qualcomm, and one
single-threaded dsp from Texas Instruments (TI) are therefore included.
All measurements for these are based on simulations, as measuring on
the actual devices was not available. The Hexagon V60 and V5 dsps
are simulated in the cycle-approximate mode provided by the Hexagon
SDK [119], and Code Composer Studio v4 (CCSv4) [69] provides cycle-

180 COMPUTE SYSTEM FLEXIBILITY

Table 6.4: Overview of dsps.

Processor #Cores L1I L1D L2 Simulator Compiler

Hexagon V60 4 16K 32K 512K Hexagon SDK X
Hexagon V5 3 16K 32K 256K Hexagon SDK X
TI C6747 1 32K 32K 256K CCSv4 X

accurate simulations for TI C6747. Table 6.4 provides more details of these
three dsps.

6.5.2 Benchmark Set
Selection of a benchmark set is orthogonal to the definition of flexibility given
in this chapter. It depends on the application domain which benchmarks make
sense. Since in this chapter a generic comparison between platforms is desired, a
generic benchmark set is required. A restriction is the support of different plat-
forms, which needs to be broad in this chapter for comparison between different
architectures. Although many options exist, eventually PolyBench/ACC [44]
was selected for its wide support of languages/platforms. Moreover it is a rather
generic benchmark set, i.e., not specific to a specific application domain, and
includes programs with static control flow which eases static analysis of the
workloads. Furthermore, it provides multi-language versions of benchmarks,
including C and cuda, making it suited for cross-platform evaluation. In this
chapter 14 applications from this set, supported by multiple languages, are
evaluated using their standard dataset. It should be noted that the overall
benchmark set contains more applications, but critical issues were encountered
for several when targeting the selected platforms. In particular compilation
issues led to blacklisting several applications. Table 6.5 provides details for each
application.

6.5.3 Compiler Directives
It can be argued that not optimizing code gives a distorted image of reality,
since programmers typically will spend some effort to manually optimize code
for accelerators such as gpus and fpgas. As it is unfeasible to hand optimize all
benchmarks for each platform, and the code quality would depend heavily on the
programmer, a compromise is made by inserting compiler directives. Without
directives, some compilers can hardly exploit the maximum potential of the

6.5 EXPERIMENTAL SETUP 181

Table 6.5: Descriptions of the applied benchmarks from PolyBench/ACC.

Benchmark Description

2mm 2 Matrix Multiplications (D=A.B; E=C.D)
3mm 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)
adi Alternating Direction Implicit solver
correlation Correlation Computation
covariance Covariance Computation
doitgen Multiresolution analysis kernel (MADNESS)
fdtd-2d 2-D Finite Different Time Domain Kernel
gemm Matrix-multiply C=alpha.A.B+beta.C
gramschmidt Gram-Schmidt decomposition
jacobi-1D 1-D Jacobi stencil computation
jacobi-2D 2-D Jacobi stencil computation
lu LU decomposition
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations

target systems. Therefore, to further investigate the impacts of applying compiler
directives on flexibility, compiler directives are inserted in the C-code for cpu,
fpga, and dsp. The gpus form an exception, as during the transformation
to cuda already manual effort has been made to optimize the code. Extra
compiler directives would not change their performance in any significant way.
The remainder of this section describes the various compiler directives used for
each platform category.

• CPU: Multi-threading that parallelizes tasks among multiple threads
is enabled by OpenMP directives. The outermost loop is parallelized
in each kernel. In case dependencies between loop iterations prohibit
parallelization, the (next) inner loop is parallelized.

• FPGA: For fpgas directives are inserted to refine implementations, aiming
at exploiting massive parallelism and increasing resource utilization. By
default, Vivado HLS simply translates C functions into Verilog designs.
Optimizations are applied barely without directives. For instance, Vivado
HLS does not apply loop unrolling to the C code, meaning that one
iteration of the loop is synthesized into a block of logic, which executes
sequentially [178]. To enable some optimizations without modifying the
code-base too extensively, PIPELINE directives were inserted to promote
loop pipelining. When asked to pipeline a loop with an inner loop, Vivado
HLS attempts to unroll all inner loops to enable the requested pipelining,

182 COMPUTE SYSTEM FLEXIBILITY

increasing resource utilization. If the inner loop spans many iterations,
this may lead to a significant increase in required resources. Therefore
pipelining of outer loops is used sparingly, only when the resulting design
still fits all target devices, and performance does in fact improve. The
default is to pipeline only the inner loop.

• DSP: To examine the hypothesis that best-effort techniques, including
cache hierarchy and multithreading, negatively impact flexibility, Hexagon
dsps are simulated in two modes: timing accurate and inaccurate mode.
With the accurate timing mode, Hexagon models cache, optimal multi-
threading mode, and processor stalls. With the inaccurate mode, caches
are assumed to be perfectly accessed, stalls are excluded, and a simplified
multithreading model is simulated [120].

6.5.4 Intrinsic Workload Estimator
As discussed in section 6.4, the intrinsic workload of applications is used as the
baseline to normalize against. In this section, a practical approach is proposed
based on llvm ir to extract the intrinsic workload from arbitrary applications.
An embodiment of the described approach is made available as an open source
tool [65] for anyone to use to estimate the intrinsic workload of their application.

In the compilation process that llvm employs, applications written in diverse
languages are translated by front-ends to a high-level intermediate language,
ir. General optimization techniques are applied to this ir before generating
target-specific code, allowing the reuse of optimization passes across different
languages and targets. To serve this purpose the ir instruction set is relatively
minimal, and more importantly, platform-independent. Thus, ir is selected
as the elementary building blocks for approximating the minimal circuit of an
application as detailed in section 6.4.

Figure 6.5 illustrates the procedure to automatically estimate the intrinsic
workload of applications. Applications are first translated into llvm ir by a
front-end. Next, the instrumentation code is inserted by a custom llvm pass
called libDynCountPass, which triggers a callback for every execution of an ir
instruction by the ir interpreter. These callbacks record dynamic instruction
counts for each ir instruction type. As loops are fully unrolled in the ideal
combinatorial circuit, computations related to control flow and memory accesses
are excluded. This is achieved by skipping instrumenting these particular
operations in llvm ir. In particular, a for loop represented by irs is composed

6.5 EXPERIMENTAL SETUP 183

llvm ir

Interpreter
execution

counts
per ir

instruction

Weighting
assign

Tint per ir
instruction

Accumulate
accumulate

the work
over all

instructions

Intrinsic
Workload

Figure 6.5: Automated intrinsic workload estimation using llvm. Source code is made freely
available [65].

of several basic blocks with dedicated names. Amongst blocks named for.cond
and for.inc are meant for evaluating the loop condition and increasing the loop
counter, respectively. When iterating through basic blocks in functions, the
libDynCountPass pass skips instrumenting those blocks which names contain
for.cond and for.inc. Furthermore, any parallelism in ir instructions due to
vectorization is accounted for by passing the vector width to the instrumentation
code. The instrumentation code then adjusts the dynamic instruction counts
accordingly.

What remains is weighing all the ir instructions based on their equivalent
circuit. To get the size of these circuits, the basic ir operations are mapped to
basic 2-input-1-output and 1-input-1-output gates using Cadence Encounter rtl
compiler [20]. The number of gates found for different ir instructions is listed in
table 6.6. Note that the synthesis tool is set up to optimize for area, not speed.
This choice results in a minimal number of gates to achieve certain functionality,
rather than a speed-optimized design. In the case of an addition, for example, a
carry look-ahead adder would be considerably faster than a ripple adder. For
the minimal circuit though, the ripple adder is desired.

Instead of merely counting the number of basic gates per instruction, the
argument can be made that in complementary metal oxide semiconductor (cmos)
technology some logic functions are harder to implement than others. An inverter
only requires two transistors, where an XOR gate requires eight. To compensate
for this the workload per ir is not only measured in gates, but also in the amount
of transistors required to realize the circuitry. An approximation of the number
of transistors per gate in cmos technology is listed in table 6.7. We refer to the
number of these transistors as the intrinsic transistors, or Tint, of an application.
The intrinsic transistors per application is more precisely defined in section 6.5.4.
Note that op∈Application in section 6.5.4 represents the dynamically executed

184 COMPUTE SYSTEM FLEXIBILITY

Table 6.6: Estimated hardware cost for spatial implementations of several ir instructions.

IR 32-bit 64-bit
Gates Transistors Depth Gates Transistors Depth

add/sub1 188 880 63 380 1776 127
fadd/fsub 1905 8086 103 3494 14882 233

mul 5164 25458 130 20100 98476 313
fmul 4327 20490 97 16124 77246 215
udiv 4486 10763 1128 18217 44752 4350
sdiv 4777 21300 1189 18840 84616 4458
fdiv 12190 54146 992 66565 303284 2295

urem 4616 20426 1168 18452 82524 4440
srem 4882 21842 1228 19053 85682 4552
and 32 128 1 64 256 1
or 32 128 1 64 256 1

xor 32 256 1 64 512 1
1 16-bit add/sub operation: #(gate)=92, #(trans.)=432, #(depth)=31;

8-bit add/sub operation: #(gate)=44, #(trans.)=208, #(depth)=15;
1-bit add/sub operation: #(gate)=2, #(trans.)=12, #(depth)=1.

Table 6.7: Basic 2 input — 1 output logic gates and the number of transistors required to
implement them in cmos [122, Chapter 6].

Gate AND NAND OR NOR XOR XNOR INV
Trans. 6 4 6 4 8 8 2

operations.

Tint =
∑

op∈Application

 ∑

gate∈MinCiruit(op)

Transistors(gate)

 (6.9)

An alternative to expressing circuit complexity in the number of gates or transis-
tors is logic depth of the circuit. The rationale behind this is that the deeper the
ideal circuit, the longer the minimum execution time would be. This approxima-
tion ignores parallelism inside the operation however, and would likely give rise
to the selection of different circuits. For example, a straightforward ripple carry
adder has the lowest gate count, but a relatively high logic depth. A carry look
ahead circuit has a shallower logic depth, but increases the gate count. Which of
these approximations to use is debatable. In this chapter the gate count is used,

6.5 EXPERIMENTAL SETUP 185

as it bounds the designs to minimal compute effort for a particular operation.
Nonetheless, logic depth could be an interesting alternative when computing the
flexibility of high performance computing platforms for example.

6.5.5 Applied Methodologies
In practice benchmarking different systems in terms of performance, energy, and
area efficiency is challenging, as it is difficult to unify results across different
technology nodes. Furthermore, energy and area numbers are hard to obtain or
measure accurately if the platform of interest is physically inaccessible, or not
equipped for power measurements. Therefore, in several cases, we had to resort
to extrapolation from publicly available data. For example, due to the lack of
a power/energy measurement set up for each device, the thermal design power
(tdp) of platforms is used to estimate their energy usage. The information used
per platform and its sources are summarized in table 6.8, table 6.9.

The following list describes how each metric is obtained for the evaluated systems:

• Normalised Performance: Execution time, or cycle counts, can be
reliably measured for each of the platforms. The measured times are
normalised according to the estimated intrinsic workload of each bench-
mark, yielding normalised performance with the unit number of intrinsic
transistors per second.

Normalised Performance =
(

Tint

texec

)
(6.10)

More intrinsic transistors that can be computed per time unit indicates
higher performance. Note that some simulators only provide execution time
in cycles, independent of frequency. This does not constitute a problem,
since flexibility is invariant to frequency scaling.

• Energy Efficiency: Defined as the quotient of normalised performance
and power, normalised energy efficiency is defined as intrinsic transistors
per joule.

Energy Efficiency =
(

Tint

texec · Power

)
(6.11)

The more intrinsic transistors that can be computed with a joule of energy,
the higher energy efficiency.

Energy numbers were estimated based on publicly available data. For most
cases this means the reported tdp is used to estimate energy consumption.

186 COMPUTE SYSTEM FLEXIBILITY

For multi-core cpus, this means the same tdp value is used for both single-
threaded and multi-threaded mode. As the whole multicore processor is
considered as a system, only utilizing a single thread in this system leaves
other threads idle, resulting in energy and area overhead.

• Area Efficiency: Area efficiency is the quotient of normalised performance
by area, expressed in intrinsic transistors per physical transistor. Here a
‘physical transistor’, or Tphy, refers to all the transistors implemented on
the actual platform under test. This leads to the following definition of
area efficiency:

Area Efficiency =
(

Tint

texec · Tphy

)
(6.12)

By expressing area as the number of transistors on the device, and not
the more typical µm2, the area efficiency can be expressed independently
of technology. Next to this it also allows an alternative interpretation of
area efficiency, namely (physical) transistor utilization, which provides
some insight into how many transistors are utilized effectively towards
computing the application.

Note that the transistor count of the fpgas is for the whole device. When
a design uses fewer resources, it could be argued that only the mapped
transistors should be included. However, in this chapter, the full number
of transistors is used, as those are physically always present, no matter if
an application can utilize them, much like the transistors in any system.

• Flexibility: Compute system flexibility is derived relative to performance,
energy, and area efficiency. However, due to the way energy and area
are measured in this chapter, these three flexibility values yield the same
ranking. In particular, for energy, the same tdp value is used for all
applications on a given platform. Hence, the tdp is merely a scaling factor
compared to performance, and flexibility is invariant to constant scaling of
data points (in accordance with lemma 3). The same holds for the intrinsic
transistor count in the area estimates, which again works out to be a
constant scaling factor concerning performance. Hence in this particular
case:

Flexperf = GSD

(
Tint

texec

)
= GSD

(
Tint

texec · Power

)
= GSD

(
Tint

texec · Tphy

)

(6.13)

6.5 EXPERIMENTAL SETUP 187

Table 6.8: Specifications of processors in this chapter.

No. Processor Freq. Trans. TDP Node Ref.
(MHz) (M#) (watt) (nm)

1 GTX TITAN 837 7100 250 28 [107][10]
2 GTX 570 732 3000 219 40 [107]
3 GTX 750 TI 1020 1870 60 28 [107]
4 Tegra K1 756 — 1 14 28 [107][97]
5 Pentium 4 3400 169 84 90 [70]
6 i7-920 2670 731 130 45 [70]
7 i7-950 3070 731 130 45 [70]
8 i7-960 3200 731 130 45 [70]
9 i7-4770 3400 1400 84 22 [70][9]
10 i7-6700 3400 1750 64 14 [70][71]
11 ARM1176 700 — 2.9 40 [26]
12 Cortex A9 1700 — 4 32 [3]
13 Cortex A15 2300 — 5 23 [108][94]
14 Cortex A53 1200 — 4.4 40 [26]
15 TI C6747 300 222 0.453 65 [30][148]

16, 194 Hexagon V5 650 — — 28 [27]
17, 184 Hexagon V60 2000 — — 14 [121]
1 “-” means no information available.
2 Speculated based on TI C66x dsps [30].
3 Estimated by TI Power Estimation Spreadsheet 2013.3.
4 Simulated in inaccurate timing mode as detailed in section 6.5.1.

Notably, this does not hold generically. When energy can be measured
accurately across different applications and does vary, the equality no
longer holds. Area efficiency flexibility strictly speaking would always be
the same as performance flexibility, unless somehow only the active area
of a system would be counted. Such a scenario may be meaningful in the
context of multi-core systems executing a single thread. In this case, it
may be preferable to exclude the inactive cores, resulting in a difference
between area efficiency and performance flexibility.

6.5.6 Customized Processors
Apart from quantifying the flexibility of cots systems, it is also interesting to
investigate how flexibility relates to specialisation. To that end the work of
Fisher et al. [33] is used, which reports speedups for a very long instruction word
(vliw) that is optimized to a varying degree for various target applications. More
precisely, a baseline two issue slot vliw processor with a 64 entry register file is

188 COMPUTE SYSTEM FLEXIBILITY

Table 6.9: Specifications of fpgas used in this chapter.

Processor Freq. (MHz)1 #Trans.2 Pwr (watt) 3 Node
no opt. opt. (M#) no opt. opt. (nm)

Artix7 116 102 1025 1.4 2 28
Kintex7 120 103 2370 1.7 2.5 28
Virtex7 118 105 9700 2.3 3 28
Zynq 118 96 2200 1.7 2.6 28
Virtexuplus 118 104 14000 4.1 5.5 16
Kintexu 120 101 5300 2.1 3.4 16
Zynquplus 117 103 4100 2.1 2.8 16
1 Average estimated clock period from Vivado hls when the target clock

period is 10 ns.
2 Speculated based on a published value of Virtex UltraScale

XCVU440[130].
3 Estimated by Xilinx Power Estimator (XPE) 2018.2.2 based on the

average design utilization of benchmark set.

constructed with one arithmetic logic unit (alu) capable of integer multiplication,
and one issue slot for accessing L1 or L2 memory. Starting from this baseline, an
architecture exploration extending the architecture in several aspects such as alu
and multiplier count, memory ports, and register file size, is performed targeting
each of the benchmark applications listed in table 6.10. This exploration is
performed under a ‘computing architecture cost’ constraint, which is a custom
metric defined in Section 3.3 of the work of Fisher et al. [33]. This cost metric
depends amongst other parameters on the number of alus, width of datapaths,
and number of ports to the register file. Within a given cost constraint, the vliw
architecture is first optimised targeting each individual application. For the ten
benchmarks listed in table 6.10, this yields ten optimised architectures. Each of
these architectures are still capable of executing the complete benchmark set,
and as such a speedup can be reported for each application on each architecture.
These speedup measurements are reported in the original paper [33, tables 8,
9, and 10]. Using these speedups, the flexibility of each resulting architecture
can be computed, with the notable exception that normalisation is not based
on intrinsic workload, but rather the single alu baseline machine as described
earlier.

Apart from just optimising for each application individually, Fisher et al. propose
optimisation with a certain ‘range’. When this range is set to X%, it means the
optimisation algorithm is allowed to sacrifice X% of the maximum performance

6.5 EXPERIMENTAL SETUP 189

Table 6.10: Benchmarks for asips taken from the work of Fisher et al.[33]. The benchmark
applications in the lower part of the table are constructed out of the applications in the upper
part. Benchmark naming is kept identical with the original work for consistency.

App. Description

A fir symmetrical filter implemented using a 7× 7 convolutional kernel.
C Inverse dct transform with dequantisation of the dct coefficients. The algorithm

used is the Arai, Agui, and Nakjima algorithm for scaled FDCT/IDCT, with
some improvements, as described in [11, 164].

D,E Colour conversion from the rgb to the YCbCr colour space (and vice versa, as
described in the JPEG standard).

F Halftoning via standard Floyd-Steinberg error diffusion (no stochastic weights
update). The benchmark produces triplets containing 1 bit halftoned pixel.

G 1d bilinear scaling by integral factors along columns.
H 3× 3 median filter using the standard algorithms not using a “smart” version of

the median.

GF 1d bilinear scaling followed by Floyd-Steinberg halftoning.
GEF 1d bilinear scaling followed by E, a yuv ←rgb colour space conversion, followed

by Floyd-Steinberg halftoning.
DH rgb ←yuv colour space conversion followed by a 3× 3 median filter.

