A Distributed and Self-Organizing Scheduling
Algorithm for Energy-Efficient Data
Aggregation in Wireless Sensor Networks

SUPRIYO CHATTERJEA, TIM NIEBERG, NIRVANA MERATNIA,
and PAUL HAVINGA

University of Twente

Wireless sensor networks (WSNs) are increasingly being used to monitor various parameters in a
wide range of environmental monitoring applications. In many instances, environmental scientists
are interested in collecting raw data using long-running queries injected into a WSN for analyzing
at a later stage, rather than injecting snap-shot queries containing data-reducing operators (e.g.,
MIN, MAX, AVG) that aggregate data. Collection of raw data poses a challenge to WSNs as very
large amounts of data need to be transported through the network. This not only leads to high
levels of energy consumption and thus diminished network lifetime but also results in poor data
quality as much of the data may be lost due to the limited bandwidth of present-day sensor nodes.
We alleviate this problem by allowing certain nodes in the network to aggregate data by taking ad-
vantage of spatial and temporal correlations of various physical parameters and thus eliminating
the transmission of redundant data. In this article we present a distributed scheduling algorithm
that decides when a particular node should perform this novel type of aggregation. The scheduling
algorithm autonomously reassigns schedules when changes in network topology, due to failing or
newly added nodes, are detected. Such changes in topology are detected using cross-layer informa-
tion from the underlying MAC layer. We first present the theoretical performance bounds of our
algorithm. We then present simulation results, which indicate a reduction in message transmis-
sions of up to 85% and an increase in network lifetime of up to 92% when compared to collecting
raw data. Our algorithm is also capable of completely eliminating dropped messages caused by
buffer overflow.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; real-time systems and embedded systems; D.4.1 [Operating Systems]:
Process Management—Scheduling; D.4.4 [Operating Systems]: Communications Management—
Network communication

General Terms: Algorithms, Performance, Measurement

Additional Key Words and Phrases: Wireless sensor network; scheduling; in-network data aggre-
gation; self-organizing; cross-layer optimization; spatio-temporal correlation

This work was performed as part of the Dutch NWO funded CONSENSUS project and the EU
funded e-Sense project.

Author’s addresses: Pervasive Systems Group, Faculty of Electrical Engineering, Mathematics and
Computer Science, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2008 ACM 1550-4859/2008/08-ART20 $5.00 DOI 10.1145/1387663.1387666 http:/doi.acm.org/
10.1145/1387663.1387666

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:2 o S. Chatterjea et al.

ACM Reference Format:

Chatterjea, S., Nieberg, T., Meratnia, N., and Havinga, P. 2008. A distributed and self-organizing
scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM
Trans. Sens. Netw., 4, 4, Article 20 (August 2008), 41 pages. DOI = 10.1145/1387663.1387666
http://doi.acm.org/10.1145/1387663.1387666

1. INTRODUCTION

Wireless sensor networks (WSNs) are increasingly being used to carry out var-
ious forms of environmental monitoring. Monitoring vineyards [Burrell et al.
2004], wildlife habitats [Mainwaring et al. 2002], office buildings [Wen 2006],
suspension bridges [Smyth et al. 2003], forests [Tolle et al. 2005], and even ma-
rine environments [Chatterjea et al. 2006] are just a few of the diverse range
of sensor network applications that can be found in current literature. One of
the primary motivations for using WSNs is that they allow environments to
be monitored at extremely high spatial and temporal resolutions—something
that is not possible using existing monitoring technologies. This is mainly
due to the fact that sensor nodes are usually deployed in very high densities
[Intanagonwiwat et al. 2002].

However, extracting the vast amounts of data generated by large-scale, high-
density sensor network deployments can cause a wide range of problems. The
fact that sensor nodes are typically battery powered devices makes energy re-
sources a precious commodity. Transmitting every single acquired sensor read-
ing would cause nodes to drain their batteries in a matter of days. WSN deploy-
ments however, will only be practically viable if they are able to run unattended
for long durations. Furthermore, the limited bandwidth of present-day sensor
nodes prevents all the acquired readings from being propagated successfully
toward the sink. This results in dropped packets, which in turn has a negative
impact on the quality of data collected.

As sensor readings of adjacent nodes in a high-density network may display
a high degree of correlation, one way to reduce the amount of data that needs
to be transmitted would be to exploit the spatial correlation between adjacent
nodes. Thus, instead of having every node transmit its readings, we suggest
a method that requires only a small subset of nodes in the network to trans-
mit messages that represent all the remaining nodes at any point in time. We
refer to nodes belonging to this subset as correlating nodes. Every correlat-
ing node initially transmits a message containing correlation information that
indicates how the particular node’s readings are correlated with its adjacent
neighbors. Subsequently, the correlating node continues to transmit its own
readings until a change in correlation is detected, in which case the updated
correlation information is transmitted to the sink node. The sink node uses the
correlation information and combines it with the subsequent reading received
from a correlating node to deduce the readings of the adjacent neighbors of
the correlating node. As it would be pointless to have two adjacent nodes act
as correlating nodes simultaneously, in this article we present a completely
distributed and self-organizing scheduling algorithm that decides when a par-
ticular node should act as a correlating node. Our contributions are stated as

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:3

follows:

(1) We present a completely distributed scheduling algorithm that enables ev-
ery node to autonomously choose schedules based only on locally available
information.

(2) We prove our algorithm possesses self-stabilizing properties that allow it
to recover within a finite amount of time regardless of any disturbances
in the network, such as topology changes or communication errors. We
present theoretical upper bounds for message transmissions and network
stabilization times when topology changes occur.

(3) Weillustrate how our algorithm is able to adapt quickly to topology changes
due to its close interaction with the underlying MAC layer. The algorithm
also improves energy-efficiency by taking advantage of cross-layer informa-
tion provided by the MAC.

(4) We present performance estimates and theoretical upper bounds for the
performance of our algorithm. We evaluate the algorithm by presenting
simulation results, which indicate a reduction in message transmissions
of up to 85% and an increase in network lifetime of up to 92% when com-
pared to collecting raw data. Our algorithm is also capable of completely
eliminating dropped messages caused by buffer overflow.

An example application scenario and a list of assumptions we make are
described in the following two sections. Section 4 provides the motivation and
focus of this article. An overview of our approach is presented in Section 5.
Sections 6 and 7 provide background information about the underlying MAC
protocol and self-stabilization. The main scheduling algorithm is described in
Section 8. We evaluate the performance of our approach in Section 9. Section 10
mentions the related work and finally the article is concluded in Section 11.

2. APPLICATION SCENARIO

We are currently working together with the Australian Institute of Marine
Science (AIMS) [AIMS 2006] to set up a large-scale wireless sensor network to
monitor various environmental parameters on the Great Barrier Reef (GBR)
in Australia. Scientists at AIMS intend to use the collected data to study coral
bleaching, reef-wide temperature fluctuations, and the impact of temperature
on aquatic life and pollution.

One of the reefs under study is the Davies Reef, which is approximately 80km
northeast of the city of Townsville in North Queensland, Australia. Currently,
AIMS has a couple of data loggers situated on the reef that records temperature
at two separate depths once every thirty minutes. Scientists from AIMS need
to visit the reef periodically to download the data from the loggers.

The drawback of the current system is that it only allows single-point mea-
surements. Thus it is impossible to get a true representation of the temperature
gradients spanning the entire reef, which is approximately 7km in length. Also,
the practice of collecting the data once every few weeks makes it impossible to
study the trends of various parameters in real-time. Deploying a sensor net-
work would not only allow high resolution monitoring in both the spatial and

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:4 . S. Chatterjea et al.

Water-tight
canister T

containing

Ant <(())> sensor node 5 s
n enna\f) = 1 1. sensor network
s == = deployed on buoys
Buoy = =——- <= = floating on reef

2. Embedded PC on
communications tower
connected to sink node,

3. Data transmitted to AIMS collects data from
through microwave sensor network
transmissions trapped
in humidity ducts \ \
Base station <\f\ j\j\J 4
Sensor hangs from atAIMS

bottom of buoy
obtaining readings

Fig. 1. Overview of data collection system at Davies Reef.

temporal dimensions, but would also enable scientists to improve their under-
standing of the complex environmental processes by studying data streaming
in from the reefin real-time.

The new data collection system that we are deploying at Davies reef can be
broken down into three main components as shown in Figure 1:

Ambient uNodes. These are the sensor nodes from Ambient Systems
[Ambient 2006a] that will be placed in water and shock-proof canisters and
then placed in buoys around the reef.

Embedded PC. An embedded PC will be placed on a communication tower
and will act as the sink node, collecting data from all the sensors in the reef.

Microwave link. This will allow data to be transmitted from the Embed-
ded PC to the AIMS base station 80 km away, using microwave transmissions
trapped inside humidity ducts that form directly above the surface of the sea
[Palazzi et al. 2005].

The work presented in this article focuses on the first component. We de-
scribe a distributed and self-organizing scheduling algorithm that runs on the
Ambient uNodes and subsequently allows energy-efficient data gathering to be
performed. We present a more in-depth explanation of the focus and motivation
of this article in Section 4.

It is important to highlight however, that our work is not strictly tailored
for the GBR. As mentioned later in Section 4, it can be used in a wide range of
environmental monitoring scenarios where fine-grained spatio-temporal reso-
lutions are required. We have simply chosen to use the GBR as a test bed to
illustrate the feasibility of our solution.

3. ASSUMPTIONS

Based on our application scenario described above, we have made a few assump-
tions about the data that will be collected, and about the network itself. Firstly,
as there will be a very large number of sensor nodes (~100) and since they

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:5

Scale:

Eloensor 5| Nﬂﬂ
Sensor 3

S
Sensor 1R

Fig. 2. Sensors deployed in Nelly Bay, Great Barrier Reef, Australia.

may be required to obtain readings at a high frequency, a large amount of data
can be expected to flow through the network. Given the limited bandwidth and
memory capacity of individual sensor nodes, assuming that nodes are trans-
mitting data via a communication tree towards the sink node, nodes that are
closer to the sink node will be prone to buffer overflows [Dulman et al. 2006].
This will result in loss of messages, which will greatly reduce the quality of data
collected. Secondly, as there will be a very high density of sensor nodes, that
is, they will be placed very close to each other, we can expect readings between
neighboring nodes to be correlated during most parts of the day. This assump-
tion can be verified by looking at data that has been collected from Nelly Bay in
the GBR as shown in Figure 2 [Bondarenko et al. 2007]. Figure 3(a) presents a
matrix that shows three characteristics of the five deployed sensors: tempera-
ture readings (d), correlation between the readings of any two sensors (c¢), and
how correlation varies over time (b). It can be clearly seen that the correla-
tion remains relatively constant over a 12 day duration. Note that temperature
readings were obtained every 10 minutes.

As the sensor nodes will be placed on the reef for possibly a number of years,
we assume that the topology of the network is relatively static. We do however
take into consideration the fact that the network topology may change occa-
sionally since the nodes are prone to failure (e.g., due to the harsh environment
or dead batteries), and new nodes may be added to expand the network.

4. MOTIVATION AND FOCUS

Taking advantage of spatial correlations between neighboring nodes would en-
able nodes to filter out redundant data. This in turn would help reduce problems
such as excessive energy usage, buffer overflows, and reduced data quality. In-
stead of transmitting every acquired sensor reading to the sink node, a node
that discovers a correlation with its neighboring nodes, only transmits the cor-
relation information, followed by its own readings. Thus, the sink node can then
predict the readings of the neighboring nodes using the correlation information
and the transmitted readings from the node performing the correlation. This is
illustrated in Figure 4(b).

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:6 S. Chatterjea et al.

S og)
k=3
B o
[
g
o (b)
2
2
£ .
D 45
(a) &
Sensor 1 Sensor2 Sensor 3 Serisor4 Sensor 5 B
Days
- 1 | [T s
o
(2]
3
2] e
0)
8
o S 7 = 2 4
5 - g,
2 H
[Dz
@ - ©
© 5
°
(o)
» I T N
— ©
5 -
5 :
3 ° s 5 —
Temperature readings of Sensor 2 (°C)
<] E P
= e # ‘eé‘#‘
o F !
2 e g e
[
[75] 2
8 24
[} p o 2
S o e 5
g # o 5 2 (d)
3 5
2
19|
S T
Days
Fig. 3. (a) Correlation matrix, (b) Variation of correlation over time, (c) Correlation between two

sensor readings, (d) Temperature readings.

