
Chemical Programming
to Exploit Chemical Reaction Systems

for Computation

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena

von

Naoki Matsumaru

geboren am Aichi, Japan
in 28. Aug. 1974

Gutachter
1. : PD Dr. habil. Peter Dittrich
2. : Prof. Dr.-Ing. Dietmar Fey
3. : Prof. Andy Adamatzky

Tag der letzten Prüfung des Rigorosums: 20. Aug. 2009

Tag der öffentlichen Verteidigung: 27. Aug. 2009

Chemical Programming
to Exploit Chemical Reaction Systems

for Computation

Dissertation
to receive the degree Dr. rer. nat. from the

Department of Mathematics and Computer Science
Friedrich-Schiller-University Jena

Germany

submitted by

Naoki Matsumaru

born in Aichi, Japan
on 28. Aug. 1974

Committee members
1. : PD Dr. habil. Peter Dittrich
2. : Prof. Dr.-Ing. Dietmar Fey
3. : Prof. Andy Adamatzky

Date of the last examination: 20. Aug. 2009

Date of the public defense: 27. Aug. 2009

Dedication

To my family.

Table of Contents

Part I: Constructive Design 3
0.1 Introduction . 3
0.2 Motivations to Chemical Programming 4

1 Theory of Chemical Organizations 9
1.1 Motivations . 9
1.2 Terminology and Notation . 10
1.3 Core Theory . 12
1.4 Dynamical Part . 13
1.5 Summary and Discussion . 15

2 Case Study of Chemical Organization Theory 17
2.1 HIV Immunological Population Dynamics Model 17
2.2 Comparison of HIV Models . 21

3 Chemical Boolean Devices 29
3.1 A Recipe For A Chemical Logic Circuit 30
3.2 Case Study I: A Chemical XOR 32
3.3 Case Study II: Multiple Logic Gates 36
3.4 Case Study III: A Chemical Flip-Flop 39
3.5 Case Study IV: An Oscillator 42
3.6 Conclusion . 45

4 Maximal Independent Set Problem 47
4.1 Chemical Programming for the MIS problem 48
4.2 Proof of exact correspondence between MISs and organizations

of size N . 51
4.3 Examples of Chemical Programming to Solve the MIS Problem 54
4.4 Conclusion . 57

5 Conclusion and Outlook 59
5.1 Organization-Oriented Programming 60
5.2 Outlook . 63

Part II: Autonomous Design 67

6 Comparing Evolved Reaction Networks with Constructed
Reaction Networks 69
6.1 Method of Evolutionary Design 70

i

ii TABLE OF CONTENTS

6.2 Evolutionary Process . 71
6.3 Analysis of Evolved Network 73
6.4 Discussion . 77

7 Tracking Chemical Evolution 79
7.1 Two Levels of Chemical Evolution 80
7.2 Experimental Setup . 80
7.3 Results . 85
7.4 Discussion and Conclusion . 88

8 Scouting: an Exploration algorithm 91
8.1 Exploration as Design Approach 91
8.2 Scouting Algorithms . 92
8.3 The Self-adaptive Scouting Algorithm 94
8.4 Scouting an HIV-immune System Model 96
8.5 Concluding Remarks . 99

9 Further Applications of Scouting 103
9.1 Scouting Enzyme Behavior . 103
9.2 Artificial life as an Aid to Astrobiology 106

10 Hybrid Approach 111

Bibliography 113

List of Tables

2.1 Reaction network model of HIV immunological response 19
2.2 Three levels of model abstraction 25

3.1 Recipe of chemical boolean circuits 32

4.1 Recipe of reaction networks for maximal independent set problem 50

7.1 Code of automata chemistry dynamics 83
7.2 Codes to generate closed set . 83
7.3 Codes to generate self-maintaining set 84

8.1 Code of self-adaptive scouting . 96

9.1 Reaction network for life search scenario 109

iii

List of Figures

2.1 Organizational analysis of HIV immunological response model . . . 20
2.2 Two treatment strategies based on organizational analysis 20

3.1 Analysis of organizational structures within chemical xor 34
3.2 Dynamic behavior of chemical xor 35
3.3 Analysis of organizational structures within chemical nand consist-

ing of two gates . 36
3.4 Analysis of organizational structures within chemical or consisting

of three gates . 38
3.5 Analysis of hierarchical organizational structure within chemical

flip-flop . 39
3.6 Dynamic behavior of chemical flip-flop 41
3.7 Analysis of organizational structures of chemical oscillator 43
3.8 Dynamic behavior of a chemical oscillator 45

4.1 MIS simple solution . 48
4.2 Analysis of organizational structure on MIS problem instance with

linear graph . 56
4.3 Analysis of organizational structures on MIS problem instance with

circular graph . 56
4.4 Analysis of organizational structure on MIS problem instance with

six vertex graph . 57
4.5 Forty nine organizations constitute hierarchy on MIS problem in-

stance with six vertex graph . 58

5.1 Benchmark problem scenario for quantitative evaluation of chemical
programs . 63

5.2 Chemical programming workbench architecture 64

6.1 Circuit diagram and operation mode of flip-flop. 70
6.2 Average fitness value in evolutions of chemical flip-flop 71
6.3 Average number of organizations in evolutions of chemical flip-flop 72
6.4 Reaction network of chemical flipflop designed by evolution 74
6.5 Organizational structure in the reaction network shown in Figure 6.4. 75
6.6 Dynamical simulation of chemical flip-flop designed by evolution . 76

