8 research outputs found

    Self-stabilizing TDMA Algorithms for Wireless Ad-hoc Networks without External Reference

    Full text link
    Time division multiple access (TDMA) is a method for sharing communication media. In wireless communications, TDMA algorithms often divide the radio time into timeslots of uniform size, ξ\xi, and then combine them into frames of uniform size, τ\tau. We consider TDMA algorithms that allocate at least one timeslot in every frame to every node. Given a maximal node degree, δ\delta, and no access to external references for collision detection, time or position, we consider the problem of collision-free self-stabilizing TDMA algorithms that use constant frame size. We demonstrate that this problem has no solution when the frame size is τ<max{2δ,χ2}\tau < \max\{2\delta,\chi_2\}, where χ2\chi_2 is the chromatic number for distance-22 vertex coloring. As a complement to this lower bound, we focus on proving the existence of collision-free self-stabilizing TDMA algorithms that use constant frame size of τ\tau. We consider basic settings (no hardware support for collision detection and no prior clock synchronization), and the collision of concurrent transmissions from transmitters that are at most two hops apart. In the context of self-stabilizing systems that have no external reference, we are the first to study this problem (to the best of our knowledge), and use simulations to show convergence even with computation time uncertainties

    A Distributed and Self-Organizing Scheduling Algorithm for Energy-Efficient Data Aggregation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are increasingly being used to monitor various parameters in a wide range of environmental monitoring applications. In many instances, environmental scientists are interested in collecting raw data using long-running queries injected into a WSN for analyzing at a later stage, rather than injecting snap-shot queries containing data-reducing operators (e.g., MIN, MAX, AVG) that aggregate data. Collection of raw data poses a challenge to WSNs as very large amounts of data need to be transported through the network. This not only leads to high levels of energy consumption and thus diminished network lifetime but also results in poor data quality as much of the data may be lost due to the limited bandwidth of present-day sensor nodes. We alleviate this problem by allowing certain nodes in the network to aggregate data by taking advantage of spatial and temporal correlations of various physical parameters and thus eliminating the transmission of redundant data. In this article we present a distributed scheduling algorithm that decides when a particular node should perform this novel type of aggregation. The scheduling algorithm autonomously reassigns schedules when changes in network topology, due to failing or newly added nodes, are detected. Such changes in topology are detected using cross-layer information from the underlying MAC layer. We first present the theoretical performance bounds of our algorithm. We then present simulation results, which indicate a reduction in message transmissions of up to 85% and an increase in network lifetime of up to 92% when compared to collecting raw data. Our algorithm is also capable of completely eliminating dropped messages caused by buffer overflow

    Etude de la fiabilité des algorithmes self-convergeants face aux soft-erreurs

    Get PDF
    This thesis is devoted to the study of the robustness/sensitivity of a self-converging algorithm with respect to SEU's. These phenomenon also called bit-flips which may modify the content of memory elements as the result of the silicon ionization resulting from the impact of a charged particles. This study may have a significant impact given the conditions of miniaturization that will soon have circuits with hundreds to thousands of processing cores on a single chip, this will require make the cores communicate effectively and robust manner. In this context the so-called self-converging algorithm can be used to ensure that communication between cores is reliable and without external intervention. A fault injection study of the robustness of the algorithm was performed, this algorithm was initially executed by a processor LEON3 implemented in the FPGA embedded in a specific platform test. Preliminary fault injection from a method the state of the art called CEU showed some sensitivity to SEUs of algorithm. To cope with the software changes were made and techniques for fault tolerance have been implemented in software in the program implementing the self-converging algorithm. The fault injection experiments were made to demonstrate the robustness to SEU's and potential problems of the modified algorithm. The impact of SEUs was explored on a hardware-implemented self-converging algorithm in a FPGA. The evaluation of this method was performed by fault injection at RTL level circuit. These results obtained with this method have shown a significant improvement of the robustness of the algorithm in comparison with its software version.Cette thèse est consacrée à l'étude de la robustesse/sensibilité d'un algorithme auto-convergeant face aux SEU's. Ces phénomènes appelés aussi bit-flips qui se traduit par le basculement intempestif du contenu d'un élément mémoire comme conséquence de l'ionisation produite par le passage d'une particule chargée avec le matériel. Cette étude pourra avoir un impact important vu la conjoncture de miniaturisation qui permettra bientôt de disposer de circuits avec des centaines à des milliers de cœurs de traitement sur une seule puce, pour cela il faudra faire les cœurs communiquer de manière efficace et robustes. Dans ce contexte les algorithme dits auto-convergeants peuvent être utilis afin que la communication entre les cœurs soit fiable et sans intervention extérieure. Une étude par injection de fautes de la robustesse de l'algorithme étudié a été effectuée, cet algorithme a été initialement exécuté par un processeur LEON3 implémenté dans un FPGA embarqué dans une plateforme de test spécifique. Les campagnes préliminaires d'injection de fautes issus d'une méthode de l'état de l'art appelée CEU (Code Emulated Upset) ont mis en évidence une certaine sensibilité aux SEUs de l'algorithme. Pour y faire face des modifications du logiciel ont été effectuées et des techniques de tolérance aux fautes ont été implémentés au niveau logiciel dans le programme implémentant l'algorithme. Des expériences d'injection de fautes ont été effectués pour mettre en évidence la robustesse face aux SEUs et ses potentiels « Tallons d'Achille » de l'algorithme modifié. L'impact des SEUs a été aussi exploré sur l'algorithme auto-convergeant implémenté dans une version hardware dans un FPGA. L'évaluation de cette méthodologie a été effectuée par des expériences d'injection de fautes au niveau RTL du circuit. Ces résultats obtenus avec cette méthode ont montré une amélioration significative de la robustesse de l'algorithme en comparaison avec sa version logicielle