(a) Collecting raw data
without aggregation
Step 1

Na NS N2

T~

N3
N4\ —p 2 N2 sink node

T
<x\\/r\? net \‘/ N7

N5

s

(b) Taking advantage of
correlations of sensor readings

Step 2
N1 works out how it N1 (correlating node)
is correlated with s~ N4 N,3 N2 ansmits the corrlaion
neighbours: C— O, information, followed by its
X . own sensor readings. The
Nz | +1.7°C] ; sink node can then
N3 | +1.5°C| * compute the readings of
N4 | 0.2°C i_ the neighboring sensors
N5 | +0.4°C| N5 \ using the correlation
N6 | 19°C C » information.
N7 | 26 \(/ N7
N6
of sensor ings at the sink node:

Actual readings: N1
Estimated readings: N2, N3, N4, N5, N6, N7

Fig. 4. Advantage of using correlation information (b) instead of transmitting raw data (a).

The approach of taking advantage of spatial and temporal correlations of
sensor readings involves two issues that need to be addressed:

Identifying correlations and keeping correlation information updated.

Itis

important to note that correlation is not a static attribute. Correlation between
two neighboring sensors may exist at only certain times of the day. Thus a node

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 207

needs to be able to identify when a correlation may arise, and it also needs
to ensure that the correlation information it has is up-to-date. Naturally, if
trends of sensor readings change extremely rapidly, such a scheme would incur
a very high overhead that would exceed the cost of collecting raw data from
the network, due to frequent updates of the correlation information. However,
preliminary readings obtained from our four different sensor network test beds
situated in diverse environments ranging from the coral reef, to microclimates
in trees, and even a typical office environment, have shown that sudden changes
in trends of sensor readings are not particularly common. This characteristic
is also clearly shown in Figure 3(b). In fact, during most parts of the day, sensors
placed geographically close to one another, tend to display similar behavior. Our
work is not designed for applications where correlations fluctuate rapidly.

Deciding when a node should act as a correlating node. It would not make
sense for all nodes to send correlation information to the sink node simultane-
ously as this would involve sending more information than even transmitting
raw sensor readings. Thus when one node is transmitting correlation data,
the neighboring nodes should refrain from doing so. This implies that while
nodes transmitting the correlation information (i.e., correlating nodes) are rep-
resented at the root node by their actual (own) readings, their neighbors are
represented by estimated readings that are based on the correlation informa-
tion transmitted by the correlating nodes (Figure 4(b)). Note that a correlating
node initially transmits the correlation information followed by its own sensor
readings. Thus, two neighboring nodes should not act as correlating nodes si-
multaneously at any instant of time. Furthermore, it is important to ensure
that at all times, every node in the network is represented at the sink node
either by an actual reading or by an estimated reading. This in turn means
that if a node is not a correlating node at a given time, it must be connected to
at least one neighboring correlating node.

Having a static scheduling scheme that fixes the correlating nodes for the
entire lifetime of the network, is not desirable. This is because, though there
would be a number of correlating nodes sending their own sensor readings in
addition to the correlation information, a significant proportion of the nodes
would always be represented at the root node by only estimated readings. Thus
such a scheme would be prone to errors in the event that the correlating node
fails for some reason and starts sending erroneous correlation information to
the sink.

Thus in order to have a more robust scheme, every node in the network should
be given an opportunity to be a correlating node. This would allow the sink to
raise an alarm in case it notices that the actual readings of a node indicate
a distinctly different characteristic compared to the estimated readings of the
same node.

This clearly implies that there needs to be a scheduling scheme that decides
when a certain node should be in charge of sending correlation information in
the event that a correlation exists.

The work in this article focuses on the latter issue and presents a Dis-
tributed and self-Organizing Scheduling Algorithm (DOS.A), which that al-
lows nodes to autonomously reassign the schedules if a change in topology

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:8 o S. Chatterjea et al.

is detected, whether it is due to the failure or to the addition of nodes. We
make the assumption in this article that correlations between neighboring
sensor nodes do exist. The exact mechanisms for identifying correlations and
keeping correlation models updated, does not fall within the scope of this
article.

5. AMACRO PERSPECTIVE OF THE DOS.A APPROACH

As we mentioned in Section 4, the primary objective of DOS A is to help decide
when a particular node should act as a correlating node and thus be put in
charge of representing the sensor readings of all the nodes in its one-hop neigh-
borhood. Note that during the correlating node’s schedule, the node initially
transmits correlation information to the sink node followed by its own sensor
readings. None of the nodes in the correlating node’s one-hop neighborhood
transmit their sensor readings to the sink during this period.

Since DOSA is intended to solve a scheduling problem, we make use of a
distributed graph-coloring algorithm to assign schedules to individual nodes
[Lynch 1996]. Thus, from a graph-theoretic point of view, since no two adjacent
nodes can act as a correlating node simultaneously, all the nodes chosen by
DOS Atobe correlating nodes need to form an independent set. Additionally, the
correlating nodes for a particular instant of time need to form a dominating set
since every noncorrelating node must be joined to at least one correlating node
by some edge. Also note that the subset of nodes that are both independent and
dominating is known as a maximal independent set. A maximal independent
set cannot be extended further by the addition of any other nodes from the
graph.

It is these requirements that help us define the constraints, outlined later in
Section 8, that DOS A follows in order to perform its intended task.

In order to hasten the speed at which the nodes are assigned schedules,
DOS A makes use of the information provided by the underlying MAC protocol,
LMAC [van Hoesel and Havinga 2004]. In other words, instead of DOS A having
to color all the nodes from scratch, it takes advantage of the schedules (or colors)
already assigned by LMAC and subsequently builds upon that to ensure that
the requirements of DOS.A are met. An added advantage of this form of cross-
layer optimization is that fewer messages need to be transmitted for all the
schedules to be assigned properly, since we make use of information that already
exists. Furthermore, DOS A’s dependence on LMAC makes it more reactive to
changes in topology since any changes in neighborhood detected by LMAC are
immediately filtered to DOSA.

Because the operation of DOS A is completely dependent on LMAC, we first
give a brief overview of LMAC and then proceed to present the operation of
DOSA.

6. LMAC: A LIGHTWEIGHT MEDIUM ACCESS CONTROL PROTOCOL

LMAC is a TDMA-based lightweight medium access control protocol designed
specifically for wireless sensor networks. Instead of contending for the medium,
like carrier-sensing based MAC protocols [Ye et al. 2002; Dam and Langendoen

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:9

Each frame «—— Frame 1 Frame 2 Frame 3 Frame 4
is made up A A A PN
of n slots o N N N A -
e e e e e e EH ‘ [

» time

- l¢— Maximum . Maximum: . _ Maximum
S'Qt/& K_Isngth wom M Slot 3: "_Isngth ofDMﬂ Slot.3: k_lenglh Som

‘CM‘ DM CM‘DM e ‘.CM‘F"’

L] L]

—— The length of the DM is
not fixed and depends on
the amount of data that
needs to be transmitted. It
can also be omitted
completely if there is no
data to transmit.

L

A node transmits its CM section during the slot it
owns, once every frame, regardless of whether
there is any data to send.

Fig. 5. Illustration of frames and slots in LMAC.

2003], time in LMAC is divided into frames, each of which is further divided
into a fixed number of time slots (Figure 5). Every node chooses its own slot
using a distributed algorithm that uses only locally available information. A
node is allowed to pick any slot as long as it is not owned by any other node
within its two-hop neighborhood. This mechanism effectively helps avoid the
hidden-terminal problem because it makes it impossible for two nodes that are
two hops away from each other to transmit at the same time. It also prevents
all slots from being used up, since LMAC ensures that two nodes that are at
least three hops away from each other can reuse the same time slot.

A time slot consists of two sections, the Control Message (CM), and the Data
Message (DM). The CM, which contains control information and has a fixed
length, is broadcast by a node to its neighbors during its own time slot, once
every frame, irrespective of whether the node has any data to send. The CM
contains a table that identifies the slots that are occupied by itself and by its
one-hop neighbors as well as other control information. Every node maintains a
Neighbor Table that stores the information about its one-hop neighbors, such as,
ID, occupied slot, number of hops to sink node, and so forth. Occupied slots are
marked with a 1, whereas unoccupied ones are marked with a 0. A node joining
the network, first listens out for the CMs of all its neighbors and then picks one
of the slots that is marked as unoccupied, by performing an OR-operation. This
mechanism is illustrated in Figure 6.

The DM contains higher layer protocol messages. The length of the DM can
vary depending on the amount of data that a node needs to send. It does however,
have a maximum length as shown in Figure 5.

7. PRELIMINARIES FOR SELF-STABILIZATION

Since we later illustrate how DOSA initializes during start-up and how it
is capable of recovering from topology changes caused by the addition or re-
moval of nodes, we follow the self-stabilization [Dijkstra 1974; Dolev 2000]
approach to formalizing the self-organizing properties of the algorithm. Self-
stabilization allows a system that enters an illegitimate state (e.g., due to the oc-
currence of transient faults) to converge back to a legitimate state within a finite

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:10 J S. Chatterjea et al.

N1 (3)o1000001000... Note: The same slot can only be
10000100000. . . re-used after 2 hOpS, e.g. N9,
@Nz N11 and N5, N14
01000001010. ..

00000000101...

00010000101. ..

——» N17’s Neighbor Table

NodelD Slots Owned
00010001001... N4

01010010010...
N9 00000011010...

N10 00000011010. ..
00000011010... N14 11000100000...
K N15 00000000101. ..
ey: N12—P NodelD .
y 17T Slots owned by 1st-hop neighbors OR Result: 1111121 ..
010111010004 ..

® Free slots;
N17 is free to choose
either slot 3 or slot 5.

01010010010.7%
00010011000. ..

00000101000. ..

Slot owned by node

@ New node joining the network, waiting to choose a slot

Fig. 6. Distributed slot allocation in LMAC.

time without any external intervention. We now present some preliminaries of
self-stabilization.

All nodes in the network are assumed to have unique IDs and to have knowl-
edge of their adjacent neighbors. Each node has a state that is specified by its
local variables. The state of the entire system is called the global state or config-
uration and is the union of the local states of all the nodes. The objective of the
system is to reach a desirable global final-state called a legitimate state. The
state of a system can either be legitimate or illegitimate. We use S to denote
the set of all possible states. In order for the system to recover after a transient
fault, all the affected nodes repeatedly execute a piece of code consisting of a
finite set of rules having the form (label)[guard] : <statement>;. The statement
part of the rule is the description of the algorithm used to compute the new val-
ues for local variables. A rule is enabled when its guard is true. The execution of
an enabled rule determines the new state value of a node using the algorithm
described by the statement part of the rule.

We denote the set of all legitimate states by £ such that £ € S. We denote
the set of rules using R where R € S x S such that (s;, s;) € R. An execution of
e is a maximal sequence of states, e = s;, s;41,...5; such that Vi > 1,s; € S, and
s; is reached from s;_; by executing a particular rule.

A system can be considered to be self-stabilizing if the following two condi-
tions hold:

—Closure: If s € Land s — s’ then s’ € L. Therefore the closure property means
that when a system is in a legitimate state, the following state is always a
legitimate state as well, regardless of the rule executed.

—Convergence: Starting from any configuration s € S, every execution reaches
L within a finite number of transitions.

The preliminaries presented thus for are used in the following sections to
illustrate how DOSA is able to start-up properly and also how it is capable of
recovering when the system experiences certain transient faults.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:11

Fig. 7. Two independent components in G.

8. DOSA: A DISTRIBUTED AND SELF-ORGANIZING
SCHEDULING ALGORITHM

DOS A uses a distributed graph coloring approach to decide when a particular
node should be a correlating node. Every color owned by a node represents a
particular frame of time during which a node is required to act as a correlating
node. In conventional graph coloring approaches, colors are assigned to vertices
such that adjacent vertices are assigned different colors and the number of
colors used is minimized. While DOSA’s graph coloring approach also ensures
that adjacent nodes in the network do not own the same colors, it differs in the
sense that each node is allowed to own multiple colors, that is, a node can have
multiple schedules. Moreover, the number of colors used in DOS A is fixed and
is equal to the number of slots that are assigned to an LMAC frame.

Before we proceed, we first state certain definitions that are used throughout
the rest of this article.

We model the network topology as an undirected graph G, where G = (V, E).
V represents the vertices or nodes in the network while two nodes are connected
by an edge in E if they are within radio transmission range of each other. K
represents the set of colors used to color all the nodes. So |K| is equal to the
number of slots per frame in LMAC. Also, we denote the closed neighborhood
of anodev € V by I'(v):

Fw):={ueV|u,v) e E}U{v}.