7.1 Two levels of chemical evolution 81
7.2 Dynamical downward movements 85
7.3 Dynamical sideward and upward movements 87
7.4 Dynamical downward movement 89

iv

v

7.5 Persistent organization structure 90

8.1 Comparison of scouting algorithm with conventional evolutionary
experimentation . 92

8.2 Behaviors of scouting algorithm with respect to surprise value and
mutation strength on HIV immunology model 98

8.3 Behaviors of scouting algorithm with respect to surprise value and
mutation strength on HIV immunology model in the time steps of
50 - 100 . 98

8.4 Behaviors of scouting algorithm with respect to population size and
threshold on HIV immunology model 99

8.5 Behaviors of scouting algorithm with respect to sampled locations
on HIV immunology model . 100

8.6 Two behavior modes of HIV immunology model 101
8.7 Sampling locations with a systematic strategy on HIV immunology

model . 101

9.1 Scheme of enzymatic reaction and empirical data of Mg2+ effects
on the enzyme activity . 104

9.2 Laboratory setup used in the scouting experiments to explore en-
zyme response to milieu components 105

9.3 Temporal progress of scouting on enzymatic response to milieu com-
ponents . 106

9.4 Empirical model obtained from autonomous exploration with scout-
ing strategy . 107

9.5 Scouting behavior with respect to sampled locations on life search
scenario . 110

Acknowledgments

I wish to express my gratitude to all those who supported to complete this
thesis. Grateful acknowledgement goes to: Florian Centler, Michael Conrad,
Gerd Grünert. Thomas Hinze, Bashar Ibrahim. Christoph Kaleta, Thorsten
Lenser, Jeffrey O. Pfaffmann. Pietro Speroni di Fenizio, Ralf-Peter Weiss, and
Klaus-Peter Zauner.

For financial support, I thank: Deutsche Forschungsgemeinschaft (Ger-
man Research Foundation) and Bundesministerium für Bildung und Forschung
(Federal Ministry of Education and Research).

Abstract

All known life forms process information on molecular level. Bio-
chemical information processing found in nature is known to be robust,
self-organizing, adaptive, decentralized, asynchronous, fault-tolerant, and
evolvable. In order to further exploit these properties new programming
techniques are required. This thesis is on programming approaches to
exploit the computational capabilities of chemical systems, consisting of
two parts.

In the first part, constructive design, research activities on theoret-
ical development of chemical programming are reported. As results of
the investigations, general programming principles, named organization-
oriented programming, are derived. The idea is to design reaction net-
works such that the desired computational outputs correspond to the or-
ganizational structures within the networks. Due to a relation between
organizations and fixed points, supported by a theorem, the constructed
reaction networks can be utilized to develop dynamical reaction systems
with desired output behaviors.

The second part, autonomous design, discusses on programming strate-
gies without human interactions, namely evolution and exploration. Mo-
tivations for this programming approach include possibilities to discover
novelty without rationalization. Regarding first the evolutionary strate-
gies, we rather focused on how to track the evolutionary processes. Our
approach is to analyze these dynamical processes on a higher level of
abstraction, and usefulness of distinguishing organizational evolution in
space of organizations from actual evolution in state space is emphasized.
As second strategy of autonomous chemical programming, we suggest an
explorative approach, in which an automated system is utilized to ex-
plore the behavior of the chemical reaction system as a preliminary step.
A specific aspect of the system’s behavior becomes ready for a program-
mer to be chosen for a particular computational purpose. In this thesis,
developments of autonomous exploration techniques are reported.

Finally, we discuss combining those two approaches, constructive de-
sign and autonomous design, titled as a hybrid approach. From our
perspective, hybrid approaches are ideal, and cooperation of construc-
tive design and autonomous design is fruitful. In order to design chemi-
cal computing systems, those approaches can be employed alternatively
from developing modular parts of chemical programs to developing whole
programs. Furthermore, constructing chemical reaction systems produce
useful experiences to improve autonomous designs. Autonomously de-
signed systems are proper sources of inspiration for chemical program-
ming in a constructive way.

Constructive Design

1

Introduction

When exploiting chemical reaction systems for computational purposes, users
are demanded to program or control in a different manner from a conventional
algorithmic manner due to the highly parallelized nature of the computational
processes. In this thesis, we discuss two different approaches to program or
design chemical computing systems: constructive design approach and au-
tonomous design approach. Those two are not completely independent of each
other, and a hybrid approach, combining multiple programming approaches,
will be ideal. Nevertheless, those two approaches are studied in two separate
parts. In Part I, chemical computing systems are designed in a constructive
way.

0.1 Introduction

As chemical computing systems, we concentrate on well-stirred reaction ves-
sels, populated with multiple molecules, so that spatial configurations are ne-
glected. The molecular concentration profiles represent the state of the com-
putational systems, and that state is changed through physicochemical inter-
actions amongst those molecules. The output of the chemical computation is
derived from the outcomes of the state changes. To program such a chemical
system in a constructive manner is to define and manipulate molecules and
their interactions. Since controlling and programming the physicochemical in-
teractions in real chemistry is currently impractical, our targets are “artificial
chemistries” [Dittrich, 2001]. An advantage of this limitation to the artifacts
is that no restrictions from practical implementation on real chemistry need to
be considered. Thus, our study can be focused on the theoretical aspects of
programming chemical computing systems.