    Topics in Distributed Algorithms: On Wireless Networks, Distributed Storage and Streaming

    Get PDF
    Distributed algorithms are executed on a set of computational instances. Werefer to these instances as nodes. Nodes are runningconcurrently and are independent from each other. Furthermore, they have their own instructions and information. In this context, the challenges are to show thatthe algorithm is correct, regardless of computational, or communication delaysand to show bounds on the usage of communication.We are especially interested the behaviour after transient faults and underthe existence of Byzantine nodes.This thesis discusses fundamental communication models for distributed algorithms. These models are implementing abstract communication methods. First, we address medium access control for a wireless medium with guaranteeson the communication delay. We discuss time division multiple access(TDMA) protocols for ad-hoc networks and we introduce an algorithm that creates aTDMA schedule without using external references for localisation, or time. We justify our algorithm by experimental results.The second topic is the emulation of shared memory on message passingnetworks. Both, shared memory and message passing are basic interprocessorcommunication models for distributed algorithms. We are providing a way ofemulating shared memory on top of an existing message passing network underthe presence of data corruption and stop-failed nodes. Additionally, we ensurethe privacy of the data that is stored in the shared memory. The third topic looks into streaming algorithms and optimisation. We study the problem of sorting a stream ofvehicles on a highway with severallanes so that each vehicle reaches its target lane. We look into optimality interms of minimising the number of move operations, as well as, minimising the length of the output stream. We present an exact algorithm for the case oftwo lanes and show that NP-Hardness for a increasing number of lanes

    Chemical programming to eploit chemical Reaction systems for computation

    Get PDF
    This thesis is on programming approaches to exploit the computational capabilities of chemical systems, consisting of two parts. In the first part, constructive design, research activities on theoretical development of chemical programming are reported. As results of the investigations, general programming principles, named organization-oriented programming, are derived. The idea is to design reaction networks such that the desired computational outputs correspond to the organizational structures within the networks. The second part, autonomous design, discusses on programming strategies without human interactions, namely evolution and exploration. Motivations for this programming approach include possibilities to discover novelty without rationalization. Regarding first the evolutionary strategies, we rather focused on how to track the evolutionary processes. Our approach is to analyze these dynamical processes on a higher level of abstraction, and usefulness of distinguishing organizational evolution in space of organizations from actual evolution in state space is emphasized. As second strategy of autonomous chemical programming, we suggest an explorative approach, in which an automated system is utilized to explore the behavior of the chemical reaction system as a preliminary step. A specific aspect of the system's behavior becomes ready for a programmer to be chosen for a particular computational purpose. In this thesis, developments of autonomous exploration techniques are reported. Finally, we discuss combining those two approaches, constructive design and autonomous design, titled as a hybrid approach. From our perspective, hybrid approaches are ideal, and cooperation of constructive design and autonomous design is fruitful
    corecore