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Abstract

We explore the asymptotic properties of strategic models of network formation
in very large populations. Specifically, we focus on (undirected) exponential
random graph models (ERGMs). We want to recover a set of parameters from
the individuals’ utility functions using the observation of a single, but large,
social network. We show that under some conditions, a simple logit-based esti-
mator is coherent, consistent and asymptotically normally distributed under a
weak version of homophily. The approach is compelling as the computing time
is minimal and the estimator can be easily implemented using pre-programmed
estimators available in most statistical packages. We provide an application of
our method using the Add Health database.
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1. Introduction

How do social networks form? Specifically, how can we measure the influence

of an individual’s socioeconomic characteristics on the identity of his peers?

We know that many social networks exhibit strong racial or religious segre-

gation (see for instance Echenique & Fryer Jr (2007), Watts (2007), and Mele

(2016)). This raises many interesting questions regarding the cause of this seg-

regation. For instance, we would like to be able to distinguish between the

impact of individuals’ characteristics (e.g. race) and the impact of individuals’

positions in the networks (e.g. popularity).

The shape of social networks also have measurable effects on individuals’

choices. Many studies show that an individual’s peers can have a significant in-

fluence on his actions, ranging from unhealthy consumption choices (e.g. Fortin

& Yazbeck (2015) and the references therein) to labor-force participation (e.g.

Rolfe et al. (2013), Patacchini & Zenou (2012) and Mourifié & Siow (2014)).1

However, since most social networks are endogenously formed, the estimated

influence of peers is likely to be biased.2 Understanding how the networks are

formed could allow one to control for this endogeneity and suggest policy in-

struments that would help influence network formation processes.

In this paper, we use Mele (2016)’s network formation model, for which the

joint distribution is an exponential random graph model (ERGM). The estima-

tion of ERGMs is typically challenging due to the untractable denominator of

the joint distribution. We use random field theory to provide a simple pseudo

maximum likelihood estimator (as in Besag (1975) and Strauss & Ikeda (1990)),

based on the product of the conditional distributions. To our knowledge, this

paper is the first to apply random field theory to empirical models of network

formation. The approach is promising and has been recently employed by Leung

(2014) in a similar context. Our approach only requires the observation of a

1See De Paula et al. (2016) and Boucher & Fortin (2016) for recent reviews.
2The literature on peer effects has recently explicitly considered the endogeneity of social

networks. See, for example, Badev (2013), Boucher (2016), Goldsmith-Pinkham & Imbens
(2013) and Hsieh & Lee (2016).
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single, potentially very large, network.

Our model allows for a large set of admissible preferences, which are char-

acterized by intuitive conditions. Specifically, we show that our estimator is

consistent and asymptotically normally distributed provided that individuals’

preferences exhibit a weak version of homophily. Homophily is one of the most

robust empirical characteristics of social networks. It formalizes the observa-

tion that similar individuals are more likely to interact with each other. As

homophily is featured in both theoretical (e.g. Boucher (2015), Bramoullé et al.

(2012), and Currarini et al. (2009, 2010)), and empirical (e.g. Mele (2016),

and Christakis et al. (2010)) models of network formation, our methodology is

applicable to many existing models of network formation. We apply this new

methodology to the formation of American teenagers’ friendship networks.

A fundamental challenge in estimating a network formation process is the

highly dependent nature of most socio-economic relationships. Consider a friend-

ship: The probability that Alice and Bob are friends depends on their individual

characteristics. However, it may also depend on Bob’s friendship with Char-

lotte (who perhaps does not like Alice). The probability that Alice and Bob are

friends may then depend on Charlotte’s individual characteristics (as well as on

her other friendships).

If individuals have homophilic preferences, the probability that Alice and

Bob are friends should be primarily influenced by individuals similar to them.

If Alice and Bob are high-school teenagers, for instance, the probability that

they become friends increases if they go the the same school, or if they attend

the same classes. Accordingly, if Bob and Charlotte are friends, there is a

greater probability that they go to the same school, or at least live in the same

country. Donald, a elderly man, living in a different country (hence having very

different individual characteristics than Alice, Bob or Charlotte) probably does

not influence the probability that Alice and Bob become friends. We generalize

this argument and show that homophily implies a generalization of the φ-mixing

property used in time-series and spatial econometric models. This fact allows us

to define a consistent estimation strategy based on a pseudo maximum likelihood
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estimator.

This paper contributes to the empirical literature on strategic network for-

mation.3 Some papers require the observation of many (mostly independent)

social networks (e.g. Boucher (2015), Currarini et al. (2009, 2010) and Sheng

(2014)). One limit of these approaches, however, is that they require the ob-

servation of many (an asymptotically infinite number of) independent social

networks, which is not always available in existing databases. As the data re-

quirement is large, the computational burden is also important.

Accordingly, many recent approaches only require the observation of a sin-

gle network, at one point in time (e.g. Graham (2016a) Leung (2014, 2015)

and de Paula et al. (2016)). In particular, a significant part of that literature

focusses on exponential random graph models (ERGMs, which we formally de-

fine in the next section). Chandrasekhar & Jackson (2014, 2015), as well as

Mele (2016), followed by Badev (2013), present strategic models of networks

formation leading to ERGMs, and focus on Bayesian inference.4

Chandrasekhar & Jackson (2014, 2015) focus on asymptotic theory and

present conditions on the structure of the network which allow for a consis-

tent estimation of the parameters. By focussing on subgraphs, and under the

assumption that the network is sparse, they develop a simple estimator, based

on the iterative counting of subgraphs.

Alternatively, Graham (2016a) and Graham (2016b) focus on logit-based

models allowing for individual fixed unobserved characteristics. A novative fea-

ture in Graham (2016b) is the focus on a dynamic setting where links can be

dependent on the previous state of the network. He shows that conditional

likelihood, for links that are stable across time, has a tractable denominator.

We contribute to this literature by providing an explicit, easy-to-implement

Pseudo-MLE that requires the observation of only one social network, at one

point in time. We introduce a weakened notion of homophily, and show that

it implies that our Pseudo-MLE is consistent and asymptotically normally dis-

3See Chandrasekhar (2016) and for an excellent recent review.
4See also Mele & Zhu (2016).
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tributed. To do so, we use the law of large numbers and central limit theorem,

following Jenish & Prucha (2009).

The rest of the paper is organized as follows. In Section 2, we present our mi-

croeconomic and econometric framework. In Section 3, we review some elements

of random fields theory. In Section 4, we derive the asymptotic distribution of

our estimator, and in Section 5, we define a class of network formation models

suited to our econometric framework. In section 6, we discuss the identification

of the model. In Section 7, we provide an application using the Add Health

database. We conclude in Section 8.

2. The economy

Let N = {1, ..., n} be the set of individuals. Each individual is characterized

by a non-stochastic vector of quantitative characteristics xi = (x1
i , ..., x

T
i ) ∈

X ⊂ RT , where T ≥ 1. We define the distance between two individuals as

d(i, j) = d(xi, xj), where d is a distance on RT .5

In general, the choice of this distance function will be context-dependent

(see Example 1 and our empirical application in Section 7). In particular,

the distance can represent spatial preferences of individuals.6 We use X =

(x1, ..., xn) ∈ Xn to denote the matrix of individual characteristics.

We assume that individuals interact in an undirected social network. Let

m = n(n−1)
2 be the number of possible unordered pairs of individuals (i, j) for

i 6= j in the economy. The set of all pairs will be denoted by Sm, with typical

elements s, r ∈ Sm. For any pair (i, j), we let wij = 1 if i ∈ N and j ∈ N are

linked by a socio-economic relationship (e.g. friendship), and wij = 0 otherwise.

The collection of all relationships, the network, is noted Wm = {ws}s∈Sm
.

For any subset of pairs Ŝ ⊂ Sm, we note the collection of relationships in Ŝ as

WŜ = {ws}s∈Ŝ . Finally, the set of relationships in Sm \ {s} is noted by Wm,−s.

5The model can be easily extended to include stochastic and qualitative characteristics, as
long as they do not affect the distance. This is discussed in Section 7.

6See Henry & Mourifié (2013) for a discussion of spatial preferences in Euclidean space.
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We assume that the network Wm is endogenous and determined as a func-

tion of individuals’ utilities. An individual has preferences over the set of

characteristics and the network structure in the economy: ui(Wm; θ), where

θ ∈ (θ1, ..., θK) ∈ Θ is the set of parameters to be estimated. We assume that

Θ is a compact subset of RK , for K ≥ 1. Here, the utility function is best inter-

preted in non-transferable utility setting in the sense that we do not explicitly

model transfers between individuals. Assumption 1 resumes the structure of an

individual’s preferences.

Assumption 1 (Preferences). For any i, j ∈ N , there exists a function
hij(Wm,−ij ; θ), three times continuously differentiable in θ, such that:

ui(1,Wm−ij ; θ)− ui(0,Wm−ij ; θ) = uj(1,Wm−ij ; θ)− uj(0,Wm−ij ; θ)

= hij(Wm,−ij ; θ).

Note that the function hij(Wm,−ij ; θ) can be interpreted as the value of a socio-

economic relationship between i and j and is assumed to be symmetric with

respect to its indices. The payoffs hij can be best interpreted as the payoff of

a local public good, equally valued by i and j. This assumption is imposed for

identifiability issues since we focus on undirected network.7

We will also make the following assumption:

Assumption 2 (Preferences). For all pair (i, j), we assume that there exist
χij(θ), {χ̃ij,ik(θ)}k and {χ̃ij,jk(θ)}k, symmetric with respect to their indices,
such that:

hij(Wm,−ij , θ) = χij(θ) +
∑
k 6=i,j

χ̃ij,ik(θ)wik + χ̃ij,jk(θ)wjk,

where χ̃ij,ik(θ) = 0 whenever max{d(i, j), d(i, k)} > d̄ where d̄ > 0 is an arbi-
trarily large (but finite) number, and similarly for χ̃ij,jk(θ).

The assumption that χ̃ij,ik(θ) = 0 whenever max{d(i, j), d(i, k)} > d̄ implies

that the individuals cannot receive positive payoffs from an infinite number of

7For undirected networks, one only observes if a link, say between i and j, is created or
not. If no link is observed, it is therefore impossible to identify if i or j (or both) “refused the
link”. Then, if the payoffs were non-symmetric, one can only identify min{hij , hji}.

5



links and ensures that hij(Wm,−ij , θ) < ∞.8 Note that this is weaker than

assuming that individuals only have a finite number of links, as for instance in

de Paula et al. (2016). Indeed, at this point, individuals may have an infinite

number of links, however, only a finite number of those links may affect the

payoff of any particular link. We will discuss the implications of this assumption

in detail in section 6.2.

