652,270 research outputs found

    My friend far far away : a random field approach to exponential random graph models

    Get PDF
    We explore the asymptotic properties of strategic models of network formation in very large populations. Specifically, we focus on (undirected) exponential random graph models. We want to recover a set of parameters from the individuals' utility functions using the observation of a single, but large, social network. We show that, under some conditions, a simple logit‐based estimator is coherent, consistent and asymptotically normally distributed under a weak version of homophily. The approach is compelling as the computing time is minimal and the estimator can be easily implemented using pre‐programmed estimators available in most statistical packages. We provide an application of our method using the Add Health database

    Map-Based Transparent Persistence for Very Large Models

    Get PDF
    International audienceThe progressive industrial adoption of Model-Driven Engineering (MDE) is fostering the development of large tool ecosystems like the Eclipse Modeling project. These tools are built on top of a set of base technologies that have been primarily designed for small-scale scenarios, where models are manually developed. In particular, efficient runtime manipulation for large-scale models is an under-studied problem and this is hampering the application of MDE to several industrial scenarios.In this paper we introduce and evaluate a map-based persistence model for MDE tools. We use this model to build a transparent persistence layer for modeling tools, on top of a map-based database engine. The layer can be plugged into the Eclipse Modeling Framework, lowering execution times and memory consumption levels of other existing approaches. Empirical tests are performed based on a typical industrial scenario, model-driven reverse engineering, where very large software models originate from the analysis of massive code bases. The layer is freely distributed and can be immediately used for enhancing the scalability of any existing Eclipse Modeling tool

    File Allocation and Join Site Selection Problem in Distributed Database Systems.

    Get PDF
    There are two important problems associated with the design of distributed database systems. One is the file allocation problem, and the other is the query optimization problem. In this research a methodology that considers both these aspects is developed that determines the optimal location of files and join sites for given queries simultaneously. Using this methodology, three different mixed integer programming models that describe three cases of the file allocation and join site selection problem are developed. Dual-based procedures are developed for each of the three mixed integer programming models. Extensive computational testing is performed which shows that the dual-based algorithms developed are able to generate solutions which are very close to the optimal. Also, these near optimal solutions are found very quickly, even for large scale problems

    Probing the Large Magellanic Cloud's recent chemical enrichment history through its star clusters

    Get PDF
    We present Washington system colour-magnitude diagrams (CMDs) for 17 practically unstudied star clusters located in the bar as well as in the inner disc and outer regions of the Large Magellanic Cloud (LMC). Cluster sizes were estimated from star counts distributed throughout the entire observed fields. Based on the best fits of theoretical isochrones to the cleaned (CT1,T1)(C-T_1,T_1) CMDs, as well as on the δT1\delta T_1 parameter and the standard giant branch method, we derive ages and metallicities for the cluster sample. Four objects are found to be intermediate-age clusters (1.8-2.5 Gyr), with [Fe/H] ranging from -0.66 to -0.84. With the exception of SL263, a very young cluster (\sim 16 Myr), the remaining 12 objects are aged between 0.32 and 0.89 Gyr, with their [Fe/H] values ranging from -0.19 to -0.50. We combined our results with those for other 231 clusters studied in a similar way using the Washington system. The resulting age-metallicity relationship shows a significant dispersion in metallicities, whatever age is considered. Although there is a clear tendency for the younger clusters to be more metal-rich than the intermediate ones, we believe that none of the chemical evolution models currently available in the literature reasonably well represents the recent chemical enrichment processes in the LMC clusters. The present sample of 17 clusters is part of our ongoing project of generating a database of LMC clusters homogeneously studied using the Washington photometric system and applying the same analysis procedureComment: 11 pages, 20 figures, 3 tables, Accepted for publication in MNRA

    Similarity search and data mining techniques for advanced database systems.