DHEF rgb ←yuv colour space conversion followed by a 3× 3 median filter, followed by
E, a yuv ←rgb colour space conversion, followed by Floyd-Steinberg halftoning.

of the application currently being optimized for, and trade that off for an
improvement in the overall performance of the architecture over the complete
benchmark set. For example, when the range is set to 0 %, the processor is
allowed to have a cost of 10 according to the defined cost metric, and the
optimization target is benchmark GEF, the maximum speedup for GEF is 8.93×.
The harmonic mean performance of that tuned architecture over the entire
benchmark set then equals 3.9×. However, when the range is set to 50 %, the
optimisation procedure accepts a maximum penalty on the speedup of application
GEF reducing it to 5.97×, in order to improve the harmonic mean performance
over the complete benchmark set to 5.8×. These results can be verified in the
original paper of Fisher et al. [33, table 9].

Using the reported speedups, the relation between this range parameter and
flexibility can be investigated. The results and analysis of this experiment are
presented in section 6.6.2.

190 COMPUTE SYSTEM FLEXIBILITY

6.6 Results and Analysis

The experiments are split into two categories. First flexibility measurements
are performed for commercial of the shelf systems in section 6.6.1. Relations
between flexibility and performance, energy efficiency, and area are investigated
as part of this experiment. Furthermore the relations between flexibility and
several architecture classes is examined. Secondly, section 6.6.2 analyses the
relation between flexibility and processor specialisation, inspired by the work of
Fisher et al. [33].

6.6.1 Commercial Off the Shelf Processors

This section presents the flexibility measurements of 25 platforms over 14 bench-
marks, and investigates the hypothetical relations between flexibility, perfor-
mance, energy efficiency, and area efficiency. In particular figure 6.6, 6.7, figure 6.8
respectively represent the relations between flexibility and these metrics. The
indexing in the figures corresponds to the platform numbering in table 6.8. To
achieve a fair comparison, performance results are scaled to the technology node
of each platform. Accurate technology scaling is a topic on it’s own, and different
techniques should be used for different devices. For example, memories, wires,
and gates all scale differently. To keep the comparison in this chapter straight-
forward, the basic assumption is used that performance, i.e., gate delay, scales
linearly with the inverse of the technology node. Scaling under this assumption
is sufficient to observe overall trends, and draw preliminary conclusions on the
relation of the defined flexibility metric with respect to performance. Note that
this technology scaling is an issue that arises in our particular measurement due
to the lack of a set of platforms in the same technology node, and is orthogonal
to the definition of flexibility itself. Any comparison of performance between
architectures instantiated on different technology nodes requires such scaling.

Note that since performance, energy efficiency and area efficiency flexibilities
are all equal for our measurements according to equation (6.13), the flexibility
rankings do not move horizontally between figure 6.6, 6.7, and 6.8.

Before exploring the relations between flexibility and other metrics, it is interest-
ing to note that the flexibility ranking has the power to discriminate between

6.6 RESULTS AND ANALYSIS 191

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1012

1013

1014

1015

5
7
6

9

13
12

14

10

8

11

9 7 6
10

5

8

13
12

14

321

4

15
17

16
18

19

fpgas
with opt.

fpgas
without opt.

Flexibility

Pe
rf

or
m

an
ce

(T
in

t
s

e
c

)

single-core cpu
multi-core cpu
fpga
gpu
vliw dsp

Figure 6.6: Performance and Flexibility. Platform indexes according to table 6.8. Some
grouping of architecture classes in the flexibility dimension can be observed, suggesting various
architectures generally indeed have a specific range of flexibility.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1012

1013

13
12

5
14

7
6

9 8 10

11

9 7
5

13
12

10
14

8

6

3

1 2

4
15

fpgas
with opt.

fpgas
without opt.

Flexibility

E
ne

rg
y

E
ffi

ci
en

cy
(T

in
t

J

)

single-core cpu
multi-core cpu
fpga
gpu
vliw dsp

Figure 6.7: Energy efficiency and flexibility. Platform indexes according to table 6.8.

192 COMPUTE SYSTEM FLEXIBILITY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

102

103

104

105

106

7 6
9

8

10

5

9
7

5
6

10

83
2

1

15

fpgas
with opt.

fpgas
without opt.

Flexibility

A
re

a
E

ffi
ci

en
cy

(
T

in
t

T
p

h
y

)

single-core cpu
multi-core cpu
fpga
gpu
vliw dsp

Figure 6.8: Area efficiency and flexibility. Platform indexes according to table 6.8.

different architecture classes. From our measurements we make the following
seven observations:

1. The gpus are clearly the least flexible of the tested architectures, while
fpgas without optimization are highly flexible. This does align with the
idea that gpus are specialized devices, supporting only a specific subset
of algorithms (with dlp) very well, while fpgas on the other hand are
generic devices.

2. When optimization is turned on for fpgas however, clearly some applica-
tions benefit more than others because of the extra resources, but without
optimization their flexibility is far superior to other architectures.

3. Furthermore, multi-core cpus measure as slightly less flexible than single-
core cpus, which again is intuitive as not all applications will benefit equally
from extra cores. In general, it seems that for this generic benchmark
set, architectures that employ more parallel execution pay a penalty in
flexibility.

4. Predictably though, the same parallel architectures also have the highest
performance, as can be seen in figure 6.6. This confirms the general notion

6.6 RESULTS AND ANALYSIS 193

that there is a trade-off between performance and flexibility. Although there
are definite outliers, overall higher flexibility implies lower performance.
The ideal point in figure 6.6 is at the top right, combining high performance
with high flexibility. The points closest to that corner are the general-
purpose cpus, showing these devices cover the middle-ground in this
trade-off as would be expected.

5. The vliw-dsp cores score very highly on flexibility with respect to other
programmable architectures. This may however be an artifact originating
from the measurement method. Where the other programmable devices
have been evaluated on real hardware, this was not available for the tested
vliw devices. Instead simulators where used, which are claimed to be cycle
accurate, but seemed to miss a memory model, and ignore other sources of
variation that would be present in the real devices. Before drawing any
firm conclusions regarding this class of architectures, these measurements
should preferably be done on real hardware.

6. For energy efficiency (figure 6.7), a similar trend can be observed, although
much less pronounced. In particular, unoptimized fpga as the most flexible
platforms have less of a gap to the cpus in energy efficiency than they
have in performance. A plausible explanation can be found in the much
lower clock frequency of the flexible fpga fabric, which obviously incurs a
penalty in performance, but does not necessarily translate to low energy
efficiency. Because the fpgas essentially execute highly customized/parallel
instructions, they may perform more useful work per cycle, leading to
less register/memory overhead. The fact that cpus execute their more
generic, yet simple, operations much faster gives them a definitive edge
in performance, however, the extra required cycles give them a relative
handicap in energy efficiency. This shortage is overcame by the optimized
fpgas, which can customize their operations to achieve more work per
cycle bringing them on par with the bulk of cpus in terms of energy
efficiency, even though their performance is lower.

7. In area efficiency (figure 6.8), the results are far less conclusive. The only
outliers are the fpgas, which are in a class of their own. This is to be
expected, as the flexible fpga fabric requires not only large silicon area for
the lookup tables (luts), but also routing, which makes it very complex
compared to other architectures. Between the other systems, the area
efficiency numbers do seem to drop off slightly with increasing flexibility,

194 COMPUTE SYSTEM FLEXIBILITY

but the results are too close to draw any significant conclusions at this
stage.

In general, the results show the proposed flexibility metric can distinguish
between various architecture classes, indicating it represents a fundamental
property. The measurements also align with some generally accepted notions
surrounding flexibility, such as the trade-off between performance and flexibility.

6.6.2 Customized Processors
In this experiment the relation between flexibility and the measure of customisa-
tion/optimisation of an asip is investigated. In particular, the relations between
flexibility, computing architecture cost, and range as defined in section 6.5.6
are of interest. This evaluation is based on the speedups reported by Fisher et
al. [33, table 8, 9, and 10]. Using these speedups, the flexibility of each archi-
tecture is computed, the results of which can be found in table 6.11 table 6.12
in this chapter. Each row in these tables shows the speedups of all individual
applications compared to the baseline vliw processor, when the architecture is
optimized for a particular application. The last two columns respectively give
the harmonic mean speedup which Fisher et al. used as the cost function in
their architecture search algorithm, and the flexibility as defined in this chapter.
Note that when the ‘range’ parameter is set to infinite, it does not matter what
the optimisation target application is, the optimisation algorithm will find only
one architecture. After all, if it is allowed to compromise the speedup of the
target optimization by an infinite amount, it does not matter what the target
application is. The architecture with the best harmonic mean speedup over all
applications will be selected regardless.

From the results in table 6.11 table 6.12, three key observations are made:

1. In general the high cost architectures achieve better generalisation than
the low cost architectures. With plenty of compute resources available the
benefits for each application average out, while with low compute cost only
specific parts of all the applications benefit, leading to a more unbalanced
speedup over the entire benchmark set.

2. For the architectures with cost ≤ 5, the flexibilities of the resulting archi-
tectures are almost all identical to the architecture found with range ∞.
In fact, for most applications the selected architecture is actually equal, as
can be seen in Table 9 of the original paper by Fisher et al. [33]. A clear
outlier is application A, which when set as the optimization target actually

6.6 RESULTS AND ANALYSIS 195

Arch. Speedup for application X HM Flex.
A C D F G H GF GEF DH DHEF

Cost 5 — Range 0 %

A 6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60 3.7 0.848
C 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
D 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
F 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
G 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
H 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GEF 1.04 3.93 4.09 4.53 5.72 6.15 6.14 5.97 6.31 6.36 3.8 0.593
DH 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
DHEF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590

Cost 5 — Range 10 %

A 6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60 3.7 0.848
C 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
D 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
F 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
G 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
H 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GEF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
DH 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
DHEF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590

Cost 5 — Range ∞%

All 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590

Table 6.11: Speedup and flexibility of asip architectures with cost ≤ 5, based on Fisher et
al. [33]. HM denotes the mean harmonic speedup.

196 COMPUTE SYSTEM FLEXIBILITY

Arch. Speedup for application X HM Flex.
A C D F G H GF GEF DH DHEF

Cost 15 — Range 0 %

A 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 6.8 0.690
C 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
D 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38 6.1 0.811
F 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38 6.1 0.811
G 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38 6.1 0.838
H 5.95 7.46 3.86 3.98 5.41 10.52 5.75 6.79 10.58 9.74 6.2 0.705
GF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
GEF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DH 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DHEF 10.54 6.43 3.86 5.25 5.41 10.50 8.39 8.93 10.55 10.06 7.1 0.710

Cost 15 — Range 10 %

A 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 6.8 0.690
C 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
D 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38 6.1 0.811
F 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 6.8 0.690
G 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
H 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
GF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
GEF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DH 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DHEF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710

Cost 15 — Range ∞%

All 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710

Table 6.12: Speedup and flexibility of asip architectures with cost ≤ 15, based on Fisher et
al. [33]. HM denotes the mean harmonic speedup.

6.6 RESULTS AND ANALYSIS 197

yields a very high flexibility. As can be seen in the table, the speedup
of A is rather significant, while the other benchmarks appear to benefit
fairly equally. The conclusion must be that application A is quite different
from the other benchmarks in the set, and optimising for it within low cost
constraint does not benefit the other applications. In the original paper of
Fisher et al. [33] it can be seen that the number of registers for architecture
A is higher than the other architectures, suggesting that application A
benefits heavily from more registers, while that does not help the other
benchmarks that much.

3. A higher range interestingly does not always result in a more flexible
architecture, as is the case for application G at cost ≤ 15 in table 6.12
for example. The sacrificed performance of G when increasing the range
from 0 % to 10 % does lead to a higher harmonic mean performance,
but the variation in speedups increases. This again demonstrates that
performance and flexibility are orthogonal properties, and while Fisher
et al. optimised for overall performance, the flexibility decreased. If the
goal of an architect is to design a processor that is likely to perform well
under varying applications, the optimisation goal should thus have been
flexibility and not overall performance.

Note that item 1 is supported by the findings of Arnold and Corporaal [12], who
investigate the benefit of adding custom instructions to a processor that replace
two basic operations. Figure 6.9 is taken from their work, and shows the reduced
operation count by adding a library of size x with more complex operation
patterns of size two, i.e., replacing two operations in the original execution graph.
The theoretical best case is an operation count reduction of 50 %. As can be
seen in the figure, when the number of added complex patterns is on the low end,
e.g. 10 patterns, the vertical spread is relatively high. A high vertical spread
equals low flexibility, since there is large variation between different applications.
To validate this the operation reductions for 10 and 40 patterns were extracted
from the image2, and summarized in table 6.13. It shows that overall flexibility
increases from 0.83 to 0.95 when adding 30 extra patterns. This corresponds to
the cost ≤ 5 architectures from Fisher et al. with relatively limited resources,
and low flexibility. When the number of available resources increases however,
such as the cost ≤ 15 architectures or 30+ patterns, the flexibility increases.

2The original work [12] does not list the raw numbers, but a vector image of the graph could
be recovered from the pdf file which allowed accurate reconstruction of the measurements.

198 COMPUTE SYSTEM FLEXIBILITY

0 10 20 30 40 50 60
0

10

20

30

40

50

top-x patterns in library

%
op

co
un

t
re

du
ct

io
n

bspline dft pse iir
foewf fir flatten smooth
expand compress edge average

Figure 6.9: Operation count reduction by using a library with the x most used patterns
with x ranging from 0–60 [12]. After 10-15 patterns, most applications start to asymptotically
approach their maximum.

With more resources available, there is more room to have every application
profit maximally.

6.7 Comparison with Existing Definitions

This section compares the proposed flexibility metric with related work that
provide alternative definitions. In particular the proposed method is compared
against versatility as defined by Van Berkel [77], and ‘VersaBench versatility’ as
defined by Rabbah et al. [123], in section 6.7.1 section 6.7.2 respectively.

6.7 COMPARISON WITH EXISTING DEFINITIONS 199

Table 6.13: Operation count reductions from figure 6.9, and associated flexibility.

Top X
App. 10 40

bspline 45.8 45.8
dft 31.1 44.5
pse 44.1 45.6
iir 34.6 39.3
foewf 22.0 39.1
fir 42.2 42.1
flatten 32.6 42.7
smooth 38.5 42.4
expand 32.5 42.4
compress 31.6 43.4
edge 38.5 41.5

Flexibility 0.82 0.95

6.7.1 Flexibility and Versatility

In the search for alternative definitions of flexibility in section 6.2, the qualitative
and quantitative definitions of versatility provided by Van Berkel [77] appeared
to be most related. Rather than looking at change of a system’s performance
metrics under the influence of external changes, the assumption is made that
the less information required to specify an amount of work to a system, the
less versatile it must be. In terms of computing systems this translates to the
number of dynamic (instruction) bits required to execute a given program on
a given processor. The fewer bits required, the fewer options were available to
select functionality from, hence the less versatile the system must be. This is
captured in the versatility formula in equation (6.1).

This interesting approach does not directly measure the effects of external
changes on the system. Rather, it makes the underlying assumption that more
functionality to select from should result in a more flexible system. After all,
if there are more options/instructions, it is easier to adapt to a new program.
The danger in this assumption is that the computer architect now has become
part of the metric. I.e., it is assumed that the extra added functionality is
diverse enough to handle more cases. In a way, the number of dynamic bits
per workload is a measure of both how flexible the system is, and how well the
architect anticipated and addressed possible changes to the system.

200 COMPUTE SYSTEM FLEXIBILITY

Therefore we still reason the qualitative definition provided at the start of this
section is more suited for defining a flexibility metric, and versatility is in fact
different yet very related. In particular, the difference between measured versatil-
ity and flexibility is an indication of how well a system architect has designed the
system. When a system is not flexible, but highly versatile, apparently a price is
paid for having more options/functionality, but it did not translate into added
flexibility. In fact, the ratio between flexibility and versatility can be regarded
as a measure of success of an architect to balance the cost of instruction size
with return in flexibility.

Given this conclusion it is interesting to compare flexibility and versatility for
various architectures. Application of the versatility metric is slightly more
involved than the proposed flexibility metric however for two reasons:

1. Versatility is only defined per application, and as such for different appli-
cations one architecture would have multiple flexibilities. To be able to
compare we therefore propose to use the geometric mean of all versatilities
of a benchmark set to obtain a single flexibility number per architecture.

2. The definition of versatility includes the number of useful operations. This
term is not defined exactly by Van Berkel. In this analysis we will therefore
use the proposed intrinsic workload instead, which also should yield a fair
comparison between versatility and flexibility.

The resulting definition of Versatility as used in this comparison is given in
equation (6.14), where xi is an application in benchmark vector X, and Wint(xi)
is its intrinsic workload.

V ersatility(X) =
(

n∏

i=1

avg_instruction_size(xi)
Wint(xi)/#instructions(xi)

) 1
n

(6.14)

Finding the number of instructions on Intel and ARM machines is straightforward
by merit of the available performance counters. The average instruction size
for the considered ARM devices is also simple, a fixed 32 bits. The instruction
size of the Intel machines is dynamic on the other hand, and not monitored by
hardware performance counters. Therefore an estimate of 20 bits per instruction
on average is used for the Intel machines as per the work of Ibrahim et al. [67].

6.7 COMPARISON WITH EXISTING DEFINITIONS 201

pen
tiu

m
4

i7-
92

0
i7-

95
0

i7-
96

0

i7-
67

00

co
rte

x A53

co
rte

x A15
0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6
·10−3

Ve
rs

at
ili

ty

Fl
ex

ib
ili

ty

Versatility Flexibility

Figure 6.10: Flexibility and versatility comparison between Intel and ARM cpus. Notice
the double y-axis. Because of their very different ranges, flexibility and versatility can not be
compared one-to-one. Instead, focus on the relative differences between applications for both
metrics.

Figure 6.10 shows a side-by-side comparison of performance flexibility with
versatility for several Intel and ARM cpus. The results are quite interesting,
and two observations can be made:

1. First the flexibility of the Intel machines increases with newer generations,
while the versatility is more or less equal. This implies that the designs
improve in such a way that without spending more instruction bits, the
Intel processors have become more flexible.

2. Second, the ARM processors have a much higher versatility than the Intel
processors, yet fail to capitalize on this in particular compared to the later
generations of Intel processors.

This outcome seems to make a case for variable instruction width as opposed to
fixed.

However, not covered here is the use of the 16-bit instruction set of ARM, which
may paint a different picture. Such investigations are left as future work, but
it can clearly be concluded that by having quantitative metrics insight can be
gained, and processor design can potentially be guided by such metrics to truly

202 COMPUTE SYSTEM FLEXIBILITY

get to machines that balance average instruction size, performance, energy, and
flexibility.

6.7.2 Flexibility and VersaBench Versatility
Apart from versatility as defined by Van Berkel [77], there is a variant defined
by Rabbah et al. [123] as discussed briefly in section 6.2.2 As the motivation
behind this second definition is also close to the goals of this chapter, this section
provides a short comparison between flexibility as defined in this chapter, and
“VersaBench Versatility”.

To understand the differences between VersaBench Versatility and flexibility, it
makes sense to look at the properties of flexibility as defined in section 6.3.2.
In particular, we state that flexibility should be orthogonal to performance.
The motivation behind this property is illustrated in figure 6.2, where the most
performant system shows higher variation to change than the slowest system.