The specific structure in assumption 2 serves two purposes. First, fol-

lowing Mele (2016), it guarantees the existence of a potential function (Mon-

derer & Shapley, 1996), i.e. a function Q(Wm) such that for all i, j ∈ N ,

Q(1,Wm,−ij ; θ)−Q(0,Wm,−ij ; θ) = hij(Wm,−ij ; θ). The potential function will

be developed explicitly in proposition 1 in section 3.

Second, assumption 2 allows for the definition of an estimator based on the

product of the marginal distributions in the spirit of Besag (1975) and Strauss &

Ikeda (1990). A formal treatment is provided in section 3. Example 1 illustrates.

Example 1. We will use the following as a running example:

hij(Wm,−ij ; θ) = −βd(i, j) +
∑
k 6=i,j

αikwik + αjkwjk

where αik = α if d(i, k) < d̄ and 0 otherwise, and where θ ≡ (α, β). Note that
here, we assume that xi is unidimensional so that d(i, j) = |xi − xj |. We can
also write:

hij(Wm,−ij ; θ) =
{
αni(Wm,−ij) + αnj(Wm,−ij)− β|xi − xj |

}
,

where ni(Wm,−ij) and nj(Wm,−ij) are bounded and represent the number of
links of i and j in the network, excluding the potential link between i and j.
Then, if α > 0, as an individual creates links, it increases the incentive to
create additional links.

One can verify that the implied utility function is:

ui(Wm; θ) =
∑
j 6=i

−wijβ|xi − xj |+
∑
j 6=i

∑
k<j,k 6=i

αikwijwik + αjkwijwjk.

since αij = αik for all j, k 6= i under assumption 2.

8This is true under assumption 5, presented in section 4. We thank an anonymous referee
for this pointing this out to us.
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Then, i receives direct cost (if β > 0) of linking equal to β|xi − xj |, but
benefits (if α > 0) from positive spillover form his other links (i.e. αwijwik), as
well as from j’s other links (i.e. αwijwik).

In other words, in this example, the value of a link between i and j decreases
in the distance between them, but increases with the number of friends they have
and can be interpreted as preferences for popularity (see Mele (2016)).

Moreover, note that assumption 2 holds, since we can define χij(θ) = −β|xi−
xj | and χ̃ij,ik(θ) = αik and χ̃ij,jk(θ) = αjk. �

The link formation process follows directly from Mele (2016) where he presents

an intuitive stochastic meeting process and assumes that the data is drawn from

its stationary distribution.9 Starting from any network W 0
m, the meeting process

goes as follows for t = 1, ...,∞:10

1. Two individuals i and j meet with probability λ(ij;W t−1
m,−ij) > 0;

2. Given such meeting, preferences are affected by a temporary, idiosyncratic

shock εtij that affects the value of a link between i and j. The shock εtij

is assumed to follow a standardized logistic distribution;11

3. Individuals i and j decide to update the status of their socio-economic

relationship, letting wtij = 1 iff hij(W
t−1
m,−ij ; θ) + εtij ≥ 0.

Note that since preferences and shocks are symmetric (i.e. hij = hji and

εtij = εtji), both individuals must agree in step 3. Here, the εtij are tempo-

rary idiosyncratic shocks on the value of friendships and can be interpreted

as temporary variations of the value of the local public good (i.e. friendship)

produced by i and j.

Mele (2016) showed that this process converges to a stationary distribution,

which can be written as:

P(Wm|θ) =
exp{Q(Wm; θ)}∑
W ′m

exp{Q(W ′m; θ)}
(1)

9See also Badev (2013) for an equilibrium interpretation.
10The meeting process is in fact slightly adapted to our setting and notation, assuming a

non-directed network, under assumption 1. Note also that the process can be seen as a logit
response game (Blume, 1993) on a game where each pair acts as a player.

11Note that this is equivalent to assuming that there are iid shock (ε0ij , ε
1
ij) distributed

according to a type 1 extreme value distribution and such that ui(Wm; θ)+wijε
1
ij+(1−wij)ε0ij ,

and similarly for j.

7



where Q(Wm) is the potential function.

The denominator in (1) is intractable as it sums over the set of all possible

network, which has a cardinality of 2m. This challenge has been the focus

of most of the recent literature on empirical network formation models (see

Chandrasekhar (2016) for a discussion). We will discuss how we will deal with

this intractability in the next section.

3. (Markov) Random Fields

In this section, we briefly introduce some basic definitions and results from

the theory of random fields.12

Definition 1. The random field {ws,m;xs ∈ XSm
,m ∈ N} is defined on the

probability space (Ω,F ,P), where Ω = {0, 1}m, F is a σ-algebra on Ω, and P is
a probability measure on Ω.

In essence, a random field is a list of random numbers whose indices are mapped

onto a space (here, of T dimensions). It can also be viewed as a generalization

of a stochastic process. For a stochastic process, observations are located in

“time.” Here, observations (i.e. pairs) are located in X (see Besag (1974)).13

In order to describe the dependence structure of the random field, it is

convenient to define a neighbourhood, for each pairs. Formally, a neighbourhood

in a random field is defined as follows:

Definition 2. A neighbourhood Ns ⊂ Sm \ {s} of a pair s ∈ Sm is defined as
the smallest collection of pairs such that

P(ws|Wm,−s) = P(ws|WNs
).

Formally, assumption 2 allows for a natural definition of neighbourhoods on

{ws,m;xs ∈ XSm
,m ∈ N}. Define neighboured pairs as those that share an

individual, or mathematically: Ns = {r ∈ Sm \ {s} : r1 ∈ s or r2 ∈ s}, as

illustrated in Figure 1.14

12Most of the results presented are rarely treated in econometrics textbooks, but are stan-
dard in statistical mechanics and spatial statistics. We refer the interested reader to Cressie
(2015) and Koller & Friedman (2009) for additional readings.

13The position of the pairs in X is formally described in the next section.
14This is also the definition used by Graham (2016b).
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Figure 1: A Pair’s Neighbours

Consider the set of all pairs: Sm = {(i, j), (i, k), (i, l), (j, k), (j, l), (k, l)}. The neighbours of

the pair (i, j) are the pairs {(i, k), (j, k), (i, l), (j, l)}, but not the pair (k, l) since (i, j) and

(k, l) have no individuals in common. Then, N(i,j) = {(i, k), (j, k), (i, l), (j, l)}.

Then, under Assumption 2, we can therefore have:

P(wij |Wm,−ij) = P(wij |WNij
).

where Nij = {ik, jk}k 6=i,j .

A random field, joint with the collection of neighbourhoods, is called a (local)

Markov random field.

Now that we have laid down the basic definitions, we can go back to the

intractability of the denominator in equation (1). This intractability makes the

use of the MLE approach, based on the maximization of lnP(Wm|θ) with respect

to θ, very difficult.

In this paper, we follow the approach of Besag (1975) and Strauss & Ikeda

(1990), and present an estimator based on the conditional probabilities, i.e.

P(ws|Wm,−s; θ) which would be more tractable.

Indeed, Hammersley & Clifford (1971) and Besag (1974) give necessary and

sufficient conditions on (1) under which all the conditional distributions are

(i) valid, in the sense of being compatible with the joint distribution P(Wm|θ)

and (ii) tractable, in the sense that they do not depend on the intractable

denominator presents in equation (1).

The following result is direct application of Hammersley & Clifford (1971)
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and Besag (1974) recast into our framework:

Proposition 1. Suppose that Assumptions 1 and 2 hold, then the potential
function can be written as:

Q(Wm; θ) =
∑
s

χs(θ)ws +
∑
s

∑
r<s:r∈Ns

χr,s(θ)wrws, (2)

where r < s is for an arbitrary ordering of the pairs, and the conditional proba-
bilities are such that:

P(ws|Wm,−s; θ) =
exp {wshs(Wm,−s, θ)}

1 + exp {hs(Wm,−s, θ)}
(3)

See also Lee et al. (2001) for a more recent treatment. Example 2 illustrates.

Example 2 (Example 1 continued). We have:

hs(Wm,−s; θ) = −β|xs1 − xs2 |+
∑
r∈Ns

αwr.

The potential function is therefore:

Q(Wm; θ) =
∑
s

−wsβ|xs1 − xs2 |+
∑
s

∑
r<s:r∈Ns

αwswr.

�

Proposition 1 give us the true conditional probabilities which do not depend

on the intractable denominator.

We can therefore define the following pseudo likelihood (PL) function, in the

spirit of Besag (1975) and Strauss & Ikeda (1990):

PL =
∑
s

(
wshs(Wm,−s; θ)− ln[1 + exp{hs(Wm,−s; θ)}]

)
(4)

which is not the true log-likelihood function lnP(Wm|θ), unless we have full

independence over the random field.

Since the conditional probabilities are well specified, we may expect the

maximum of the the PL to be a consistent estimator of the true parameter θ0

given that it is unique. Besag (1975) provides an heuristic argument in that

direction. However, a formal proof of the general case is far from trivial as it

requires the use of limits theorems that apply to dependent random fields.
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In what follows, we use recent results from Jenish and Prucha (2009), specif-

ically central limit theorems and uniform laws of large numbers in order to show

under which conditions the consistency and asymptotic normality of the esti-

mator obtained by maximizing the the PL in (4). Following, Jenish and Prucha

(2009) we assume an increasing domain asymptotic framework.

4. Limited dependence theorems

In this section, we present two theorems for dependent observations. We

show that under φ-mixing, the true value θ0 ∈ Θ can be consistently estimated

using the simple PL in (4). These theorems are useful since, as we show in

Section 4, there exist simple conditions on hij that imply φ-mixing.15

To clarify the exposition, we use the following simplifying notation:

qs,m(ws,m|Wm,−s, θ) = ws,mhs(Wm,−s; θ)

− ln[1 + exp{hs(Wm,−s; θ)}]

We also use qs,m(θ) = qs,m(ws,m|Wm,−s, θ) when there is no ambiguity. Maxi-

mizing the PL is equivalent to maximize:

Lm(θ) = κ(m)−1
∑
s∈Sm

qs,m(ws,m|Wm,−s, θ). (5)

where κ(m) is a scaling parameter which determines the rate of convergence of

our estimator. In general κ(m) will be related to the structure of the network

which depends on the specification of the payoff functions hij . κ(m) should

carefully be chosen to avoid that limm→∞ ELm(θ) is infinite (i.e., +/ −∞) or

a trivial function of θ, e.g limm→∞ ELm(θ) = 0. Otherwise, our identification

condition (see assumption 4 below) will be trivially violated.16 In section 5, we

provide conditions on hij such that κ(m) = O(
√
m).