    Get PDF
    Modern automated methods for measurement, collection, and analysis of data in industry and science are providing more and more data with drastically increasing structure complexity. On the one hand, this growing complexity is justified by the need for a richer and more precise description of real-world objects, on the other hand it is justified by the rapid progress in measurement and analysis techniques that allow the user a versatile exploration of objects. In order to manage the huge volume of such complex data, advanced database systems are employed. In contrast to conventional database systems that support exact match queries, the user of these advanced database systems focuses on applying similarity search and data mining techniques. Based on an analysis of typical advanced database systems — such as biometrical, biological, multimedia, moving, and CAD-object database systems — the following three challenging characteristics of complexity are detected: uncertainty (probabilistic feature vectors), multiple instances (a set of homogeneous feature vectors), and multiple representations (a set of heterogeneous feature vectors). Therefore, the goal of this thesis is to develop similarity search and data mining techniques that are capable of handling uncertain, multi-instance, and multi-represented objects. The first part of this thesis deals with similarity search techniques. Object identification is a similarity search technique that is typically used for the recognition of objects from image, video, or audio data. Thus, we develop a novel probabilistic model for object identification. Based on it, two novel types of identification queries are defined. In order to process the novel query types efficiently, we introduce an index structure called Gauss-tree. In addition, we specify further probabilistic models and query types for uncertain multi-instance objects and uncertain spatial objects. Based on the index structure, we develop algorithms for an efficient processing of these query types. Practical benefits of using probabilistic feature vectors are demonstrated on a real-world application for video similarity search. Furthermore, a similarity search technique is presented that is based on aggregated multi-instance objects, and that is suitable for video similarity search. This technique takes multiple representations into account in order to achieve better effectiveness. The second part of this thesis deals with two major data mining techniques: clustering and classification. Since privacy preservation is a very important demand of distributed advanced applications, we propose using uncertainty for data obfuscation in order to provide privacy preservation during clustering. Furthermore, a model-based and a density-based clustering method for multi-instance objects are developed. Afterwards, original extensions and enhancements of the density-based clustering algorithms DBSCAN and OPTICS for handling multi-represented objects are introduced. Since several advanced database systems like biological or multimedia database systems handle predefined, very large class systems, two novel classification techniques for large class sets that benefit from using multiple representations are defined. The first classification method is based on the idea of a k-nearest-neighbor classifier. It employs a novel density-based technique to reduce training instances and exploits the entropy impurity of the local neighborhood in order to weight a given representation. The second technique addresses hierarchically-organized class systems. It uses a novel hierarchical, supervised method for the reduction of large multi-instance objects, e.g. audio or video, and applies support vector machines for efficient hierarchical classification of multi-represented objects. User benefits of this technique are demonstrated by a prototype that performs a classification of large music collections. The effectiveness and efficiency of all proposed techniques are discussed and verified by comparison with conventional approaches in versatile experimental evaluations on real-world datasets

    Similarity search and data mining techniques for advanced database systems.

    Get PDF
    Modern automated methods for measurement, collection, and analysis of data in industry and science are providing more and more data with drastically increasing structure complexity. On the one hand, this growing complexity is justified by the need for a richer and more precise description of real-world objects, on the other hand it is justified by the rapid progress in measurement and analysis techniques that allow the user a versatile exploration of objects. In order to manage the huge volume of such complex data, advanced database systems are employed. In contrast to conventional database systems that support exact match queries, the user of these advanced database systems focuses on applying similarity search and data mining techniques. Based on an analysis of typical advanced database systems — such as biometrical, biological, multimedia, moving, and CAD-object database systems — the following three challenging characteristics of complexity are detected: uncertainty (probabilistic feature vectors), multiple instances (a set of homogeneous feature vectors), and multiple representations (a set of heterogeneous feature vectors). Therefore, the goal of this thesis is to develop similarity search and data mining techniques that are capable of handling uncertain, multi-instance, and multi-represented objects. The first part of this thesis deals with similarity search techniques. Object identification is a similarity search technique that is typically used for the recognition of objects from image, video, or audio data. Thus, we develop a novel probabilistic model for object identification. Based on it, two novel types of identification queries are defined. In order to process the novel query types efficiently, we introduce an index structure called Gauss-tree. In addition, we specify further probabilistic models and query types for uncertain multi-instance objects and uncertain spatial objects. Based on the index structure, we develop algorithms for an efficient processing of these query types. Practical benefits of using probabilistic feature vectors are demonstrated on a real-world application for video similarity search. Furthermore, a similarity search technique is presented that is based on aggregated multi-instance objects, and that is suitable for video similarity search. This technique takes multiple representations into account in order to achieve better effectiveness. The second part of this thesis deals with two major data mining techniques: clustering and classification. Since privacy preservation is a very important demand of distributed advanced applications, we propose using uncertainty for data obfuscation in order to provide privacy preservation during clustering. Furthermore, a model-based and a density-based clustering method for multi-instance objects are developed. Afterwards, original extensions and enhancements of the density-based clustering algorithms DBSCAN and OPTICS for handling multi-represented objects are introduced. Since several advanced database systems like biological or multimedia database systems handle predefined, very large class systems, two novel classification techniques for large class sets that benefit from using multiple representations are defined. The first classification method is based on the idea of a k-nearest-neighbor classifier. It employs a novel density-based technique to reduce training instances and exploits the entropy impurity of the local neighborhood in order to weight a given representation. The second technique addresses hierarchically-organized class systems. It uses a novel hierarchical, supervised method for the reduction of large multi-instance objects, e.g. audio or video, and applies support vector machines for efficient hierarchical classification of multi-represented objects. User benefits of this technique are demonstrated by a prototype that performs a classification of large music collections. The effectiveness and efficiency of all proposed techniques are discussed and verified by comparison with conventional approaches in versatile experimental evaluations on real-world datasets

    Distributed Information Retrieval using Keyword Auctions

    Get PDF
    This report motivates the need for large-scale distributed approaches to information retrieval, and proposes solutions based on keyword auctions
    corecore