VersaBench Versatility on the other hand normalizes performance based on the
fastest processor known for each application, and uses this to rank processors.
Therefore, performance and VersaBench versatility are directly related. In fact, it
can be shown that the normalisation by the fastest processor for each application
is irrelevant for the final versatility ranking. Lemma 4 lemma 6 show that the
normalisation baseline is cancelled out when calculating the ratio of two positive
datasets as shown in equation (6.15), where X, Y and B are positive datasets.

GM
(

X
B

)

GM
(

Y
B

) = GM(X)
GM(Y) (6.15)

GSD
(

X
B

)

GSD
(

Y
B

) ̸≡ GSD(X)
GSD(Y) (6.16)

Hence, the ranking obtained using the metric proposed by Rabbah et al. is
equivalent to ranking on average performance. For completeness, flexibility
as defined in this chapter does depend on the chosen baseline, as shown in
equation (6.16), supported by lemma 8: GSD (X/B) ≥ GSD(X)/GSD(B). Note
that ‘ ̸≡‘ here denotes that the relation does not necessarily hold. In conclusion,
VersaBench versatility is in fact a ranking based on average performance, while
flexibility is truly an orthogonal property.

6.8 DISCUSSION & OPEN ISSUES 203

6.8 Discussion & Open Issues
The work presented in this chapter is an attempt at defining a flexibility metric
for processors. The lack of ground truth, however, combined with several existing
related studies presented in section 6.2, entails that the resulting definition is
to be placed into context for it to carry any meaning. The definition presented
in this chapter is not to be taken as final, as many open questions underlie its
definition to which there are no definitive answers yet. This section discusses
these open issues, and how they were handled in this chapter.

6.8.1 From qualitative to quantitative
To systematically identify open issues and the choices made when deriving a
quantitatively metric form the qualitative definition of flexibility, we identify
three key components in the qualitative definition of flexibility as given in
section 6.3.1:

1. The measured system and its set of (changing) external inputs (Si)

2. Observed Performance Metric (m)

3. Measure of Affectedness (f(Si, m))

Each of these components is to be mapped to computing systems to properly
define computing system flexibility. However, each component leaves room
for different interpretations, which is the root cause of different definitions of
processor flexibility in related work. What follows is an attempt to capture
different interpretations of these terms, and motivate the choices made in this
chapter.

1. System and External Inputs
Defining what the measured system and its (changing) inputs, Si, seems
trivial, but turns out to be both complex and very relevant for the resulting
definition. For example, if the system is defined as a bare processing core,
then the system’s external inputs would be machine instructions and data.
Changes in the instruction and data stream influence the energy usage
of the core in different ways, and flexibility may measure the sensitivity
of this energy usage for different instruction streams on a per cycle basis.
However, if the system includes not only the core but also an instruction
cache, the fine grain energy consumption may already vary without new
instructions coming in from outside the system. In this case, some forms

204 COMPUTE SYSTEM FLEXIBILITY

High Level Language Code

Compiler

Operating System

Machine Code

Computing System?

Off-Chip Memory

Cache
Cache

Hardware Platform

Compute Cluster

Core

Our
Proposal

Figure 6.11: Where to draw the line, what is part of a compute system, and what is not?

of temporal integration has to be used, and flexibility measures the effects
of new blocks of instructions loaded on this averaged energy usage. The
key message is that the cache can be part of the system, and the cache
size can also influence the system’s flexibility in this case.

In fact, many components in the chain from application idea in the mind
of a developer, up to final execution on a core can influence the system’s
performance metrics. Therefore, each of these components could be seen
as part of the computing system, as illustrated in figure 6.11. Although
not shown in the figure, in an extreme case the programmer who writes
a program according to changing specifications could even be considered
part of the system. The supported language, compiler, memory hierarchy,
and processor architecture then all influence the measured system. Note
that the world is much larger than what is captured in figure 6.11. For
example, loop-buffers, or configuration memory in an fpga could all be
different points to draw a system boundary.

Where the system boundaries are defined is rather arbitrary from this
viewpoint, although it would be sensible to not make an individual pro-
grammer part of the system. Yet, it is preferable to stay at a higher level,
as the lower levels quickly become more specific for a certain subclass of

6.8 DISCUSSION & OPEN ISSUES 205

systems, e.g., configuration memory for fpgas. Therefore we have chosen
to stop at the compiler level, where the compiler is still considered part of
the system, and the source code is the external input. In particular, the
source code of different applications, which is also the external input used
for most commonly used processor benchmark suites. In these benchmarks,
the applications are taken as the changing input, hence this best practice
is followed in this chapter. This choice also aligns with the view of Zse et
al. [145], who consider the mapper (compiler) part of the system.

2. Observed Performance Metrics
There exist many widely used metrics in computer system design, such as
energy-efficiency, area-efficiency, and runtime. In principle, any of these or
even a combination, can be selected as the observed performance metric.
Related work typically ties flexibility exclusively to runtime, e.g., the work
of Rabbah et al. [123]. We argue this is too restrictive, and a plurality
of meaningful flexibilities can be defined. Zse et al. [145] already hint at
flexibility in terms of performance and energy efficiency, which is more
in line with the reasoning of our work. In particular, it is worth noting
that flexibility in our view as such is a derived metric, since it measures
changes in other primary metrics. For any primary metric, flexibility can
be defined.

3. Measure of Affectedness
Whereas for the other two terms, there is a history of common practices in
computer system design to build upon, it is the “measure of affectedness”
(f(Si, m)) about which there is the least consensus in the community. There
are numerous ways to quantify changes in a metric m. If the flexibility
function f is to be generic for any metric m however, it is clear the changes
in m caused by changing inputs have to be normalised. The selection of
a normalization method is another degree of freedom, which is part of
defining f .

In the work of Rabbah et al. [123], the runtime is normalised by comparing
the runtime of applications to the best-known runtime over all processors.
Change in the runtime of a processor compared to this “optimal runtime”
is seen as inflexible. The total change over a selected benchmark set is then
seen as the flexibility of a processor. Thus, higher absolute performance
over the benchmark set is taken to mean higher flexibility. Although
this direct coupling of performance and flexibility may seem appealing,
in particular for a designer who needs to design or select a system with

206 COMPUTE SYSTEM FLEXIBILITY

flexibility as a metric, we argue that such reasoning is a fallacy. The
implication that the most performant machine automatically is the most
flexible machine is unfounded, and the selection as the best-known runtime
for each application is an arbitrary baseline for a flexible machine.

Instead of normalizing against the best known runtime, we postulate there
must be a notion of intrinsic workload for each application that can be
normalised against. The definition of this intrinsic workload again poses
several challenges, which is further discussed in section 6.8.2.

Finally, we argue that any change in intrinsic workload normalised metric
m, either positive or negative, makes a system less flexible. As a measure
of how affected a metric m is under a set of changes, variance seems a
natural choice to us.

6.8.2 Intrinsic Workload
In section 6.4, the term intrinsic workload is introduced, which refers to the
notation that an application inherently describes a fixed amount of work. An
open question is, assuming the notion of such a fixed amount of work per
application is correct, how to properly define this intrinsic workload. There are
many possibilities, and selecting one that is both theoretically and practically
appealing is a difficult task. A fundamental approach may consider Landauer’s
principle [87], which states there is a minimum amount of energy that is dissipated
when a bit of information is erased. For a typical irreversible computation that
consumes two operands and produces one output value, this principle can be
used to compute a minimum amount of work for that operation. However, if the
computation is reversible, no information is lost in the system, and theoretically
no energy would be required to perform such a computation. Thus, if an
application is expressed in reversible operations, it may not have an intrinsic
workload at all, and computation may in fact be free. This is the promise of the
field of reversible computing, and maybe the only fundamentally correct answer
to the question of how much workload any given application represents, zero.

This definition of (the non-existence of) intrinsic workload from a physics perspec-
tive does not provide any insight for the practical machines in current technology
however, so for practical reasons, a more pragmatic approach is taken in this
chapter. As extensively described in section 6.4, an approach is chosen which
expresses workload in terms of the size of the minimal circuit that implements
an application. The motivation for this approach is that it automatically weights

6.8 DISCUSSION & OPEN ISSUES 207

operations based on their complexity, and a multiplier circuit will require more
transistors than an adder.

A downside of this choice is the infeasibility to construct the schematic of a
truly minimal circuit for any application. Such a circuit would be extremely
large, and logic minimization is proven to be NP-complete [19]. As discussed
in section 6.5.4, the practical choice was made to approximate the size of the
ideal minimized circuit by dividing applications into llvm ir instructions and
weighting those based on their approximated minimal circuits. This choice is
very much motivated by the desire to develop a flexibility metric that is also
applicable in the real world and not just a theoretical notion. In particular, this
approximation may be done in various different ways, and remains an open topic
of research.

RISC versus Transistors

In section 6.4 the choice is made to express workload in intrinsic transistors.
It can be questioned though how much this refinement of risc-like operations
to intrinsic transistors impacts the resulting flexibility measure. To investigate
this, figure 6.12a plots flexibility based on intrinsic transistors (horizontally)
versus flexibility based on risc-like operations. The flexibility based on risc-like
operations is calculated similarly to the proposed transistor-based flexibility,
except that all operations in table 6.6 are set to one. If both flexibility metrics
are exactly the same, the points in figure 6.12a would be on the diagonal of the
plot. Diversion of points from the diagonal indicates differences between the two
metrics.

As can be seen in the figure, the majority of the points are close to the diagonal,
indicating the refinement towards transistors does not change the flexibility
significantly. Only the most flexible points, which represent the unoptimized
fpgas, seem to be classified as significantly more flexible when normalised to risc
instructions rather than transistors. A possible explanation for this phenomenon
is that the fpga uses its dsp slices to perform the multiplications, relatively
lowering their performance complexity compared to other operations. As such,
weighting the multiplications as more work based on the circuit complexity
may expose some inflexibility of the unoptimized fpga solutions. For the risc
baseline this skewing is not present, and hence the solutions are quantified as
more flexible. On the optimized fpga designs, higher degrees of parallelism may
hide this effect. It is however difficult to reason about such effects. Nonetheless
it can be concluded that although the refinement into transistors is from the

208 COMPUTE SYSTEM FLEXIBILITY

single-core cpu multi-core cpu fpga gpu vliw dsp

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Flexibility (Transistors)

Fl
ex

ib
ili

ty
(r

is
c

w
ith

ou
t

ld
/s

t)

(a) Transistor based vs risc operation based
flexibility.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Flexibility (risc without ld/st)
Fl

ex
ib

ili
ty

(r
is

c
w

ith
ld

/s
t)

(b) Impact of accounting for load/stores.

Figure 6.12: Effect of different normalisation strategies.

theoretical viewpoint arguably “correcter” then not accounting for operation
complexity, omission of this refinement for practical considerations would not
have a large impact on the measured flexibility.

Loads and Stores

Although the use of an approximate minimal circuit makes the definition of
intrinsic workload practical for real machines, one problem mentioned at the
start of this section still remains. The minimal circuit of a matrix transpose
algorithm would not involve any transistors, and would consist only of wires,
i.e., loads and stores do not exist. Although this may be a fair game from the
theoretical point of view, the retrieval or storage of information should not need
to cost any energy, for practical purposes it may not be the most workable
approximation. An alternative that is possible within the proposed intrinsic
workload estimation framework is to weight ir based loads and stores.

How these loads and stores are to be weighted is again a point of discussion. One
additional practical consideration could be to weight external and internal loads
differently, since external memory accesses are typically much more expensive
than internal memory accesses. A very crude way of separating the two would
be to count an internal load for each input operand of an operation, and a
store for each output operand. External loads are then defined by the input

6.8 DISCUSSION & OPEN ISSUES 209

inputs

outputs

Mul
Add

Div

(a) Arithmetic operations + internal mem-
ory operations (2 loads and 1 store for each
operation).

inputs

outputs

Mul
Add

Div

(b) Arithmetic operations + external mem-
ory loads and stores.

Figure 6.13: Two conceptual combinatorial-circuit models with loads (grey) and stores (blue).

to an application that has to be loaded once, and the output produced by the
application which has to be stored once externally. These options to weighting
loads and stores are illustrated in figure 6.13. Other approaches, like taking reuse
distance into account to decide on internal versus external memory accesses,
are again possible, although with each more practical consideration for memory
levels and technology guided design it becomes more polluted with memory
architecture specifics.

Figure 6.12b plots the flexibility based on risc operations with, and without
loads and stores. For this evaluation, the RISC based metric is used, as it
allows loads and stores to be simply weighted by one. This avoids the difficult
problem of weighting the loads and stores in terms of transistors, which could,
depending on the approach chosen, yield a very different flexibility ranking.
Instead, figure 6.12b shows that, when loads and stores are simply counted
as a single risc instruction, their impact on the resulting flexibility metric is
minimal for the selected benchmark set. It should be noted that this observation
is dependent on the evaluated benchmarks. For a matrix transpose algorithm,
for example, the outcome is expected to be completely different.

6.8.3 The most flexible machine?
When defining flexibility, a natural question to ask is “what is the most flexible
machine?”. After all, flexibility sounds like a desirable property, so the most
flexible machine must be quite an impressive device. Based on the definition of
flexibility provided in this chapter, we argue the opposite however, and claim
that the most flexible machine is mainly of academic interest, rather than a

210 COMPUTE SYSTEM FLEXIBILITY

viable design target. For practical machines, instead, a balance should be struck
between flexibility and other system properties.

Before diving into this question, it should be noted that when following the strict
definition, there is no such thing as the most flexible machine. Since flexibility
is scale-invariant as shown in section 6.3.2, the most flexible machine can always
be slowed down by a real values factor S, leading to not one, but an infinite
series of ‘most flexible machines’. For the intents of this section however, we will
consider that the most flexible machine from the question is not slowed down,
i.e., the question really is “what is the most performant of all the most flexible
machines?”.

When deriving this most flexible machine, the first step is to consider the
normalisation step of the flexibility definition. It is evident that when a machine’s
runtime matches the intrinsic workload, apart from some scaling factor, the
metric will yield a flexibility of exactly one. This clearly exposes the dependency
between the choice of definition of the normalisation workload, and the definition
of the most flexible machine.

When the practical intrinsic workload definition based on weighted llvm ir
instructions is applied, the most flexible machine is exactly the machine that
implements those instructions, and varies its execution time depending on the
selected weight. This execution time may be scaled with some factor, as long
as all operations are scaled with this same factor. The most flexible, most
performant machine would therefore take the slowest operation of the llvm ir
instructions it implements, and slow down all other operations to match the
selected weighing. This would automatically lead to a machine with a flexibility
of one.

The selection of llvm ir as a baseline was done for practical purposes however,
and is rather arbitrary in this theoretical discussion about the most flexible
machine. Instead, when the definition is brought back to its essence of the
gate-count of the smallest possible circuits of elementary gates that implements
the application, the most flexible machine changes drastically. The separation
into high-level mathematical and logic operations disappears, and the choice for
operand sizes of powers of two disappears. To be ‘the most flexible’ machine
under this definition, the simplest approach is perhaps to build a machine which
as operations implements all elementary two-input,one-output logic gates. By
computing one gate at a time, this can exactly mimic the dedicated circuit,
although serialized over many clock cycles. Any attempts to speed this machine
up, by exploiting intra-word parallelism for example, would result in logic that

6.9 CONCLUSIONS 211

speeds up some operations, but not all, reducing the flexibility. According to
Amdahl’s law, programs can be divided in a sequential and parallel part. Unless
this sequential part does not exist at all for the considered benchmark set, any
attempts to exploit parallelism favour only a subset of the program, reducing
flexibility. The most flexible machine is therefore a very rudimentary, and in
terms of performance arguably boring device, which performs only a single
elementary gate operation at a time.

6.9 Conclusions
The term flexibility is frequently used in computer architecture literature [75,
76, 105, 171, 126], despite the lack of both a proper qualitative and quantitative
definition. This is a harmful situation which leads to contradictory statements
regarding flexibility as a property and its relation to other system metrics, and
as such does not advance knowledge of computer architectures, but rather dilutes
fundamental reasoning. In an attempt to address this problem, a survey of
compute system flexibility as used and defined in literature was performed in
order to collect general ideas about flexibility in the community, and hypothe-
sized relations between other metrics such as performance and energy efficiency.
Furthermore existing definitions of flexibility and related notions were collected
and classified. Based on these statements regarding flexibility in literature,
first a qualitative, and consequently a quantitative definition of flexibility in
computing systems was derived. As part of the quantitative definition, intrinsic
workload is introduced as a generic method of normalizing applications. An
accompanying open source tool was released to automate the estimation of
intrinsic workload [65]. Using this tool, flexibility is evaluated on 25 platforms
over 14 benchmarks, validating that the proposed metric conforms with some
commonly accepted notions of flexibility.

Globally, the proposed flexibility metric orders some major architecture classes
from least flexible to most flexible as: gpu, cpu, dsp3, and fpga. In particular, it
is shown that the proposed metric is capable of distinguishing diverse architecture
classes. The gpus showed to be the least flexible, which seems intuitive as
their performance is heavily impacted by the amount of parallelism present in
applications. Most flexible are the fpgas, but interestingly only when high-level
synthesis was not optimising. This and the other measurements also align with

3preliminary, since the results for this class of architectures is based on simulation and not
measurements on real hardware

212 COMPUTE SYSTEM FLEXIBILITY

the idea that high flexibility is on tension with high performance, especially when
not all applications profit from the applied optimisation. A similar conclusion
can be drawn for the relation between energy efficiency.

Apart from the 25 cots platforms, 40 asips were used to investigate the relation
between flexibility and customisation. Interestingly the results show that flexi-
bility is a property that can be improved by adding more resources, similar to
performance for example. When the available resources are scarce, flexibility is
typically low as only some benchmarks benefit from added compute capabilities.
With more resources available all applications in the benchmark set can be
accelerated, often leading to better flexibility.

Furthermore an extensive discussion is provided on the state of the art, the
proposed flexibility metric, and several alternative choices that could be made
when moving the field forward. For instance, it is shown that the impact of
the proposed intrinsic workload normalisation compared to normalising by a
standard risc is fairly limited. While the theoretical case for intrinsic workload
is arguably stronger, using a risc as normalisation may be a more practical way
to move forward. The inclusion of loads and stores did not impact the flexibility
significantly for the selected benchmarks, although for more complicated memory
systems it most likely is interesting to consider them. In particular for applica-
tions that have a lot of data movement such as matrix transpose, accounting for
loads and stores is expected to have a significant impact.

Finally the proposed flexibility metric is compared in depth to the two alternative
definitions found in literature. In case of VersaBench versatility it is shown that
in fact performance is measured, and not a orthogonal property. For versatility
as defined by Van Berkel [77], it is argued that it measures a slightly different,
yet related property. Instead of the direct flexibility, it measures how efficiently
a computer architect managed to encode the workload of the application domain.
Given these observations, it is concluded that the proposed flexibility metric has
its own unique merits which warrant its introduction. Furthermore, it aligns
with several key notions of flexibility that seem to be shared by a majority of the
community, and as such serves as a good starting point in defining a commonly
accepted definition of compute system flexibility.

Overall this chapter provides a survey of the current situation, a starting point in
assessing processor flexibility in a quantitative manner, and lays the foundation
for a broader discussion in the computer architecture and processor design
community.