15Our results can easily be adapted to other mixing definitions, such as α-mixing, as was
subsequently done by Leung (2014).

16We thank an anonymous referee for pointing this important issue to us.
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We define the position of a pair s in X as the average point between the

positions of s1 and s2 in X , i.e. xs ∈ X such that xs =
xs1

+xs2

2 .17 Using

this definition, the distance between two pairs r and s is equal to d(s, r) =

d(xr, xs) = d(
xs1+xs2

2 ,
xr1

+xr2

2 ). We also define XSm
≡ {xs : s ∈ Sm} as the set

of pairs’ positions in X .

We now turn to the dependence structure of the random field {qs,m(θ);xs ∈

XSm
,m ∈ N}, defined on the probability space (Ωq,Fq,Pq), where Ωq = R, with

associated σ-algebra Fq and probability measure Pq. For any two events A ∈ A

and B ∈ B, where A,B are sub-σ-algebras of F , the φ-mixing coefficient is given

by

φ(A,B) = sup{|P(A|B)− P(A)|, A ∈ A, B ∈ B,P(B) > 0}.

As discussed in Section 3, this is analagous to standard time-series models. In

a stochastic model, the estimation is consistent if limr→∞ supt φ(F t−∞,F∞t+r) =

0, where F t2t1 is the σ-algebra for the realizations from time t1 to time t2.18

We want to apply the same basic approach when the dependence between A

and B goes through X . Since the dependence in X is more complex than

time-dependence, the asymptotic convergence of the φ-mixing coefficient is not

sufficient. In order to show the consistency and asymptotic normality of θ̂ =

arg maxθ Lm(θ), we use the law of large numbers and the central limit theorem

for dependent observations on random fields developed by Jenish & Prucha

(2009) (Theorems 1, 2 and 3). We introduce the following definition:

Definition 3. For U ⊂ XSm
and V ⊂ XSm

, let AUm ≡ σ(qs,m : xs ∈ U} and
BVm ≡ σ(qs,m : xs ∈ V }, the corresponding σ-algebra. Also let |U | and |V |
denote the number of pairs located in U and V . We define the φ−mixing for
the random field {qs,m(θ); s ∈ Sm,m ∈ N} with the function:

φ̄k,l(d) = sup
m

(φ(AUm,BVm), |U | ≤ k, |V | ≤ l, d(U, V ) ≥ d)

where d(U, V ) = inf{d(s, r) : xs ∈ U and xr ∈ V }

17This is done without loss of generality. The method is robust to other definitions of a
pair’s position in X , as long as xs is located in a given neighbourhood of xs1 and xs2 .

18For example, see White (2001).
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We will show that a sufficient condition for the consistency and the asymp-

totic normality of θ̂ = arg maxθ Lm(θ) is the following:

Assumption 3 (φ-mixing).

(3.1) φ̄
1/2
1,1 (d) = O(d−T+1−ε)

(3.2) φ̄k,l(d) = O(d−T+1−ε) for k + l ≤ 4
(3.3) φ̄1,∞(d) = O(d−T−ε) for some ε > 0.

Recall that T ≥ 1 is the dimension of X . In words, Assumption 3 im-

plies that φ̄k,l(d) has to converge fast enough to 0. In Section 5, we provide

sufficient conditions on the primitive equations of the model under which As-

sumption 3 holds. For now, we show that the estimation technique is valid as

long as φ-mixing is respected. The first theorem concerns the consistency of

θ̂ = argmaxθ∈Θ Lm(θ). First, we need some additional assumptions:

Assumption 4 (Identification). There exists a unique θ0 ∈ int Θ maximiz-
ing limm→∞ E[Lm(θ)].

This identification condition is discussed in detail in Pötscher & Prucha (1991).

Whether or not that assumption holds will strongly depend on the specification

of hji ; researchers should make sure that it holds in practice. This assumption

is discussed in detail in section 6.

The next assumption describes the asymptotic behaviour of the pairs in X .

Assumption 5 (Increasing Domain). For all s1, s2 ∈ N , d(s1, s2) ≥ d0 for
some d0 > 0 (wlog d0 = 1)

This implies that there exists a minimal distance (in X ) between pairs of indi-

viduals (and therefore, between individuals). In essence, Assumption 5 ensures

that the distance goes to infinity as the number of individuals goes to infinity.

Given the existence of a minimal distance d0, the sub-space of X that contains

all the pairs of individuals (i.e. XSm) has to expand as the number of indi-

viduals (and therefore pairs) increases. It is worth noting that we require only

one observable characteristic for which there exists a minimum distance. For

example, one could be interested in friendships between residential neighbours.

In that case, there must exist a minimum distance between any neighbouring

houses. Accordingly, if the number of households increases, it implies that the

13



residential area increases as well. We will come back on this assumption in the

context of our empirical application in Section 7.

Finally, we also need the following standard moment conditions for the payoff

functions:

Assumption 6 (Technical conditions I).
(6.1) supm sups E[supθ∈Θ |qs,m(θ)|(1+η)] <∞ for some η > 0.

(6.2) supm sups E[supθ∈Θ |
∂qs,m(θ)

∂θ |] <∞.

Given the previous assumptions, we have the following:

Theorem 1 (Consistency). Suppose that Assumptions 4, 5 and 6 hold, and

that Assumption 3.2 is respected for k = l = 1. Then, the estimator θ̂ =
argmaxθ∈Θ Lm(θ) converges to θ0 as m→∞.

We still need to derive the asymptotic distribution of θ̂. We define the

following matrices:

D0(θ0) = limm→∞E[
∂2Lm(θ0)

∂θ∂θ′
]

B0(θ0) = limm→∞κ(m)E[
∂Lm(θ0)

∂θ

(
∂Lm(θ0)

∂θ

)′
]

Since the asymptotic normality of the estimator requires more structure than

the one needed for consistency, we need Assumptions 3.1 to 3.3, as well as the

following additional technical conditions.

Assumption 7 (Technical conditions II).
(7.1) B0(θ0) > 0.
(7.2) D0(θ0) is invertible.
(7.3) supm sups E[supθ∈Θ ‖Ds,m(θ)‖1+η] <∞ for some η > 0.

(7.4) supm sups E[supθ∈Θ ‖
∂Ds,m(θ)

∂θ ‖] <∞.

(7.5) supm sups E[supθ∈Θ |
∂qs,m(θ)

∂θ |2] <∞
where Dm,s(θ) =

∂2qs,m(θ)
∂θ∂θ′ .

These assumptions are standard and are sufficient to show the asymptotic

normality of our estimator.19

19Formally, the proof of Theorem 2 derives the limit distribution for
√
κ(m)(θ̂ − θ0). We

report the asymptotic distribution of θ̂ for presentation purposes.

14



Theorem 2 (Asymptotic normality). Let m → ∞. Under Assumptions

3,4, 5, 6 and 7, the estimator θ̂ = argmaxθ∈Θ Lm(θ) is normally distributed
with its variance-covariance matrix given by D−1

0 B0D
−1
0 /κ(m).

The variance-covariance matrix in our setting is analogous a heteroskedastic-

ity and autocorrelation consistent (HAC) variance-covariance matrix in a time-

series setting. The estimation of these variances is not straightforward. The

estimation of D0(θ0) follows from Theorem 1, since D0(θ) has the same depen-

dence structure as limm→∞ ELm(θ). A consistent estimator then is Dm(θ̂) =

κ(m)−1
∑m
s=1Ds,m(θ̂).

Defining a consistent estimator for B0(θ0) is more challenging. We suggest

two approaches to estimate B0(θ0). The first is based on a generalization of stan-

dard HAC estimators (Conley (1999)). Although valid, the estimator proposed

by Conley (1999) can be very computationally intensive when the number of

dimensions of X increases (say, T ≥ 4). Bester et al. (2011) propose an alterna-

tive approach using the well-known variance cluster (VC) estimator (formally

described in the Appendix). Although the estimator is not consistent under

weak dependence, they show that the estimator converges to a well-defined ran-

dom variable and that the standard t-test is still valid (provided it is rescaled).

In other words, under mixing conditions, inference using the VC estimator is

valid, even if the estimator itself is not consistent. This estimator has the ad-

vantage of requiring little computational time and is simple to implement.

In this section, we have shown that with φ-mixing and some technical con-

ditions, θ0 ∈ Θ can be recovered using (4). In the next section, we show that

an asymptotic version of the homophily principle is a sufficient condition for

φ-mixing, as defined in Assumption 3, as well as for κ(m) = O(
√
m).

5. The Role of Homophily

We now turn to economic models of network formation. Recall that As-

sumption 2 imposes a specific dependence structure. Under those restrictions,

we will show that a weak version of the homophily principle is sufficient to

achieve φ-mixing.
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Homophily is a prominent feature of social networks. It characterizes the em-

pirical fact that similar individuals have a higher probability of being linked.20

We assume the following weak version of homophily:

Assumption 8 (Asymptotic homophily). We assume that, for all ij ∈ Sm:

d(i, j)−λ sup
m

sup
Wm,−ij

hij(Wm,−ij ; θ)→ −∞ as d(i, j)→∞

for some λ ≥ 1 and all θ ∈ Θ.

Assumption 8 then requires that the probability of a link between two in-

finitely distant individuals is zero, and that the rate at which the value of the

relationship decreases with the distance is sufficiently fast. Note that Assump-

tion 8 only requires that homophily holds asymptotically, hence allowing for a

wide range of locally non-homophilic preferences.

We show that Assumption 8 has powerful implications.

Proposition 2. If assumptions 1, 2, 5 and 8 hold, then assumptions 3 and
6.1 also hold. Moreover a necessary condition for the identification condition
(assumption 4) to hold under assumption 8 is κ(m) = O(

√
m).

Assumptions 1, 2 and 8 are assumptions on the preferences, i.e. hij . Assumption

5 is the increasing domain assumption. Those assumptions imply that assump-

tions 3 and 6.1, which are high-level assumptions on the random-field {qs(θ)}

also hold. The main benefit of Proposition 2 is therefore that the conditions for

φ-mixing can be directly verified using the primitive equation of the structural

model, as shown in Example 3.