Investigating the theoretical aspects of chemical programming is beneficial.
In chemical computing, chemical reaction rules are the fundamental compo-
nents of the programs, specified at the microscopic levels. A global systems’
state emerges from local interactions between molecules according to the re-
action rules specified [Banzhaf et al., 1996]. The relation between those two
levels is highly non-linear. The reaction rules are likely to be contingent on
each other even though physi-electrical influences can be neglected in artificial
simulation settings. For instance, two reactions can share the common species
as products or reactants. Self-reproduction reaction rule should also be consid-
ered. To make the dependency between reactions more complex, reactants can
be a product of multiple pathways, consisting of a series of reactions, operating
together in a complex manner. These tangled reactions are operated in par-
allel, moreover. It seems scarcely possible to predict the global behavior from

3

Constructive Chemical Programming

those local interactions. The main reasons of this difficulty are the requirement
to analyze those systems as a whole. Studying only the local interactions does
not lead to the understanding of the global systems’ behavior. This gap is not
specific for chemical systems but also applicable to technical systems employing
a large number of entities. Establishing a theoretical basis of this emergence
is much appreciated in general [Müller-Schloer, 2004]. Moreover, the ability to
predict how a chemical program behaves is a prerequisite for programming by
construction [Zauner, 2005]. Although being rather abstract, the study of ar-
tificial chemistries provides useful information with respect to the relationship
between the local and global levels [Fontana and Buss, 1994; Furusawa and
Kaneko, 1998; Jain and Krishna, 2001; Mayer and Rasmussen, 2000].

Chemical organization theory has been proposed by Dittrich and Speroni
di Fenizio [2007] to provide a new perspective to study complex dynamical re-
action networks. We suggest that theory as a tool helping to construct (i.e.,
program) and analyze (i.e., describe and understand) chemical computing sys-
tems [Matsumaru et al., 2007]. Applying chemical organization theory, the
constructed reaction networks are decomposed into overlapping sub-networks
called “(chemical) organizations” according to qualitative steadiness estimated
from the network structure. A organization is defined as a set of molecular
species that is closed and self-maintaining, and it has been proven that only an
organizational set of species can constitute a stationary state, given an ordinary
differential equation system describing the dynamics of the constructed reaction
network system [Dittrich and Speroni di Fenizio, 2007]. Employing this analy-
sis interactively, a chemical reaction network is programmed to behave in the
system level as desired. This “organization-oriented chemical programming”
is envisioned as a design methodology for programming chemical reaction sys-
tems (Chapter 5, Section 5.1). The next two chapters are dedicated to an
introduction of the theory of chemical organizations with the theoretical defi-
nitions (Chapter 1) following the description in Dittrich and Speroni di Fenizio
[2007], and a simple case study of how the theory is applied to understand the
dynamical behavior of chemical systems (Chapter 2).

0.2 Motivations to Chemical Programming

0.2.1 Bio-inspired Computing

In order to implement a technical system to be more reliable, adaptable, and
fault tolerant, inspirations have been sought from biological systems because
natural systems have been exhibiting those characteristics to us for many years.
For instance, no image processing is, so far, more reliable than human face
recognition mechanisms. Biological organisms have successfully adapted to
ever-changing environments. Insects continue to walk even if a few legs mal-
function, termed as graceful degradation [Kitano, 2002].

Although the inception of influence from nature may go back to the ac-
ceptance of decimal numerical systems, in accordance with the number of fin-
gers [Buchholz, 1959], biologically inspired computing still has a rather long
history, beginning in 1950s according to a “Hitchhiker’s Guide” by Lodding
[2004]. Inter- and intra-cellular signal transduction processes are compared
with a computer network system to address network security problems [Krüger
and Dressler, 2004], for example. Immune system mechanisms have been

4

Motivations to Chemical Programming

employed to implement autonomous intrusion detection systems [D’haeseleer
et al., 1996]. Self-organizing collective behavior observed in ant colonies has led
to a new method [Dorigo et al., 1999; Bonabeau et al., 2000] to balance the net-
work load in telecommunication networks [Schoonderwoerd et al., 1996] or in a
distributed peer-to-peer system [Montresor and Babaoglu, 2003]. Other biolog-
ically inspired techniques for distributed computing can be found in [Babaoglu
et al., 2006].

These recent applications of biologically inspired methods are preferably
focused on decentralized, asynchronous distributed computing systems though
they are not restricted to that (cf. [Hjelmfelt et al., 1991; Bäck et al., 1997]).
This tendency of distributed systems can be rationalized by general principles
of biological systems. Natural systems perform complex, life-critical operations
by employing an enormous number of simple, cooperating entities. The group
of those entities behave in a self-organizing manner without central controlling
mechanisms. Out of an orchestrated, decentralized interplay of those entities,
system behavior emerges on a global level. The entities are diverse in scale.
Governments and companies are considered to be an entity of a global political
or economical system. Human beings form a social system, and so do ants, bees,
and bacteria. On a smaller scale, proteins, chemical compounds, or molecules
are the target agents to investigate biological behaviors of natural organisms.

Focusing on the biochemical scale, interactions between molecular entities
are physiochemical interactions, and the graph theory has been successfully
applied. Promoted as “Network Biology” by Barabási and Oltvai [2004], it
is necessary to analyze biological systems not only by practical but also by
theoretical means, in order to elucidate mechanisms of natural phenomena
and design principles of the systems. For example, it has been found that
metabolic networks from different organisms share common architectural de-
signs to achieve simultaneously two conflicting features: scale-free toplogy and
high connectivity. This network structure is presumed to be responsible for
a robust and fault-tolerant system as it was discovered by evolution [Jeong
et al., 2000]. The empirical network of genetic transcription, signal transduc-
tion, and the nervous system have a particular topological feature to perform
signal processing resilient to noises [Klemm and Bornholdt, 2005]. Mecha-
nisms such as modularity, feedback loops, sharing of common protocols, and
hierarchical organization of subcomponents are helpful to explain robustness
properties of living systems as shown by Csete and Doyle [2002] and Stelling
et al. [2004]. To analyze the robustness or structural fragility of reaction net-
works, the minimum number of reactions whose absence causes deficiency of a
certain functionality of the network can be computed [Klamt and Gilles, 2004].
Schuster et al. [2000] have considered other constraint based approaches, such
as elementary modes that is the minimum number of reactions to sustain a
certain functionality (e.g, a specific flux) in a complex metabolic network. To
get an appropriate inspiration from biological systems, these approaches yield
valuable perspectives.