Chapter 7
Conclusions & Future Work

This chapter summarizes the main conclusions of the preceding chapters and
their contributions towards improving both the compute and data efficiency
of flexible architecture (section 7.1). Despite spanning several chapters and
representing many years of research, the contributions encapsulated in this thesis
are only a small step in the continuously evolving field of computer architecture.
And although with this chapter this thesis has reached its end, by no means is
the journey of improving compute machinery complete. Many avenues for further
improvement remain unexplored. Section 7.2 lists several of these avenues that
we consider interesting directions for future research.

7.1 Conclusions
The exponential scaling of compute power over the past decades has increasingly
digitized the world to a point where almost all aspects of modern life depend on
the availability of compute resources. It has firmly increased humanity’s grip on
its environment by enabling advanced control techniques, automation of repetitive
tasks allowing people to spend their time solving more interesting issues, and the
design of systems with a complexity and scale unimaginable without computers.
This journey is far from over however, as advancements in the field continue
to enable more complex applications. As detailed in chapter 1 convolutional
neural networks (cnns) are exemplary for such complex applications, which have
entered the realm of feasible solutions to complex problems only as compute
resources caught up with the theory behind these algorithms. Therefore it
remains important to keep improving compute and data complexity of flexible
machines.

In this thesis the state of the art is advanced in several ways. The contribu-
tions are logically divided into three categories; improving compute efficiency,
improving data efficiency, and formally defining compute flexibility.

214 CONCLUSIONS & FUTURE WORK

In chapter 2 a low-energy wide-single instruction multiple data (simd) archi-
tecture with explicit datapath is proposed, which through the use of a control
processor (cp) and processing element (pe)-array exploits both data-level par-
allelism (dlp) and instruction-level parallelism (ilp). It is shown that the
application of an explicit datapath reduces the register file (rf) accesses by
64 % on average for a 128 pe instance. This reduces the total energy dissipation
compared to a version with implicitly bypassed datapath by 27.5 % on average,
demonstrating the effectiveness of explicit datapath techniques in wide-simd
architectures. Furthermore it is shown that a 128 pe instance of the proposed
architecture improves the energy efficiency by 48.3 % on average compared to
a single issue reduced instruction set computer (risc) machine. This result is
achieved without voltage-frequency scaling, which could easily be considered as
the 128 pe simd additionally improves performance by a factor 206× on average.
In this way the compute energy-efficiency could be improved even further.

Chapter 3 introduces two reduction algorithms which are optimized for the
highly scalable, minimal interconnect applied in the simd proposed in chapter 2.
It is shown that the algorithms are much more effective than a straightforward
approach and can even compete with dedicated hardware solutions. This en-
ables an efficient, programmable reduction operation, of which the runtime is
independent of the specific reduction operator. In accordance with the flexibility
metric proposed in chapter 6 this approach is therefore much more flexible than
fixed function hardware. Since cnn applications heavily rely on reduction, the
method introduced here can be used to both efficiently and flexibly support
cnns on the architecture proposed in chapter 2

Apart from reduction, multiplication is a cornerstone operation in neural network
evaluation, as well as many other compute intensive tasks. The datawidth-aware
techniques introduced in chapter 4 address exactly the compute efficiency of
this all-important operator by exploiting that many operations in real-world
applications do not utilize the full bit-width of the datapath. The best evaluated
datawidth-aware multiplier design improves the energy efficiency of 32-bit×32-bit
multiplication by 38 % on average compared to a baseline multiplier. This
efficiency is reached despite the overhead introduced by data-format conversion
incurs a 25 % energy penalty, indicating the potential of this technique is even
higher if the number of conversions can be limited, or more intelligently integrated
into the multiplication logic.

The wide-simd, reduction algorithms, and multiplier optimizations introduced
in chapters 2, 3, and 4 respectively all target improving the compute efficiency.

7.2 FUTURE WORK 215

Another major source of energy consumption in modern technology nodes is
accessing data in memory, which is inefficient due to the relatively poor scaling
of memory compared to logic, a phenomenon known as the memory wall [177].
The memory wall also posses a risk for the efficient execution of data-intensive
cnn applications. This is addressed in chapter 5, which introduces a model
for selecting cnn execution schedules which minimize memory accesses by ex-
ploiting the abundant data-reuse present in convolutional neural networks. The
execution schedules captured by this generic model include tiling, recomputa-
tion, and crucially loop fusion. The proposed model and accompanying open
source tool [154] are shown to yield several Pareto optimal schedules missed by
existing work. An exploration of the energy consumption for real-world networks
suggests that a multi-level memory hierarchy is critical to effectively exploit the
proposed schedules. Combined with an appropriate memory system however, the
schedules found through the introduced framework demonstrate the potential to
significantly improve the data efficiency of cnn execution.

It is commonly understood that generality of a compute platform can be traded
for improvements in performance and/or energy efficiency. Over-specialisation of
a platform, however, reduces its efficiency as applications change. In particular
for neural network, who’s underlying algorithms change rapidly, this poses as
risk. Therefore it is desirable to design a compute system that is “flexible
enough” to deal with potential application changes in the future. The lack of a
formal definition of compute flexibility makes it difficult to assess this system
property, and the impact of various architectural changes on it. In chapter 6
both an initial qualitative and quantitative definition of flexibility are proposed.
These definitions enable objective measurement of system flexibility, and have
been evaluated for 25 platforms over 14 benchmarks. General trends in these
measurements appear to align with common notions surrounding flexibility,
supporting the validity of the proposed definitions. The hope is that these initial
definitions spark a wider discussion within the compute architecture community,
ultimately leading to a better understanding of the concept of flexibility, and
the design of flexible systems.

7.2 Future Work
As the title of this thesis suggests, advancing the efficiency of compute archi-
tectures is a continuous process which by no means is concluded by this thesis.
Despite making several contributions to the field, as outlined in the preceding

216 CONCLUSIONS & FUTURE WORK

section, many opportunities (fortunately) remain to improve the compute and
data efficiency of future flexible architectures. The following topics in particular
appear to be promising directions based on observations made during the work
captured in this thesis:

• The wide-simd with explicit datapath introduced in chapter 2 provides
a solid foundation, and could easily be improved with several extensions.
In layout, to name an interesting example, the required clock-tree to
supply all pes with a synchronised clock could be a bottleneck, and require
large energy-hungry cells to meet timing constraints. The use of only
local wires to connect neighbouring pes however lends itself perfectly
for a mesochronous [96], i.e., globally asynchronous, locally synchronous,
implementation. This would however require some (re)consideration of
the interface towards data and instruction memory, and the cp broadcast
signal.

• Additionally, layout-aware design could be used to introduce extra connec-
tions between pes which are physically short, but logically long. I.e., if
pes are assumed to be laid out on chip in a kind of snake pattern, short
wires could be introduced between pes in parallel sections of the snake.
Since these wires are physically short they do not impact scaling, although
further research is required on how to efficiently exploit these irregular
connections at the application/code-generation level.

• Another interesting topic is the addition of a branch predictor to the wide-
simd. With its centralized control flow, a branch predictor is relatively
cheap in a wide-simd while the gains can be significant. However, dynamic
branch prediction is complex when combined with an explicit datapath
which makes this an interesting challenge.

• The most energy-efficient datawidth-aware multiplier introduced in chap-
ter 4 uses explicit conversions between the two’s complement and sign
magnitude data formats. These conversions can likely be integrated with
the multiplication logic itself to reduce the area and energy overhead. Poten-
tially it could also be interesting to allow both formats to exist throughout
the datapath, and let a compiler explicitly schedule the conversions only
when needed to further reduce the energy penalty.

• The cnn scheduling framework presented in chapter 5 covers a fairly
wide range of code transformations. However, the supported layer types
can still be extended significantly, for example by considering recurrent

7.2 FUTURE WORK 217

layer types and residual connections. In particular for loop fusion, it
could pay off to use a dataflow representation to capture the dependencies
between operations, and compute buffer sizes based on standard dataflow
techniques.

• Apart from increased layer support, it is also interesting to expand the
cnn scheduling framework with support for multi-level memory hierarchies
by introducing multiple store and compute levels. As the results presented
in section 5.7 show, a multi-level memory hierarchy is essential to benefit
from layer fusion techniques. The addition of a compute and store level
per memory level would enable the exploration of schedules for machines
with multiple levels of scratchpad memories.

• Finally, the flexibility metric proposed in chapter 6 should be considered
only as a starting point. Research into different definitions and methods
of measurement would be highly interesting, with the final goal to reach a
consensus on a definition within the community. A multitude of decisions
that can be reconsidered regarding the definition of flexibility have already
been summarized in section 6.8.

218 CONCLUSIONS & FUTURE WORK

Appendix A
SIMD Instruction Set
The table below contains the instruction set architecture (isa) of the wide-SIMD
presented in chapter 2. Note that the cp and pe share this isa, with the exception
of branch and jump instructions which are only available to the cp.

Instr. Description Operation
ADD add signed rD = rA + rB
AND bitwise and rD = rA & rB
CMOV conditional move rD = flag ? rA : rB
MUL multiply signed rD = rA * rB
MULU multiply unsigned rD = rA * rB
OR bitwise or rD = rA or rB
ROR rotate register right rD[(N-1-rB[4:0]):0] =

rA[N:rB[4:0]]
rD[(N-1):(N-rB[4:0])]
= rA[(rB[4:0]-1):0]

SFEQ set flag if equal flag = rA == rB
SFGES set flag if greater or equal, signed flag = rA >= rB
SFGEU set flag if greater or equal, un-

signed
flag = rA >= rB

SFGTS set flag if greater, signed flag = rA > rB
SFGTU set flag if greater, unsigned flag = rA > rB
SFLES set flag if less or equal, signed flag = rA <= rB
SFLEU set flag if less or equal, unsigned flag = rA <= rB
SFLTS set flag if less, signed flag = rA < rB
SFLTU set flag if less, unsigned flag = rA < rB
SFNE set flag if not equal flag = rA != rB
SLL shift left logical rD[(N-1):rB[4:0]] =

rA[(N-1-rB[4:0]):0]
rD[(rB[4:0]-1):0] = 0

220 SIMD INSTRUCTION SET

SRA shift right arithmetic rD[(N-1-rB[4:0]):0] =
rA[(N-1):rB[4:0]]
rD[(N-1):(N-rB[4:0])]
= rA[N-1]

SRL shift right logical rD[(N-1-rB[4:0]):0] =
rA[(N-1):rB[4:0]]
rD[(N-1):(N-rB[4:0])]
= 0

SUB subtract signed rD = rA - rB
XOR bitwise xor rD = rA xor rB
ADDI add immediate signed rD = rA + sign-

ext(imm)
ANDI and immediate unsigned rD = rA & zero-

ext(imm)
LWZ low word addr = rA + sign-

ext(imm)
rD = mem[addr]

MULI multiply immediate signed rD = rA * sign-
ext(imm)

ORI or immediate unsigned rD = rA or zero-
ext(imm)

SFEQI set flag if equal immediate flag = rA == sign-
ext(imm)

SFGESI set flag if greater or equal imme-
diate, signed

flag = rA >= sign-
ext(imm)

SFGEU set flag if greater or equal imme-
diate, unsigned

flag = rA >= sign-
ext(imm)

SFGTS set flag if greater immediate,
signed

flag = rA > sign-
ext(imm)

SFGTU set flag if greater immediate, un-
signed

flag = rA > sign-
ext(imm)

SFLES set flag if less or equal immedi-
ate, signed

flag = rA <= sign-
ext(imm)

SFLEU set flag if less or equal immedi-
ate, unsigned

flag = rA <= sign-
ext(imm)

SFLTS set flag if less immediate, signed flag = rA < sign-
ext(imm)

SFLTU set flag if less immediate, un-
signed

flag = rA < sign-
ext(imm)

221

SFNE set flag if not equal immediate
signed

flag = rA != sign-
ext(imm)

SW store word addr = rA + sign-
ext(imm)
mem[addr] = rB

XORI xor immediate signed rD = rA or sign-
ext(imm)

BF branch if flag addr = branch_pc +
sign-ext(imm«2)
pc = addr, if flag ==
1

BNF branch if not flag addr = branch_pc +
sign-ext(imm«2)
pc = addr, if flag ==
0

J jump pc = branch_pc + sign-
ext(imm«2)

JAL jump and link pc = branch_pc + sign-
ext(imm«2)
LR = branch_pc + 8

JALR jump and link register pc = rB
LR = branch_pc + 8

JR jump register pc = rB
NOP nop
SLLI shift left logical immediate rD[(N-1):imm] = rA[(N-

1-imm):0]
rD[(rB[4:0]-1):0] = 0

SRAI shift right arithmetic immediate rD[(N-1-imm):0] =
rA[(N-1):imm]
rD[(N-1):(N-imm)] =
rA[N-1]

SRLI shift right logical immediate rD[(N-1-imm):0] =
rA[(N-1):imm]
rD[(N-1):(N-imm)] = 0

ZIMM zero extended long immediate
(upper 18 bits for the immediate
in the instruction following this
ZIMM)

imm«8

222 SIMD INSTRUCTION SET

SIMM sign extended long immediate
(upper 18 bits for the immedi-
ate in the instruction following
this SIMM)

imm«8

Appendix B
Flexibility Related Lemmas
The eight lemmas that are instrumental to proving the properties of the flexibility
metric proposed in section 6.3.2. Note that in this section the term “positive
dataset” is understood to be a set of positive real numbers.

Lemma 1. The geometric mean (GM) of a positive dataset X increases if an
element xi ∈X increases.

Proof Let GM(X) = (x1 · x2 · · ·xn)
1
n denote the geometric mean of positive

dataset X. Then for dataset X and its incremented version X′:

GM(X)n = x1 · x2 · · ·xn, and GM(X′)n = x1 · x2 · · ·xk
′ · · ·xn,

where xk
′ = xk + ϵ with ϵ > 0 It follows that:

GM(X′)n −GM(X)n = (x1 · x2 · · ·xk
′ · · ·xn)− (x1 · x2 · · ·xk · · ·xn)

= x1 · x2 · · · (xk
′ − xk) · · ·xn > 0

And since GM(X)n is a positive, monotonically increasing function for positive
dataset X and n = |X|, it follows that GM(X′) > GM(X).

Lemma 2. The geometric standard deviation (GSD) of a positive dataset X
can either increase or decrease when an element of X increases.

Proof Let X = [1, 3, 2, 2] be the original positive dataset, and X′ = [2, 3, 2, 2],
X′′ = [10, 3, 2, 2] be two datasets after increasing the first element of X.

GSD(X) = GSD([1, 3, 2, 2]) ≈ 1.48

GSD(X′) = GSD([2, 3, 2, 2]) ≈ 1.19

GSD(X′′) = GSD([10, 3, 2, 2]) ≈ 1.93

Hence, an increase of an element in X can either increase or decrease the
geometric standard deviation of X.

224 FLEXIBILITY RELATED LEMMAS

Lemma 3. The geometric standard deviation (GSD) is invariant to multiplicative
scaling, i.e., GSD(s ·X) = GSD(X), where X is a positive dataset and ‘s’ is a
positive constant.

Proof

GM(s ·X) =
(

n∏

i=1
s · xi

) 1
n

=
(

sn
n∏

i=1
xi

) 1
n

= s ·GM(X)

GSD(s ·X) = exp

√√√√ 1

n

n∑

i=1

(
ln s · xi

GM(s ·X)

)2

= exp

√√√√ 1

n

n∑

i=1

(
ln xi

GM(X)

)2

 = GSD(X)

Lemma 4. The geometric mean (GM) of a dataset X normalised to dataset B

is equal to the ratio of the GMs of X, and B, i.e., GM
(

X
B

)
= GM(X)

GM(B) , where
X = [x1, x2, . . . , xn] and B = [b1, b2, . . . , bn] are positive datasets.

Proof

GM(X)
GM(B) = (

∏n
i=1 xi)

1
n

(
∏n

i=1 bi)
1
n

=
(∏n

i=1 xi∏n
i=1 bi

) 1
n

=
(

n∏

i=1

xi

bi

) 1
n

= GM

(
X

B

)

Lemma 5. The geometric mean of dataset X normalised to dataset B is equal
to the reciprocal of the geometric mean of B normalised to X, i.e., GM

(
X
B

)
=

GM
(

B
X

)−1

Proof

GM

(
X

B

)
lemma 4= GM(X)

GM(B) =
(

GM(B)
GM(X)

)−1
lemma 4= GM

(
B

X

)−1

Lemma 6. The ratio of the geometric means (GMs) of different normalised
dataset is the same as the ratio of the GMs of the original datasets, i.e., GM(X

B)
GM(Y

B) =
GM(X)
GM(Y) , where X, Y , and B are positive datasets.

225

Proof

GM
(

X
B

)

GM
(

Y
B

) lemma 4=
GM(X)
GM(B)
GM(Y)
GM(B)

= GM(X)
GM(Y)

Lemma 7. The geometric standard deviation (GSD) of a normalised dataset is
equal to the GSD of the reciprocal of that normalised dataset, i.e., GSD

(
X
B

)
=

GSD
(

B
X

)
, where X and B are positive datasets.

Proof

GSD

(
X

B

)
= exp

√√√√ 1
n

n∑

i=1

(
ln

xi

bi

GM
(

X
B

)
)2

= exp

√√√√ 1

n

n∑

i=1

(
ln xi − ln

(
bi ·GM

(
X

B

)))2

= exp

√√√√ 1

n

n∑

i=1

(
ln
(

bi ·GM

(
X

B

))
− ln xi

)2

= exp

√√√√ 1
n

n∑

i=1

(
ln

bi ·GM
(

X
B

)

xi

)2

lemma 5= exp

√√√√ 1
n

n∑

i=1

(
ln

bi

xi

GM
(

B
X

)
)2

= GSD

(
B

X

)

Lemma 8. The geometric standard deviation (GSD) of a normalised dataset
is always greater than or equal to the ratio of the GSDs of the original dataset
and the baseline, i.e., GSD

(
X
B

)
≥ GSD(X)

GSD(B) , where X and B are real positive
datasets.

226 FLEXIBILITY RELATED LEMMAS

Proof First rewrite GSD
(

X
B

)
and GSD(X)

GSD(B) :

GSD

(
X

B

)
= exp

√√√√ 1
n

n∑

i=1

(
ln

xi

bi

GM
(

X
B

)
)2

lemma 4= exp

√√√√√ 1
n

n∑

i=1

ln

xi

bi

GM(X)
GM(B)

2

= exp

√√√√ 1

n

n∑

i=1

(
ln xi

GM(X) − ln bi

GM(B)

)2

GSD(X)
GSD(B) =

exp
(√

1
n

∑n
i=1

(
ln xi

GM(X)

)2
)

exp
(√

1
n

∑n
i=1

(
ln bi

GM(B)

)2
)

= exp

√√√√ 1

n

n∑

i=1

(
ln xi

GM(X)

)2
−

√√√√ 1
n

n∑

i=1

(
ln bi

GM(B)

)2

Since exp (y) is a positive monotonic function, it is sufficient to prove:
√√√√ 1

n

n∑

i=1

(
ln xi

GM(X) − ln bi

GM(B)

)2
≥

√√√√ 1
n

n∑

i=1

(
ln xi

GM(X)

)2
−

√√√√ 1
n

n∑

i=1

(
ln bi

GM(B)

)2

Substituting U = ln xi

GM(X) , and V = ln bi

GM(B) yields:

||U − V || ≥ ||U || − ||V ||

Which holds according to the reverse triangle inequality.