Example 3 (Example 1 continued). Recall that:

hij(Wm,−ij ; θ) = αni(Wm,−ij) + αnj(Wm,−ij)− β|xi − xj |

and that xi, xj ∈ X = R so d(i, j) = |xi − xj |. Then, Assumption 8 holds as
long as β > 0. �

20Many definitions of homophily exist in the economic literature (see, for example, Currarini
et al. (2009, 2010) and Bramoullé et al. (2012)). In particular, some papers explicitly define
homophily using a distance function on the space of individual characteristics (for example,
Boucher (2015), Johnson & Gilles (2003), Marmaros & Sacerdote (2006), and Iijima & Kamada
(2010)).

16



Note also that proposition 2 provides the order of the convergence rate, which

is a necessary condition for identification. We discuss in detail the identification

of the model in the next section.

6. Identification.

We now discuss further the implications of the identification condition stated

in assumption 4. In order to discuss the intuition, as well as the implications

of the assumptions, it helps to concentrate on the special case where hij(θ) is

linear.

6.1. Linearity in θ.

We now show that, for the special case where hs(Wm,−s, θ) is linear in θ, i.e.

hs(Wm,−s, θ) = Γ′s,mθ for some vector Γs,m, given the adequate choice of κ(m),

assumption 4 holds whenever E[Γs,mΓ′s,m] is finite and non-singular. Formally:

Proposition 3. If hs(.) is linear in θ, i.e. hs(Wm,−s; θ) = Γ′s,mθ such that
lim infm→∞ |λm| > 0 where λm is the smallest eigenvalue of E[Γs,mΓ′s,m], and
lim supm→∞ E[Γs,mΓ′s,m] < ∞ then the limit of the PL, limm→∞ E[Lm(θ)], is
uniquely maximized at the true value θ0.

Proposition 3 can be seen as a corollary to proposition 1, in the sense that

limit of the PL is uniquely maximized at the true value θ0 mainly because

the conditional distributions are well specified. It also provides more classical

conditions on the payoff function, as opposed to the generic formulation in

assumption 4.21

However, proposition 3 still requires somewhat high-level conditions for iden-

tification since Γs,m is a function of Wm,−s. In general, finding sufficient prim-

itive conditions for identification is very hard and is left for future research.

In what follows, we discuss the implication of the identification condition

for some special cases. In particular, in the next section, we discuss the link

between the identification and the sparsity of the network, as well as the role of

κ(m) for the identification of the model.

21For instance, similar conditions are presented by Qu & Lee (2015).
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6.2. Sparsity

As discussed by de Paula et al. (2016), the identification condition is closely

linked to the sparsity of the network. We say that a network is sparse if it is

not dense, where dense means that the number of links is O(m).

Recall that assumptions 2 and 5 rule out the possibility that individuals value

an infinite number of links. Together with assumption 8, it implies that the

network is sparse.22 However, we argue that we may still expect the network to

be sparse in some cases, without necessarily assuming that χij,ik = 0 whenever

max{d(i, j), d(i, k)} > d̄. Example 4 illustrates.

Example 4 (Example 1 modified). Let i and j be the two farthest individ-
uals in the population. We have:

hij(Wm,−ij , θ) = −βd(i, j) + α
∑
k 6=i,j

wik + wjk.

Note that here we assume that, αik = αjk = α for all i, j, k, irrespective of the
distances between them.

Let d(i, j) = |xi − xj |, since i and j are the two farthest individuals, we
know, under assumption 5, that there may be at most d(i, j) + 1 individuals in
the population,23 so:

hij ≤ −βd(i, j) + 2α(d(i, j) + 1) = (2α− β)d(i, j) + 2α.

This upper bound goes to −∞ if β > 2α, so the two farthest individuals (i and
j) will not be linked with probability approaching 1 as m→∞.

This is confirmed by numerical simulations. Let α = 1 and consider the
following two specifications:

Specification 1: hij = ni + nj − 3|xi − xj |
Specification 2: hij = ni + nj − exp{|xi − xj |}

We simulate 1000 draws form the joint distribution (1) using a Gibbs-Sampling
algorithm. Figure 2 show E(ni + nj)

2, for each specification, as n grows. Over-
all, the result is independent of the size of the population n, irrespective of the
specification. �

Example 4 shows that sparsity can be achieved even without arbitrarily

bounding the number of links, althought the conditions are stronger than those

22This can be seen as a corollary to proposition 2.
23Recall here that individuals are located on the line. A similar argument applies for T ≥ 1.
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of assumption 8. In general, we expect the sufficient conditions on hij(Wm,−ij , θ)

to be similar to assumption 8, but where λ is bounded below by a function of

T .

We now discuss the intuition for κ(m) = O(
√
m) under assumption 8. Ex-

ample 5 illustrates.

Example 5 (Example 1 modified). Consider a modification of Example 1,
where

hij(Wm,−ij , θ) = −β1{|xi−xj | = 1}−∞1{|xi−xj | > 1}+
∑
k 6=i,j

αikwik+αjkwjk.

In this extreme example, individuals located at a distance greater than one create
a link with a probability equal to 0. In other words, individuals may only create
links with their direct (left and right) neighbours. Since, for a population of
m = n(n − 1)/2 pairs, there are at most n − 1 pairs located at a distance less
than 1 (under assumption 5), the pseudo-likelihood (5) can be written as:

Lm(θ) = κ(m)−1

 ∑
s:|s1−s2|=1

qs,m(ws,m|Wm,−ij , θ)


Note that we need only to sum over pairs s such that |s1 − s2| = 1 since the
qs,m(θ) = 0 for all the other pairs, with probability 1 under assumption 6.1.
Since there are only n − 1 pairs s such that |s1 − s2| = 1, we immediately get
κ(m) = n− 1. �

Proposition 2 shows that the intuition in Example 5 extends more generally,

i.e. whenever assumption 8 holds. We now turn to our empirical application.

7. Friendship networks

We are interested in the determinants of friendship formation among high

school students (e.g. Boucher (2015), Currarini et al. (2009, 2010) and (Mele,

2016)). We use the Add Health database, which provides information on the

friendship networks of American high school students. We concentrate on the

“saturated sample,” which provides information on 3,449 teenagers from 16

schools. In the database, we know if student i nominated j as a friend, and

vice-versa. Since we focus of undirected networks, we assume that i and j are

friends if i nominated j, or j nominated i.
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Figure 2: Sparsity (Simulations): E(ni + nj)2 as a function of the number of individuals for
S1 and S2.

Specifically, for each n, E(ni + nj)
2 is computed as the average (over the 1000

networks simulated), of the average (over the n(n− 1)/2 pairs) value of (ni + nj)
2.
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We consider two sets of variables. The first set (xij ∈ X ⊂ R2) represents

the (normalized) location of teenagers’ homes.24 As discussed in Section 4, the

asymptotics are well defined on this variable since there must exist a minimal

distance between any two individuals’ homes. As the number of individuals (and

therefore pairs) increases, the size of the residential neighbourhoods must also

increase. The second set of variables (zij) contains other relevant characteristics

of the pair (i, j). We use the following specification:

zij = [Genderij , Whiteij , Blackij , Hispij , Workij , Gradeij ]

where Genderij is a binary variable that equals 1 if i and j are of the same

gender; Whiteij is a binary variable that equals 1 if i and j are both white,

Blackij is a binary variable that equals 1 if i and j are both black, Hispij is a

binary variable that equals 1 if i and j are both Hispanic, Gradeij represents

the absolute value of the difference between i and j’s grade levels, and Workij

gives the sum of the weekly hours worked by i and j. The intuition is that the

hours spent working could act as a substitute to (inschool) friendship relations.

We assume the following utility specification:

hij(Wm; θ) = θ0 + [ni(Wm,−ij) + nj(Wm,−ij)]θ1 + θ2d(xi, xj) + zijβ (6)

where β = [θ3, θ4, θ5, θ6, θ7, θ8]′. We can show that assumption 2 holds since

hij(Wm; θ) can also be written as:

hij(Wm; θ) = θ0 + zijβ + θ2d(xi, xj) +
∑
k 6=i,j

[wikθ1 + wjkθ1]

Then, one can define χij(θ) = θ0 +zijβ+θ2d(xi, xj), χ̃ij,ik = θ1 and χ̃ij,jk = θ1.

The model is therefore a special case of the general model developed in

the previous sections. Tables 1 and 2 give a summary of the variables used for

24Constructed using normalized GPS coordinates. See appendix for the construction of the
distance function as well as details on the scaling factor κ(m).
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Table 1: Summary Statistics (Pairs)

Variable Mean Std Min Max
wij 0.004 0.066 0 1
ni + nj 8.454 4.855 0 40
Grade 0.992 0.849 0 5
Gender 0.500 0.500 0 1
White 0.255 0.436 0 1
Black 0.049 0.216 0 1
Hisp 0.117 0.322 0 1
Work 17.201 17.370 0 170
d(i, j) 13.868 20.940 0 379.215
Number of pairs: 1,624,408

Table 2: Summary Statistics (Individuals)

Variable Mean Std Min Max
ni 4.242 3.310 0 21
Female 0.495 0.500 0 1
Grade level 10.194 1.493 7 12
White 0.586 0.493 0 1
Black 0.159 0.366 0 1
Hispanic 0.202 0.401 0 1
Number of individuals: 3,449
Number of residential communities: 16
Number of high schools: 16

individuals, and for pairs of individuals.25 We now proceed with the estimation.

Following Bester et al. (2011), we use cluster-robust standard errors. Marginal

effects are reported in Table 3. The number of friends two individuals have in

common has a positive impact on the strength of their friendship. We also

observe homophily with respect to grade levels, gender, and racial variables.

Geographic distance has a significant negative impact, which is coherent with

Assumption 8. Finally, we find a small negative effect of the number of hours

worked by friends on the value of the link (this effect is not statistically signifi-

cant).

25Note that the racial variables are not necessarily exclusive (for example, a biracial indi-
vidual could identify as both black and white). We omitted the racial categories “Asian,”
“Native” and “Other.”
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Table 3: Maximum Likelihood Estimates (Logit), Marginal Effects (× 1000)

Variable Estimate S.E.
ni + nj 0.341∗∗ 0.116
Grade -5.061∗∗ 0.861
Gender 1.530∗∗ 0.289
White 6.399∗∗ 2.342
Black 7.012∗∗ 2.014
Hisp 1.890∗∗ 0.610
Work -0.024 0.023
d(i, j) -0.121∗ 0.059

Note: ∗∗ significant at 1%, and ∗ significant at 5%. Standard errors computed using

clustered-variance estimator by residential communities. See Appendix for details.