In other words, the closed neighborhood of v includes not only its adjacent
neighbors but also the node v itself. Using the graph-theoretic distance d ¢ (u, v),
that denotes the number of edges on a shortest path in G between vertices v and
v, we can define the " neighborhood of v as I',(v) := {u € V|dg(u, v) < r}. Simi-
larly, we define the open neighborhood of a node v by I''(v) := {u € V|(u,v) € E}.

We refer to C, as the set of colors owned by node v. For C, it can easily be
seen that

0 <G| < (K| =T

has to hold.

Given that a node-induced subgraph is a subset of the nodes of a graph
G together with edges whose endpoints are both in this subset, we define a
component as a node-induced subgraph of a subset of nodes. Furthermore, we
call two components independent if they are not connected by an edge. As an
example, in Figure 7, G’ and G” are two independent components in G.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:12 J S. Chatterjea et al.

Before describing the details of the operation of DOSA, we first state the
constraints derived from the requirements stated in Section 5, which define its
behavior. The following two constraints must be met when two nodes « and v
are adjacent to each other:

Constraint 1: C,NC,, = ¢

In other words, two adjacent nodes cannot own the same colors. This is because
two adjacent nodes should not be assigned as correlating nodes in the same time
instant.

Constraint 2: Cr,) = K

All colors should be present within the one-hop neighborhood of node v, that
is, if node v does not own a particular color itself, the color must be present
in one of its neighboring nodes that is one hop away. This ensures that every
node’s readings will be represented at the sink node for every time instant either,
directly or through a correlated reading.

LEmMa 8.1. The combination of constraints 1 and 2 ensures that at any time
slot, ¢;, all nodes owning the color c;, which correspond to that time slot, form a
maximal independent set on G.

Proor. At any time instant according to Constraint 1, two adjacent nodes
will never own the color ¢;, thus resulting in an independent set 1. Constraint 2
ensures that in the closed neighborhood of every node v € V, every color is
present. This clearly results in a maximal independent set. O

8.1 Details of Simulation Setup

For the sake of easier comparison, we present the simulation results imme-
diately after the description of the theoretical performance bounds of DOSA
in every subsection that follows. Thus we first state the salient details of our
simulation setup and then proceed with the rest of the sections.

All simulations are implemented in Matlab [2006]. Simulation results (un-
less otherwise specified) are averaged out over 100 randomly generated network
topologies for a particular average node connectivity. Each topology consists of
100 nodes randomly distributed in a 100 x 100 unit area. The average connec-
tivity (or neighbor density) has been varied from 5 to 11 by setting different
transmission ranges for the nodes. Nodes are static and homogeneous in the
sense that all the nodes have the same transmission radii. The number of slots
per frame in the LMAC implementation is 32.

8.2 Dependency of DOSA on LMAC

As mentioned in Section 6, LMAC assigns a slot to every node in the network.
DOSA begins its distributed coloring scheme by considering the initial slot
assignment phase in LMAC as an input. Slot assignments in LMAC correspond
to partial color assignments in DOSA. Thus, while LMAC assigns every to
node with a single color, DOSA assigns the remaining colors that ensure the
adherence to the constraints 1 and 2, given in the previous section. We can then
state that C, = C, uC where C, refers to the color corresponding

LMAC UDOSA» UVLMAC

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:13

to the LMAC slot owned by node v, and C,,,,, refers to the colors assigned to
node v, by DOSA.

Similarly, the colors owned by the nodes adjacent to node v, Cr/,, are also
made up of LMAC and DOSA colors. Thus we can state, Cr) = Cr),yac Y
CF’(U)DOSA :

The dependency of DOSA on LMAC allows nodes to adapt autonomously
and immediately to changes in network topology. For example, the addition or
removal of a node results in the change being reflected in the LMAC neighbor
tables of all other neighboring nodes within range. DOS A detects changes in
LMAC’s neighbor table and performs a reassignment of schedules if any of
the neighboring nodes do not meet the constraints mentioned above. Utilizing
such cross-layer information from LMAC ensures that DOSA does not spend
additional resources trying to detect topology changes itself.

We also make the assumption that the maximum degree of a single node
in the network is always known prior to deployment. This information is used
to choose the appropriate number of slots in a particular frame in LMAC. In
case the maximal degree of the nodes cannot be bounded accurately enough,
LMAC also offers functionality to operate nodes passively, that is, without own-
ing a time-slot, when the network gets (locally) dense (see cf. Nieberg [2006]).
However, for ease of notation and argumentation, we only consider active
nodes that are assumed to acquire a free slot when carrying out slot assign-
ment. The proper operation of LMAC also guarantees the proper operation of
DOSA.

8.3 General Operation of DOSA

DOS A uses a greedy approach to assign colors to nodes. Coloring is performed
using two types of colors: LMAC colors and DOS A colors. LMAC colors refer to
the colors that have been assigned by LMAC, due to the slot assignment. DOS.A
colors refer to the additional colors that are assigned by DOSA to ensure that
constraints 1 and 2 are met. This occurs after the LMAC colors have been
assigned. DOS A does not have any control over the LMAC color of a node since
that depends purely on the slot assignment performed by LMAC. In fact, such
control is not required. Therefore, in the following, we refer to DOSA colors
simply as colors, unless otherwise indicated.

Colors are acquired based on a calculated priority. A node computes its pri-
ority within its one-hop neighborhood, based on its degree and on its node ID.
The higher the degree of a node, the higher its priority. If two neighboring
nodes have the same degree, priority is calculated based on the unique node
ID; the node with the larger node ID will have the higher priority. This priority
computation is performed in Line 4 of Algorithm 1.

Once all nodes have acquired their LMAC slots, a BeginSecondPhase mes-
sage is injected into the network through the sink node, requesting the nodes
to begin the DOSA coloring phase. At this stage, any node receiving the
BeginSecondPhase message only has an LMAC color and so does not sat-
isfy the constraints mentioned earlier. Thus, these nodes mark themselves as
Unsatisfied. A node only attains the Satisfied status when it satisfies the

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:14 J S. Chatterjea et al.

two constraints mentioned in Section 8. Upon receiving the BeginSecondPhase
message, a node broadcasts its NodeStatus message. This message contains
information about the node’s degree, its status (i.e., Satisfied/Unsatisfied), and
the list of colors owned. The ColorsOwned field is a string of |K| bits where
every color owned by a node is marked with a 1. The rest of the bits are marked
with a 0. Initially, a node only marks its own LMAC color as 1 due to the initial
LMAC slot assignment. A neighboring node that receives the NodeStatus mes-
sage then performs coloring using DOSA as outlined in Algorithm 1 . Note that
the NodeStatus message is the only message that is used for the operation of
DOSA.

Algorithm 1. DOS A—Normal Initialization

Input: NodeStatusMSG(Degree, SatisfiedStatus(TRUE/FALSE), ColoursOwned)
Output: NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)/NIL
1: Uprpati(LocallnfoTable, v)

2: if LocalInfoTable contains entries from ALL adjacent nodes then

3: if SatisfiedStatus(v) = FALSE then

4: Compute PrIORITY(v)

5: if PrioriTy(v) = Highest then

6: C, < K\CF’(U)

7 ColorsOwned <« C,

8: SatisfiedStatus< TRUE

9: Uprpate(LocallnfoTable, v)

10: Broapcast NodeStatusMSG(Degree, SatisfiedStatus, ColoursOwned)
11: end if

12: end if

13: end if

We now briefly describe the operation of DOSA as outlined in Algorithm 1.
Upon receiving a NodeStatus message, a node first updates its LocallnfoTable
(Line 1). This table stores all the information contained in the NodeStatus
messages that are received from all the adjacent nodes. Once a node receives
NodeStatus messages from all of its immediate neighbors (Line 2), if its status
is Unsatisfied (Line 3), the node proceeds to compute its priority. PrRIORITY
computes the priority of a node only among its unsatisfied neighbors (Line 4),
that is, as time progresses and more nodes attain the Satisfied status, PRIORITY
needs to consider a smaller number of neighboring nodes. The highest priority
is given to the node with the largest degree among its adjacent Unsatisfied
neighbors. If more than one node has the same degree, then the highest priority
is given to the Unsatisfied node with the largest NodelD.

The node that has the highest priority among all its immediate unsatisfied
neighbors, acquires all the colors that are not owned by any of its adjacent
neighbors (Line 7). Since as the node has then satisfied both constraints of
DOS A, it switches to the Satisfied state, updates its own LocallnfoTable, and
informs all its neighbors through a broadcast operation (Lines 8-10). Note that
this technique corresponds to a highest-degree greedy approach.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

Step 1: LMAC assigns slots to
all the nodes in the network

.
11,12,13,14\15

11,12,13,14,15,16

Step 2: N2 and N14 have the highest
priority among all the unsatisfied nodes

11,12,13,14,15,16

Step 3: N9 and N13 have the highest
priority among all the unsatisfied nodes

Key:
DOSA Colors
Node ID

351
LMAC Color

Slot assigned by LMAC

Assumption:

LMAC uses 16 slots.
Thus |K| = 16.

1235689,
11,12,13,14,15,16

Step 4: N3, N5, N6 and N8 have the
highest priority among all the unsatisfied

Step 5: N11 has the highest priority
among all the unsatisfied nodes; DOSA
nodes coloring is complete - all nodes are
satisfied

Fig. 8. A step-by-step example of how DOSA colors are assigned.

Figure 8 provides a step-by-step example of how the DOS A algorithm assigns
colors to the nodes in a network. We make the assumption in the example that
LMAC uses 16 slots.

8.3.1 Correctness of DOSA. In this section we illustrate how DOS A is able
to successfully carry out initialization within a finite time given any arbitrarily
chosen network. We initially assume that no transmission errors occur through-
out the initialization phase, but we subsequently describe how such issues are
handled in Section 8.3.2.

In order for DOS A to operate properly, it is absolutely imperative that every
node always has up-to-date state information about its immediate neighbors.
If a node n experiences a certain change in state (e.g., a change from Satisfied
to Unsatisfied) and fails to inform an adjacent neighbor of the change, this
neighbor node might execute certain inappropriate steps based on its outdated
state information for n. This error may prevent DOSA from stabilizing within
a finite time. Thus it is essential for DOSA to possess the cache coherence
property [Herman 2003].

Let each node v € V in the sensor network have a variable, C, indicating
the colors owned by node v. For each (u,v) € E, let u have a variable <, C,,
which denotes a cached version of C,. We can call a system cache coherent if
Yu,v : (u,v) € E : < ,C, = C, [Herman 2003]. This means that whenever v
assigns a value to Cy, node v also broadcasts the new value to all its neighbors.
The moment a node u receives an updated value of C,, it instantaneously (and
atomically) updates <, C,.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:16 J S. Chatterjea et al.

If we consider the operation of LMAC alone, the cache coherency property
does not hold. Let us consider the case where two adjacent nodes v and u own the
slots i and j respectively, where j > i. Suppose v first broadcasts its updated
state information to u during its own slot ;. Now consider the case where the
state of v changes in slot /[where i < [< j. In this case, v will be unable
to broadcast its newly updated status to u, since the earliest time when it can
transmit will be in slot i + n where n is the number of slots in a single frame, that
is, v would have to wait one entire frame. This delay in transmission prevents
the cache coherence property from existing. Nevertheless, for DOS.A we have
the following lemma:

LEmMmA 8.2. Assuming no errors occur, nodes executing the DOS A algorithm
on top of the LMAC protocol are all cache coherent.

Proor. In order to ensure cache coherence, DOSA carries out pre-
transmission state information processing or PSIP. PSIP ensures that while
a node updates its cache information the moment it receives updated state in-
formation from any adjacent neighbor, the node blocks any processing of the
information in its cache until the point just before it transmits during its own
slot. In other words, when a node receives updated state information from a
neighboring node, it simply saves it. The node delays the processing of all the
received state information until the point at which the node is just about to
transmit during its own slot. This effectively means that a node broadcasts
any updated state change the moment it is detected, and a node cannot experi-
ence a change in state at any time other than during its own slot. Thus, while
LMAC alone does not support cache coherence, PSIP guarantees that the state
information used by DOSA is always cache coherent. 0O

There are a few properties that DOS A possesses that ensure that it stabilizes
within a finite time: (1)cache coherence (Shown in Lemma 8.2), (2)closure prop-
erty, (3)convergence property. We describe the convergence and closure proper-
ties in greater detail below.