Abbreviations

2c two’s complement

alu arithmetic logic unit
am arithmetic mean
ann artificial neural network
asd arithmetic standard deviation
asic application-specific integrated circuit
asip application-specific instruction-set processor

ch cumulative histogram
cia cumulative intensive area
cmos complementary metal oxide semiconductor
cnn convolutional neural network
cots commercial of the shelf
cp control processor
cpu central processing unit

dlp data-level parallelism
dmem data memory
dnn deep neural network
dram dynamic random-access memory
dse design space exploration
dsp digital signal processor
dvfs dynamic voltage frequency scaling

ed energy-delay product
edp energy-delay-power product
ew effective data-width
ex execution stage

ffos fast focus on structures
fpga field-programmable gate array
fu functional unit

228 Abbreviations

gm geometric mean
gpgpu general purpose computing on graphics process-

ing units
gpp general purpose processor
gpu graphics processing unit
gsd geometric standard deviation

hdl hardware description language
hls high-level synthesis

id instruction decode
if instruction fetch
ilp instruction-level parallelism
ilsvrc ImageNet large scale visual recognition challenge
imem instruction memory
ir intermediate representation
isa instruction set architecture

liw long instruction word
lsu load store unit
lut lookup table

mac multiply accumulate
mad median absolute deviation
mew maximum effective data-width
msb most significant bit
mul multiplier unit

nop no-operation

oled organic light-emitting diode
os operating system

pe processing element

rf register file
risc reduced instruction set computer
rtl register-transfer level

Abbreviations 229

simd single instruction multiple data
sm sign magnitude
sram static random-access memory

tdp thermal design power
tta transport triggered architecture

vliw very long instruction word

wb write back stage

230 Abbreviations

Bibliography

[1] 128-tap FIR bandpass filter, 300− 5kHz. http://t-filter.appspot.com/fir
/index.html.

[2] A.A. Abbo, R.P. Kleihorst, V. Choudhary, L. Sevat, P. Wielage, S. Mouy,
B. Vermeulen, and M. Heijligers. “Xetal-II: A 107 GOPS, 600 mW Mas-
sively Parallel Processor for Video Scene Analysis”. In: IEEE Journal of
Solid-State Circuits (JSSC) 43.1 (Jan. 2008), pp. 192–201. issn: 0018-9200.
doi: 10.1109/JSSC.2007.909328.

[3] David Abdurachmanov, Peter Elmer, Giulio Eulisse, and Shahzad Muzaf-
far. “Initial explorations of ARM processors for scientific computing”. In:
Journal of Physics: Conference Series 523.1 (2014), p. 012009.

[4] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi
Victoria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad.
“State-of-the-art in artificial neural network applications: A survey”. In:
Heliyon 4.11 (2018), e00938. issn: 2405-8440. doi: https://doi.org/10.101
6/j.heliyon.2018.e00938. url: https://www.sciencedirect.com/science/ar
ticle/pii/S2405844018332067.

[5] Michaël Adriaansen, Mark Wijtvliet, Roel Jordans, Luc Waeijen, and
Henk Corporaal. “Code Generation for Reconfigurable Explicit Datapath
Architectures with LLVM”. In: 2016 Euromicro Conference on Digital
System Design (DSD). Aug. 2016, pp. 30–37. doi: 10.1109/DSD.2016.88.

[6] Taekyoon Ahn and Kiyoung Choi. “Dynamic operand interchange for low
power”. In: Electronics Letters 33.25 (Dec. 1997), pp. 2118–2120. issn:
0013-5194. doi: 10.1049/el:19971440.

[7] M. Alwani, H. Chen, M. Ferdman, and P. Milder. “Fused-layer CNN
accelerators”. In: 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). Oct. 2016, pp. 1–12. doi: 10.1109/MICR
O.2016.7783725.

[8] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities, Reprinted from the AFIPS Confer-
ence Proceedings, Vol. 30 (Atlantic City, N.J., Apr. 18 x2013;20), AFIPS
Press, Reston, Va., 1967, pp. 483 x2013;485, when Dr. Amdahl was at
International Business Machines Corporation, Sunnyvale, California”. In:
Solid-State Circuits Society Newsletter, IEEE 12.3 (2007), pp. 19–20. issn:
1098-4232. doi: 10.1109/N-SSC.2007.4785615.

http://t-filter.appspot.com/fir/index.html
http://t-filter.appspot.com/fir/index.html
https://doi.org/10.1109/JSSC.2007.909328
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://doi.org/10.1109/DSD.2016.88
https://doi.org/10.1049/el:19971440
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/N-SSC.2007.4785615

232 BIBLIOGRAPHY

[9] Anandtech. The Haswell Review: Intel Core i7-4770K & i5-4670K Tested.
https://www.anandtech.com/show/7003/the-haswell-review-intel-core-
i74770k-i54560k-tested, accessed 2021-3-30. 2013.

[10] Chris Angelini. GeForce GTX Titan X Review: Can One GPU Handle
4K? https://www.tomshardware.com/reviews/nvidia-geforce-gtx-titan-
x-gm200-maxwell,4091.html, accessed on 2021-3-30. 2015.

[11] Y. Arai, T. Agui, and M. Nakajima. “A fast dct-sq scheme for images”.
In: Ieice Transactions (1988).

[12] M. Arnold and H. Corporaal. “Automatic detection of recurring operation
patterns.” English. In: Proceedings of the Seventh International Workshop
on Hardware/Software Codesign : (CODES ’99), May 3 - 5, 1999, Rome,
Italy. United States: Association for Computing Machinery, Inc, 1999,
pp. 22–26. isbn: 1-58113-132-1.

[13] Lennart Bamberg, Arash Pourtaherian, Luc Waeijen, Anupam Chahar,
and Orlando Moreira. Synapse Compression for Event-Based Convolu-
tional Neural Network Accelerators. 2021. arXiv: 2112.07019 [cs.AR].

[14] C. R. Baugh and B. A. Wooley. “A Two’s Complement Parallel Array
Multiplication Algorithm”. In: IEEE Transactions on Computers C-22.12
(Dec. 1973), pp. 1045–1047. issn: 0018-9340. doi: 10.1109/T-C.1973.2236
48.

[15] M. Bhardwaj, R. Min, and A. P. Chandrakasan. “Quantifying and En-
hancing Power Awareness of VLSI Systems”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 9.6 (Dec. 2001), pp. 757–772.
issn: 1063-8210. doi: 10.1109/92.974890.

[16] Jarno Brils, Luc Waeijen, and Arash Pourtaherian. “How to Exploit Spar-
sity in RNNs on Event-Driven Architectures”. In: Proceedings of the 24th
International Workshop on Software and Compilers for Embedded Systems.
SCOPES ’21. Eindhoven, Netherlands: Association for Computing Machin-
ery, 2021, pp. 17–22. isbn: 9781450391665. doi: 10.1145/3493229.3493302.
url: https://doi.org/10.1145/3493229.3493302.

[17] D. Brooks and M. Martonosi. “Dynamically exploiting narrow width
operands to improve processor power and performance”. In: Proceedings
Fifth International Symposium on High-Performance Computer Architec-
ture. Jan. 1999, pp. 13–22. doi: 10.1109/HPCA.1999.744314.

[18] David Brooks and Margaret Martonosi. “Value-based Clock Gating and
Operation Packing: Dynamic Strategies for Improving Processor Power
and Performance”. In: ACM Trans. Comput. Syst. 18.2 (May 2000),
pp. 89–126. issn: 0734-2071. doi: 10.1145/350853.350856.

https://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested
https://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested
https://www.tomshardware.com/reviews/nvidia-geforce-gtx-titan-x-gm200-maxwell,4091.html
https://www.tomshardware.com/reviews/nvidia-geforce-gtx-titan-x-gm200-maxwell,4091.html
https://arxiv.org/abs/2112.07019
https://doi.org/10.1109/T-C.1973.223648
https://doi.org/10.1109/T-C.1973.223648
https://doi.org/10.1109/92.974890
https://doi.org/10.1145/3493229.3493302
https://doi.org/10.1145/3493229.3493302
https://doi.org/10.1109/HPCA.1999.744314
https://doi.org/10.1145/350853.350856

BIBLIOGRAPHY 233

[19] David Buchfuhrer and Christopher Umans. “The Complexity of Boolean
Formula Minimization”. In: vol. 77. July 2008, pp. 24–35.

[20] cadence. Encounter(R) RTL Compiler. Version v11.20. url: https://ww
w.csee.umbc.edu/~tinoosh/cmpe641/tutorials/rc/rc_commandref.pdf.

[21] Hyunman Chang, Soohwan Ong, Changhee Lee, M.H. Sunwoo, and
Taihoon Cho. “A general purpose SliM-II image processor”. In: Computer
Architecture for Machine Perception, 1997. CAMP 97. Proceedings. 1997
Fourth IEEE International Workshop on. 1997, pp. 253–259. doi: 10.110
9/CAMP.1997.632034.

[22] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne.
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convo-
lutional Neural Networks”. In: IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers, 262–263.

[23] François Chollet et al. Keras. 2015. url: https://keras.io.
[24] G. Chryssolouris. “Flexibility and Its Measurement”. In: CIRP Annals

45.2 (1996), pp. 581–587. issn: 0007-8506.
[25] Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, and

Jürgen Schmidhuber. “Flexible, High Performance Convolutional Neural
Networks for Image Classification”. In: Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume
Two. IJCAI’11. Barcelona, Catalonia, Spain: AAAI Press, 2011, pp. 1237–
1242. isbn: 9781577355144.

[26] Michael Cloutier, Chad Paradis, and Vincent Weaver. “A Raspberry Pi
Cluster Instrumented for Fine-Grained Power Measurement”. In: Elec-
tronics 5 (Sept. 2016), p. 61.

[27] L. Codrescu, W. Anderson, S. Venkumanhanti, M. Zeng, E. Plondke, C.
Koob, A. Ingle, C. Tabony, and R. Maule. “Hexagon DSP: An Architecture
Optimized for Mobile Multimedia and Communications”. In: IEEE Micro
34.2 (Mar. 2014). issn: 0272-1732.

[28] Color Conversion Application Note version 1.4. http://www.stretchinc.c
om/_files/Color_Conversion_App_Note_v1_4.pdf.

[29] Henk Corporaal. Microprocessor Architectures: From VLIW to TTA.
Wiley, 1998. isbn: 047197157X.

[30] R. Damodaran et al. “A 1.25GHz 0.8W C66x DSP Core in 40nm CMOS”.
In: 2012 25th International Conference on VLSI Design. Hyderabad,
India: IEEE, Jan. 2012, pp. 286–291.

[31] Delft University of Technology. MOVE project. http://openasip.org/mov
e/DelftMoveSite/MOVE/documents.html. [Online; accessed 01-05-2021].

https://www.csee.umbc.edu/~tinoosh/cmpe641/tutorials/rc/rc_commandref.pdf
https://www.csee.umbc.edu/~tinoosh/cmpe641/tutorials/rc/rc_commandref.pdf
https://doi.org/10.1109/CAMP.1997.632034
https://doi.org/10.1109/CAMP.1997.632034
https://keras.io
http://www.stretchinc.com/_files/Color_Conversion_App_Note_v1_4.pdf
http://www.stretchinc.com/_files/Color_Conversion_App_Note_v1_4.pdf
http://openasip.org/move/DelftMoveSite/MOVE/documents.html
http://openasip.org/move/DelftMoveSite/MOVE/documents.html

234 BIBLIOGRAPHY

[32] Robert Fasthuber, Francky Catthoor, Praveen Raghavan, and Frederik
Naessens. Energy-Efficient Communication Processors: Design and Imple-
mentation for Emerging Wireless Systems. Springer Publishing Company,
Incorporated, 2013. isbn: 9781461449911.

[33] Joseph A. Fisher, Paolo Faraboschi, and Giuseppe Desoli. “Custom-Fit
Processors: Letting Applications Define Architectures”. In: Proceedings of
the 29th Annual ACM/IEEE International Symposium on Microarchitec-
ture. MICRO 29. Paris, France: IEEE Computer Society, 1996, pp. 324–
335. isbn: 0818676418.

[34] Philip J. Fleming and John J. Wallace. “How Not to Lie with Statistics:
The Correct Way to Summarize Benchmark Results”. In: Commun. ACM
29.3 (Mar. 1986), pp. 218–221. issn: 0001-0782.

[35] R. Frijns, H. Fatemi, B. Mesman, and H. Corporaal. “DC-SIMD : Dynamic
Communication for SIMD Processors”. In: Proceedings of International
Symposium on Parallel and Distributed Processing (IPDPS). 2008, pp. 1–
10. doi: 10.1109/IPDPS.2008.4536274.

[36] M. Fujino and V. G. Moshnyaga. “Dynamic operand transformation for
low-power multiplier-accumulator design”. In: Circuits and Systems, 2003.
ISCAS ’03. Proceedings of the 2003 International Symposium on. Vol. 5.
May 2003, V-345-V–348 vol.5. doi: 10.1109/ISCAS.2003.1206276.

[37] Angelo Garofalo, Giuseppe Tagliavini, Francesco Conti, Davide Rossi,
and Luca Benini. “XpulpNN: Accelerating Quantized Neural Networks on
RISC-V Processors Through ISA Extensions”. In: 2020 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). 2020, pp. 186–
191. doi: 10.23919/DATE48585.2020.9116529.

[38] Tong Geng, Luc Waeijen, Maurice Peemen, Henk Corporaal, and Yifan
He. “MacSim: A MAC-Enabled High-Performance Low-Power SIMD
Architecture”. In: 2016 Euromicro Conference on Digital System Design
(DSD). Aug. 2016, pp. 160–167. doi: 10.1109/DSD.2016.27.

[39] N. Goel, A. Kumar, and P.R. Panda. “Power Reduction in VLIW Processor
with Compiler Driven Bypass Network”. In: Proceedings of the 20th
International Conference on VLSI Design (VLSID). Jan. 2007, pp. 233–
238. doi: 10.1109/VLSID.2007.127.

[40] K. Goetschalckx and M. Verhelst. “Breaking High-Resolution CNN Band-
width Barriers With Enhanced Depth-First Execution”. In: IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 9.2 (2019),
pp. 323–331.

[41] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

https://doi.org/10.1109/IPDPS.2008.4536274
https://doi.org/10.1109/ISCAS.2003.1206276
https://doi.org/10.23919/DATE48585.2020.9116529
https://doi.org/10.1109/DSD.2016.27
https://doi.org/10.1109/VLSID.2007.127
http://www.deeplearningbook.org

BIBLIOGRAPHY 235

[42] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Gen-
erative Adversarial Nets”. In: Advances in Neural Information Processing
Systems. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Q. Weinberger. Vol. 27. Curran Associates, Inc., 2014.

[43] M. K. Gowan, L. L. Biro, and D. B. Jackson. “Power considerations
in the design of the Alpha 21264 microprocessor”. In: Proceedings 1998
Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).
June 1998, pp. 726–731. doi: 10.1145/277044.277226.

[44] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos.
“Auto-tuning a high-level language targeted to GPU codes”. In: 2012
Innovative Parallel Computing (InPar). May 2012, pp. 1–10.

[45] Xuan Guan and Yunsi Fei. “Reducing power consumption of embedded
processors through register file partitioning and compiler support”. In:
Proceedings of International Conference on Application-Specific Systems,
Architectures and Processors (ASAP). 2008, pp. 269–274. doi: 10.1109
/ASAP.2008.4580190.

[46] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Commun. ACM
31.5 (May 1988), pp. 532–533. issn: 0001-0782. doi: 10.1145/42411.42415.
url: http://doi.acm.org/10.1145/42411.42415.

[47] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. “MiBench: A free, commercially representative em-
bedded benchmark suite”. In: Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538). Dec. 2001, pp. 3–14. doi: 10.1109/WWC.2001.990739.

[48] H.264 reference implementation version JM18.6. http://iphome.hhi.de/s
uehring/tml/.

[49] Rehan Hameed. Balancing Efficiency and Flexibility In Specialized Com-
puting. PhD thesis. 2013.

[50] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-
matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,
and Mark Horowitz. “Understanding Sources of Inefficiency in General-
Purpose Chips”. In: Proceedings of the 37th Annual International Sympo-
sium on Computer Architecture. ISCA ’10. Saint-Malo, France: Association
for Computing Machinery, 2010, pp. 37–47. isbn: 9781450300537. doi: 10
.1145/1815961.1815968. url: https://doi.org/10.1145/1815961.1815968.

[51] Kyungtae Han, B. L. Evans, and E. E. Swartzlander. “Low-Power Multi-
pliers with Data Wordlength Reduction”. In: Conference Record of the

https://doi.org/10.1145/277044.277226
https://doi.org/10.1109/ASAP.2008.4580190
https://doi.org/10.1109/ASAP.2008.4580190
https://doi.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415
https://doi.org/10.1109/WWC.2001.990739
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1145/1815961.1815968
https://doi.org/10.1145/1815961.1815968

236 BIBLIOGRAPHY

Thirty-Ninth Asilomar Conference onSignals, Systems and Computers,
2005. Oct. 2005, pp. 1615–1619. doi: 10.1109/ACSSC.2005.1600041.

[52] M. Hatamian and G. L. Cash. “A 70-MHz 8-bit × 8-bit Parallel Pipelined
Multiplier in 2.5-µm CMOS”. In: IEEE Journal of Solid-State Circuits
21.4 (Aug. 1986), pp. 505–513. issn: 0018-9200. doi: 10.1109/JSSC.1986
.1052564.

[53] Y. He, Z. Ye, D. She, R.S. Pieters, B. Mesman, and H. Corporaal. “1000 fps
visual servoing on the reconfigurable wide SIMD processor”. In: Proceed-
ings of the 16th Annual Conference of the Advanced School for Computing
and Imaging (ASCI). 2010, pp. 302–309.

[54] Yifan He. Low Power Architectures for Streaming Applications. PhD
Thesis, 2013.

[55] Yifan He, Maurice Peemen, Luc Waeijen, Erkan Diken, Mattia Fiumara,
Gerard Rauwerda, Henk Corporaal, and Tong Geng. “A configurable
SIMD architecture with explicit datapath for intelligent learning”. In:
International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS). July 2016, pp. 156–163. doi: 10.110
9/SAMOS.2016.7818343.

[56] Yifan He, Yu Pu, Zhenyu Ye, S.M. Londono, R. Kleihorst, A.A. Abbo, and
H. Corporaal. “Xetal-Pro: An ultra-low energy and high throughput SIMD
processor”. In: Proceedings of the 47th Design Automation Conference
(DAC). June 2010, pp. 543–548.

[57] Yifan He, Dongrui She, B. Mesman, and H. Corporaal. “MOVE-Pro:
A low power and high code density TTA architecture”. In: Proceedings
of the 11th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). July 2011, pp. 294–
301. doi: 10.1109/SAMOS.2011.6045474.

[58] Yifan He, Zhenyu Ye, Dongrui She, Bart Mesman, and Henk Corporaal.
“Feasibility analysis of ultra high frame rate visual servoing on FPGA and
SIMD processor”. In: Proceedings of Advances Concepts for Intelligent
Vision Systems (ACIVS). 2011, pp. 623–634.