With respect to computation, Conrad [1989] studied dissimilarity between
conventional computers and brains in the light of programmability and evolv-
ability. Digital computers are realizations of a highly programmable computa-
tional model, while the brain is less programmable and not programmable in
a conventional imperative way. High programmability is achieved by conven-
tional computer languages that imply constraints on system’s operations [Con-

5

Constructive Chemical Programming

rad, 1995]. However, evolvability is remarkably impaired such that a small
random change of a program causes the system to behave entirely differently
or, in most cases, to stop working due to invalid operations. Looking at nature
or natural organisms, on the other hand, evolvability is inevitable to cope with
the ever-changing environment. Evolutionary processes are the primary forces
for biological organisms of long-term adaptation to the environmental change.
The achievement of evolvability at a high level has contributed to the success-
ful existence of biological systems. The brain has been modeled with highly
evolvable neural networks, which is featured by the alternation of connectivity
between its neurons [Beale and Jackson, 1990; Ellacott and Bose, 1996].

Efficiency in computation is another aspect to consider. Processing time
of perceived information, for example, is extremely significant for natural sys-
tems. In engineering, systems are carefully designed for fast computation and
low energy consumption. In [Conrad, 1990], these three properties of pro-
grammability, evolvability or adaptability, and computational efficiency, are
linked for the purpose of distinguishing any computational systems. His argu-
ment, then, leads to a trade-off principle stating that it is impossible to achieve
programmability, evolvability or adaptability, and computational efficiency at
the same time at high level. Outstanding achievement of computational effi-
ciency on a basis of programmable components results in little evolutionary
adaptable systems. In other words, programmability is the cost for the effi-
ciency and for the adaptability, which are found to be important principles of
biological information processing [Conrad, 1988]. It should be noted that the
discussion about the trade-off is rather informal and conceptual.

Sipper et al. [1997] proposed another approach to classify bio-inspired com-
puting systems along three axes: Phylogeny, Ontogeny, and Epigenesis. Phy-
logeny means, inheriting genetic information from parents through evolution-
ary process. Ontogeny describes the context sensitive development or growth
of a creature. Epigenesis includes learning processes [Teuscher et al., 2003].
Their argument is that bio-inspired computing systems should achieve all of
these properties at high level because biological systems do. Analyzing the
computing systems in terms of those criteria would also be fruitful.

0.2.2 Chemical Computing

The chemical reaction metaphor has been proposed as a source of inspiration
for a novel computation paradigm [Banâtre and Métayer, 1986; Dittrich, 2005]
since all known life forms process information using chemical processes [Küppers,
1990]. Using chemical reactions for formal computations, described in a for-
mal language, has initially been suggested by Banâtre and Métayer [1986]. In
their GAMMA system [Banâtre and Métayer, 1990], a chemical reaction is de-
fined as a rewriting operation on a multiset, mimicking a well-stirred reaction
vessel. Chemical rewriting systems have been extended to chemical abstract
machines, abbreviated as CHAM, by Berry and Boudol [1992] in order to cap-
ture the spatial context of chemical systems. Membrane computing, also known
as P systems by Păun [2000], falls into a similar discipline. In this approach,
the importance of membrane is stressed, by which the reaction vessel is com-
partmentalized. Further extension has been developed by Giavitto and Michel
[2001]. Their system, named MGS, is capable of dealing with an arbitrary
topological structure in the reaction vessel [Banâtre et al., 2004].

6

Motivations to Chemical Programming

Another form of chemical computing is derived from DNA assembly pro-
cesses, and a noticeable contribution by Adleman [1994] presented that combi-
natorial problems are aimed to be solved through the self-assembly processes
of DNA molecules. Ehrenfeucht et al. [2003] have investigated a formal system
to model that computational process, consisting of three operations on strings
over the nucleotide alphabets. A significant distinction of this DNA-based com-
puting includes the explicit intention to in vivo application [Weiss et al., 1999].
A successful implementation of a logic circuit, a toggle switch, using a gene
regulatory network in Escherichia coli is reported by Gardner et al. [1999].

Advantages of chemical computing over conventional computing with re-
spect to computational performance are still controversial. Chemical comput-
ing based on chemical reactions has another aspect, however. Biology, specif-
ically Systems Biology [Kitano, 2002] employed chemical reaction networks to
describe biological behaviors [Hucka et al., 2003], which is the same language as
chemical computing. This interoperability is an advantage such that transfer
knowledge between two fields is straightforward. We can adopt chemical reac-
tion network models for chemical computing systems. Reversing the direction,
we can apply concepts of chemical computing to biochemical systems so that
biological organisms can be interpreted as systems that compute. Following a
philosophy of Structural Sciences [Artmann, 2003], this interdisciplinary study
of computer science and biology may reveal a common structure within life
forms in terms of computation.

In chemical computing, the outcome of computation appears as an emergent
global behavior based on a manifold of local interactions [Banzhaf et al., 1996].
There exists a leap over the gap between local interactions and global sys-
tems behavior for general cases of biological phenomena. Based on published
experimental data, biochemical reaction networks have been constructed by
combining single signaling pathways, and their emergent behavior has been
investigated by Bhalla and Iyengar [1999]. The difficulties of developing bi-
ologically inspired systems are originated from this gap because looking at
only isolated local parts of the system will not immediately lead to the under-
standing of the global behavior. Some tools to fill this gap are available. The
dynamical systems theory provides tools to determine the steady states and
other attractor states of a system including their stability [Tu, 1994] The bifur-
cation theory elucidates the dependency of the systems’ behavior on the model
parameters [Tyson et al., 2001]. However, theoretical analysis to reveal the
relations between local entities’ behavior and global emergent behavior is still
lacking [Müller-Schloer, 2004]. In a non-trivial situation, it is impossible to pre-
dict the behavior by methods that are more efficient than simulations. Analysis
of such behavior is hard because of the extensive influences between entities.
Decomposition of chemical computing systems into subsystems becomes im-
practical, unlike conventional hierarchical systems compared in [Steels, 1990].
In other words, a composition of subcomponents does not necessarily preserve
the well-defined sub-functionalities of each subsystem. “The wholeness is not
a collection of the parts” [Anderson, 1972] in terms of functionalities. Thus,
chemical computing systems demand users to program in a different manner
from conventional algorithmic, imperative manner.