Lemma 8.3. DOSA demonstrates both the convergence and closure proper-
ties.

Proor. Recall from Section 7 that S denotes the set of all possible states.
Let M € S (i.e.,, S\M = L) denote the set of all illegitimate states. In DOSA,
we consider all the nodes in the network that are not in the Satisfied state to
belong to the set M. Similarly, £ represents all the nodes that have acquired
the Satisfied state. DOSA’s prioritization scheme, which is based on the com-
bination of degree and ID of a node, implies that a node can always compute
a unique priority. This ensures that as long as |M| > 0, in every atomic step,
at least one node is enabled and thus attains the Satisfied state, that is, if
neM, Ml =iand |L] = jinstepr,thenatstepr+1,ne L, M| =i—F%
and |£| = j + k where £ > 0. Thus over a finite number of steps, all nodes in
M eventually converge towards L.

Furthermore, since we assume that no communication errors or topol-
ogy changes occur during the initialization process, a node that acquires the

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:17

HC 1 HC 2 HC 3 HCn1 HCn

@) ﬁ @ @ @_ H Q
Sink
node

| HC 1 HC 2 HC 3 HCn-1 HCn

0 SO — @ -@—@

Key: A - Hop Count
\—— Node ID

Fig. 9. (a)Worst and (b)best case scenarios for DOSA initialization.

Satisfied state remains in that state forever, regardless of the messages re-
ceived. This is synonymous with the closure property. O

LEmmA 8.4. Assuming no transmission errors or topology changes occur,
given that d is the number of nodes in G,,,,, which is the largest independent
component in G, the time taken for all nodes in G to attain the Satisfied state,

ts (in frames) in DOS A during the initialization, is such thatd +1 < t; < 2d —1.

Proor. As the DOSA initialization phase can run in parallel in separate
independent components within a single graph G, and since the time taken for
initialization to complete is dependent on the number of nodes, we can conclude
that, given a graph G, the initialization time is dependent on the cardinality of
the largest independent component in G, that is, G,,,,...

From Figure 9(a) it can be seen that initialization takes the longest time
when nodes in G/, . are arranged such that the smaller the hop count from the
sink node, the smaller the node ID. In this example, node n — 1 will have the
highest priority and so all the nodes will reach the legitimate state only when
node 1 receives the NodeStatus message from node 2. Given that there are d
nodes in all, this occurs in frame 2d — 1 assuming that the sink node transmits
the BeginSecondPhase message to node 1 in frame 1.

From Figure 9(b) it can be seen that initialization takes the shortest time
when nodes in G/, are arranged such that the larger the hop count from the
sink node, the smaller the node ID. Thus a node at hop count d only acquires
the Satisfied state when it receives the NodeStatus message from its adjacent

neighbor at hop count d + 1. This occurs in framed + 1. O

Lemma 8.5. During the initialization of DOSA, every node in the network
transmits a total of 3 messages.

Proor. For the DOSA initialization to complete, every node in the
network needs to broadcast a BeginSecondPhase message, a NodeStatus
message with the SatisfiedStatus field set to FALSE (broadcast when a
BeginSecondPhase message is received), and finally a NodeStatus message with
the SatisfiedStatus field set to TRUE when a node attains the Satisfied state.
Note that the number of messages transmitted by a single node is independent
of the size of the network. O

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:18 J S. Chatterjea et al.

8.3.2 Handling Message Corruption. Up to now, we have assumed that
all communication is error free. However, to make our analysis realistic, we
now describe the steps taken by DOSA to ensure that it continues to operate
normally even when transmission errors, due to poor link quality or topology
changes, do occur.

A node uses the acknowledgement field in the CM section of a slot in LMAC
to indicate whether it has successfully received an incoming message. Recall
that since this field is in the CM section, every node transmits it once every
frame. The number of bits in the acknowledgement field corresponds to the
total number of slots used in a frame. Thus if a node n receives a message
successfully from a particular neighbor m in slot i, a 1 is placed in the ith bit
of the acknowledgement field in the CM section. Similarly, a ‘0’ is placed in the
ith bit if the incoming message received in slot ; becomes corrupt. Node m can
resend the message if it notices a 0 in the ith bit of the acknowledgement field
of the CM received from node n.

Formally, we state that every node n uses a Boolean b, (m) for each neighbor
m. For moving from statement G to Ain DOS A, we can then state (Vm : (n,m) €
E :b,(m) AG — A.If n receives a message correctly from a neighbor m, n
assigns b,(m) := true. If the message gets corrupted, b,(m) := false for every
m. Thus n blocks the execution of DOSA the moment it receives a corrupt
message and only continues executing the program once it has correctly received
messages from all the neighbors.

Additionally, up to this point we have assumed that no topology changes
occur during the initialization process. We would like to point out that this
assumption was made simply to allow the initialization mechanism to be ex-
plained in a simpler manner. If a topology change does occur, for example, a
node disappears or reappears, DOS.A makes use of the algorithms described in
Sections 9.3 and 9.4 (which handle node removal and addition respectively) in
order to ensure that the system continues to operate properly and eventually
completes the initialization phase.

9. PERFORMANCE OF DOS A

In this section we initially investigate the effectiveness of DOSA in several
ways. First, we observe the reduction in the number of nodes generating read-
ings as compared to raw data collection. We also illustrate through simulations,
how this reduction in message transmissions translates into longer network
lifetime and also improved data quality.

Following this, we describe the behavior of DOSA when a node dies or is
added to the network.

9.1 Effectiveness of DOSA in Terms of Message Generation

The effectiveness of DOSA can be evaluated by observing the number of cor-
relating nodes at any point in time, and comparing it with the raw data collec-
tion model, in which every node is involved in transmitting raw sensor read-
ings, Figure 10(a). Let us consider the two graphs in Figures 10(b) and (c).
The black nodes, representing correlating nodes in both graphs form maximal

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:19

(a) Raw data collection - all nodes (b) Maximal independent set (c) Maximal independent set
(36) transmit data with maximum cardinality - 9 nodes with minimum cardinality - 4 nodes
transmit data transmit data

Fig. 10. Impact of cardinality of maximal independent set.

independent sets. However, it can be seen that the cardinality of the maximal
independent set can vary greatly depending on the set of chosen nodes. This
results in varying degrees of energy efficiency since a larger cardinality means
lower efficiency as compared with raw data collection.

This then leads us to the following question: Given a particular graph, what
is the maximum cardinality of the maximal independent set formed by DOS.A?
This would essentially give us an estimation or bound on the worst case per-
formance of DOSA. Since computing the maximum maximal independent set
of a given graph is NP-hard [Crescenzi and Kann 2005a], we take a covering
approach to give a bound on the worst case performance of DOSA.

Lemma 9.1. The worst case performance of DOSA can be guaranteed to re-

sult in a message reduction of at least (2;”2 —1) x 100% compared with raw data

collection in which n nodes are uniformly distributed in an area of dimensions
x x y and every node has a circular transmission radius of r.

Proor. Let us divide the area x x y into m squares where,

xy
m = o2 (D
Since the nodes are assumed to be randomly distributed, we may reasonably
assume that nodes are present in all m squares, Figure 11. Note that this results
in a worst-case estimation. Furthermore, we assume that exactly one node in
every square forms part of a maximal independent set. We immediately see
that it is not possible to have more than one node, that is part of the maximal
independent set in a single square, because these extra nodes would be in range
of the first chosen node. This consequently implies that the cardinality of the
maximal independent set would be m. It would be impossible to increase the
size any further by adding any more nodes. We can therefore conclude that
the maximum cardinality of the maximal independent set created by DOS.A
is m. Thus, the percentage in message reduction of DOSA compared with the
collection of raw data would be, - x 100. This can then be simplified to (2::;2 -
1) x 100%. O

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:20 J S. Chatterjea et al.

Wz

45 Y

\

Area of one square = 2r?

Fig. 11. Estimating the cardinality of the maximum maximal independent set generated by
DOSA.

As stated in Bulusu et al. [2001], network density, 1 can be defined as follows:

nwr?

W=) (2)
xy
Using equations 1 and 2, we can then state,
nw
Il < — 3
| < 2 (3)

where I is any independent set also including the one computed by DOS.A. We
would like to indicate, however, that network density is approximately equal
to average connectivity such that,

nw _ nm
2n 2(p—1)

where p is the average connectivity. This result is used to plot the graph in
Figure 12(b), which estimates the cardinality of DOSA as the average connec-
tivity is varied.

The simulation results presented in Figure 12(a), show that even for
a high cardinality, the number of correlating nodes is never greater than
approximately 31%, thus resulting in a reduction in the number of message
transmissions of approximately 69% compared with collecting raw data from
every node in the network. This is true in cases where the average connectivity
of the network is very low. As can be observed from Figure 12(a), the cardinal-
ity of the maximal independent set reduces further as the average connectivity
of the network is increased. This is quite intuitive since node can be used to
represent a larger number of adjacent neighbors as the connectivity increases.
The average reduction in message transmissions due to DOS.A compared with
raw data collection, goes up to approximately 85% when the connectivity is
increased to 11.

The prioritization scheme used in DOSA also has a large impact on the
performance of the algorithm. We can observe two characteristics from the fact
that DOS A gives the highest priority to the nodes with the largest connectivity.
First, since nodes that have the highest degree in their local 1-hop neighbor-
hood acquire the colors first, using a greedy approach, the cardinality of the

(4)

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:21

(a) (b)

35 80

[__1(i) Highest priority for nodes with largest degree
301 701 [EE (i) Highest priority for nodes with largest NodelD |]
I (iii) Highest priority for nodes with smallest degree

Approximate cardinality

25] 60r

50+
20+

401

No. of correlating nodes at a particular instant
(Total: 100 nodes)

No. of correlating nodes at a particular instant
(Total: 100 nodes)

4 5 6 7 8 9 10 1 4 5 6 7 8 9 10 1

Average connectivity Average connectivity

Fig. 12. (a) Impact of average connectivity on the number of correlating nodes at a particular in-
stant (Total number of nodes in the network = 100), (b) Effect of prioritization scheme on cardinality
of maximum independent set.

maximal independent set tends toward the minimum maximal independent
set. In Figure 12(b) we illustrate the effects of using three different priority
schemes: (1) Highest priority given to node with largest degree, (2) Highest
priority given to node with largest node ID, and (3) Highest priority given to
node with smallest degree. By following the same argument as in scheme (1),
scheme (3) results in a maximal independent set that has a cardinality that is
closer to the cardinality of the maximum maximal independent set. Scheme (2)
however, due to its random nature, still results in a maximal independent set,
but does not tend toward the minimum or the maximum cardinality. Note that
the difference between the estimated cardinality and the actual results can be
attributed to boundary effects.

It is important to note however, that while the minimum maximal inde-
pendent set would result in an optimal solution (i.e., the smallest number of
correlating nodes), and thus appear to be the most efficient in terms of en-
ergy efficiency, it is not something that DOSA strives to attain. At this point,
we would like to remark that computing an optimal, that is minimum car-
dinality maximal independent set is NP-hard [Crescenzi and Kann 2005b].
Therefore, given the scarce resource limitations of WSNs, we resort to the
presented, faster approach. However, in Nieberg [2006] it is shown that for
wireless communication networks, the greedy strategy of DOSA results in a
constant-factor approximation with respect to the cardinality of an optimal
solution.

9.2 Effectiveness of DOSA in Terms of Network Lifetime and Data Quality

As mentioned previously, the transmission of raw sensor readings has a detri-
mental impact on network lifetime and also on data quality. The reduction
in message generation described in the previous subsection naturally leads to
improvements in both of these factors.

In this subsection, we have carried out simulations to illustrate the benefits
of DOSA in terms of network lifetime and data quality. Note that we define

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:22 J S. Chatterjea et al.