[59] Yifan He, Zoran Zivkovic, Richard Kleihorst, Alexander Danilin, and
Henk Corporaal. “Real-time implementations of Hough Transform on
SIMD architecture”. In: Proceedings of the ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC). 2008, pp. 1–8.

[60] Yifan He, Zoran Zivkovic, Richard Kleihorst, Alexander Danilin, Henk
Corporaal, and Bart Mesman. “Real-Time Hough Transform on 1-D SIMD
Processors: Implementation and Architecture Exploration”. In: Proceed-

https://doi.org/10.1109/ACSSC.2005.1600041
https://doi.org/10.1109/JSSC.1986.1052564
https://doi.org/10.1109/JSSC.1986.1052564
https://doi.org/10.1109/SAMOS.2016.7818343
https://doi.org/10.1109/SAMOS.2016.7818343
https://doi.org/10.1109/SAMOS.2011.6045474

BIBLIOGRAPHY 237

ings of the International Conference Advanced Concepts for Intelligent
Vision Systems (ACIVS). 2008, pp. 254–265.

[61] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth
Edition: A Quantitative Approach. 5th. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011. isbn: 012383872X.

[62] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast Learning
Algorithm for Deep Belief Nets”. In: Neural Comput. 18.7 (July 2006),
pp. 1527–1554. issn: 0899-7667. doi: 10.1162/neco.2006.18.7.1527. url:
https://doi.org/10.1162/neco.2006.18.7.1527.

[63] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”.
In: Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667.
doi: 10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.edu/n
eco/ article - pdf / 9/8 /1735 /813796 /neco . 1997 . 9 . 8 . 1735 . pdf. url:
https://doi.org/10.1162/neco.1997.9.8.1735.

[64] J J Hopfield. “Neural networks and physical systems with emergent col-
lective computational abilities”. In: Proceedings of the National Academy
of Sciences 79.8 (1982), pp. 2554–2558. issn: 0027-8424. doi: 10.1073/pn
as.79.8.2554. eprint: https://www.pnas.org/content/79/8/2554.full.pdf.
url: https://www.pnas.org/content/79/8/2554.

[65] Shihua Huang and Luc Waeijen. Intrinsic WorkloadEstimator. https://gi
thub.com/lwaeijen/WorkloadEstimator. 2021.

[66] Shihua Huang, Luc Waeijen, and Henk Corporaal. “How Flexible is Your
Computing System?” In: ACM Trans. Embed. Comput. Syst. (Mar. 2022).
issn: 1539-9087. doi: 10.1145/3524861. url: https://doi.org/10.1145/35
24861.

[67] Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim, Hanadi Hussein, and
Ahmed Fahmy. An Analysis of x86-64 Instruction Set for Optimization
of System Softwares. 2011.

[68] Jos IJzerman, Timo Viitanen, Pekka Jääskeläinen, Heikki Kultala, Lasse
Lehtonen, Maurice Peemen, Henk Corporaal, and Jarmo Takala. “Aiv-
oTTA: An Energy Efficient Programmable Accelerator for CNN-Based
Object Recognition”. In: Proceedings of the 18th International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation.
SAMOS ’18. Pythagorion, Greece: Association for Computing Machinery,
2018, pp. 28–37. isbn: 9781450364942. doi: 10.1145/3229631.3229637.
url: https://doi.org/10.1145/3229631.3229637.

[69] Texas Instruments. Code Composer Studio. Version V4. url: https://sof
tware-dl.ti.com/ccs/esd/documents/ccs_downloads.html#code-compo
ser-studio-version-4-downloads.

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://www.pnas.org/content/79/8/2554.full.pdf
https://www.pnas.org/content/79/8/2554
https://github.com/lwaeijen/WorkloadEstimator
https://github.com/lwaeijen/WorkloadEstimator
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3229631.3229637
https://doi.org/10.1145/3229631.3229637
https://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html#code-composer-studio-version-4-downloads
https://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html#code-composer-studio-version-4-downloads
https://software-dl.ti.com/ccs/esd/documents/ccs_downloads.html#code-composer-studio-version-4-downloads

238 BIBLIOGRAPHY

[70] Intel. https://ark.intel.com/#@Processors, accessed 2021-3-30.
[71] Intel. Inside 6th GEN Intel Core: New Microarchitecture Code Named

Skylake. https://old.hotchips.org/wp-content/uploads/hc_archives/hc28
/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.91
1-Skylake-Doweck-Intel_SK3-r13b.pdf, accessed 2021-3-30. 2016.

[72] Mike Jongen, Luc Waeijen, Roel Jordans, Lech Jozwiak, and Henk Cor-
poraal. “Optimization through recomputation in the polyhedral model”.
English. In: Eighth International Workshop on Polyhedral Compilation
Techniques. 8th International Workshop on Polyhedral Compilation Tech-
niques (IMPACT 2018), January 23, 2018, Manchester, UK, IMPACT
; Conference date: 23-01-2018 Through 23-01-2018. Jan. 22, 2018. url:
http://impact.gforge.inria.fr/impact2018.

[73] JPEG Encode from MiBench. http://www.eecs.umich.edu/mibench/sour
ce.html.

[74] U.J. Kapasi, W.J. Dally, S. Rixner, J.D. Owens, and B. Khailany. “The
Imagine Stream Processor”. In: Proceedings of International Conference
on Computer Design: VLSI in Computers and Processors (ICCD). 2002,
pp. 282–288. doi: 10.1109/ICCD.2002.1106783.

[75] Götz Kappen and Tobias Noll. “Application specific instruction processor
based implementation of a GNSS receiver on an FPGA.” In: Jan. 2006,
pp. 58–63.

[76] Kingshuk Karuri and Rainer Leupers. Application Analysis Tools for
ASIP Design: Application Profiling and Instruction-set Customization.
Springer Publishing Company, Incorporated, 2014. isbn: 9781493902309.

[77] Kees van Berkel. Processor Versatility (Flexibility) - an attempt at defini-
tion and quantification. MPSoC 2013, July 2013. url: http://mpsoc-foru
m.org/archive/2013/slides/12-Van_Berkel.pdf (visited on 03/26/2021).

[78] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klugel, and
A. M. Alba. “How to Measure Network Flexibility? A Proposal for Evalu-
ating Softwarized Networks”. In: IEEE Communications Magazine (2018),
pp. 2–8. issn: 0163-6804.

[79] T. B. L. Kirkwood. “Geometric Standard Deviation - Reply to Bohidar”.
In: Drug Development and Industrial Pharmacy 19.3 (1993), pp. 395–396.

[80] H. Kojima, D. J. Gorny, K. Nitta, and K. Sasaki. “Power analysis of
a programmable DSP for architecture/program optimization”. In: 1995
IEEE Symposium on Low Power Electronics. Digest of Technical Papers.
Oct. 1995, pp. 26–27. doi: 10.1109/LPE.1995.485383.

[81] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: Proceedings

https://ark.intel.com/#@Processors
https://old.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.911-Skylake-Doweck-Intel_SK3-r13b.pdf
https://old.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.911-Skylake-Doweck-Intel_SK3-r13b.pdf
https://old.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-Epub/HC28.23.90-High-Perform-Epub/HC28.23.911-Skylake-Doweck-Intel_SK3-r13b.pdf
http://impact.gforge.inria.fr/impact2018
http://www.eecs.umich.edu/mibench/source.html
http://www.eecs.umich.edu/mibench/source.html
https://doi.org/10.1109/ICCD.2002.1106783
http://mpsoc-forum.org/archive/2013/slides/12-Van_Berkel.pdf
http://mpsoc-forum.org/archive/2013/slides/12-Van_Berkel.pdf
https://doi.org/10.1109/LPE.1995.485383

BIBLIOGRAPHY 239

of the 25th International Conference on Neural Information Processing
Systems - Volume 1. NIPS’12. Lake Tahoe, Nevada: Curran Associates
Inc., 2012, pp. 1097–1105. url: http://dl.acm.org/citation.cfm?id=2999
134.2999257.

[82] S. r. Kuang and J. p. Wang. “Design of power-efficient pipelined truncated
multipliers with various output precision”. In: IET Computers Digital
Techniques 1.2 (Mar. 2007), pp. 129–136. issn: 1751-8601. doi: 10.1049/i
et-cdt:20060156.

[83] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. “Single-ISA heterogeneous multi-core architectures: the potential
for processor power reduction”. In: Proceedings. 36th Annual IEEE/ACM
International Symposium on Microarchitecture, 2003. MICRO-36. Dec.
2003, pp. 81–92.

[84] S. Kyo and S. Okazaki. “IMAPCAR: A 100 GOPS in-vehicle vision pro-
cessor based on 128 ring connected four-way VLIW processing elements”.
In: Journal of Signal Processing Systems (2008), pp. 1–12.

[85] Stanford Vision Lab. ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). https://www.image-net.org/challenges/LSVRC/index.php.
Accessed 26-09-2021.

[86] LAME MP3 encoder version 3.99. http://sourceforge.net/projects/lame
/files/lame/3.99/.

[87] R. Landauer. “Irreversibility and Heat Generation in the Computing
Process”. In: IBM Journal of Research and Development 5.3 (1961),
pp. 183–191.

[88] E. Lannoye, D. Flynn, and M. O’Malley. “Evaluation of Power System
Flexibility”. In: IEEE Transactions on Power Systems 27.2 (May 2012),
pp. 922–931. issn: 0885-8950.

[89] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. “Handwritten Digit Recognition with a Back-
Propagation Network”. In: Proceedings of the 2nd International Confer-
ence on Neural Information Processing Systems. NIPS’89. Cambridge,
MA, USA: MIT Press, 1989, pp. 396–404.

[90] Dong -X. Li, Wei Zheng, and Ming Zhang. “Architecture Design for
H.264/AVC Integer Motion Estimation with Minimum Memory Band-
width”. In: Consumer Electronics, IEEE Transactions on 53.3 (2007),
pp. 1053–1060. issn: 0098-3063. doi: 10.1109/TCE.2007.4341585.

[91] G. Li, F. Li, T. Zhao, and J. Cheng. “Block convolution: Towards memory-
efficient inference of large-scale CNNs on FPGA”. In: 2018 Design, Au-

http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1049/iet-cdt:20060156
https://doi.org/10.1049/iet-cdt:20060156
https://www.image-net.org/challenges/LSVRC/index.php
http://sourceforge.net/projects/lame/files/lame/3.99/
http://sourceforge.net/projects/lame/files/lame/3.99/
https://doi.org/10.1109/TCE.2007.4341585

240 BIBLIOGRAPHY

tomation & Test in Europe Conference & Exhibition (DATE). 2018,
pp. 1163–1166.

[92] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li. “SmartShuttle:
Optimizing off-chip memory accesses for deep learning accelerators”. In:
2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2018, pp. 343–348.

[93] Yuan Lin, Hyunseok Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. “SODA: A Low-power Architecture
For Software Radio”. In: Computer Architecture, 2006. ISCA ’06. 33rd
International Symposium on. 2006, pp. 89–101. doi: 10.1109/ISCA.2006
.37.

[94] Fei Liu, Yi Liang, and Lingze Wang. “A Survey of the Heterogeneous Com-
puting Platform and Related Technologies”. In: DEStech Transactions
on Engineering and Technology Research (May 2017).

[95] Stef Louwers, Luc Waeijen, Mark Wijtvliet, Ruud Koolen, and Henk
Corporaal. “Multi-granular Arithmetic in a Coarse-Grain Reconfigurable
Architecture”. In: 2016 Euromicro Conference on Digital System Design
(DSD). Aug. 2016, pp. 599–606. doi: 10.1109/DSD.2016.98.

[96] Daniele Ludovici, Alessandro Strano, Georgi Gaydadjiev, and Davide
Bertozzi. “Mesochronous NoC technology for power-efficient GALS MP-
SoCs”. In: INA-OCMC ’11. 2011.

[97] Pedro M.M. Pereira, Patrício Domingues, Nuno Rodrigues, Gabriel Falcao,
and Sergio De Faria. “Assessing the Performance and Energy Usage of
Multi-CPUs, Multi-Core and Many-Core Systems : The MMP Image
Encoder Case Study”. In: International Journal of Distributed and Parallel
systems 7 (Sept. 2016), pp. 01–20.

[98] O. L. Macsorley. “High-Speed Arithmetic in Binary Computers”. In:
Proceedings of the IRE 49.1 (Jan. 1961), pp. 67–91. issn: 0096-8390. doi:
10.1109/JRPROC.1961.287779.

[99] Songping Mai, Chun Zhang, Yixin Zhao, Jun Chao, and Zhihua Wang.
“An application-specific memory partitioning method for low power”.
In: 2007 7th International Conference on ASIC. 2007, pp. 221–224. doi:
10.1109/ICASIC.2007.4415607.

[100] Krishna T. Malladi, Frank A. Nothaft, Karthika Periyathambi, Ben-
jamin C. Lee, Christos Kozyrakis, and Mark Horowitz. “Towards energy-
proportional datacenter memory with mobile DRAM”. In: 2012 39th
Annual International Symposium on Computer Architecture (ISCA). 2012,
pp. 37–48. doi: 10.1109/ISCA.2012.6237004.

https://doi.org/10.1109/ISCA.2006.37
https://doi.org/10.1109/ISCA.2006.37
https://doi.org/10.1109/DSD.2016.98
https://doi.org/10.1109/JRPROC.1961.287779
https://doi.org/10.1109/ICASIC.2007.4415607
https://doi.org/10.1109/ISCA.2012.6237004

BIBLIOGRAPHY 241

[101] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas
immanent in nervous activity”. In: The bulletin of mathematical biophysics
5.4 (Dec. 1, 1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259.
url: https://doi.org/10.1007/BF02478259.

[102] Linyan Mei, Pouya Houshmand, Vikram Jain, Juan Sebastian P Giraldo,
and Marian Verhelst. “ZigZag: A Memory-Centric Rapid DNN Accelerator
Design Space Exploration Framework.” In: CoRR (Computing Research
Repository) abs/2007.11360 (2020).

[103] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. Cambridge, MA, USA: MIT Press, 1969.

[104] Martinez MN and Bartholomew MJ. “What Does It Mean? A Review
of Interpreting and Calculating Different Types of Means and Standard
Deviations”. In: Pharmaceutics (Apr. 2017).

[105] Geoffrey Ndu. Boosting Single Thread Performance in Mobile Processors
using Reconfigurable Acceleration. PhD thesis. Oct. 2012.

[106] Linda Null and Julia Lobur. The Essentials of Computer Organization
and Architecture. 4th. USA, 2014. isbn: 9781284045611.

[107] Nvidia. GeForce Specifications. https://www.nvidia.com/en-us/geforce/.
accessed 2021-3-30.

[108] Nvidia. “Whitepaper NVIDIA Tegra K1: A New Era in Mobile Comput-
ing”. In: (Jan. 2014). url: https://www.nvidia.com/content/PDF/tegra
_white_papers/Tegra-K1-whitepaper-v1.0.pdf.

[109] nvidia. CUDA Zone. url: https://developer.nvidia.com/cuda-zone.
[110] OpenRISC. http://opencores.org/or1k/Main_Page.
[111] Vishwamitra Oree and Sayed Z. Sayed Hassen. “A composite metric for

assessing flexibility available in conventional generators of power systems”.
In: Applied Energy 177 (2016), pp. 683–691. issn: 0306-2619.

[112] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level His-
tograms”. In: Systems, Man and Cybernetics, IEEE Transactions on 9.1
(1979), pp. 62–66. issn: 0018-9472. doi: 10.1109/TSMC.1979.4310076.

[113] A.N. Page and A.S. Schwier. Manual of Political Economy: By Vilfredo
Pareto. Translated by Ann S. Schwier. Edited by Ann S. Schwier and
Alfred N. Page. MacMillan, 1972.

[114] Maurice Peemen, Bart Mesman, and Henk Corporaal. “Inter-tile Reuse
Optimization Applied to Bandwidth Constrained Embedded Accelera-
tors”. In: Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. DATE ’15. Grenoble, France: EDA Consortium,
2015, pp. 169–174. isbn: 978-3-9815370-4-8. url: http://dl.acm.org/citat
ion.cfm?id=2755753.2755790.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://www.nvidia.com/en-us/geforce/
https://www.nvidia.com/content/PDF/tegra_white_papers/Tegra-K1-whitepaper-v1.0.pdf
https://www.nvidia.com/content/PDF/tegra_white_papers/Tegra-K1-whitepaper-v1.0.pdf
https://developer.nvidia.com/cuda-zone
http://opencores.org/or1k/Main_Page
https://doi.org/10.1109/TSMC.1979.4310076
http://dl.acm.org/citation.cfm?id=2755753.2755790
http://dl.acm.org/citation.cfm?id=2755753.2755790

242 BIBLIOGRAPHY

[115] S. Perri, M. Lanuzza, P. Corsonello, and G. Cocorullo. “SIMD 2D Con-
volver for Fast FPGA-based Image and Video Processors”. In: Military
Aerospace Programmalbe Logic Devices, 2003 (MAPLD’2003). 2003.

[116] A. Prengler and K. Adi. “A reconfigurable SIMD-MIMD processor ar-
chitecture for embedded vision processing applications”. In: SAE World
Congress. 2009, pp. 1–9.

[117] The Hamilton Project. Cost of Computing Power Equal to an iPad2.
https://www.hamiltonproject.org/charts/cost_of_computing_power
_equal_to_an_ipad2.

[118] Yu Pu, Yifan He, Zhenyu Ye, S.M. Londono, A.A. Abbo, R. Kleihorst,
and H. Corporaal. “From Xetal-II to Xetal-Pro: On the Road Toward
an Ultra low-Energy and High-Throughput SIMD Processor”. In: IEEE
Transactions on Circuits and Systems for Video Technology (TCAS-VT)
21.4 (Apr. 2011), pp. 472–484. issn: 1051-8215. doi: 10.1109/TCSVT.20
11.2125590.

[119] Qualcomm. Hexagon SDK. Version v3.5.3 Linux. url: https://developer
.qualcomm.com/downloads/hexagon-sdk-v354-linux.

[120] Qualcomm. “Hexagon Simulator User Guide”. In: (Dec. 2016).
[121] Qualcomm. “Qualcomm Hexagon DSP”. In: (Dec. 2017).
[122] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital

integrated circuits – A design perspective. 2nd. Prentice Hall, 2004.
[123] Rodric Rabbah, Ian Bratt, Krste Asanovic, and Anant Agarwal. “Versa-

tility and VersaBench: A New Metric and a Benchmark Suite for Flexible
Architectures”. In: (Dec. 2005).

[124] Jonathan Ragan-Kelley. Decoupling Algorithms from the Organization of
Computation for High Performance Image Processing. Cambridge, MA,
June 2014. url: http://groups.csail.mit.edu/commit/papers/2014/jrkthe
sis.pdf.

[125] Praveen Raghavan, Satyakiran Munaga, Estela Ramos, Andy Lambrechts,
Murali Jayapala, Francky Catthoor, and Diederik Verkest. “A Customized
Cross-Bar for Data-Shuffling in Domain-Specific SIMD Processors”. In:
Proceedings of Architecture of Computing Systems (ARCS). Ed. by Paul
Lukowicz, Lothar Thiele, and Gerhard Tröster. Vol. 4415. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2007, pp. 57–68. isbn:
978-3-540-71267-1. url: http://dx.doi.org/10.1007/978-3-540-71270-1_5.