8. Conclusion

In this paper, we have used the theory of Markov random fields in order to

develop a simple estimator for an interesting class of ERGMs. We have shown

that an asymptotic version of homophily is sufficient for φ-mixing, which implies

that the estimation of the underlying preference parameters can be achieved

using a simple pseudo maximum likelihood. The methodology is appealing

because it is simple and flexible. We also provided an empirical application

using data about the formation American teenagers’ friendship networks. We

find that there is a positive influence of the individuals’ number of friends on

link formation, as well as evidence of homophily on gender, grade levels, race,

and geographic location.
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10. Appendix

10.1. Proof of Theorem 1

Lemma 1. Assumption 3 implies that

1.
∑∞
d=1 d

T−1φ̄
1/2
1,1 (d) <∞.

2.
∑∞
d=1 d

T−1φ̄k,l(d) <∞, for k + l ≤ 4.

3. φ̄1,∞(d) = O(d−T−ε) for some ε > 0.

Proof. The proof is immediate. Indeed, There exists M > 0 such that

∞∑
d=1

dT−1φ
1/2

1,1 (d) ≤ M

∞∑
d=1

dT−1d−T+1−ε

≤ M

∞∑
d=1

d−ε <∞.

Under Assumption 4, it is sufficient to show that:26

sup
θ∈Θ
|Lm(θ)− E(Lm(θ))| →a.s. 0, as m→∞.

In order to show that this condition holds, it is sufficient to show that the con-

ditions of Theorems 2 and 3 from Jenish and Prucha (2009) hold. Specifically,

1. d(r, s) > d0 > 0 for any r, s ∈ Sm
2. (Θ, ‖.‖) is a totally bounded metric space.

3. Domination:

lim sup
m→∞

1

|Sm|

m∑
s=1

E(q̄ps,m1{q̄ps,m>k})→ 0 as k →∞,

for some p ≥ 1, and where q̄s,m = supθ |qs,m(ws,m|x,Wm, θ)|.

4. Stochastic equicontinuity: For every ε > 0,

limsupm
1

|Sm|

m∑
s=1

P ( sup
θ′∈Θ

sup
θ∈B(θ′,δ)

|qs,m(θ)− qs,m(θ′)| > ε)→ 0 as δ → 0,

where B(θ′, δ) is the open ball {θ ∈ Θ : ‖(θ′ − θ)‖ < δ}.

26See, for example, Gallant and White (1988), p.18.
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5. supm sups∈Sm
E[supθ∈Θ |qs,m(θ)|(1+η)] <∞ for some η > 0.

6.
∑∞
d=1 d

T−1φ̄1,1(d) <∞.

Condition 1 is implied by Assumption 5. Condition 2 is verified by construction,

and Conditions 5 and 6 hold from Assumptions 6 and 3. Conditions 3 and 4

hold from the following: Under Condition 5, supθ |qs,m(ws,m|Wm, θ)| is L(1+η)

integrable, which implies the uniform L(1+η) integrability of |qs,m(ws,m|Wm, θ)|.

The next lemma shows that Assumption 6 implies Condition 4.

Lemma 2. Condition 4 is implied by Assumption 6.

Proof. From the mean value theorem, we can write

qs,m(θ) = qs,m(θ′) +
∂qs,m(θ̃)

∂θ
(θ − θ′),

Thus,

|qs,m(θ)− qs,m(θ′)| ≤ |∂qs,m(θ̃)

∂θ
|‖(θ − θ′)‖

≤ sup
θ∈Θ
|∂qs,m(θ)

∂θ
|‖(θ − θ′)‖.

According to Proposition 1 of Jenish and Prucha (2009), qs,m(θ) is L0 stochas-
tically equicontinuous on Θ if the following Cesàro sums is finite, i.e

limsupm
1

|Sm|

m∑
s=1

E(sup
θ∈Θ
|∂qs,m(θ)

∂θ
|) <∞.

However, under Assumption 6, each term of the Cesàro sums is finite, in

the sense that supm sups∈Sm
E[supθ∈Θ |

∂qs,m(θ)
∂θ |] < ∞. This fact completes the

proof. �

From the previous lemma, Conditions 1-6 are respected, hence Theorem 2

and 3 from Jenish and Prucha (2009) apply. This completes the proof. �
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Proof of Theorem 2

We want to show that
√
κ(m)(θ̂m − θ0)⇒ N(0, D0(θ0)−1B0(θ0)D0(θ0)−1).

From the mean value theorem, we have that

∂Lm(θ̂m)

∂θ
=

∂Lm(θ0)

∂θ
+
∂2Lm(θm)

∂θ∂θ′

0 =
∂Lm(θ0)

∂θ
+
∂2Lm(θm)

∂θ∂θ′
(θ̂m − θ0).

and

√
κ(m)(θ̂m − θ0) = −

√
κ(m)[

∂2Lm(θm)

∂θ∂θ′
]−1 ∂Lm(θ0)

∂θ

= −[
∂2Lm(θm)

∂θ∂θ′
]−1[

σm√
κ(m)

][σ−1
m Qm],

where σ2
m = V ar(Qm) and Qm =

∑m
s=1

∂qs,m(θ0)
∂θ .

Then, it is sufficient to show the following:

1.
σ2
m

κ(m) → B0(θ0);

2. σ−1
m Qm ⇒ N(0, I);

3. [∂
2Lm(θm)
∂θ∂θ′ ]→p D0(θ0).

Again, we proceed in a series of lemmata.

Lemma 3. Under Assumption 4,
σ2
m

κ(m) → B0(θ0).

Proof.

1

κ(m)
σ2
m =

1

κ(m)
V ar(κ(m)

∂Lm(θ0)

∂θ
)

= κ(m)E[
∂Lm(θ0)

∂θ

∂Lm(θ0)

∂θ′
] + κ(m)E[

∂Lm(θ0)

∂θ
]E[

∂Lm(θ0)

∂θ′
]

= κ(m)E[
∂Lm(θ0)

∂θ

(
∂Lm(θ0)

∂θ

)′
].

where the last inequality holds since E[∂Lm(θ0)
∂θ ] = 0, as θ0 maximizes E[Lm(θ)]

(Assumption 4). Hence,
σ2
m

κ(m) → B0(θ0). �

Lemma 4. Under Assumption 7, σ−1
m Qm ⇒ N(0, I)
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Proof. It is sufficient to show that the conditions for Theorem 1 from Jenish
and Prucha (2009) hold. Specifically,

1. d(r, s) > d0 > 0 for any r, s ∈ Sm.

2. φ-mixing on random fields.

3. supm sups∈Sm
E[supθ∈Θ |

∂qs,m(θ)
∂θ |2] <∞.

4. lim infm→∞
σ2
m

κ(m) > 0.

Condition 1 is implied by Assumption 5. Condition 3 holds from Assumption
7, and Condition 4 is implied by Lemma 3. �

Lemma 5. ∂2Lm(θm)
∂θθ′ →p D0(θ0)

Proof. The proof is identical to the proof for the consistency of θ̂, replacing
qs,m(θ) by Ds,m(θ), and using Assumptions 7 instead of Assumptions 6. �

Putting together Lemmata 7.2, 7.3 and 7.4 completes the proof. �

Proof of Proposition 2

Claim 1: Assumption 6.1 holds. Recall that qs,m(θ) = qs,m(ws,m|Wm,−s; θ).

We have:

sup
m

sup
s

E[sup
θ
|qs,m(θ)|1+η]

= sup
m

sup
s

E
[
E[sup

θ
|qs,m(θ)|1+η|Wm−s]

]
= sup

m
sup
s

E
[
P (ws,m = 1|Wm−s; θ) sup

θ
|qs,m(ws,m = 1|Wm−s)|1+η] +

P (ws,m = 0|Wm−s; θ) sup
θ
|qs,m(ws,m = 0|Wm−s)|1+η]

]
= sup

m
sup
s

E
[ exp{hs(Wm,−s; θ)}

1 + exp{hs(Wm,−s; θ)}
sup
θ
|hs(Wm,−s; θ)− ln[1 + exp{hs(Wm,−s; θ)}]|1+η

+
1

1 + exp{hs(Wm,−s; θ)}
sup
θ

ln[1 + exp{hs(Wm,−s; θ)}]1+η
]
,

= sup
m

sup
s

E
[ exp{hs(Wm,−s; θ)}

1 + exp{hs(Wm,−s; θ)}
|hs(Wm,−s; θ

∗)− ln[1 + exp{hs(Wm,−s; θ
∗)}]|1+η

+
1

1 + exp{hs(Wm,−s; θ)}
ln[1 + exp{hs(Wm,−s; θ̃)}]1+η

]
,

where θ∗ = arg max{|hs(Wm,−s; θ)−ln[1+exp{hs(Wm,−s; θ)}]|} and θ̃ = arg max{ln[1+

exp{hs(Wm,−s; θ̃)}]}. Under assumptions 2 and 5, we know that hs(Wm,−s; θ)
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is uniformly bounded from above respect to that θ,Wm,−s,m, and s; then the

terms 1
1+exp{hs(Wm,−s;θ)} ln[1+exp{hs(Wm,−s; θ̃)}]1+η and

exp{hs(Wm,−s;θ)}
1+exp{hs(Wm,−s;θ)} | ln[1+

exp{hs(Wm,−s; θ
∗)}]|1+η are also bounded. The remaining term to study is

exp{hs(Wm,−s; θ)}
1 + exp{hs(Wm,−s; θ)}

|hs(Wm,−s; θ
∗)|1+η =

exp{hs(Wm,−s; θ)}
1 + exp{hs(Wm,−s; θ)}

|hs(Wm,−s; θ)|1+η
∣∣∣hs(Wm,−s; θ

∗)

hs(Wm,−s; θ)

∣∣∣1+η

≤ exp{hs(Wm,−s; θ)}
1 + exp{hs(Wm,−s; θ)}

|hs(Wm,−s; θ)|1+η.

where the last inequality holds since we have:

θ∗ = arg max{| ln exp{hs(Wm,−s; θ)}
1 + exp{hs(Wm,−s; θ)}

|}

= arg min
exp{hs(Wm,−s; θ)}

1 + exp{hs(Wm,−s; θ)}
= arg minhs(Wm,−s; θ).

Finally, we have that:

lim
hs(Wm,−s;θ)→∞

exp{hs(Wm,−s; θ)}
1 + exp{hs(Wm,−s; θ)}

|hs(Wm,−s; θ)|1+η → 0

uniformly over θ,Wm,−s,m, and s. This completes the proof.

Claim 2: κ(m) = O(n).