(a) LMAC Frame Length = 8s (b) LMAC Frame Length = 8s

6000

-3
<1
S

—6— RAW —6— RAW
—#— DOSA —#— DOSA

5000

o

=3

S]
T

4000

IS
S
S

3000

Total no. of Tx operations
@
S
3

2000

. n

T
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch

Total no. of messages generated
N
S
3

100

(c) LMAC Frame Length = 8s (d) LMAC Frame Length = 8s

—e— RAW
ok —w— DOSA ||

Network lifetime (Days)
»
bS]
3
@ @
g 3
T T

@
S
T

N
=}
T

Percentage of uncovered epochs (%)
»
S

—e—RAW | |
—w— DOSA

50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch

o
T

Fig. 13. (a) Total number of messages generated, (b) Total number of transmit operations, (c)
Network lifetime, (d) Percentage of uncovered epochs.

network lifetime as the total time taken before the death of the first node in
the network. In the simulations, LMAC uses a frame length of 8 seconds. We
use the following specifications based on the RFM TR1001 [RF Monolithics
2007] transceiver: transmit —36mW, receive —11.4mW and standby —0.7uW
to compute network lifetime. We also assume that correlations between sen-
sor readings remain constant during this interval. All results have been col-
lected over 10 minutes and have been averaged over 100 topologies where
each topology consists of 100 nodes. Readings for the various graphs have
been collected at the following epochs (in seconds): 10, 20, 30, 60, 120, 180,
300.

Figure 13(a) shows the total number of sensor readings that are generated
during a 10 minute interval using both data collection techniques. Figure 13(b)
shows the total number of transmit operations performed by all the nodes in
the network for the entire duration of the simulation. One can clearly see that
Figures 13(a) and 13(b) do not have similar shapes. This is primarily because
both raw data collection and DOSA experience heavy message losses for high
sampling rates. The left-hand side of the graphs in Figure 13(b) tend toward
each other as the limit of the maximum throughput of LMAC is nearly reached.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:23

It is this same characteristic that produces the shape of the network lifetime
graphin Figure 13(c). Since the total number of message transmissions is nearly
the same for both data collection methods at high sampling rates, the network
lifetime is also quite similar. It can be seen from Figure 13(c) that DOSA can
help network lifetime improve by up to 83.5% (Epoch = 120s) as compared with
raw data collection.

Apart from helping to improve network lifetime, DOSA also has a significant
positive impact on the quality of data collected. When analyzing dropped mes-
sages for both data collection scenarios, it is important to realize that every mes-
sage generated under the DOS A scheme carries a lot more weight than a single
message in the raw data collection process. This is because a single sensor read-
ing transmitted by a node n under the DOS A scheme, represents not only the
reading of n but also those of its adjacent neighbors. For this reason, we analyze
data quality by observing the number of epochs that are not represented at the
sink rather than simply counting the number of dropped messages. As an exam-
ple, suppose a message generated by node n representing its own reading and
that of its neighbors, q, r, and s for the epoch E, is lost on the way to the sink due
to a buffer overflow event. This would mean that during epoch E, the sink would
not have any readings for nodes n, q,r, and s. Based on this example, we present
the results of data quality in Figure 13(d). At high sampling rates for example,
when the Epoch is 10s, raw data collection results in approximately 75% uncov-
ered epochs while DOS A results in only 30% uncovered epochs. The percentage
of uncovered epochs under DOSA quickly reduces to 0 and remains there as the
sampling frequency is reduced. For raw data collection however, the percentage
of uncovered epochs levels off at about 10%. We now explain this leveling-off
characteristic.

Usually, a node drops messages when its buffers get filled up. Thus the higher
the sampling rate, (i.e., the smaller the value of the Epoch) the larger the pro-
portion of nodes in the network that experience buffer overflows. This naturally
also increases the number of lost messages and in turn the percentage of un-
covered epochs. However, as the sampling rate is reduced, the number of nodes
experiencing buffer overflows might not continue decreasing to zero. In most
topologies, due to the simultaneous generation of messages by all nodes in the
network, there will be a certain set of nodes that will always experience buffer
overflows and will only allow a fixed number of messages to successfully tra-
verse toward the root. Thus for low sampling rates, in every epoch, only a fixed
number of messages will reach the root regardless of the chosen epoch. It is
this characteristic that causes the percentage of uncovered epochs to level off
for low sampling rates.

One may assume that the results from the graphs shown in Figures 13(a)-
(d) clearly show that DOS A has a benefit only for applications that require low
sampling rates. However, this is not the case. For applications that require high
sampling rates and therefore high data rates, LMAC can easily be tuned such
that one frame has a length of 2 seconds instead of 8 seconds. We illustrate the
results of network lifetime and percentage of uncovered epochs in Figures 14(a)
and (b). Note that these graphs also display the same characteristics mentioned
previously.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:24 J S. Chatterjea et al.

(a) LMAC Frame Length = 2s (b) LMAC Frame Length = 2s

140 80 T

—e— RAW
7ok —#—DOSA | |

60

1201

100
50
80 401

301

Network lifetime (Days)

60

201

Percentage of uncovered epochs (%)

40t

20
0

. 0 * s . .
10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch

Fig. 14. (a) Network lifetime, (b) Percentage of uncovered epochs.

Key:
DOSA Colors

Node D [®
3,5{
LMAC Color|
Slot assigned by LMAC

Assumption:

LMAC uses 8 slots.
Thus [K| = 8.

(a) N5 remains satisfied (b) N5 becomes Unsatisfied
even if N6 is removed. if N6 is removed.

Fig. 15. Two possible scenarios when a node dies.

9.3 Coping with a Dead Node

Because the death of a node can be a common occurrence in WSNs, it is impor-
tant that any algorithm designed for WSNs be able to cope with such events.
DOS Aensures that anode is able to reorganize the scheduling algorithm within
a finite amount of time autonomously, the moment a neighboring node disap-
pears from the network. It does this by retrieving cross-layer information from
the underlying LMAC protocol, that is, the death of a node triggers an update
in the LMAC Neighbor Table.

The death of a node leads to the disappearance of the colors that were owned
by the dead node. This can lead to two possible scenarios. First, it may be possi-
ble that one or more neighbors of the dead node still satisfy constraints 1 and 2
since the colors that have disappeared with the dead node are also present in its
neighboring nodes. This is shown in Figure 15(a). In this case, the Satisfied
neighboring nodes continue to maintain their existing schedules and do not
transmit any messages. Note, however, that while their color assignments are
invariant, the degree of the neighbors of the dead node does reduce by one. It
is important that nodes that are one hop away from the neighbor of the dead
node are informed about this change of degree because this information would
be required in case any schedules need to be reassigned in the future, due to
certain network perturbations. However, since our design takes advantage of
cross-layer information from LMAC, explicit message transmissions are not re-
quired in order to relay information regarding a change of degree of a node.
This information is instead automatically disseminated through the periodic

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:25

broadcast of the CM section of the LMAC protocol. Recall that the CM section
transmitted by a node contains an occupied slot list, which lists the slots occu-
pied by the node and its one hop neighbors. Thus, this information can also be
used to deduce the degree of a node.

In the second scenario, shown in Figure 15(b), the death of a node may re-
sult in one or more neighboring nodes ending up with certain missing colors.
Since these nodes no longer satisfy constraints 1 and 2, the nodes switch to the
Unsatisfied state and broadcast this change in status to their immediate one-
hop neighborhood. A node then waits one frame to see if there are any other
neighboring nodes that are also in the Unsatisfied state. Note that waiting
one frame allows the node to hear from all its neighbors in case they have any
status change to report. After waiting one frame, if the node with the missing
color(s) has the highest priority among all the unsatisfied nodes it will acquire
all the colors it lacks. This whole process is described in Algorithm 2. If a node
lacks a color but does not have the highest priority, it continues to wait until all
its higher priority unsatisfied neighbors have become satisfied. In other words,
the node continues to execute Algorithm 1 every time it receives a NodeStatus
message until it finally acquires the Satisfied state.

Algorithm 2. DOSA—Coping with the loss of a node

Input: LMAC Neighbor Table indicates at least one missing node

Output: NodeStatusMSG(Degree, SatisfiedStatus(FALSE & TRUE),
ColoursOwned)/NIL

1: UppatE(LocallnfoTable, v)

2: if MissingColours(v) = TRUE (i.e., SatisfiedStatus(v)=FALSE) then

3 Broapcast NodeStatusMSG(Degree, SatisfiedStatus(FALSE), ColoursOwned)

4: WAIT one frame

5: Compute PrIORITY(v)

6: if Priority(v) = Highest then

7

8

9

Cv <~ K\CF’(v)
ColorsOwned <« C,
: SatisfiedStatus < TRUE
10: Uprpate(LocallnfoTable, v)
11: Broapcast NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)
12: endif
13: end if

In order to explain the timing bounds of DOSA when a node dies, we use
the same argument as in the proof of Lemma 8.4. We can extend this lemma as
follows:

Lemma 9.2. When a node v with x neighbors dies, the maximum time taken
for all nodes to converge towards the Satisfied state is x + 1 frames where
x <Kl -1

Proor. In the worst case, all the nodes of a dead neighbor switch to the
Unsatisfied status and broadcast this change of state. Every Unsatisfied

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:26 J S. Chatterjea et al.

14

[]Average time
2r | I Maximum time obtained]
by simulation

1o- |l Theoretical upper bound ,

Time taken for the network
to stabilize (Frames)

N
T

|I||||||HH
i 2 3 4 5 6 7 8 9 10 11 12

No. of neighbors of dead node

Fig. 16. Time taken for a network to stabilize once a node has been removed from the network.

neighbor then waits for its higher priority Unsatisfied neighbor to switch to
the Satisfied state before acquiring the Satisfied state itself. This situation is
then identical to situation mentioned in Lemma 8.4 and thus the same timing
bounds apply. O

We have carried out simulations to compare typical network stabilization
times when a node is removed, with the bounds presented above. For every
topology with 100 nodes (including one sink node), we first removed one node,
waited for the network to stabilize, (i.e., for all nodes to reacquire the Satisfied
state), and then added it back to the network. This operation was carried out
for all the 99 nodes in every topology. Thus there were 9900 node removal-
and-addition cycles. The results presented in the following sections have been
obtained over these 9900 cycles. Note that the average connectivity of the nodes
in every topology is 8.

Figure 16 presents the time durations taken for the network to stabilize
once a node was removed from the network. Generally, the average stabiliza-
tion time increases with the number of neighbors of the dead node. This is
also true for both the maximum stabilization times and the theoretical upper
bound presented previously. However, as the number of neighbors of the dead
node increases, the rate of increase of the average and maximum durations
decreases. This is because the probability of having a large number of nodes
arranged in an increasing manner (e.g., Figure 9(b)) reduces as the number of
neighbors increases. Thus in real life settings, a higher density network does
not necessarily recover more slowly when a node is removed. In fact, according
to the simulation results, the worst case recorded during a simulation in which
the dead node has 12 neighbors, would be approximately 50% of the theoretical
upper bound.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs J 20:27

@) | G

25

"] Average no. of messages transmitted
I Theoretical upper bound
20t 1 Without cross-layer optimization

With cross-layer optimization

No. of messages transmitted in order
to stabilize network

@

. . .
4 6 8 10

o
N

1 2 3 4 5 6 7 8 9 10 11 12
4
No. of neighbors of dead node Total no. of messages transmitted x10

Fig. 17. (a) Number of messages transmitted in order to stabilize the network once a node dies,
(b) Number of messages transmitted over 9900 runs with and without cross-layer information.

Lemma 9.3. When a node v with x neighbors dies, the maximum possible
number of messages that may be transmitted is 2x, where x < |K| — 1.

Proor. Asstated in Lemma 9.2, every in the worst case, all x neighbors may
become Unsatisfied when node v dies. Generally, every affected node (i.e., every
node with missing colors) initially transmits one NodeStatus message, with the
status set to Unsatisfied the moment node v dies. Finally, when a node acquires
the Satisfied state, it transmits another NodeStatus message that reflects this
change. Note that once a particular node acquires the Satisfied state, it remains
in that state indefinitely. Thus, the maximum possible number of messages that
may be transmitted is 2x. O

Figure 17(a) shows the average number of messages transmitted when a
node with a particular number of neighbors is killed. Note that if all the neigh-
bors become Unsatisfied due to the death of the node, every single neighbor
will need to transmit two messages, as explained earlier. In random network
topologies, however, the average number of messages transmitted when a node
dies is less than 50% of the maximum theoretical upper bound indicated in
Lemma 9.3.

The simulation results presented in Figure 17(b) show the benefit of having
DOS A use underlying cross-layer information from LMAC. The total number
of messages transmitted by all the nodes was compared over 9900 node dele-
tions, with and without cross-layer information being used. When it is not used,
every neighbor of the dead node has to transmit a NodeStatus message, regard-
less of its status. The results indicate a savings of up to 42% when cross-layer
information is used.