[126] Ahmed Osman El-Rayis. Reconfigurable architectures for the next gen-
eration of mobile device telecommunications systems. PhD thesis. Nov.
2014.

https://www.hamiltonproject.org/charts/cost_of_computing_power_equal_to_an_ipad2
https://www.hamiltonproject.org/charts/cost_of_computing_power_equal_to_an_ipad2
https://doi.org/10.1109/TCSVT.2011.2125590
https://doi.org/10.1109/TCSVT.2011.2125590
https://developer.qualcomm.com/downloads/hexagon-sdk-v354-linux
https://developer.qualcomm.com/downloads/hexagon-sdk-v354-linux
http://groups.csail.mit.edu/commit/papers/2014/jrkthesis.pdf
http://groups.csail.mit.edu/commit/papers/2014/jrkthesis.pdf
http://dx.doi.org/10.1007/978-3-540-71270-1_5

BIBLIOGRAPHY 243

[127] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi, and Jeremy Kepner. Survey of Machine Learning Accelera-
tors. 2020. arXiv: 2009.00993 [cs.DC].

[128] F. Rosenblatt. “The perceptron: A probabilistic model for information
storage and organization in the brain.” In: Psychological Review 65.6
(1958), pp. 386–408. issn: 0033-295X. doi: 10 . 1037 / h0042519. url:
http://dx.doi.org/10.1037/h0042519.

[129] David E. Rumelhart and James L. McClelland. “Learning Internal Repre-
sentations by Error Propagation”. In: Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition: Foundations. 1987, pp. 318–
362.

[130] Mike Santarini. “Xilinx Ships Industry’s First 20-nm All Programmable
Devices”. In: Xcell Journal (2014), pp. 9–15.

[131] S. Satpathy, Zhiyoong Foo, B. Giridhar, R. Dreslinski, D. Sylvester, T.
Mudge, and D. Blaauw. “A 1.07 Tbit/s 128x128 swizzle network for
SIMD processors”. In: Proceedings of IEEE Symposium on VLSI Circuits
(VLSIC). June 2010, pp. 81–82. doi: 10.1109/VLSIC.2010.5560282.

[132] S. Seo, M. Woh, S. Mahlke, T. Mudge, S. Vijay, and C. Chakrabarti. “Cus-
tomizing wide-SIMD architectures for H.264”. In: Systems, Architectures,
Modeling, and Simulation, 2009. SAMOS ’09. International Symposium
on. 2009, pp. 172–179. doi: 10.1109/ICSAMOS.2009.5289229.

[133] Dongrui She, Yifan He, and Henk Corporaal. “Energy efficient special
instruction support in an embedded processor with compact isa”. In:
Proceedings of the International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES). 2012, pp. 131–140.

[134] Dongrui She, Yifan He, B. Mesman, and H. Corporaal. “Scheduling
for register file energy minimization in explicit datapath architectures”.
In: Proceedings of Design, Automation & Test in Europe Conference &
Exhibition (DATE). Mar. 2012, pp. 388–393.

[135] Dongrui She, Yifan He, Luc Waeijen, and H. Corporaal. “OpenCL code
generation for low energy wide SIMD architectures with explicit datapath”.
In: Proceedings of International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS). 2013, pp. 322–
329. doi: 10.1109/SAMOS.2013.6621141.

[136] Dongrui She, Yifan He, Luc Waeijen, and Henk Corporaal. “OpenCL
code generation for low energy wide SIMD architectures with explicit
datapath”. In: 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). July 2013,
pp. 322–329. doi: 10.1109/SAMOS.2013.6621141.

https://arxiv.org/abs/2009.00993
https://doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://doi.org/10.1109/VLSIC.2010.5560282
https://doi.org/10.1109/ICSAMOS.2009.5289229
https://doi.org/10.1109/SAMOS.2013.6621141
https://doi.org/10.1109/SAMOS.2013.6621141

244 BIBLIOGRAPHY

[137] Savvas Sioutas, Sander Stuijk, Twan Basten, Henk Corporaal, and Lou
Somers. “Schedule Synthesis for Halide Pipelines on GPUs”. In: ACM
Trans. Archit. Code Optim. 17.3 (Aug. 2020). issn: 1544-3566. doi: 10.11
45/3406117. url: https://doi.org/10.1145/3406117.

[138] Savvas Sioutas, Sander Stuijk, Luc Waeijen, Twan Basten, Henk Corpo-
raal, and Lou Somers. “Schedule Synthesis for Halide Pipelines through
Reuse Analysis”. In: ACM Trans. Archit. Code Optim. 16.2 (Apr. 2019).
issn: 1544-3566. doi: 10.1145/3310248. url: https://doi.org/10.1145/33
10248.

[139] M. Själander, H. Eriksson, and P. Larsson-Edefors. “An Efficient Twin-
Precision Multiplier”. In: IEEE International Conference on Computer
Design: VLSI in Computers and Processors, 2004. ICCD 2004. Proceed-
ings. Oct. 2004, pp. 30–33. doi: 10.1109/ICCD.2004.1347894.

[140] Magnus Själander and Per Larsson-Edefors. “High-Speed and Low-Power
Multipliers Using the Baugh-Wooley Algorithm and HPM Reduction
Tree”. In: 2008 15th IEEE International Conference on Electronics, Cir-
cuits and Systems. Aug. 2008, pp. 33–36. doi: 10.1109/ICECS.2008.4674
784.

[141] Irvin Sobel. “Neighborhood coding of binary images for fast contour
following and general binary array processing”. In: Computer Graphics
and Image Processing 8.1 (Aug. 1978), pp. 127–135. issn: 0146-664X. doi:
https://doi.org/10.1016/S0146-664X(78)80020-3.

[142] Standard Performance Evaluation Corporation. SPEC CINT95 Bench-
marks. http://www.spec.org/cpu95/CINT95/index.html.

[143] Paul D. Stigall and Ömür Tasar. “A measure of computer flexibility”. In:
Computers & Electrical Engineering 2.2 (1975). issn: 0045-7906.

[144] Nai-Sheng Syu, Yu-Sheng Chen, and Yung-Yu Chuang. Learning Deep
Convolutional Networks for Demosaicing. 2018. arXiv: 1802.03769.

[145] V. Sze, Y. -H. Chen, T. -J. Yang, and J. S. Emer. Efficient Processing of
Deep Neural Networks. 2020.

[146] Tampere University of Technology. TTA-based Codesign Environment
(TCE). http://tce.cs.tut.fi/.

[147] GCC team. GNU Compiler Collection. Nov. 2021. url: https://gcc.gnu
.org/.

[148] Texas Instruments. “TMS320C6745, TMS320C6747 Fixed- and Floating-
Point Digital Signal Processor”. In: (2014).

[149] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and
Norm Jouppi. cacti 5.3, rev 174. Available at http://quid.hpl.hp.com:908
1/cacti/. Mar. 2014. url: http://quid.hpl.hp.com:9081/cacti/.

https://doi.org/10.1145/3406117
https://doi.org/10.1145/3406117
https://doi.org/10.1145/3406117
https://doi.org/10.1145/3310248
https://doi.org/10.1145/3310248
https://doi.org/10.1145/3310248
https://doi.org/10.1109/ICCD.2004.1347894
https://doi.org/10.1109/ICECS.2008.4674784
https://doi.org/10.1109/ICECS.2008.4674784
https://doi.org/https://doi.org/10.1016/S0146-664X(78)80020-3
http://www.spec.org/cpu95/CINT95/index.html
https://arxiv.org/abs/1802.03769
https://gcc.gnu.org/
https://gcc.gnu.org/
http://quid.hpl.hp.com:9081/cacti/
http://quid.hpl.hp.com:9081/cacti/
http://quid.hpl.hp.com:9081/cacti/

BIBLIOGRAPHY 245

[150] E. Tomusk, C. Dubach, and M. O’Boyle. “Measuring flexibility in single-
ISA heterogeneous processors”. In: 2014 23rd International Conference
on Parallel Architecture and Compilation Techniques (PACT). Aug. 2014,
pp. 495–496.

[151] A. M. Turing. “Computers & Thought”. In: ed. by Edward A. Feigenbaum
and Julian Feldman. Cambridge, MA, USA: MIT Press, 1995. Chap. Com-
puting Machinery and Intelligence, pp. 11–35. isbn: 0-262-56092-5. url:
http://dl.acm.org/citation.cfm?id=216408.216410.

[152] Michel Van Lier, Luc Waeijen, and Henk Corporaal. “Bitwise Neural Net-
work Acceleration: Opportunities and Challenges”. In: 2019 8th Mediter-
ranean Conference on Embedded Computing (MECO). June 2019, pp. 1–5.
doi: 10.1109/MECO.2019.8760178.

[153] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention
Is All You Need”. In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762.
url: http://arxiv.org/abs/1706.03762.

[154] Luc Waeijen. ConvFuser. https://gitlab.com/lwaeijen/convfusion.
[155] Luc Waeijen, Hailong Jiao, Henk Corporaal, and Yifan He. “Datawidth-

Aware Energy-Efficient Multipliers: A Case for Going Sign Magnitude”.
In: 2018 21st Euromicro Conference on Digital System Design (DSD).
Aug. 2018, pp. 54–61. doi: 10.1109/DSD.2018.00024.

[156] Luc Waeijen, Hailong Jiao, Henk Corporaal, and Yifan He. Multiplier
operand features - energy analysis data and tools. https://git.ics.ele.tue.nl
/luc/multiplier-predict.

[157] Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “A Low-Energy
Wide SIMD Architecture with Explicit Datapath”. In: Journal of Signal
Processing Systems 80.1 (July 1, 2015), pp. 65–86. issn: 1939-8115. doi:
10.1007/s11265-014-0950-8. url: https://doi.org/10.1007/s11265-014-09
50-8.

[158] Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “Reduction
operator for wide-SIMDs reconsidered”. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC). June 2014, pp. 1–6. doi: 10.1145
/2593069.2593198.

[159] Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “SIMD made
explicit”. In: 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). July 2013,
pp. 330–337. doi: 10.1109/SAMOS.2013.6621142.

[160] Luc Waeijen, Savvas Sioutas, Yifan He, Maurice Peemen, and Henk Cor-
poraal. “Automatic Memory-Efficient Scheduling of CNNs”. In: Springer

http://dl.acm.org/citation.cfm?id=216408.216410
https://doi.org/10.1109/MECO.2019.8760178
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://gitlab.com/lwaeijen/convfusion
https://doi.org/10.1109/DSD.2018.00024
https://git.ics.ele.tue.nl/luc/multiplier-predict
https://git.ics.ele.tue.nl/luc/multiplier-predict
https://doi.org/10.1007/s11265-014-0950-8
https://doi.org/10.1007/s11265-014-0950-8
https://doi.org/10.1007/s11265-014-0950-8
https://doi.org/10.1145/2593069.2593198
https://doi.org/10.1145/2593069.2593198
https://doi.org/10.1109/SAMOS.2013.6621142

246 BIBLIOGRAPHY

International Publishing, Aug. 2019, pp. 387–400. isbn: 978-3-030-27561-7.
doi: 10.1007/978-3-030-27562-4_28.

[161] Luc Waeijen, Savvas Sioutas, Yifan He, Maurice Peemen, and Corporaal
Henk. “Automatic Memory-Efficient Scheduling of CNNs”. In: Embedded
Computer Systems: Architectures, Modeling, and Simulation. SAMOS
2019. Lecture Notes in Computer Science. Vol. 11733. 2019. doi: https:
//doi.org/10.1007/978-3-030-27562-4_28.

[162] Luc Waeijen, Savvas Sioutas, Maurice Peemen, Menno Lindwer, and
Corporaal Henk. “ConvFusion: A Model for Layer Fusion in Convolutional
Neural Networks”. In: IEEE Access 9 (2021), pp. 168245–168267. doi:
10.1109/ACCESS.2021.3134930.

[163] J. van de Waerdt and et al. “The TM3270 media-processor”. In: Proceed-
ings of the 38th International Symposium on Microarchitecture (MICRO).
2005, pp. 331–342.

[164] Gregory K. Wallace. “The JPEG Still Picture Compression Standard”.
In: Commun. ACM 34.4 (Apr. 1991), pp. 30–44. issn: 0001-0782.

[165] Nicolas Weber, Florian Schmidt, Mathias Niepert, and Felipe Huici.
BrainSlug: Transparent Acceleration of Deep Learning Through Depth-
First Parallelism. 2018. arXiv: 1804.08378 [cs.DC].

[166] Paul Werbos. Beyond Regression: New Tools for Prediction and Anal-
ysis in the Behavioral Science. Thesis (Ph. D.). Appl. Math. Harvard
University. Jan. 1974.

[167] Mark Wijtvliet, Jos Huisken, Luc Waeijen, and Henk Corporaal. “Blocks:
Redesigning Coarse Grained Reconfigurable Architectures for Energy
Efficiency”. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). Sept. 2019, pp. 17–23. doi: 10.1109/FPL.2
019.00013.

[168] Mark Wijtvliet, Luc Waeijen, Michaël Adriaansen, and Henk Corporaal.
“Reaching intrinsic compute efficiency requires adaptable micro-archi-
tectures”. English. In: 9th International Workshop on Programmability
and Architectures for Heterogeneous Multicores (MULTIPROG 2016),
January 18, 2016, Prague, Czech Republic, MULTIPROG-2016 ; Confer-
ence date: 18-01-2016 Through 18-01-2016. Jan. 18, 2016, pp. 1–7. url:
http://research.ac.upc.edu/multiprog/.

[169] Mark Wijtvliet, Luc Waeijen, and Henk Corporaal. “Coarse grained recon-
figurable architectures in the past 25 years: Overview and classification”.
In: 2016 International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling and Simulation (SAMOS). July 2016, pp. 235–244.
doi: 10.1109/SAMOS.2016.7818353.

https://doi.org/10.1007/978-3-030-27562-4_28
https://doi.org/https://doi.org/10.1007/978-3-030-27562-4_28
https://doi.org/https://doi.org/10.1007/978-3-030-27562-4_28
https://doi.org/10.1109/ACCESS.2021.3134930
https://arxiv.org/abs/1804.08378
https://doi.org/10.1109/FPL.2019.00013
https://doi.org/10.1109/FPL.2019.00013
http://research.ac.upc.edu/multiprog/
https://doi.org/10.1109/SAMOS.2016.7818353

BIBLIOGRAPHY 247

[170] Rand R. Wilcox and H. J. Keselman. “Modern robust data analysis
methods: measures of central tendency.” In: Psychological methods 8 3
(2003).

[171] Markus Willems. Application-Specific Processors for High Throughput,
Low Latency, and Flexible 5G Communication SoCs. Synopsis, 2019. url:
https://www.synopsys.com/designware-ip/technical-bulletin/5g-asips-
communication-socs.html (visited on 03/27/2021).

[172] M. Woh, Sangwon Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K.
Flautner. “AnySP: Anytime Anywhere Anyway Signal Processing”. In:
IEEE Micro 30.1 (Jan. 2010), pp. 81–91. issn: 0272-1732. doi: 10.1109
/MM.2010.8.

[173] M. Woh et al. “From SODA to scotch: The evolution of a wireless
baseband processor”. In: Microarchitecture, 2008. MICRO-41. 2008 41st
IEEE/ACM International Symposium on. Nov. 2008, pp. 152–163. doi:
10.1109/MICRO.2008.4771787.

[174] Yannan N. Wu, Joel S. Emer, and Vivienne Sze. “Accelergy: An Archi-
tecture Level Energy Estimation Methodology for Accelerator Designs”.
In: IEEE/ACM International Conference On Computer Aided Design
(ICCAD).

[175] Yannan N. Wu, Joel S. Emer, and Vivienne Sze. Accelergy: An Architecture
Level Energy Estimation Methodology for Accelerator Designs - Slides.
http://accelergy.mit.edu/slides.pdf.

[176] Yannan N. Wu, Amin A. Ghasemazar, and Po-An Tsai. Accelergy-Aladdin-
Plug-in. https://github.com/Accelergy-Project/accelergy-aladdin-plug-i
n.

[177] Wm. A. Wulf and Sally A. McKee. “Hitting the Memory Wall: Implications
of the Obvious”. In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995),
pp. 20–24. issn: 0163-5964. doi: 10.1145/216585.216588. url: https://do
i.org/10.1145/216585.216588.

[178] Xilinx. “Vivado Design Suite User Guide: High-Level Synthesis”. In: (Apr.
2017).

[179] Jun Yan and Wei Zhang. “Virtual registers: Reducing register pressure
without enlarging the register file”. In: Proceedings of High Performance
Embedded Architectures and Compilers (HiPEAC). 2007, pp. 57–70.

[180] Menghui Zheng and A. Albicki. “Low power and high speed multiplication
design through mixed number representations”. In: Computer Design:
VLSI in Computers and Processors, 1995. ICCD ’95. Proceedings., 1995
IEEE International Conference on. Oct. 1995, pp. 566–570. doi: 10.1109
/ICCD.1995.528924.

https://www.synopsys.com/designware-ip/technical-bulletin/5g-asips-communication-socs.html
https://www.synopsys.com/designware-ip/technical-bulletin/5g-asips-communication-socs.html
https://doi.org/10.1109/MM.2010.8
https://doi.org/10.1109/MM.2010.8
https://doi.org/10.1109/MICRO.2008.4771787
http://accelergy.mit.edu/slides.pdf
https://github.com/Accelergy-Project/accelergy-aladdin-plug-in
https://github.com/Accelergy-Project/accelergy-aladdin-plug-in
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/ICCD.1995.528924
https://doi.org/10.1109/ICCD.1995.528924

248 BIBLIOGRAPHY

[181] Zhen Zheng, Pengzhan Zhao, Guoping Long, Feiwen Zhu, Kai Zhu, Wenyi
Zhao, Lansong Diao, Jun Yang, and Wei Lin. FusionStitching: Boosting
Memory Intensive Computations for Deep Learning Workloads. 2020.
arXiv: 2009.10924 [cs.DC].