Let’s consider:

κ(m)Lm(θ) =

m∑
s

(
wshs(Wm,−s; θ)− ln[1 + exp{hs(Wm,−s; θ)}]

)
For a fixed individual i let order the rest of the individuals i2, ..., in in the

lattice such that d(i, i2) ≤ d(i, i3) ≤ .... ≤ d(i, in). Notice that we may have

multiple individual at the same distance d̄ of i. Therefore, we can partition

{i2, ..., in} as follows {i2, ..., in} = {B1} ∪ ... ∪ {BKi
} such that ∀(l, l′) ∈ Bk

d(i, l̃) < d(i, l) = d(i, l′) ≡ dk < d(i, l̂) for l̃ ∈ Bk−1 and l̂ ∈ Bk+1.
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In such a case κ(m)Lm(θ) can be rewritten as:

κ(m)Lm(θ) =
1

2

n∑
i

in∑
j=i2

(
wijhij(Wm,−ij ; θ)− ln[1 + exp{hij(Wm,−ij ; θ)}]

)

or equivalently as

κ(m)Lm(θ) =
1

2

n∑
i

Ki∑
k=1

∑
j∈Bk

(
wijhij(Wm,−ij ; θ)− ln[1 + exp{hij(Wm,−ij ; θ)}]

)

Consider the series:

in∑
j=i2

(
Ewijhij(Wm,−ij ; θ)− ln[1 + exp{hij(Wm,−ij ; θ)}]

)

Because

0 ≤ ln[1 + exp{hij(Wm,−ij ; θ)}] ≤ exp{hij(Wm,−ij ; θ)},

we have

in∑
j=i2

ln[1 + exp{hij(Wm,−ij ; θ)}] ≤
Ki∑
k=1

∑
j∈Bk

exp{h̄i(dk)}

=

Ki∑
k=1

|Bk| exp{h̄i(dk)}

where h̄i(dk) = supθ supij:j∈Bk
supWm∈Wm

hij(Wm,−ij ; θ).

From Jenish and Prucha (2009) (Lemma A.1 (iii)), there are at most CdT−1

(where C > 0 is a positive constant) individual located at a distance dk ∈

[d, d+ 1) from i, so we have:
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in∑
j=i2

ln[1 + exp{hij(Wm,−ij ; θ)}] ≤ C

Ki∑
d=1

dT−1 exp{h̄i(d+ 1)}

≤ C

∞∑
d=1

dT−1 exp{h̄i(d+ 1)}.

Using the Cauchy criteria for convergent series, we can see that the latter sum-

mation converges if limd→∞

[
(T − 1) ln d

d + h̄i(d+1)
d

]
< 0, which is true for λ = 1

in assumption 8.

Consider now the series:

in∑
j=i2

Ewijhij(Wm,−ij ; θ) ≤
in∑
j=i2

Ewij
∣∣hij(Wm,−ij ; θ)

∣∣
We have:

in∑
j=i2

Ewij
∣∣hij(Wm,−ij ; θ)

∣∣ =

in∑
j=i2

E
[∣∣hij(Wm,−ij ; θ)

∣∣E[wij |Wm,−ij}]
]
,

≤
in∑
j=i2

∣∣h̄ij∣∣E[P (wij = 1|Wm,−ij)
]
,

≤
in∑
j=i2

∣∣h̄ij∣∣ sup
Wm∈Wm

P (wij = 1|Wm,−ij),

=

in∑
j=i2

∣∣h̄ij∣∣ sup
Wm∈Wm

exp{hij(.)}
1 + exp{hij(.)}

,

≤
in∑
j=i2

∣∣h̄ij∣∣ exp{h̄ij}
1 + exp{h̄ij}

.

where h̄ij = supWm∈Wm
hij(Wm,−ij ; θ). The last inequality holds because exp{x}

1+exp{x}

is monotone in x.
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in∑
j=i2

∣∣h̄ij∣∣ exp{h̄ij}
1 + exp{h̄ij}

=

Ki∑
k=1

∑
j∈Bk

∣∣h̄ij∣∣ exp{h̄ij}
1 + exp{h̄ij}

≤
Ki∑
k=1

|Bk|
∣∣h̃i(dk)

∣∣ exp{h̃i(dk)}
1 + exp{h̃i(dk)}

,

where h̃i(dk) = argmax{h̄ij :d(i,j)=dk}
∣∣h̄ij∣∣ exp{h̄ij}

1+exp{h̄ij}
. Notice that h̃i(dk) is finite,

since h̄ij is bounded from above and
∣∣x̄∣∣ exp{x}

1+exp{x} → 0 when x → ∞. We can

use similar derivations that earlier when invoking Lemma A.1 (iii) from Jenish

and Prucha (2009) and then get the following:

in∑
j=i2

Ewij |hij(Wm,−ij ; θ)| ≤ C
∞∑
d=1

dT−1 exp{h̃i(d)}
1 + exp{h̃i(d)}

|h̃i(d)|.

Again, using the Cauchy criteria for convergent series, we can see that the lat-

ter summation converges if limd→∞

[
(T −1) ln d

d +
ln
∣∣h̃i(d)

∣∣
d + h̃i(d)

d −
ln(1+h̃i(d)

d

]
<

0, which is true for λ = 1 in assumption 8.

So, we have shown that

∣∣∣ in∑
j=i2

E[qij(θ)]
∣∣∣ =

∣∣∣ in∑
j=i2

E
[
wijhij(Wm,−ij ; θ)− ln[1 + exp{hij(Wm,−ij ; θ)}]

]∣∣∣ <∞
As can be seen in the proof of the Claim 1, E[qij,m(θ)] is a weighting aver-

age of qij,m(wij,m = 1|Wm,−ij ; θ) = ln
exp{hij(Wm,−ij ;θ)}

1+exp{hij(Wm,−ij ;θ)} and qij,m(wij,m =

0|Wm,−ij ; θ) = − ln[1 + exp{hij(Wm,−ij ; θ)}] where the weights are all proba-

bilities (non-negative). Because qij,m(wij,m = 1|Wm,−ij ; θ) and qij,m(wij,m =

1|Wm,−ij ; θ) are all non-positive uniformly over θ,Wm,−ij , m, and ij then

E[qij,m(θ)] ≤ 0.

Therefore there exist Ai a non-positive finite constant, i.e. ∞ < Ai ≤ 0 such

that E[Zi] ≡
∑in
j=i2

E[qij,m(θ)] = Ai. κ(m)Lm(θ) can be therefore rewritten as

a summation from 1 to n of Zi.

36



We have

E[Lm(θ)] =
1

κ(m)

n∑
i

Ai

Therefore, κ(m) = O(n). This completes the proof.

Claim 3: Assumption 3 holds.

The objective is to show that, as the distance (in X) between the pairs lo-

cated in U , and the pairs located in V goes to infinity, we have that |P (AU |BV )−

P (AU )| goes to 0 (at the appropriate rate). The proof is rather lengthy and

proceeds in a series of steps.

In order to clarify the argument, we briefly explain each step.

• Step 1: Since φ-mixing is defined as the distance between sets (i.e. d(U, V ))

of pairs goes to infinity, we describe what happens to the distance between

the individuals as d(U, V ) grows. This allows to separate three cases for

s : xs ∈ U , and r : xr ∈ V

• Step 2 (First case): d(s, r) = O(d(s1, s2))

• Step 3 (Second case): d(s, r) = O(d(r1, r2))

• Step 4 (Third case): d(s, r) = O(min{d(s1, r1), d(s1, r2), d(s2, r1), d(s2, r2)})

We also make the following remarks and notations:

• Technically AU gives realizations of {qij}ij for individuals i and j, such

that the pair (i, j) is located in the subspace U of X (i.e. xij ∈ U ⊂ X).

To lighten the text, we will often use “i belongs to U”, instead of “i belongs

to a pair located in U”, when there is no confusion. We will also often use

U instead of {s}s:xs∈U .

• The sets AU and BV are realisations over the random-field {qs(θ)}, which

is itself a function of the random-field {ws}. Formally, qs(θ) = wshs(Wm,−s; θ)−

37



ln(1+exp{hs(Wm,−s; θ)}). From assumption 2, the function hs(Wm,−s; θ)

only depends on neighbourhood links, so qs(θ) = f(ws,WN(s)).

• We will expand the notion of neighbourhoods to set of pairs: N(U) =

∪s:xs∈UN(s) \ {s}s:xs∈U is the set of neighboured pairs of pairs located in

U (excluding pairs located in U).

Figure 3: Pairs do not share any individual

{s}

{r}

s1 s2

r1 r2

Note: Neighbouring pairs of pair s are represented by solid lines.

Figure 4: Pairs share an individual

{s}

s1 s2

r1

{(r1,s1)}

Note: Neighbouring pairs of pair s are represented by solid lines.

Step 1: Distance between sets of pairs, and distance between individuals.

By definition, d(U, V ) = d(s∗, r∗) = inf{d(s, r)|s : xs ∈ U, r : xr ∈ V }.

First, note that if U ∩ V 6= ∅, i.e. there is a pair located in U , which is also

located in V . We have d(U, V ) = 0. We can therefore abstract for this case,

and concentrate on the case where U ∩ V = ∅.

Second, note that any couple of pairs (r, s) such that xs ∈ U and xr ∈ V is

either such that s and r do not share any individual (as in Figure 3), or such

that they share an individual (as in Figure 4).
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Consider first the case where s and r don’t share any individual, i.e. s∩r = ∅,

as in Figure 3. As d(s, r) grows, there are three (exhaustive, but non mutually

exclusive) possibilities:

(1) d(s1, s2) goes to infinity, formally: d(s, r) = O(d(s1, s2))

(2) d(r1, r2) goes to infinity, formally: d(s, r) = O(d(r1, r2))

(3) min{d(s1, r1), d(s1, r2), d(s2, r1), d(s2, r2)} goes to infinity, formally: d(s, r) =

O(min{d(s1, r1), d(s1, r2), d(s2, r1), d(s2, r2)})

To see why the order is as above, consider the first case (the other cases are

symmetric): d(s, r) = O(d(s1, s2)). Consider Figure 3, where we let d(s2, r2) =

ε1 > 0 and d(r1, r2) = ε2 > 0. This forces the distance between s1 and s2 to go

to infinity as d(s, r) goes to infinity. We have: d(r1, s2) ≤ ε1 + ε2. Moreover, we

have: d(s1, r1) ≤ d(s1, s2) + d(s2, r1), so:

d(s, r) ≤ ε1/2 + d(s1, s2)/2 + (ε1 + ε2)/2

which implies: d(s, r) = O(d(s1, s2)). This argument can be repeated for all

possible cases, and also for the case where s and r share an individual:

Consider the case where s and r share one individual, i.e. s ∩ r 6= ∅, as in

Figure 4. Similarly to the case where s ∩ r = ∅, we have that as d(s, r) grows,

there are two exhaustive, but non mutually exclusive possibilities:

(1) d(s, r) = O(d(s1, s2))

(2) d(s, r) = O(d(r1, r2))

Note that here, in either case, we necessarily have that d(s, r) = O(d(s2, r1)).