LEmma 9.4. When a node v dies, only its first order neighbors may be affected,
that is, may switch from the Satisfied to the Unsatisfied state.

Proor. The death of node v can only result in the adjacent nodes experi-
encing missing colors and subsequently switching to the Unsatisfied state.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:28 J S. Chatterjea et al.

Unsatisfied nodes then occupy colors they are lacking and thus ensure that
their choice of colors will not cause any color collisions with their neighbors.
Also, a node that is Satisfied and receives a NodeStatus message, does not
switch its status, as long as Constraints 1 and 2 are met. Thus, nodes that are
two or more hops away from node v cannot experience a change of state when
node v dies. O

9.4 Coping with a New Node

As we illustrated in the previous subsection, when a node dies, DOS A can only
execute one fixed set of steps to ensure that the scheduling scheme stabilizes
within a finite amount of time. The node addition operation, however, is a little
more involved because the set of steps taken by DOS.A depends on the events
that occur when a new node v is added to the network. For example, node
v may detect an LMAC collision, or may cause colliding or missing colors in
neighboring nodes, or may even cause a combination of these events. Different
permutations and combinations of these events can cause the network to react
in a multitude of ways. This makes it impractical to analyze the performance
bounds of every particular sequence of events that causes the network to react
in a certain manner. Instead, in order to simplify matters, we categorize all
the permutations and combinations of events according to how far the network
disturbance propagates when node v is added to the network. For example,
there may be a certain combination of events that would cause nodes that are
up to two hops away from v to switch to the Unsatisfied state. Similarly, there
might be other events that would cause the network disturbance to propagate
to the 3rd order neighborhood of node v.

We first begin by listing and describing the various events that could occur
when node v is added. We have included an example in Figure 18 to illustrate
how the various events might occur. (Note: The terms “LMAC slot” and “LMAC
color” are equivalent and thus can be used interchangeably.):

(1) Collision between LMAC slots. This occurs when the new node v detects
a collision between two or more of its adjacent neighbors. Each collid-
ing neighbor then needs to give up the colliding slot and choose a new
slot.

(2) Collision between LMAC color (slot) and DOSA colors: When a node n that
is d hops away from node v chooses a new LMAC color, it causes a collision
at an adjacent node m that is d + 1 hops away from node v, assuming
that node m owns the DOSA color that is equal to the new LMAC color
chosen by node n. Note that if d = 0 then n = v. Also 0 < d < 1 since,
using LMAC, node v can only detect slot collisions among its first order
neighbors.

(38) Missing DOSA colors: A node m that is d + 1 hops away from the new node
v experiences missing DOSA colors if an adjacent node, n that is d hops
away from node v, gives up a DOSA color due to a color collision. Thus, a
color collision at a node that is d hops away from v can only cause missing
colors at adjacent neighbors that are d + 1 hops away. Since a missing

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

(4)

A Scheduling Algorithm for Data Aggregation in WSNs . 20:29

Step (D: Ny, detects that the slots of N2 and N3 are colliding. (Event 1)

3

o) e (g Q
(b)) —(e)—w)—fo
LMAC Slots Si 3 Si $ S4
LMAC &DOSA 1,24 134 52 1,4
Colors ‘ ‘
L DOsA Color
Step @ : N2 and N3 choose new slots. LMAC Color
o)) e (g Q
(b)) —(e)—w)—f
LMAC Slots 31 3 st 53 S4
4’ @ 52 <@
LMAC &DOSA 1,24 134 52 1,4

Colors

Step @ : Both N3 and N4 detect color collisions between LMAC and DOSA
colors. Colliding colors are given up. (Event 2)

S3

LMAC Slots S4 S3 S2 S5
LMAC & DOSA 1,2,4 3 1,284 5X 1,3
Colors N J Vi
® ®
Step @ : N5 notices that a color is missing and takes up the missing color.
(Event 3)
o)) (N3 (Na) Q
() {3y (e} — (s
LMAC Slots S4 S3 S2 S5 S3
LMAC & DOSA 1,24 3 1,2,4 5 1,2,3
Colors N J
@

Fig. 18. An example of how certain events occur when a new node is added.

color event at a node that is d + 1 hops away from v can only happen in
combination with a color collision event at an adjacent node that is d hops
away from v, and since a color collision can only occur in the 1st order
neighborhood of v, we can conclude that d > 1 if a missing color event
occurs.

Node obtains Highest priority (due to largest degree in local neighborhood).
A node n that is d hops away from the new node v, realizes that it has

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:30 J S. Chatterjea et al.

the highest degree in its local neighborhood after the addition of node v.
This causes node n to obtain the highest priority and thus acquire all colors
except the LMAC colors of its adjacent neighbors. As this event can occur
either at the new node itself (i.e., d = 0 and n = v) or at a node that is
adjacent to v we can conclude that 0 < d < 1.

However, the addition of a node does not cause a domino effect in DOSA.
The reason for this is explained in the following lemma:

LeEmmA 9.5. When a node v is added, all nodes beyond the 3rd order neigh-
borhood of v can be guaranteed to be unaffected, that is nodes that are more
than three hops away will always remain in the Satisfied state, regardless of
the sequence of events that occur after the addition of node v.

Proor. We know from the four events listed in Figure 18 that a node can
switch to the Unsatisfied state when it experiences either a color collision or
a missing color event. As explained previously, a missing color can only oc-
cur one hop away from a color collision. We also know that a color collision
can occur up to a maximum of two hops away from v. This implies that a
missing color event can only happen in a node that is three hops away from
v. Thus, nodes more than three hops away from v cannot be affected by its
addition. O

While Lemma 9.5 shows that a node addition cannot cause DOSA schedules
to be disturbed more than three hops away from the newly added node, we also
carry out simulations to analyze the actual effects of node addition.

We perform simulations over 100 topologies each consisting of 100 randomly
placed nodes. For every topology, we add a node randomly to the network and
collect the required statistics, for example, network stabilization time, depth of
network disturbance, and so forth. This procedure is carried out for 100 nodes
per topology. Thus the following results presented have been averaged out over
10,000 node additions.

Our results presented in Figure 19 indicate that in approximately 92% of
the simulations, the network disturbance was restricted to within the second
order neighborhood of the newly added node. In 8% of the simulations, none of
the neighbors were affected. Third order neighbors were only affected in less
than 1% of the simulations.

Regardless of which sequence of events occurs once a new node joins the
network, initially, there are a few common steps that DOSA takes. Once these
common steps are complete, the next set of steps taken depends on how far
the network disturbance propagates. We first explain the initial common steps
below.

When a new node n is added to the network, LMAC ensures that node
n occupies a slot that is not used by any other node within two hops of n
(Figure 20, Step 1). Node n then begins broadcasting its CM section. Neigh-
boring nodes then detect node n and add its entry into their LMAC Neighbor
Tables (Figure 20, Step 2). We explain the remaining steps taken by DOSA by
referring to a neighboring node of node n as node v. This is also explained in
Algorithm 3.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:31

8% < 1%

I No effect

46% | []1storder neighborhood
[2nd order neighborhood
I 3rd order neighborhood

46%

Fig. 19. Simulation results showing how often a newly added node affects neighboring nodes that
are 1 to 3 hops away from the new node.

w v " STEP 1: Node n acquires an LMAC slot.

. . . STEP 2: Node v detects node » and adds it to its
LMAC Neighbor table. Node v then unicasts a

STEP1 NodeStatus message to node n indicating its own

CM status.

STEP 2 NSM(Satisfied) STEP 3: Node » waits to receive NodeStatus
messages from all its neighbors. It then acquires

STEP3 colors depending on its computed priority.

STEP 4: Node v gives up the colors which are

NSM(Satisfied STEP4 %’ colliding with node n.
STEP 5: Node w detects missing colors and

NSM(Unsatisfied) broadcasts Unsatisfied NodeStatus message.
After one frame, it either acquires the appropriate
colors and switches to the satisfied status, or
waits until all its higher priority neighbors have
turned satisfied. (Algorithm 2)

time

NSM(Satisfied)

STEP 5

At least one frame later
NSM(Satisfied)

Fig. 20. Timing diagram for addition of a new node, n (Node v is adjacent to n and node w is 2
hops from n.).

Algorithm 3. DOSA—Coping with a new node

Input: NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)
Output: NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)
1: UppatE(LocallnfoTable, n)

2: if LocalInfoTable contains entries from ALL adjacent nodes then
3 Compute PRIORITY (1)

4 if PrioriTY(n) = Highest then

5: Cn <~ K\CriMAC(n)
6.

7

8

9

else
C, < K\Cr
end if
: Uprpate(LocallnfoTable, n)
10: Broapcast NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)
11: end if

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:32 J S. Chatterjea et al.

As soon as node v, which is already in the Satisfied state, detects the pres-
ence of node n, it unicasts a NodeStatus message to node n (Figure 20, Step 2).
Node n then waits to receive node status messages from all its adjacent neigh-
bors (Figure 20, Step 3). Note that by this stage, n would know about the exis-
tence of all its adjacent neighbors since otherwise it would not have been able
to obtain an LMAC slot.

From this point onward, the actions taken by DOSA are dependent on the
sequence of events that occur. Once n has received NodeStatus messages from
all its adjacent neighbors, it checks to see if it has the highest priority within its
immediate neighborhood. If n finds that it has the highest priority, it acquires
all colors except the LMAC colors of the adjacent neighboring nodes. This helps
to ensure that over time, even if the network topology changes, the cardinality
of the maximal independent set continues to be low. In other words, the sink
node would be able to predict the readings of a larger number of nodes when
a node with a higher degree is chosen to perform the correlations, rather than
a node with a very small degree. This leads to greater energy savings.

Ifnode n realizes that it does not have the highest priority, however, it simply
acquires all the colors that it is currently lacking. Since node n has now satisfied
constraints 1 and 2, it broadcasts a NodeStatus indicating that it is Satisfied.

At this stage, a neighboring node v that receives the NodeStatus message
from n, may detect that certain colors are colliding (Algorithm 4, Line 3). This
would mean that Constraint 1 is not being met. Thus node v gives up the colors
that are colliding with node n, attains the Satisfied state, updates its own
LocallnfoTable, and informs all of its neighbors through a broadcast operation
(Figure 20, Step 4).

Algorithm 4. DOS.A—Colliding colors due to a new node

1: UppaTtE(LocallnfoTable, n)

2: if LocallnfoTable contains entries from ALL adjacent nodes then
3 if C, NC, # ¢ then

4: C, < C\C,NCy)

5: UppatE(LocallnfoTable, v)
6

7

8

Broapcast NodeStatusMSG(Degree, SatisfiedStatus(TRUE), ColoursOwned)
end if
end if

As v has had a change in colors, it is possible that a node w, that is adjacent
to v but not to n (i.e., w is two hops away from n), may become Unsatisfied (due
to the Node Status message transmitted in Step 4 of Figure 20). Node w can
then resolve the situation by executing Algorithm 2, which allows it to recover
when certain colors are found to be missing (Figure 20, Step 5).

Next we present the upper bounds of DOSA in terms of the amount of time
taken to stabilize the network and of the number of message transmissions
when a new node is added. Since the addition of a node can result in the oc-
currence of several events, we break down the analysis into 5 possible groups,
based on the depth of propagation of the network disturbance, as shown in

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:33

Table I. Upper Bounds for Time and Message Transmission When a Node is Added

No effect (Group 1, 8%) 1st order (Group 2, 46%)
Event type - Color collision
Max. time (Frames) <1 <1
Max Msgs Tx =MWl +1 <2[MW)|+1
2nd order
Event type Color collision (Group 3, <1%) | Missing color (Group 4, 46%)
Max. time (Frames) <2 240\ T
Max Msgs Tx < 2T+ 1+ |5\ T <2[Tj)| + 1+ 2|75\ I
3rd order
Event type Missing color (Group 5, <1%)
Max. time (Frames) 3+ |Fé \ l‘é|
Max Msgs Tx < 2@ + 142|105 \ T} + 2|05 \ Ty

Table I. Note that these five groups encompass all the possible sequences of
events that can happen due to the addition of a new node, for example, collid-
ing LMAC slots, a new node acquiring the highest priority, and so forth. Thus for
example, the 3rd order; color collision event is not listed in Table I because such
an event cannot happen for the reasons stated in the list of events presented
previously in this section.

We refrain from explaining the derivations for the theoretical upper bound
times for network stabilization shown in Table I, since they have been derived
using the same arguments presented earlier in Lemma 8.4. However, in order
to present a more concise explanation, we present the theoretical upper bounds
for the number of message transmissions using the five rules listed below:

Rule I: When a node that has already acquired DOSA colors detects a new
neighbor node v, it unicasts one NodeStatus message to node v.