7

Chapter 1

Theory of Chemical
Organizations

Contents
1.1 Motivations . 9
1.2 Terminology and Notation . 10
1.3 Core Theory . 12
1.4 Dynamical Part . 13

1.4.1 Fixed Points are Instances of Organizations 14
1.4.2 Consistent Reaction Networks 14

1.5 Summary and Discussion . 15

1.1 Motivations

Biochemical reaction networks in living cells are highly interconnected. In or-
der to tackle their complexity, network theory has been successfully applied in
their analysis [Barabási and Oltvai, 2004]. A systematic analysis of many bio-
logical organisms revealed design principles in metabolic networks that enhance
robustness and fault-tolerance of these systems [Jeong et al., 2000]. Structural
features contributing towards robustness in biological systems are for example
feedback loops, redundancy, and modularity [Stelling et al., 2004].

Precise description of the dynamical behavior of these systems requires
knowledge of the kinetics and the parameters for each reaction. However, sev-
eral aspects of the dynamical behavior can already be inferred from the static
structural information of the reaction network [Bailey, 2001]. Correlations be-
tween the stability of steady states and the stoichiometric matrix have been
studied by Clarke [1975, 1980]. Under steady state assumptions, feasible flux
distributions of metabolic networks are also obtained from the stoichiometry
information [Schilling et al., 1999; Schuster et al., 2000]; and conclusions about
equilibrium states and their uniqueness can then be drawn using methods de-
veloped by Feinberg and Horn [1974]. Further assuming a maximum bacterial
growth rate, a metabolic network reconstructed from genome sequence data
has been tested with experimental data [Edwards and Palsson, 2000]. When
modelling biochemical reaction networks with petri nets [Petri, 1962; Reddy
et al., 1993], the concepts of liveness, reachability, t-invariants, and p-invariants

9

1. Theory of Chemical Organizations

imply potential dynamical behaviors [Lautenbach, 1973].
An advantage of these approaches is that kinetic parameters, which are

scarce in biological data, are not required. The analysis method described in
the chapter operates on the same level of abstraction. That is, an algebraic
analysis of the reaction network explains the dynamical behavior of the system.
It is important to note that in our analysis, we abstract details like concentra-
tion levels or the spatial distribution of a chemical species. On this relatively
high level of abstraction, a system state is characterized only by the molecular
species present and we can describe the dynamics of a system qualitatively,
namely, as a movement between sets of species, instead of a movement in a
more complex state space [Speroni di Fenizio and Dittrich, 2002].

Inspired by Fontana and Buss [1994], Dittrich and Speroni di Fenizio [2007]
have introduced chemical organization theory, aiming at an understanding of
dynamical complex biochemical processes only taking stoichiometry into ac-
count. An organization is defined as a set of molecular species that is (alge-
braically) closed and (dynamically) self-maintaining. The first property, clo-
sure, ensures that applying any reaction rule to members of an organization
generates its members only; the second property, self-maintenance, is a theo-
retical capability of an organization to maintain all of its members. Those two
properties, independent of the type of reaction dynamics assumed, stabilize
qualitative states of a reaction vessel: Neither new molecular species appear,
nor does any existing molecular species disappear. When the theory is applied,
a reaction network is decomposed into overlapping sub-networks, forming a par-
tial hierarchy of organizations. The hierarchy is used to describe the potential
dynamical behavior of the reaction system as a movement between organiza-
tions. Only stoichiometric information is required to identify all organizations,
making the method well suited for biological networks where kinetic data is
often scarce. In contrast to other methods, no steady state assumptions are
made so that dynamical behaviors of accumulating mass are also considered.
Note also that using the closure property alone can already provide a powerful
tool to get insight into the structure and function of a large network consisting
of several thousands of compounds [Ebenhöh et al., 2004].

1.2 Terminology and Notation

Before going further, we would like to specify terms in this section. A reaction
network is given as a tuple 〈M,R〉, consisting of a set of molecular species M
and a set of reaction rules R. A molecular species a ∈ M is an object in M.
To write a reaction rule ρ ∈ R, we adopt a notion from chemistry:

la1,ρ a1 + la2,ρ a2 + · · ·+ la|M|,ρ a|M|

→ ra1,ρ a1 + ra2,ρ a2 + · · ·+ ra|M|,ρ a|M|. (1.1)

Note that “+” is not an operator here but a separator of elements. The sto-
ichiometric coefficients la,ρ on the left-hand side and ra,ρ on right-hand side
describe the amount of molecular species a ∈ M in reaction ρ ∈ R to be
consumed and to be produced, respectively.

This formalization of the reaction network is so general that reaction rules
that are not balanced, such as a → a + b, 2a → b, or b → a, are also allowed.

10

Terminology and Notation

In chemistry, we usually demand that, within a chemical reaction, mass is con-
served, i.e.the mass on the left-hand side of a reaction rule is equal to the mass
on its right-hand side. Chemical organization theory has also been intended to
handle systems that are not balanced and where mass is not necessarily con-
served. A simple biological model such as HIV model investigated in Chapter 2
is an example of a non mass-conserving reaction network.