[182] Διόδωρος Σικελιώτης. The Library of History of Diodorus Siculus, Frag-
ments of Book XXVI. url: https://penelope.uchicago.edu/Thayer/E/Ro
man/Texts/Diodorus_Siculus/26*.html.

https://arxiv.org/abs/2009.10924
https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Diodorus_Siculus/26*.html
https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Diodorus_Siculus/26*.html

Publications

First Author
1. Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “SIMD made

explicit”. In: 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). July 2013,
pp. 330–337. doi: 10.1109/SAMOS.2013.6621142

2. Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “A Low-Energy
Wide SIMD Architecture with Explicit Datapath”. In: Journal of Signal
Processing Systems 80.1 (July 1, 2015), pp. 65–86. issn: 1939-8115. doi:
10.1007/s11265-014-0950-8. url: https://doi.org/10.1007/s11265-014-095
0-8

3. Luc Waeijen, Dongrui She, Henk Corporaal, and Yifan He. “Reduction
operator for wide-SIMDs reconsidered”. In: 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC). June 2014, pp. 1–6. doi: 10.1145
/2593069.2593198

4. Luc Waeijen, Savvas Sioutas, Yifan He, Maurice Peemen, and Corporaal
Henk. “Automatic Memory-Efficient Scheduling of CNNs”. In: Embedded
Computer Systems: Architectures, Modeling, and Simulation. SAMOS
2019. Lecture Notes in Computer Science. Vol. 11733. 2019. doi: https:
//doi.org/10.1007/978-3-030-27562-4_28

5. Luc Waeijen, Savvas Sioutas, Maurice Peemen, Menno Lindwer, and
Corporaal Henk. “ConvFusion: A Model for Layer Fusion in Convolutional
Neural Networks”. In: IEEE Access 9 (2021), pp. 168245–168267. doi:
10.1109/ACCESS.2021.3134930

6. Shihua Huang, Luc Waeijen, and Henk Corporaal. “How Flexible is Your
Computing System?” In: ACM Trans. Embed. Comput. Syst. (Mar. 2022).
issn: 1539-9087. doi: 10.1145/3524861. url: https://doi.org/10.1145/35
24861

7. Luc Waeijen, Hailong Jiao, Henk Corporaal, and Yifan He. “Datawidth-
Aware Energy-Efficient Multipliers: A Case for Going Sign Magnitude”. In:

https://doi.org/10.1109/SAMOS.2013.6621142
https://doi.org/10.1007/s11265-014-0950-8
https://doi.org/10.1007/s11265-014-0950-8
https://doi.org/10.1007/s11265-014-0950-8
https://doi.org/10.1145/2593069.2593198
https://doi.org/10.1145/2593069.2593198
https://doi.org/https://doi.org/10.1007/978-3-030-27562-4_28
https://doi.org/https://doi.org/10.1007/978-3-030-27562-4_28
https://doi.org/10.1109/ACCESS.2021.3134930
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861
https://doi.org/10.1145/3524861

250 BIBLIOGRAPHY

2018 21st Euromicro Conference on Digital System Design (DSD). Aug.
2018, pp. 54–61. doi: 10.1109/DSD.2018.00024

Co-authored
1. Dongrui She, Yifan He, Luc Waeijen, and Henk Corporaal. “OpenCL

code generation for low energy wide SIMD architectures with explicit
datapath”. In: 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). July 2013,
pp. 322–329. doi: 10.1109/SAMOS.2013.6621141

2. Yifan He, Maurice Peemen, Luc Waeijen, Erkan Diken, Mattia Fiumara,
Gerard Rauwerda, Henk Corporaal, and Tong Geng. “A configurable
SIMD architecture with explicit datapath for intelligent learning”. In:
International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS). July 2016, pp. 156–163. doi: 10.1109
/SAMOS.2016.7818343

3. Tong Geng, Luc Waeijen, Maurice Peemen, Henk Corporaal, and Yifan
He. “MacSim: A MAC-Enabled High-Performance Low-Power SIMD
Architecture”. In: 2016 Euromicro Conference on Digital System Design
(DSD). Aug. 2016, pp. 160–167. doi: 10.1109/DSD.2016.27

4. Mark Wijtvliet, Jos Huisken, Luc Waeijen, and Henk Corporaal. “Blocks:
Redesigning Coarse Grained Reconfigurable Architectures for Energy Effi-
ciency”. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). Sept. 2019, pp. 17–23. doi: 10.1109/FPL.2
019.00013

5. Mark Wijtvliet, Luc Waeijen, and Henk Corporaal. “Coarse grained recon-
figurable architectures in the past 25 years: Overview and classification”.
In: 2016 International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling and Simulation (SAMOS). July 2016, pp. 235–244.
doi: 10.1109/SAMOS.2016.7818353

6. Mark Wijtvliet, Luc Waeijen, Michaël Adriaansen, and Henk Corporaal.
“Reaching intrinsic compute efficiency requires adaptable micro-architec-
tures”. English. In: 9th International Workshop on Programmability
and Architectures for Heterogeneous Multicores (MULTIPROG 2016),
January 18, 2016, Prague, Czech Republic, MULTIPROG-2016 ; Confer-

https://doi.org/10.1109/DSD.2018.00024
https://doi.org/10.1109/SAMOS.2013.6621141
https://doi.org/10.1109/SAMOS.2016.7818343
https://doi.org/10.1109/SAMOS.2016.7818343
https://doi.org/10.1109/DSD.2016.27
https://doi.org/10.1109/FPL.2019.00013
https://doi.org/10.1109/FPL.2019.00013
https://doi.org/10.1109/SAMOS.2016.7818353

BIBLIOGRAPHY 251

ence date: 18-01-2016 Through 18-01-2016. Jan. 18, 2016, pp. 1–7. url:
http://research.ac.upc.edu/multiprog/

7. Michaël Adriaansen, Mark Wijtvliet, Roel Jordans, Luc Waeijen, and
Henk Corporaal. “Code Generation for Reconfigurable Explicit Datapath
Architectures with LLVM”. in: 2016 Euromicro Conference on Digital
System Design (DSD). Aug. 2016, pp. 30–37. doi: 10.1109/DSD.2016.88

8. Stef Louwers, Luc Waeijen, Mark Wijtvliet, Ruud Koolen, and Henk
Corporaal. “Multi-granular Arithmetic in a Coarse-Grain Reconfigurable
Architecture”. In: 2016 Euromicro Conference on Digital System Design
(DSD). Aug. 2016, pp. 599–606. doi: 10.1109/DSD.2016.98

9. Michel Van Lier, Luc Waeijen, and Henk Corporaal. “Bitwise Neural
Network Acceleration: Opportunities and Challenges”. In: 2019 8th
Mediterranean Conference on Embedded Computing (MECO). June 2019,
pp. 1–5. doi: 10.1109/MECO.2019.8760178

10. Savvas Sioutas, Sander Stuijk, Luc Waeijen, Twan Basten, Henk Corporaal,
and Lou Somers. “Schedule Synthesis for Halide Pipelines through Reuse
Analysis”. In: ACM Trans. Archit. Code Optim. 16.2 (Apr. 2019). issn:
1544-3566. doi: 10.1145/3310248. url: https://doi.org/10.1145/3310248

11. Mike Jongen, Luc Waeijen, Roel Jordans, Lech Jozwiak, and Henk Cor-
poraal. “Optimization through recomputation in the polyhedral model”.
English. In: Eighth International Workshop on Polyhedral Compilation
Techniques. 8th International Workshop on Polyhedral Compilation Tech-
niques (IMPACT 2018), January 23, 2018, Manchester, UK, IMPACT ;
Conference date: 23-01-2018 Through 23-01-2018. Jan. 22, 2018. url:
http://impact.gforge.inria.fr/impact2018

12. Jarno Brils, Luc Waeijen, and Arash Pourtaherian. “How to Exploit Spar-
sity in RNNs on Event-Driven Architectures”. In: Proceedings of the 24th
International Workshop on Software and Compilers for Embedded Systems.
SCOPES ’21. Eindhoven, Netherlands: Association for Computing Machin-
ery, 2021, pp. 17–22. isbn: 9781450391665. doi: 10.1145/3493229.3493302.
url: https://doi.org/10.1145/3493229.3493302

13. Lennart Bamberg, Arash Pourtaherian, Luc Waeijen, Anupam Chahar, and
Orlando Moreira. Synapse Compression for Event-Based Convolutional
Neural Network Accelerators. 2021. arXiv: 2112.07019 [cs.AR]

http://research.ac.upc.edu/multiprog/
https://doi.org/10.1109/DSD.2016.88
https://doi.org/10.1109/DSD.2016.98
https://doi.org/10.1109/MECO.2019.8760178
https://doi.org/10.1145/3310248
https://doi.org/10.1145/3310248
http://impact.gforge.inria.fr/impact2018
https://doi.org/10.1145/3493229.3493302
https://doi.org/10.1145/3493229.3493302
https://arxiv.org/abs/2112.07019

252 BIBLIOGRAPHY

Acknowledgments
Nothing worth achieving can be achieved alone. The thesis you have been reading
would not have come to be if not for the guidance, time, effort, and help, of many.
In this section I would like to express my gratitude to those who supported me
both in technical, and non-technical ways.

First of all I would like to thank my promotor, Henk Corporaal, from who I
learned an incredible amount during these past years. Henk genuinely loves
what he does, which supplies him with a seemingly unlimited source of new and
interesting ideas that have kept me inspired (and well occupied) throughout
my PhD. His ability to ask critical questions about work only just presented to
him, has never failed to amaze me, and is what has enabled me to develop as a
researcher.

Another person I can not thank enough is my copromotor, Yifan He, who I
first got to know in his role as supervisor during my master thesis work. He
enabled me to write my first paper which heavily built upon his and Dongrui
She’s work, and he continued to mentor me after I graduated and started my
PhD. Those early years were incredibly productive, and Yifan played a key role
in that success. I am extremely grateful for his guidance and kindness.

Additionally I would like to thank Prof. Marian Verhelst, Prof. Rob van Nieuw-
poort, Dr. Sander Stuijk, Dr. Maurice Peemen, and Dr. Savvas Sioutas, for being
part of my doctoral committee, and for their time and effort spent reviewing the
manuscript.

I would also like to thank my current employer, GrAI Matter Labs, for providing
me with the means required to finish my PhD next to my job, and their continued
support even through busy (but exciting!) times at the company. A special
thanks is in order to Menno Lindwer, who sacrificed a substantial amount of his
own time trying to get this stubborn perfectionist to finish his thesis. Without
him I would still be rewriting my tools and running additional superfluous
experiments.

I have had the questionable honour to see several generations of PhDs come and
go during my time at the university. Despite the obvious implication that I have
overstayed my welcome, I do consider it a privilege that I had the opportunity to
get to know so many smart and kind people. Alessandro, Ali, Amir & Hadi (these

254 ACKNOWLEDGMENTS

two can not be separated), Andreia, Ang, Andrew, Barry, Berk, Bram, Cedric,
Cumhur, Dongrui, Firew, Gabriela, Gagandeep, Gert-Jan, Hadi 2, Hamideh,
Ilde, Joost, João, Juan, Kanishkan, Kamlesh, Mahsa, Martijn, Martin, Maurice,
Mladen, Mohammad, Paul, Rasool, Reinier, Robinson, Roel, Ruben, Sajid,
Savvas, Shakith, Shreya, Shima, Shubendhu, Sven, Tong, Umar, Yifan, and
Zhenyu, thank all of you for making my time at the ES-group unforgettable. The
same holds for the staff of the ES-group, who had put up with me even longer
than anyone in the list above: Henk, Sander, Twan, Kees, Dip, Lech, Marc,
Hailong, and Marja. Finally a special thanks to Martijn for maintaining the
group’s servers and trusting me with more super powers than I should have had
access to, and Juan for motivating me to trade my office chair for the swimming
pool or bike a bit more often.

During my PhD, I also had the distinct honour to work with, and corrupt
the minds of, many clever students who I would like to retroactively apologize
to: Adrian Guillot, Boyan Liang, Chinmay Nemade, Esther Dommisse, Guus
Leijsten, Jarno Brils, Jiachi Zou, Kanishkan Vadivel, Matthias Schneider, Michaël
Adriaansen, Michel van Lier, Mike Jongen, Shihua Huang, Stef Louwers, Steven
Hunsche, Victor Fornade, and Zhenyuan Liu. A special thanks to Shihua Huang,
who spent many evening hours even after her graduation to help shape the work
presented in chapter 6.

I believe it to be utterly impossible to complete a PhD thesis and somewhat
maintain one’s sanity without regularly sharing a drink (or two) with good
company. Francesco and João, thanks for dragging me out of the office and
towards “kleine berg” in those early years, and teaching me some proper southern
European etiquette. The start of a Friday evening tradition that was carefully
continued with Savvas, Ilde, Alessandro, Sayandip, Kamlesh, Shima, Paul and
Barry. Our evenings at Loods, and the many home cooked Italian meals by
Chef Ale, have been as enjoyable as they have been necessary. In the context of
sharing drinks, also a word of gratitude to the volunteers of the Wahalla where
many hours and beers were spent recovering from the work week, in particular
with the infamous brothers Cox: Robbert, and my fellow Rustyman Marco.

I can not mention Marco and forget about my lunch-foster-group from SPS who
so kindly adopted me during many lunches: Thijs, Ivan, and Anton. Thanks for
all the laughs we shared, but for the sake of humanity and cats; let’s never start
a business together.

Being an expat in Eindhoven, I have also been blessed with the support of
my friends and family back in my home country Limburg. My loving parents,

255

who somehow always found the strength to support me, no matter how self-
detrimental my choices seemed to be. My brother Joop, his wife Marjolein, and
‘the rest of the gang’: Ruben, Stefanie, Manon, Lotte, and Ben, who took me in
many times when I had found my way back home from Eindhoven. Geert, my
oldest friend with whom I have explored both technology & life for as long as
I can remember, and hope to continue doing that with for a very long time to
come. And of course, Mieke and Jill, for supplying me with my regular dose of
sarcasm and witty humour when I needed it most.

Load-balancing is a difficult task, and there are some people that I dispropor-
tionally burdened with my problems and presence. Marco, our coffee break
conversations were never dull, and without your moral support I would have
been utterly lost on more than one occasion. Savvas, my Greek brother (he is the
smarter one), who is always there to serve as an amplifier for my pessimism (or
is it realism?), and remind me that nobody cares. And last but not least, Anouk,
who I arguably damaged the most by convincing her to start a relationship with
me during the most challenging years of my PhD journey. You have seen me
at my worst, when I was demotivated, agitated, and too tired to do anything
fun. It is beyond me how you managed to not only put up with me, but actively
help me find the required time and peace of mind to complete my PhD. You are
next, just look at what I did, and invert absolutely everything!

Finally, I do not want to pass up on this opportunity to thank each and everyone
who persistently asked me how my thesis was coming along. I profoundly hated
every time you asked, although that was kind of the point I suppose, so thank
you for that too.

καλά όλα αυτά!

Luc Waeijen
Eindhoven, September 2022

256 ACKNOWLEDGMENTS

About the Author
Luc Johannes Wilhelmus Waeijen was born in Roer-
mond, the Netherlands, on December 17, 1988. He
received the BSc degree in Electrical Engineering from
Eindhoven University of Technology in 2012.

In 2013 he obtained his MSc degree in Embedded
Systems from Eindhoven University of Technology.
The focus of his Master thesis was research into the
wide simd featured in the first chapters of this thesis.

After graduating, Luc joined the Electronic Systems
(es) group at Eindhoven University of Technology to

pursue a PhD in computer architecture, the results of which are presented in
this thesis.

In 2019 he left the es group and joined GrAI Matter Labs in Eindhoven. Currently
he is with the Architecture Group at GrAI Matter Labs, driving the design and
specification of data-driven AI processors.

	Abstract
	1 Introduction
	1.1 Problem Statement
	1.1.1 Compute Efficiency
	1.1.2 Data Efficiency
	1.1.3 Flexibility

	1.2 Contributions
	1.3 Thesis Overview

	I Compute Efficiency
	2 Wide-SIMD with Explicit Datapath
	2.1 Introduction
	2.2 Proposed Wide SIMD Architecture
	2.2.1 Datapath
	2.2.2 Interconnect
	2.2.3 CP Broadcast
	2.2.4 Predication
	2.2.5 Configurable Framework

	2.3 Experimental Setup
	2.3.1 Architecture Configurations
	2.3.2 Benchmarks

	2.4 Results and Analysis
	2.4.1 SIMD versus RISC
	2.4.2 Explicitly versus Implicitly Bypassed

	2.5 Related Work
	2.6 Conclusions

	3 Reduction Operator for Wide-SIMDs Reconsidered
	3.1 Introduction
	3.2 Context
	3.2.1 Target Architecture
	3.2.2 Data Layout
	3.2.3 Dedicated Reduction Hardware

	3.3 Software Approaches
	3.3.1 Straightforward Reduction
	3.3.2 Pipelined Reduction
	3.3.3 Diagonal Access Reduction

	3.4 Analysis and Evaluation
	3.5 Related Work
	3.6 Conclusions

	4 Datawidth-Aware Multiplication
	4.1 Introduction
	4.2 Viability of Datawidth-Aware Multipliers
	4.2.1 Relation between Energy and Operand Properties
	4.2.2 Operand Width Distribution
	4.2.3 Relation between Energy and Operand Width

	4.3 Datawidth-Aware Multiplier Designs
	4.3.1 Subword mode — Separated
	4.3.2 Subword mode — Integrated
	4.3.3 Alternative Data Representation

	4.4 Evaluation
	4.4.1 General Observations
	4.4.2 Subword — Separated
	4.4.3 Subword — Integrated
	4.4.4 Sign Magnitude

	4.5 Related Work
	4.6 Conclusions

	II Data Efficiency
	5 ConvFusion
	5.1 Introduction
	5.2 Related Work
	5.3 Scheduling Space
	5.3.1 Loop Reordering
	5.3.2 Loop Tiling
	5.3.3 Store & Compute Levels
	5.3.4 Layer Fusion
	5.3.5 Recomputation
	5.3.6 Formal Schedule

	5.4 Cost Models
	5.4.1 Prerequisites
	5.4.2 Internal Memory Footprint
	5.4.3 External Memory Accesses
	5.4.4 Compute
	5.4.5 Layer Fusion
	5.4.6 Complete Network Model

	5.5 Automated Design Space Exploration
	5.5.1 Space Traversal
	5.5.2 ConvFuser

	5.6 Model Validation & Evaluation
	5.6.1 Micro benchmarks
	5.6.2 Real World Networks

	5.7 Energy Consumption
	5.7.1 Single-Bank SRAM
	5.7.2 Multi-Bank SRAM
	5.7.3 Multi-Level SRAM

	5.8 Discussion & Open Issues
	5.8.1 Intelligent Design Space Exploration
	5.8.2 Targeting Real Hardware
	5.8.3 Schedule Space Limitations

	5.9 Conclusions

	III Flexibility
	6 Compute System Flexibility
	6.1 Introduction
	6.2 Survey of Flexibility in Literature
	6.2.1 Definitions of flexibility as an intrinsic static property
	6.2.2 Definitions of flexibility as an extrinsic mutable property

	6.3 Defining Flexibility
	6.3.1 Qualitative Definition
	6.3.2 Quantitative Definition
	6.3.3 Flexibility Scope

	6.4 Normalization to Intrinsic Work
	6.5 Experimental Setup
	6.5.1 Selected Systems
	6.5.2 Benchmark Set
	6.5.3 Compiler Directives
	6.5.4 Intrinsic Workload Estimator
	6.5.5 Applied Methodologies
	6.5.6 Customized Processors

	6.6 Results and Analysis
	6.6.1 Commercial Off the Shelf Processors
	6.6.2 Customized Processors

	6.7 Comparison with Existing Definitions
	6.7.1 Flexibility and Versatility
	6.7.2 Flexibility and VersaBench Versatility

	6.8 Discussion & Open Issues
	6.8.1 From qualitative to quantitative
	6.8.2 Intrinsic Workload
	6.8.3 The most flexible machine?

	6.9 Conclusions

	7 Conclusions & Future Work
	7.1 Conclusions
	7.2 Future Work

	A SIMD Instruction Set
	B Flexibility Related Lemmas
	Abbreviations
	Bibliography
	Acknowledgments
	About the Author