Rule 2: A new node v broadcasts one NodeStatus message once it has ac-
quired its LMAC slot, has resolved all LMAC collisions amongst
its neighbors, and has received NodeStatus messages from all its
neighbors.

Rule 3: A node that acquires a new LMAC color that is not listed in its
existing list of DOSA colors, broadcasts one NodeStatus message.

Rule 4: A node that experiences a color collision event transmits one
NodeStatus message.

Rule 5: A node that experiences a missing color event transmits two
NodeStatus messages: the first to indicate that the node is Unsatis-
fied due to the missing color(s), and the second to indicate the node
is Satisfied after it has acquired the appropriate colors.

We now illustrate how these rules can be used to work out the upper bound
for the number of message transmissions for the 3rd order, missing color case:

Step 1: First order neighbors of new node v transmit a NodeStatus message
after detecting it. (|I"}(v)| messages, Rule 1)

Step 2: A new node transmits a NodeStatus message after acquiring colors.
(one message, Rule 2)

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:34 J S. Chatterjea et al.

Step 3: Every first order neighbor acquires new colors and broadcasts one
NodeStatus message. (|I';(v)| messages, Rule 3)

Step 4: Every second order neighbor experiences a color collision event
and broadcasts one NodeStatus message. (|T'y(v) \ '} (v)| messages,
Rule 4)

Step 5: Every third order neighbor experiences a missing color event and
broadcasts two NodeStatus messages. (2(|I';(v) \ I'y(v)|) messages,
Rule 5)

Thus,

Upper bound for total number of message transmissions for the 3rd order,
missing color case = 2(|I"}(v)]) + 14 |T,(v) \ T} (v)| + 2(|T5() \ TH@)).

Our simulations indicate that Groups 2 and 4 of Table I occur in 92% of all
the 10,000 simulation runs while Group 1 occurs in 8% of the cases. Groups 3
and 5 however, occur in less than 1% of the cases. Thus we present the simu-
lation results only for Groups 2 and 4, since they represent a more significant
percentage of the various events that may occur.

We first consider the first order color collision results. Figure 21(a) shows
that regardless of the number of 15 order neighbors a new node has, the net-
work stabilization time remains within 1 frame. This coincides with the bounds
stated in Table I. Figure 21(b) shows that only around 1% of all the 1% order color
collision cases resulted in scenarios in which the number of messages transmit-
ted was approximately 90—-100% of the upper bound for message transmissions
when a new node is added. In nearly 50% of the cases, the number of messages
transmitted was approximately 60% of the upper bound.

Next, we consider the second order missing color results. Figure 21(c) shows
that approximately 92% of time, the amount of time taken for network stabi-
lization when the second order nodes experience a missing color event, was less
than 40% of the upper bound. Figure 21(d) shows that in nearly 90% of cases,
the number of messages transmitted was less than 60% of the upper bound. No-
tice that the results in Figure 21(b) tend closer to the upper bound than those
presented in Figure 21(d). This is because, while the results in Figure 21(b) only
require the first order nodes to be affected, the results in Figure 21(d) involve
both the first and second order nodes. Naturally, the probability of affecting
nodes in both the first and second orders is lower than that of nodes in only the
first order.

The overall performance of DOSA for node addition is presented in Fig-
ures 21(e) and 21(f). Figure 21(e) and Figure 21(f) show the distributions of
the number of messages transmitted and the amount of time taken for DOS.A
to stabilize once a new node is added to the network. It can be seen that in the
majority of the cases the network stabilizes within four frames.

10. RELATED WORK

Techniques used to extract data from wireless sensor networks can be classified
into three separate categories: (1) snap-shot queries, (2) event-based queries,
and (3) long-running queries. Snap-shot queries are typically used when the

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs J

1.4 T T

[Average time
I Theoretical upper bound 1

4
)

Time taken for the
3
>

network to stabilize (Frames)

o
~

o
N

2 10
No. of 1st hop neighbors of new node

(c)

N
=}

IS o @
S 3 3
L L L

Percentage of frequency,
8

(Count in a bin/Total number of observations) (%)

N
S

o

o
o

10 20 30 40 50 60 70 80 90
Percentage of upper bound for time taken

for network stabilization (%)

(e)

100

=)

5=

=)

IS =)

Percentage out of 10,000 node additions (%)
N ©

50

o
o

10
No. of messages transmitted in order to stabilize network

20 30 40 60

Fig. 21.

Percentage of frequency,
(Count in a bin/Total number of observations) (%)

Percentage out of 10,000 node additions (%)

(Count in a bin/Total number of observations) (%)

45

70

60

50

40

30

20

~
S

@
3

a
=)

IS
S

@
S

N
S

5

o

20:35

20 30 40 50 60 70 80
Percentage of upper bound for number of
messages transmitted (%)

(d)

90

o

10

20 30 40 50 60 70 80 90
Percentage of upper bound for number of
messages transmitted (%)

(®)

100

1
Time taken for the network to stabilize (Frames)

2 3 4 5 6 7

(a) Time taken for a network to stabilize once a node has been added to the network, (b)

How often the upper bound of the number of messages transmitted for the 1st order color collision
event is reached when a new node is added, (¢c) How often the upper bound of the time taken for
network stabilization for the 2nd order missing color event is reached when a new node is added, (d)
How often the upper bound of the number of messages transmitted for the 2nd order missing color
event is reached when a new node is added, (e) Distribution of number of messages transmitted
when a new node is added to the network, (f) Distribution of time taken to stabilize network when

a new node is added to the network.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:36 J S. Chatterjea et al.

user sends in a query in order to retrieve instantaneous results that reflect
the state of the sensors in the network at a certain point in time [Deshpande
et al. 2005; Ratnasamy et al. 2003; Greenstein et al. 2003; Ganesan et al. 2003;
Coman et al. 2005]. Event-based queries, on the other hand, are completely de-
pendent on the environment that is being monitored, that is sensor readings are
only transmitted to the sink node if an interesting event has taken place [In-
tanagonwiwat et al. 2003; Begum et al. 2004; Vuran et al. 2004; Vuran and
Akyildiz 2006; Manjeshwar and Agrawal 2001]. Readings from long-running
queries are obtained using a sampling frequency specified within a query in-
jected into the network by the user [Madden et al. 2005; Yao and Gehrke 2002;
Intanagonwiwat et al. 2003; Sharaf et al. 2004; Emekci et al. 2004; Liu et al.
2007; Chu et al. 2006].

Our application at AIMS specifically requires long-running queries. How-
ever, long-running queries can be resolved in various ways. There are long-
running queries that extract every single reading acquired by all the sensors
in the network. We refer to this as raw data collection. This naturally is not a
feasible technique for energy-constrained WSNs due to excessive energy con-
sumption, bottlenecks, reduction in data quality, and so forth. Since these prob-
lems were identified in the earlier days of sensor network research, a greater
emphasis was placed on in-network processing, that is processing the acquired
data within the network before transmitting it to the sink node. For example,
in Directed Diffusion [Intanagonwiwat et al. 2003], a node may use a filter to
prevent duplicate notifications of an event from being reported numerous times
to the sink node. TinyDB [Madden et al. 2005] and COUGAR [Yao and Gehrke
2002] on the other hand, suggest aggregating data by executing aggregation
operators (e.g., MIN, MAX, SUM, COUNT, AVERAGE) within the network.
TiNA [Sharaf et al. 2004] presents improvements over TinyDB and COUGAR
by taking advantage of temporal correlations of sensor readings.

However, such in-network processing techniques are not generally suitable
for many environmental monitoring projects in general (e.g., our example ap-
plication at the Great Barrier Reef). The main reason for this is that raw data
collection allows all of the data to be captured; this data can then be analyzed
in a variety of ways at a later date. As an example, scientists at AIMS are not
interested in retrieving the average temperature readings at periodic intervals.
Additionally, snapshot queries can always be posed on the raw data that has al-
ready been collected. Having all the data enables scientists to interpret the data
in whichever way they wish at any time in the future. Other authors [Madden
2003; Chu et al. 2006] also describe similar scenarios where environmentalists
prefer collecting only raw data rather than data that has been manipulated
within the network using certain aggregation operators.

One of the ways to perform raw data collection is to take advantage of spatial
and temporal correlations of adjacent sensors. This has been done previously
in a number of research papers [Begum et al. 2004; Vuran et al. 2004; Vuran
and Akyildiz 2006; Liu et al. 2007]. However, it is important to keep in mind
that spatial and temporal correlations that have been identified at time ¢, may
not necessarily hold true at time ¢ + x where x > 0. In fact, there could be a sit-
uation in which two neighboring nodes that usually have correlated readings

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs J 20:37

do not have correlated readings during certain hours of the day. Thus nodes
should be able to adapt their operations accordingly. Though we have not dis-
cussed this issue in this article with regards to DOSA (since this article focuses
only on the scheduling aspects), we would like to indicate that nodes that are
unable to find any significant correlations between their adjacent neighbors,
can autonomously opt out of the DOSA scheduling scheme. Thus a node that
chooses to transmit correlation information, only does so if valid correlations
exist. The techniques mentioned in Vuran et al. [2004], Vuran and Akyildiz
[2006], and Deshpande et al. [2004] are not able to cope with sudden changes
in the correlation models and fail to account for the importance of temporal
fluctuations in these models. Furthermore, the approach presented in Vuran
et al. [2004] and Vuran and Akyildiz [2006] is designed for event-based queries.
They also assume that individual nodes are location aware. It is important to
note that nodes executing DOSA do not need to be location aware. This def-
initely reduces the complexity of the software running on the nodes. Unlike
DOS A, which is designed for multihop networks, Begum et al. [2004], Liu et al.
[2007], Heinzelman et al. [2002] require all nodes in the WSN to be in direct
transmission range of the base station. Such a design constraint affects scala-
bility since it prevents these solutions from being implemented in large-scale
networks. While Ken [Chu et al. 2006] takes advantage of spatial and temporal
correlations and works in a multihop environment, it does not mention any de-
tails regarding how to reorganize the scheduling scheme if a certain node fails
or if new nodes are added to the system. DOSA, on the other hand, is able to
cope with network dynamics due to the close interaction that exists with the
underlying LMAC layer. The cross-layer optimizations we perform also enable
DOS A to operate in a more energy-efficient manner. PAQ [Tulone and Madden
2006b] takes advantage of spatial correlations between nodes to reduce trans-
missions. However, the cluster heads are prone to draining their energy earlier
than the cluster members, since only the cluster heads are involved in periodic
transmission of readings to the sink. While SAF [Tulone and Madden 2006a]
improves on PAQ by ensuring that nodes send trends instead of actual sensor
readings, it forms clusters off-line and thus fails to take advantage of adjacent
nodes that may have correlated sensor readings. Thus all nodes that detect a
change in the trend due to some sudden event, are required to transmit model
updates to the sink. In DOS A however, only the correlating node would have to
send a model update in such a scenario. Both SAF and PAQ also disregard the
underlying MAC completely and are thus unable to benefit from any cross-layer
optimizations. The authors of SAF and PAQ also do not provide any theoretical
bounds of the energy savings that can be gained using their approach.

While there have been many MAC protocols designed for sensor networks, for
example S-MAC [Ye et al. 2002], T-MAC [Dam and Langendoen 2003], and D-
MAC [Lu et al. 2004], none of these protocols provide neighborhood information
the way LMAC does. As shown in our results in Section 9.3, the cross-layer
optimization we perform using the information presented by LMAC allows us
to attain savings of up to 60%. Also, the initial assignment of LMAC slots helps
in the second phase of assigning multiple DOS A colors to a node. The fact that
LMAC is a TDMA-based MAC is an added advantage since it automatically

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:38 J S. Chatterjea et al.

provides a sense of time, which is beneficial to DOSA. While we have illustrated
the operation of DOS A on top of LMAC, it should also be possible to run it on top
of other MAC protocols. This would mean, however, that an additional as layer
would have to be built that helps keep track of immediate topology information.
This would naturally reduce the efficiency of the system.