We also define two mappings: LHS(ρ) ≡ {a ∈M : la,ρ > 0} and RHS(ρ) ≡
{a ∈ M : ra,ρ > 0}, returning the set of species with a positive coefficient
on the left-hand and right-hand side, respectively. The left-hand side species
of reaction ρ given by LHS(ρ) are also called reactants, and the right-hand
side species by RHS(ρ) products. These mappings omit the species irrelevant
to the reaction, namely the coefficients on both sides are zero. Besides, the
stoichiometric coefficients are also disregarded in the set returned by the map-
pings. Applicability of a reaction is considered only whether the combination
of species, neglecting the stoichiometry, is satisfied. Formally, for reaction ρ
to occur in A ⊆ M, the necessary condition is LHS(ρ) ⊆ A. A reaction is
applicable to a set of species only when this condition is fulfilled.

Given a reaction network, organizational structure embedded within the
network is scrutinized. Analyzing the reaction network using chemical organi-
zation theory, the network is decomposed into overlapping sub-networks, con-
sisting of molecular species, called organizations, whose specification is given
later in Definition 3. Prescribing the size of set as the number of species con-
tained, organizations are arranged vertically with respect to their size. The
largest organizations are placed at the top. A hierarchy of organizations is
formed and is denoted as organizational structure of the reaction network.

A central element to describe chemical reaction systems is the stoichiometric
matrix, which can be used to derive an ordinary differential equation model
for the dynamics of the system based on, e.g., mass action kinetics. Writing a
reaction rule as in Equation 1.1, the stoichiometric matrix S can be defined as:

S = (sa,ρ) = (ra,ρ − la,ρ). (1.2)

An entry sa,ρ of the stoichiometric matrix denotes the net amount of species
a to be produced in reaction ρ. A negative entry indicates the species to
be consumed in the reaction. A zero entry signifies no amount change of
the species in the reaction, but it does not always mean that the species is
irrelevant. In case ra,ρ = la,ρ > 0, molecular species a does participate in
reaction ρ, especially as the reactant, such that the reaction can take place.
Only when ra,ρ = la,ρ = 0, molecular species a can be neglected with respect
to reaction ρ. Both cases are symbolized as the zero entry in the matrix S and
are indistinguishable in the stoichiometric matrix representation of the reaction
networks.

The dynamics of chemical reaction systems can be defined by an ordinary
differential equation system in terms of the dynamics of concentration vector
x = (xa) ∈ R|M|. Given a reaction network 〈M,R〉, a reaction system is an
instance of the reaction network. A reaction system can be realized by putting
a multiple copies of some molecular species from set M into a reaction vessel,
sometimes called a reactor. The reaction vessel populated with molecules,
instances of a species type in M, changes dynamically the contents based on
reaction rules given in R. The concentration profile of the contents corresponds

11

1. Theory of Chemical Organizations

to the state of the reaction system, and dynamical change of that profile forms
a trajectory in the concentration vector space. This trajectory is the dynamics
an ordinary differential equation describes.

In passing, we use the terms “molecular species” and “species” synony-
mously, and the term “molecule” addresses a concrete object of a certain
species. Species form a reaction network, and molecules reside in a reaction
vessel to form a reaction system. The difference between species and molecule
is similar to the difference between class and instance. A species represents a
template or class of molecules, and molecules are multiple copies or instances
of a species.

Given a reaction network 〈M,R〉, the dynamics of the chemical reaction
systems instantiated from the network can be described by an ordinary differ-
ential equation (ODE) system as follows:

ẋ = Sv(x) (1.3)

where x = (x1, . . . , x|M|)T is a concentration vector and v(x) = (v1(x), . . . ,
v|R|(x))T is a flux vector describing the reaction speed. When the mass action
kinetics is assumed, an entry vρ of the flux vector for reaction ρ ∈ R is simply
a product of concentrations of the reactants:

vρ = kρ

(∏
a∈M

xla,ρa

)
(1.4)

where kρ ≥ 0 is a kinetic parameter. ẋa = dxa/dt denotes the element of ẋ
describing the speed of concentration change of species a, referred as production
rate. We may simply write the production rate of molecule a as (Sv)a.

The concentration profile of the reactor contents corresponds to the quan-
titative state of the reaction system. We also refer the qualitative state as a set
of molecular species present in the reaction system, whose concentration values
are higher than a certain threshold. Typically, the threshold is set to zero or
very small value. Using abstraction mapping defined later in Definition 4, the
qualitative state is an abstraction of quantitative states with a threshold of
zero or small value.

1.3 Core Theory

We now define the central concept of the theory, namely organization as a
closed and self-maintaining set of molecular species. Given a reaction network
〈M,R〉, properties of closure and self-maintaining are scrutinized for each set
of molecular species in order to derive the organizational structure embedded
within the network. A set of molecular species A ⊆ M is closed if, for all
reactions ρ applicable on A, the products are contained in A, that is, RHS(ρ) ⊆
A. In other words, there exists no reaction rule producing new molecular species
not yet present in the organization using only species of that organization. This
is similar to the algebraic closure of an operation in set theory.

Definition 1 (closure). Given a reaction network 〈M,R〉, a set of molecular
species A ⊆ M is closed if, for every reaction ρ ∈ R with LHS(ρ) ⊆ A,
RHS(ρ) ⊆ A also holds.