This first Step shows that we need to look at three cases when d(s, r) goes

to infinity:

(1) d(s, r) = O(d(s1, s2))

(2) d(s, r) = O(d(r1, r2))
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(3) d(s, r) = O(min{d(s1, r1), d(s1, r2), d(s2, r1), d(s2, r2)})

where s : xs ∈ U and r : xr ∈ V . We will study those cases in Steps 2, 3 and 4

below.

Step 2: Consider first the case where d(U, V ) = O(d(s1, s2)) for some s : xs ∈

U . We have, for AU ∈ AUm and BV ∈ BVm:

|P (AU |BV )− P (AU )| ≤
k∑
t=1

|P (Ast |B,As1 , ..., Ast−1)− P (Ast |As1 , ..., Ast−1)| (7)

from the chain rule, where AU = (As1 , ..., Ask).

Notice that, given a fixed m, for any pair s qs is a discrete random variable

because it has a countable range. Indeed, recall that qs is a function of a count-

able finite number of binary random variable, i.e. qs = ln
exp{ws,mhs(Wm,−s;θ)}
1+exp{hs(Wm,−s;θ)} .

Let {as1, ..., asm̃} the support of qs where m̃ is the cardinality of this support.

Notice that because of the homophily assumption (assumption 8) when the dis-

tance between the pairs s = (s1, s2) converge to infinity, i.e. d(s1, s2)→∞ then

the support is {−∞, 0}.

There are three cases:

1. As ∈ (−∞, 0). Then, letting d(s1, s2)→∞, there exists K > 0 such that

P (qs = As) = 0 for all d(s1, s2) > K, since As falls outside the range of qs.

We therefore have: P (Ast |B,As1 , ..., Ast−1) = P (Ast |As1 , ..., Ast−1) = 0.

2. As = −∞ but under Assumption 6.1, we know that
∑m̃
k=1 |ask|P (qs =

ask) < ∞. Then, P (qs = ask) = 0 whenever ask = −∞ otherwise qs will

not have a finite moment. We therefore have: P (Ast |B,As1 , ..., Ast−1) =

P (Ast |As1 , ..., Ast−1) = 0

3. As = 0 This only happens as d(s1, s2) =∞, where the range only has two

elements, i.e. −∞ and 0. Since P (−∞) = 0, we have: P (qs = As) = 1.

Therefore, we have: P (Ast |B,As1 , ..., Ast−1) = P (Ast |As1 , ..., Ast−1) = 1

when d(s1, s2) =∞ while P (Ast |B,As1 , ..., Ast−1) = P (Ast |As1 , ..., Ast−1) =

0 when d(s1, s2) <∞.

Step 3: Consider now the case where d(U, V ) = O(d(r1, r2)) for some r : xr ∈
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V . For AU ∈ AUm and BV ∈ BVm, we need to consider:

|P (AU |BV )− P (AU )|

for all AU and BV such that P (BV ) > 0. Similarly to Step 2, we have: P (qr =

Br) has a range in (−∞, 0) if d(r1, r2) <∞ so whenever there exists r such that

Br ∈ (−∞, 0), there exists K > 0 such that P (B) = 0 for all d(r1, r2) > K.

In those cases, φ-mixing does not apply. Similarly, if Br = −∞, we also have

P (B) = 0 from assumption 6.1 (which must hold for all pairs in the random

field). Finally, suppose that Br = 0, we have that P (Br = 0) = 0 for d(r1, r2) <

∞ and d(r1, r2) <∞ for P (Br = 0) = 1 for d(r1, r2) =∞.

In all cases, whenever there exists r : xr ∈ V such that d(U, V ) = O(d(r1, r2)),

φ-mixing holds trivially, either because P (B) = 0, or because P (B) is a Dirac

distribution.

Step 4:

It remains to check the case where d(U, V ) it not O(d(s1, s2)), or O(d(r1, r2)),

for any pairs s or r such that s : xs ∈ U and r : xr ∈ V . That is, in (7), the

elements of the sum for which d(U, V ) it not O(d(s1, s2)) (step 2), and assuming

that no pair r : xr ∈ V are such that d(U, V ) = O(d(r1, r2)).

We define the following set:

CU,V = {s ∈ Sm|s1 ∈ r : xr ∈ U and s2 ∈ t : xt ∈ V }

That is, the set of pairs (i, j) such that i is in a pair located in U , and such that

j is in a pair located in V . We also let DU,V = 0 if WCU,V
= 0, and DU,V = 1

otherwise. Then, DU,V = 0 implies that there is no link between an individual

in U and an individual in V .

From Step 1 above, and since d(U, V ) it not O(d(s1, s2)), or O(d(r1, r2)), for

any pairs s or r such that s : xs ∈ U and r : xr ∈ V , we necessarily have that

d(U, V ) = O(d(i, j)) for all (i, j) ∈ CU,V .

We will use the following result.
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Step 4.1 P (AU |BV , DU,V = 0) = P (AU |DU,V = 0).

Equivalently: P (AU |BV ,WCU,V
= 0) = P (AU |WCU,V

= 0). Indeed, typi-

cally, WCU,V
does contain information also contained in BV . We claim that it

contains all the information contained in BV . Note that WCU,V
= 0 means that

all pairs between an individual in a pair in U , and an individual in a pair in V

are not linked.

Now, by construction of the random-field {qs} from {ws} (that is: qs =

f(ws,WN(s))), B
V depends only onWV ∪N(V ), whileAU depends only onWU∪N(U).

Note that this heavily relies on Proposition 1. There are four cases:

1. U ∩ V 6= ∅: Since it implies that d(U, V ) = 0, we can disregard this case

(see Step 1). We can therefore interpret the three following cases as being

conditional on U ∩ V = ∅.

2. U∩N(V ) 6= ∅: In words, this is the set of pairs in U that have an individual

in a pair in V . In Figure 5 for instance, this is pair s. Clearly, any pair in

U ∩N(V ) has an individual in a pair in U and an individual in a pair in

V . Therefore, U ∩N(V ) ⊆ CU,V .

3. V ∩ N(U) 6= ∅: Similarly, in Figure 5, this is a pair in V that has an

individual in U , i.e. (r1, s1). We also have: V ∩N(U) ⊆ CU,V .

4. N(U) ∩ N(V ) 6= ∅: We need to describe the set N(U) ∩ N(V ). Any

pair r ∈ N(U) has one (and only one) individual in a pair in U : say

r1 ∈ (r1, s1) ∈ U . Similarly, r ∈ N(V ) has one individual in a pair in V .

There are two cases:

Figure 5: Cases 2 and 3: V ∩N(U) 6= ∅

U={s}

s1 s2

r1

V={(r1,s1)}

Note: Neighbouring pairs of pair s are represented by solid lines.
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(a) r1 ∈ (r1, s2) ∈ V : then (r1, s2) ∈ V ∩N(U). That is: U and V share

an individual (here r1). However, this implies that (r1, s1) ∈ CU,V
and (r1, s2) ∈ CU,V so conditional on WCU,V

= 0, the realization

of wr (which is in the intersection of N(U) and N(V )) brings no

additional information on either (r1, s1) or (r1, s2). See Figure 6.

Figure 6: Case 4(a): N(U) ∩N(V ) 6= ∅: r1 belongs to a pair in U , as well as in a pair in V .

s1 s2

r2

r1U={(r1,s1)} V={(r1,s2)}

(b) r2 ∈ (r2, s2) ∈ V : r is a link between an individual in a pair in U

and an individual in a pair in V , therefore r ∈ CU,V . See Figure 7.

Figure 7: Case 4(b): N(U) ∩N(V ) 6= ∅: r1 belongs to a pair in U , r2 belongs to a pair in V .

s1 s2

r1 r2

U={(r1,s1)} V={(r2,s2)}

Therefore, in all cases, BV provides no information on AU , conditional on

WCU,V
= 0.

Step 4: (continued)

Consider AU ∈ AUm and BV ∈ BVm. Let partition U in U1 and U2 = U \ U1

such that U1 contains the pairs s for which d(U, V ) = O(d(s1, s2)) (provided U1

is non-empty).
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We have:

|P (AU |BV )− P (AU )| = |P (AU1 |AU2 , BV )P (AU2 |BV )− P (AU1 |AU2)P (AU2)|

≤ |P (AU1 |AU2 , BV )P (AU2 |BV )− P (AU1 |AU2)P (AU2 |BV )|

+|P (AU1 |AU2)P (AU2)− P (AU1 |AU2)P (AU2 |BV )|

≤ |P (AU1 |AU2 , BV )− P (AU1 |AU2)|P (AU2 |BV )

+|P (AU2)− P (AU2 |BV )|P (AU1 |AU2)

So the mixing coefficient |P (AU |BV )−P (AU )| is bounded by |P (AU1 |AU2)P (AU2)−

P (AU1 | and |P (AU2)− P (AU2 |BV )|. The first quantity was treated in Step 1.

We now proceed to show that |P (AU2 |BV )−P (AU2)| ≤ 2[P (DU,V = 1|BV )+

P (DU,V = 1)].

P (AU2 |BV )− P (AU2) = P (AU2 |BV , DU,V = 1)P (DU,V = 1|BV )

+P (AU2 |BV , DU,V = 0)P (DU,V = 0|BV )

−P (AU2 |DU,V = 1)P (DU,V = 1)

−P (AU2 |DU,V = 0)P (DU,V = 0)

And therefore, using Step 4.1:

|P (AU2 |BV )− P (AU2)| ≤ |P (AU2 |BV , DU,V = 1)P (DU,V = 1|BV )− P (AU2 |DU,V = 1)P (DU,V = 1)|

+P (AU2 |DU,V = 0)|P (DU,V = 0|BV )− P (DU,V = 0)|

≤ |P (DU,V = 1|BV ) + P (DU,V = 1)|

+P (AU2 |DU,V = 0)|P (DU,V = 0|BV )− P (DU,V = 0)|

≤ 2[P (DU,V = 1|BV ) + P (DU,V = 1)].