11. CONCLUSION AND FUTURE WORK

The collection of raw sensor readings is of great importance to many appli-
cations in sensor networks. We have presented a distributed scheduling al-
gorithm, DOS A that helps collect raw data in an energy-efficient manner by
taking advantage of the spatial correlations that exist between sensor readings
of adjacent nodes. Our algorithm is completely self-organizing in the sense that
nodes are able to autonomously choose new schedules when there are topology
changes in the network. This is possible due to the close integration of DOS.A
with the underlying MAC protocol. This cross-layer approach also results in sig-
nificant energy savings. We have presented both the theoretical performance
bounds and simulation results. Our simulation results indicate a reduction in
message transmissions by up to 85% and an increase in network lifetime of up
to 92% when compared with collecting raw data. Our algorithm is also capa-
ble of completely eliminating dropped messages due to buffer overflow, thereby
improving the quality of the collected data.

We have already implemented DOS.A on Ambient sensor nodes that use the
MSP430 processor [TI 2006]. While the footprint of LMAC and the AmbientRT
operating system [Ambient 2006b] comes to 2782 bytes, the footprint of DOSA
is only 869 bytes. We have tested DOS.A in a small network consisting of 25
nodes in an indoor environment. The convergence results gathered from the
practical implementation match the theoretical results very closely. We refer
the reader to Chatterjea et al. [2007] for more details regarding the practical
evaluation of DOSA. Our next step is to carry out tests in a large network
consisting of about 100 nodes on the Great Barrier Reef. This environment will
not only allow us to observe how the performance of DOSA scales, but also to
test the protocol in a harsh environment where link qualities may not always
be ideal.

We are currently also collecting results of the distributed data aggregation
algorithm that runs on top of DOSA. The data aggregation algorithm helps
identify correlation models and keeps them sufficiently updated. It also ensures
that sensors are sampled in an energy-efficient manner using a distributed
protocol.

ACKNOWLEDGMENTS

We would like to thank Stuart Kininmonth from the Australian Institute of
Marine Science and Ambient Systems for their help with the deployment of the
sensors on the Great Barrier Reef. Olga Bondarenko helped gather the valuable
data from the sensor network in Nelly Bay. The School of Marine and Tropical
Biology from James Cook University supplied the data loggers for temperature
collection. We would like to thank Roland Gemesi for the discussions regarding

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:39

self-stabilization. We would also like to thank the various anonymous review-
ers for their useful comments which have helped improve the quality of this
article.

REFERENCES

AIMS. 2006. Reef at our fingertips. http://www.aims.gov.au/pages/about/communications/
waypoint/headlines-04.html.

AMBIENT. 2006a. Ambient systems. http://www.ambient-systems.net/ambient/index.htm.

AMBIENT. 2006b. AmbientRT operating system. http://www.ambient-systems.net/ambient/
technology-rtos.htm.

Brcum, S., Wang, S.-C., KrRISHNAMACHARI, B., AND HELMY, A. 2004. Election: energy-efficient and
low-latency scheduling technique for wireless sensor networks. In Proceedings of the 29th Annual
IEEE International Conference on Local Computer Networks (LCN’04). IEEE Computer Society,
60-67.

BonDARENKO, O., KININMONTH, S., AND KINGSFORD, M. 2007. Underwater sensor networks, oceanog-
raphy and plankton assemblages. In Proceedings of ISSNIP. Melbourne, Australia.

Burusy, N., EstriN, D., Girop, L., AND HEIDEMANN, J. 2001. Scalable coordination for wireless sensor
networks: self-conguring localization systems. In Proceedings of the International Symposium on
Communication Theory and Applications (ISCTA). Cumbria, UK.

BURRELL, J., BROOKE, T., AND BEckwiTH, R. 2004. Vineyard computing: sensor networks in agricul-
tural production. IEEE Peruas. Comput. 03, 1, 38-45.

CHATTERJEA, S., KININMONTH, S., AND HaviNGa, P. J. M. 2006. Sensor networks. GeoConnexion 5, 9,
20-22.

CHATTERJEA, S., NIEBERG, T., ZHANG, Y., AND HaviNga, P.J. M. 2007. Energy-efficient data acquisition
using a distributed and self-organizing scheduling algorithm for wireless sensor networks. In
Proceedings of DCOSS. 368-385.

Cuu, D., DEsHPANDE, A., HELLERSTEIN, J. M., AND Hong, W. 2006. Approximate data collection in
sensor networks using probabilistic models. In Proceedings of ICDE. 48.

CoMaN, A., SANDER, dJ., AND NasciMENTO, M. A. 2005. An analysis of spatio-temporal query process-
ing in sensor networks. In Proceedings of the 21st International Conference on Data Engineering
Workshops (ICDEW’05). IEEE Computer Society, Washington, DC, 1190.

Crescenzi, P. anD Kann, V. 2005a. A compendium of np optimization problems: maximum inde-
pendent set. http://www.nada.kth.se/ viggo/wwwcompendium/node34.html.

Crescenzi, P. aND Kann, V. 2005b. A compendium of np optimization problems: minimum inde-
pendent dominating set. http://www.nada.kth.se/ viggo/wwwcompendium/node14.html.

Dawm, T. AND LANGENDOEN, K. 2003. An adaptive energy-efficient MAC protocol for wireless sensor
networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor
Systems. Los Angeles, CA.

DESHPANDE, A., GUESTRIN, C., MADDEN, S., HELLERSTEIN, J. M., AND Hong, W. 2005. Model-based
approximate querying in sensor networks. VLDB J. 14, 4, 417-443.

DESHPANDE, A., GUESTRIN, C., MADDEN, S. R., HELLERSTEIN, J. M., AND Hong, W. 2004. Model-driven
data acquisition in sensor networks. In Proceedings of the 30th VLDB Conference. Toronto,
Canada.

DukstraA, E. 1974, Self-stabilizing systems in spite of distributed control. Comm. ACM 17, 11,
643-644.

DoLEv, S. 2000. Self-Stabilization. The MIT Press, Cambridge, MA.

DuLmaN, S., CHATTERJEA, S., HoFFMEUER, T., HaviNga, P., anD HURINK., J. 2006. Architectures for
wireless sensor networks. In Embedded Systems Handbook, R. Zurawski, Ed. CRC Press, Florida,
31-1-31-10.

Emexcr, F., Tuna, S. E., AGrawaL, D., anp ABBapi, A. E. 2004. Binocular: a system monitoring
framework. In Proceeedings of the 1st International Workshop on Data Management for Sensor
Networks (DMSN’04). ACM Press, New York, NY, 5-9.

GanEsaN, D., EstriN, D., AND HEIDEMANN, J. 2003. Dimensions: why do we need a new data
handling architecture for sensor networks? SIGCOMM Comput. Comm. Rev. 33, 1, 143—
148.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

20:40 J S. Chatterjea et al.

GREENSTEIN, B., RATNASAMY, S., SHENKER, S., GOVINDAN, R., AND EstrIN, D. 2003. Difs: a distributed
index for features in sensor networks. Ad Hoc Netw. 1, 2-3, 333-349.

Hremzerman, W. R., CHANDRAKASAN, A. P., AND Bavakrisanan, H. 2002. An application-specific pro-
tocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Comm. 1, 4, 660—670.

Herman, T. 2003. Models of self-stabilization and sensor networks. In Proceedings of IWDC.
205-214.

InTaNaGOoNwIWAT, C., EsTrIN, D., GoviNDAN, R., AND HEDEMANN, J. 2002. Impact of network den-
sity on data aggregation in wireless sensor networks. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS’02). IEEE Computer Society, 457.

INTANAGONWIWAT, C., GOVINDAN, R., ESTRIN, D., HEIDEMANN, dJ., AND Siiva, F. 2003. Directed diffusion
for wireless sensor networking. IEEE/ACM Trans. Netw. 11, 1, 2-16.

Liy, C., Wy, K., anp Pe1, J. 2007. An energy efficient data collection framework for wireless sensor
networks by exploiting spatiotemporal correlation. IEEE Trans. Parall. Distr. Syst..

Lu, G., KRISHNAMACHARI, B., AND RAGHAVENDRA, C. S. 2004. An adaptive energy-efficient and low-
latency MAC for data gathering in wireless sensor networks. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS). 13. 224a.

Lyncr, N. 1996. Distributed Algorithms. Morgan Kaufmann Publishers.

MabpEN, S. 2003. The design and evaluation of a query processing architecture for sensor net-
works. Ph.D. thesis, University of California, Berkeley.

MAaDDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M., AND Hong, W. 2005. Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Datab. Syst. 30, 1, 122-173.

MAINWARING, A., CULLER, D., POLASTRE, J., SzEWCzYK, R., AND ANDERSON, J. 2002. Wireless sensor
networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop on Wire-
less Sensor Networks and Applications (WSNA02). ACM Press, New York, NY, 88-97.

MANJESHWAR, A. AND AGrawaL, D. P. 2001. Teen: A routing protocol for enhanced efficiency in
wireless sensor networks. In Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS). 03. 30189a.

MaTraB. 2006. MATLAB—the language of technical computing. http:/www.mathworks.com/
products/matlab/.

NieBerG, T. 2006. Independent and dominating sets in wireless communication graphs. Ph.D.
thesis, University of Twente, The Netherlands.

Pavazzi, C., Woops, G., ATKINSON, 1., AND KiNninmonTH, S. 2005. High speed over ocean radio link
to great barrier reef. In Proceedings of TENCON. IEEE.

RarNasamy, S., Karp, B., SHENKER, S., ESTRIN, D., GoviNpaN, R., YIN, L., aAND YU, F. 2003. Data-centric
storage in sensornets with ght, a geographic hash table. Mob. Netw. Appl. 8, 4, 427-442.

RF Monotrraics, I. 2007. Rfm tr1001 868.35MHZ hybrid transceiver. http://www.rfm.com/
products/data/tr1001.pdf.

SHARAF, A., BEAVER, J., LABRINIDIS, A., AND CHRYsANTHIS, K. 2004. Balancing energy efficiency and
quality of aggregate data in sensor networks. VLDB J. 13, 4, 384-403.

SmytH, A. W., PEI1, J.-S., AND Masri, S. F. 2003. System identification of the Vincent Thomas
suspension bridge using earthquake records. Earthqu. Eng. Struct. Dyn. 32, 3, 339-367.

TI. 2006. Msp430 ultra-low power microcontrollers overview from texas instruments. http://
focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabIld=1407%&familyId=342.

ToLLE, G., POLASTRE, J., SzZEWCZYK, R., CULLER, D., TURNER, N., Tu, K., BURGESS, S., Dawson, T., Buon-
ADONNA, P., Gay, D., anpD Hong, W. 2005. A macroscope in the redwoods. In Proceedings of the
3rd International Conference on Embedded Networked Sensor Systems (SenSys’05). ACM Press,
New York, NY, 51-63.

TuLonE, D. AND MADDEN, S. 2006a. An energy-efficient querying framework in sensor networks for
detecting node similarities. In Proceedings of the 9th ACM International Symposium on Modeling
Analysis and Simulation of Wireless and Mobile Systems (MSWiM’06). ACM Press, New York,
NY, 191-300.

TuLong, D. aND MADDEN, S. 2006b. Pagq: time series forecasting for approximate query answering
in sensor networks. In Proceedings of EWSN. 21-37.

VAN HogsEL, L. anp Havinca, P. 2004. A lightweight medium access protocol (IMAC) for wireless
sensor networks: reducing preamble transmissions and transceiver state switches. In Proceed-
ings of INSS. Tokyo, Japan.

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

A Scheduling Algorithm for Data Aggregation in WSNs . 20:41

Vuran, M. C., AkaN, B., anp AkviLpiz, I. . 2004. Spatio-temporal correlation: theory and applica-
tions for wireless sensor networks. Comput. Netw. 45, 3, 245—-259.

Vuran, M. C. anp AkviLpiz, I. F. 2006. Spatial correlation-based collaborative medium access
control in wireless sensor networks. IEEE/ACM Trans. Netw. 14, 2, 316—-329.

WEN, J. 2006. A smart indoor air quality sensor network. In Proceedings of SPIE, Vol. 6174.
M. Tomizuka, C. Yun, and V. Giurgiutiu, Eds. 1277-1290.

Yao, Y. AND GEHRKE, J. 2002. The cougar approach to in-network query processing in sensor
networks. In SIGMOD Rec. 31, 3, 9-18.

YE, W., HEIDEMANN, J., AND EsTrIN, D. 2002. An energy-efficient MAC protocol for wireless sensor
networks. In Proceedings of INFOCOM.

Received February 2007; revised September 2007; accepted December 2007

ACM Transactions on Sensor Networks, Vol. 4, No. 4, Article 20, Publication date: August 2008.