12

Dynamical Part

The closure property is conceived to assure that no new molecular species
can appear, which would change the qualitative state of the reaction systems.
Another force of the qualitative change is the disappearance of molecular
species from the reaction vessels. The second property has been thought to
address that change. Self-maintenance property is a theoretical capability of
an organization to maintain all of its members. Loosely speaking, all molecular
species that are used up within the set can also be reproduced by a reaction
or some reaction pathways among species of that set. The general definition of
self-maintenance becomes more complicated than that of closure because the
reproduction aspect can be associated with many reaction processes. The main-
tenance of one molecular species can be supported by dynamical productions
and consumptions of other molecular species, and many molecular species may
operate and contribute as a whole in a complex pathway. The stoichiometry
of the whole reaction network must be taken into consideration.

Formally, the definition of self-maintenance of a set of molecular species is
given as follows:

Definition 2 (self-maintenance). Given an reaction network 〈M,R〉, a set
of molecules species B ⊆ M is self-maintaining if there exists a flux vector
v ∈ R|R| satisfying the following three conditions:

1. vρ > 0 if LHS(ρ) ⊆ B

2. vρ = 0 if LHS(ρ) * B

3. (Sv)a ≥ 0, a ∈ B.

These three conditions can be read as follows: The flux vρ must be positive
when reaction ρ is applicable to the set B (Condition 1). All other remaining
fluxes are set to zero (Condition 2). Finally, the production rate (Sv)a for
all molecular species a ∈ B must be nonnegative (Condition 3). Note that
we have to find only one such flux vector in order to show whether a set is
self-maintaining.

Closure and self-maintenance together define an organization:

Definition 3 (organization). A set of molecular species O ⊆M that is closed
and self-maintaining is called an organization.

The organizational analysis decomposes the reaction network given into
overlapping sub-networks, organizations. We visualize the set of all organi-
zations by a Hasse-diagram (e.g., Figure 2.1 lower right corner, Figure 3.1).
In that diagram, organizations are arranged vertically according to their size,
that is, the number of species contained. The largest organizations, which are
formed by a maximum number of species, are placed at the top of the Hasse-
diagram. Two organizations are connected by a line if the lower organization
is contained in the organization above and there is no other organization in be-
tween. The Hasse-diagram represents the hierarchical organizational structure
of the reaction network under study.

1.4 Dynamical Part

For deriving the Hasse-diagram of organizations no detailed knowledge con-
cerning the dynamics is required. Only stoichiometric information, i.e., the

13

1. Theory of Chemical Organizations

set of reaction rules, is sufficient. Therfore that part of chemical organization
theory is referred as the static part. In the “dynamical part”, the set of orga-
nizations is used to describe the dynamics of a reaction system as a movement
between organizations. For further details see the original paper by Dittrich
and Speroni di Fenizio [2007].

1.4.1 Fixed Points are Instances of Organizations

An important relation between organizations and dynamical behavior is stated
by a theorem saying that every fixed point must be an instance of an organi-
zation [Dittrich and Speroni di Fenizio, 2007]. In other words, in a continuous
dynamical reaction system given by an ODE, we can only obtain a steady
state, or a fixed point, with a combination of molecular species that is an or-
ganization. This theorem links the static analysis of a network structure with
a dynamical aspect of reaction systems. For presenting the theorem formally,
the abstraction function, the opposite concept of instance, is introduced.

Abstraction is a mapping φ : X 7→ M, which maps a state of the system
to the set of molecular species that are present in the system. When the
threshold Θ is 0 or very small, the abstraction of a state φ(x) corresponds to
the qualitative state of the reaction system.

Definition 4 (abstraction). Given a dynamical system ẋ = f(x) and let x be
a state in X, then the abstraction φ(x) is defined by

φ(x) = {i|xi > Θ, i ∈M}, φ : X → P(M), Θ ≥ 0 (1.5)

where xi ≥ 0 is the concentration of molecular species i in state x, and Θ is
a threshold chosen such that it is smaller than any positive coordinate of any
fixed point of the dynamical system.

While φ(x) denotes the molecular species represented by the state x, an
instance of a set A is a state where exactly the molecules from A are present.
We say that a state x ∈ X is an instance of A ⊆M iff φ(x) = A.

Theorem 1. Hypothesis: Let us consider a general reaction system whose
reaction network is given by the reaction network 〈M,R〉 and whose dynamics
is given by a differential equation ẋ = Sv(x) = f(x) as defined before. Let
x′ ∈ X be a fixed point, that is, f(x′) = 0, and let us consider a mapping
φ as given by Definition 4, which assigns each state x to a set of molecular
species. Thesis: φ(x′) is an organization. (Proof see Ref. Dittrich and Speroni
di Fenizio [2007].)

1.4.2 Consistent Reaction Networks

When analyzing the organizational structure of the reaction network, a func-
tional procedure called generate may be utilized (specifically, in Chapter 7). As
a part of the chemical organization theory by Dittrich and Speroni di Fenizio
[2007], there are three kinds of such functions: GCL(S), GSM (S), and Gorg(S).
Every function accepts an arbitrary set S of molecular species as an input, and
the set is converted, in accordance with the given reaction network, to a set
of molecular species with a desired property of closure, self-maintenance, or

14

Summary and Discussion

both, respectively. Classifying reaction systems depending on the behavior
of those generate functions is speculated. One of distinctive behaviors is the
uniqueness of the generated self-maintaining set and establishes a classification
of consistent reaction networks.

Definition 5 (consistent). A reaction network is called consistent, if the clo-
sure and self-maintaining set generated by a set can uniquely be defined, i.e.
given any set S ⊆ M, the smallest closed set that contains S and the largest
self-maintaining set contained in S are unique, respectively.

Definitions of the three generate functions are following. with generate
closure function. To generate the closure of a set, we expand it by interacting
the molecules of the set and adding to the set any newly generated molecule.
When no new molecule is generated, the set is closed.