This shows that the φ-mixing coefficient is bounded by: 2[P (DU,V = 1|BV )+

P (DU,V = 1)]. In other words, the mixing coefficient is bounded by the proba-

bility that there exists a link between an individual in U and an individual in V .
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Recall that we consider the case where d(U, V ) = O(d(i, j)) for all (i, j) ∈ CU,V .

Since there are at most 4kl such pairs, where |U | = k and |V | = l, the second

bound is bounded by:

(16kl) sup
Wm∈Wm

sup
{i∈SU

m,j∈SV
m}
P (wij = 1|Wm,−ij).

where d(U, V ) = O(d(i, j).

It is then sufficient to show that, as d(i, j)→∞, we have:

sup
AU ,BV

|P (AU |BV )− P (AU )| ≤ kl sup
Wm∈Wm

sup
{i∈SU

m,j∈SV
m}
P (wij = 1|Wm,−ij)

= kl sup
Wm∈Wm

sup
{i∈SU

m,j∈SV
m}

exp{wijhij(Wm,−ij ; θ)}
1 + exp{hij(Wm,−ij ; θ)}

φk,l(d) ≤ kl sup
m

sup
Wm∈Wm

sup
{i∈SU

m,j∈SV
m:d(i,j)>d}

exp{wijhij(Wm,−ij ; θ)}
1 + exp{hij(Wm,−ij ; θ)}

. (8)

Under Assumption 8, we have that

φk,l(d) = O(d−2T+1−ε)

for any k, l <∞, which is sufficient for Assumptions 3.1 and 3.2.

The case of Assumption 3.3 is different. Consider the bound (8) for k = 1,

and denote by s the only pair in U :

φ1,l(d) ≤ l sup
m

sup
Wm∈Wm

sup
{i∈s,j∈SV

m:d(i,j)>d}

exp{wijhij(Wm,−ij ; θ)}
1 + exp{hij(Wm,−ij ; θ)}

= lF [h̃(d)]

where F [h̃(d)] ≡ supm supWm∈Wm
sup{i∈s,j∈SV

m:d(i,j)>d}
exp{wijhij(Wm,−ij ;θ)}
1+exp{hij(Wm,−ij ;θ)} .

Here, we implicitly assume that it is possible to have l pairs located at a

distance of exactly d from s. For d0 > 0, as l is increasing, this is impossible.

From Jenish and Prucha (2009) (Lemma A.1(iii)), there can be at most CdT−1
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pairs located at a distance in [d, d+ 1), where C is a finite constant. The other

pairs must be located at a distance of at least d + 1. In fact, there can be at

most C(d + ι)T−1 pairs located at a distance in [d + ι, d + ι + 1)... and so on.

We should therefore rewrite our bound as:

φ1,∞(d) ≤ C

∞∑
ι=0

Cd+ι(d+ ι)T−1F [h̃(d+ ι)]

From Assumption 8, this can be rewritten as

φ1,∞(d) ≤ C

ι̂(d)∑
ι=0

(d+ ι)T−1F [h̃(d+ ι)] + CK

∞∑
ι=ι̂(d)+1

(d+ ι)−T−ε

where K is finite and positive. The function ι̂(d) maps to a finite and positive in-

teger and represents the first value of ι such that F [h̃(d+ι)] ≤ K(d+ι)−2T+1−2ε

holds. Note that ι̂(d) is necessarily non-increasing in d, hence supd ι̂(d) = ι̂(0).

Notice that ι̂(0) is necessarily finite under Assumption 8.

We therefore have:

φ1,∞(d) ≤ C

ι̂(0)∑
ι=0

(d+ ι)T−1F [h̃(d+ ι)] + CK

∞∑
ι=0

(d+ ι)−2T−2ε

The first term is a finite sum of sequences of d, each of which is (at least)

O(d−T−ε), so the first term is O(d−T−ε). For a fixed d,
∑∞
ι=0(d + ι)−T−ε

converges. Then, the rest of the series converges to zero. This means that

for every ε > 0, there is a positive integer R such that for all r ≥ r′ ≥ R

we have
∑r′

ι=r(d + ι)−T−ε < ε. Thus,
∑∞
ι=0(d + ι)−T−ε ≈

∑R
ι=0(d + ι)−T−ε.

Since every term of the last finite summation is O(d−T−ε), we have finally

φ1,∞(d) = O(d−T−ε). This completes the proof. �

10.2. Proof of Proposition 3.

For simplicity, we omit the dependence on m. Let hs(Wm,−s; θ) = Γ′sθ where

Γs is a vector of explanatory variables. We know from proposition 1 that the
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conditional distribution is well specified, i.e.

P(ws|Wm,−s; θ) =
exp {wsΓ′sθ}

1 + exp {Γ′sθ}
.

Therefore, if θ0 is the true value of interest. The true conditional distribution

takes the form P(ws|Wm,−s; θ0) =
exp{wsΓ′sθ0}
1+exp{Γ′sθ0}

.

The proof proceeds by a series of claims. Recall that we have: qs(ws; θ) =

lnP(ws|Wm,−s; θ) = wsΓ
′
sθ − ln[1 + exp{Γ′sθ}].

Claim 1. If E[ΓsΓ
′
s] is nonsingular, then qs(ws; θ) 6= qs(ws; θ0) for θ 6= θ0 with

positive probability under θ0.

Indeed, If E[ΓsΓ
′
s] is nonsingular for θ 6= θ0, E[{Γ′s(θ−θ0)}2] = (θ−θ0)′E[ΓsΓ

′
s](θ−

θ0) > 0. This implies that Γ′s(θ − θ0) 6= 0 and then Γ′sθ 6= Γ′sθ0 with positive

probability under θ0. Because the function ex

1+ex and 1
1+ex and ln(x) are strictly

monotonic, the result holds given that qs(ws; θ) can be written also as follows:

qs(ws; θ) = ws lnP(ws = 1|Wm,−s; θ) + (1− ws) lnP(ws = 0|Wm,−s; θ).

Claim 2. If E[|ΓsΓ′s|] <∞ then E[|qs(ws; θ)|
∣∣Wm,−s] <∞.

Indeed, because we can show that max(|x − ln[1 + ex]|, | ln[1 + ex]|) < 1 + x2,

we have then E[|qs(ws; θ)|
∣∣Wm,−s] ≤ 1 + θ′E[ΓsΓ

′
s]θ.

Claim 3. If ∣∣ lnP(ws = 1|Wm,−s; θ)
∣∣P(ws = 1|Wm,−s; θ0) +∣∣ lnP(ws = 0|Wm,−s; θ)
∣∣P(ws = 0|Wm,−s; θ0) <∞

for each θ ∈ Θ, then if qs(ws; θ) 6= qs(ws; θ0) for θ 6= θ0 we have E[qs(ws; θ)] <
E[qs(ws; θ0)].

Indeed, we have

E[|qs(ws; θ)|
∣∣Wm,−s, θ0] = lnP(ws = 1|Wm,−s; θ)P(ws = 1|Wm,−s; θ0)

+ lnP(ws = 0|Wm,−s; θ)P(ws = 0|Wm,−s; θ0).
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Thus,

E[|qs(ws; θ)|
∣∣Wm,−s, θ0]− E[|qs(ws; θ0)|

∣∣Wm,−s, θ0]

= ln
{ P(ws = 1|Wm,−s; θ)

P(ws = 1|Wm,−s; θ0)

}
P(ws = 1|Wm,−s; θ0) + ln

{ P(ws = 0|Wm,−s; θ)

P(ws = 0|Wm,−s; θ0)

}
P(ws = 0|Wm,−s; θ0)

< ln{P(ws = 1|Wm,−s; θ) + P(ws = 0|Wm,−s; θ)} = 0.

The inequality holds using Jensen’s Inequality for strictly concave function.

Then, we have E[|qs(ws; θ)|]− E[|qs(ws; θ0)|] < 0 by iterated expectation.

Claim 4. If E[Γs,mΓ′s,m] is finite and nonsingular and κ(m) = O(n) then
limm→∞ E[Lm(θ)] < limm→∞ E[Lm(θ0)] for θ 6= θ0.

Indeed, a direct implication of claims 1, 2, and 3 is that E[qs(ws; θ)] <

E[qs(ws; θ0)]. Then we have 1
κ(m)

∑m
s E[qs(ws; θ)] <

1
κ(m)

∑m
s E[qs(ws; θ0)].

And then this remains valid at the limit if we choose the right order of κ(m).

Bester et al. (2012)

Let X be partitioned into groups, or clusters: c = 1, ..., C. Bester et al.

(2012) propose using the following cluster-variance estimator:

B̂m(θ) =
1

κ(m)

∑
s∈S

∑
r∈S

I(cs = cr)
∂qs,m(θ)

∂θ

(
∂qs,m(θ)

∂θ

)′

where cs is the group in which s ∈ S is located. They show in their Proposition

1(ii) that one can use the t-statistic of the cluster-variance estimator, provided

that it is rescaled by a factor of
√
C/C − 1.

This approach has the advantage of being fast and easy to implement. In

practice, the construction of those groups is not necessarily straightforward.

Bester et al. (2012) recommend the use of a relatively small number of large

groups. An important requirement, however, is a boundary condition that states

that most of the pairs in groups are located in the interior (i.e. not on the

boundary) of those groups in X . Specifically, let ∂(cs) be the boundary of the

group cs, and c̄m be the average number of pairs in a group. Then, one should

have ∂(cs) < c̄
(T−1)/T
m , where T ≥ 1 is the dimension of X .
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Application: Distance and Convergence Rate

The Add Health database provides information on the (normalized) location of

individuals’ homes. Following the survey’s definition, individuals can only be

friends if they belong to the same community. This is similar to Example 5 . We

therefore dropped the links between individuals from different neighbourhoods.

Also, since the GPS coordinates are normalized to 100 for confidentiality issues,

it does not go well with assumption 5. Indeed under assumption 5, (and, more

generally, in reality) more populated communities should occupy more physical

space. We therefore rescale the distances between pairs using
√
nc where nc is

the number of individuals in the community c. Indeed, from Jenish & Prucha

(2009), lemma A.1 (ii), there are O(d)T individuals located in a ball of radius

d. Here, T = 2, so an coherent scaling is such that: nc = d2, or d =
√
nc.

49


	Introduction
	The economy
	(Markov) Random Fields
	Limited dependence theorems
	The Role of Homophily
	Identification.
	Linearity in .
	Sparsity

	Friendship networks
	Conclusion
	References
	Appendix
	Proof of Theorem 1
	Proof of Proposition 3.