Definition 6 (generate closed set). Given a set of molecules S ⊆M, we define
GCL(S) as the smallest closed set C containing S. We say that S generates
the closed set C = GCL(S) and we call C the closure of S.

We can now define a generate operator for self-maintaining sets in the same
way as for closed sets by saying that the self-maintaining set generated by a
set S is the biggest self-maintaining set D contained in S.

Definition 7 (generate self-maintaining set). Given a consistent reaction net-
work 〈M,R〉 and a set of species S ⊆M, we define GSM (S) as the biggest self-
maintaining set D contained in S. We say that S generates the self-maintaining
set D = GSM (S).

Given a set S, S ⊆M, it is always possible to generate its closure [Speroni
di Fenizio et al., 2000]. In a consistent reaction network, by definition, we can
always generate uniquely for any given set S ⊆M a self-maintaining set D by
taking the biggest self-maintaining set that contains S. Since in consistent re-
action systems both closure and self-maintaining set can be generated uniquely,
we can also uniquely define the organization generated by a set S:

Definition 8 (generate organization). Given a set of molecules S ⊆M, the or-
ganization O = Gorg(S) generated by S is defined as Gorg(S) ≡ GSM (GCL(S)).

If O is an organization Gorg(O) = O. The organizations are the fixed points
of the “generate organization operator” Gorg.

1.5 Summary and Discussion

This section summarizes how the theory of chemical organization is typically
applied to analyze a reaction network 〈M,R〉: First, all organizations within
the given reaction network are determined. The set of organizations decom-
poses the network into overlapping sub-networks. The hierarchy of the organi-
zations is referred to as the organizational structure of the reaction network.
The hierarchy or the organizational structure is visualized by a Hasse-diagram.

The derived organizational structure is interpreted using Theorem 1 in re-
lation to the dynamical behavior of the reaction system. That theorem states
that the abstraction of a fixed point fulfills the conditions to be an organization.

15

1. Theory of Chemical Organizations

Reversing the argument, the set of organizations indicates potential combina-
tions of species that may constitute fixed points. Analyzing the organizational
structure suggests which set of molecular species may be contained in a steady
state. Since dynamical reaction systems tend to be in a steady state after a
sufficiently long time, it is likely that the set of species, when observed, is an
organization (if the vessel is sufficiently large). Assuming dynamical systems’
behaviors are characterized by the set of species present in the reaction vessel,
the hierarchy of organizations will give, therefore, an overview of the potential
behaviors of the reaction system. It is this characteristics that we utilize for
computation in chemical computing.

The set of organizations and the set of fixed points are not in one-to-one
correspondence, however. Distinctive multiple fixed points may be mapped by
the abstraction function to the same organization. Because of the qualitative
nature of the analysis, quantitatively different fixed points can belong to the
same set of species. There may also exists an organization that is not an
abstraction of any fixed point. The reverse of the thesis is not true in general,
that is, an organization is not necessarily an abstraction of a fixed point. A
derived organization serves only as a candidate of the abstraction of a fixed
point.

Since the core part of the theory is developed based only on the algebraic
structure of the reaction network, some aspects of dynamical behaviors such
as stability of fixed points, oscillatory behaviors, or periodic attractors, are
not addressed directly using the notion of organizations at the moment. More-
over, a quantitative value of, for instance, concentration is neglected because
of the qualitative nature of the analysis method. The quantity of a molecular
species is, depending on the threshold parameter Θ, abstracted to be qual-
itatively present (or high concentrations) or absent (or low concentrations).
These dynamical aspects are mainly dependent on kinetic laws or parameters
of reactions. Such information is not always available and mostly scare in biol-
ogy, however. To compensate the unavailability of data and applicability of the
theory, dynamical aspects of systems behaviors are initially regarded less. This
highly abstracted view still provides us with meaningful perspectives of biologi-
cal organisms [Barabási and Oltvai, 2004]. Relations between the organizations
and those aspects are still under study.

16

Source :

Matsumaru, N., Speroni di Fenizio, P., Centler, F., and
Dittrich, P. (2005b). A case study of chemical organization
theory applied to virus dynamics. In Kim, J. T., editor,
Systems Biology Workshop at ECAL 2005, Workshop
Proceedings CD-ROM, Kent, UK.

Matsumaru, N., Centler, F., Speroni di Fenizio, P., and
Dittrich, P. (2006a). Chemical organization theory applied to
virus dynamics. it - Information Technology, 48(3):154–160.

Chapter 2

Case Study: Analysis of Virus
Dynamics Model

Contents
2.1 HIV Immunological Population Dynamics Model 17

2.1.1 Model Description . 17

2.1.2 Lattice of Organizations . 19

2.1.3 Discussion . 19

2.2 Comparison of HIV Models . 21

2.2.1 Basic Model . 21

2.2.2 CTL Response . 22

2.2.3 Memory CTL . 23

2.2.4 Quiescent Cell . 23

2.2.5 Drug Effect . 24

2.2.6 Summary and Discussion . 27

2.1 HIV Immunological Population Dynamics Model

In order to evaluate the usefulness of chemical organization theory, we apply
it to a model by Wodarz and Nowak [1999] describing the interaction of a
virus (HIV) with immune system cells [Matsumaru et al., 2005]. The model
has been developed in order to explain the efficacy of various drug treatment
strategies. Especially it shows, why a drug treatment strategy does not try to
remove the virus, but aims at stimulating the immune defense, such that the
immune system controls the virus at low but positive quantities. The aim of
this chapter is to show that chemical organization theory can reveal, even in
such relatively small models, a structure (lattice of organizations), which can
be used to describe the dynamics of the model and to explain the strategy of
a drug treatment from a different perspective.

2.1.1 Model Description

In the model, there are four molecular species: uninfected CD4+ T cells x,
infected CD4+ T cells y, cytotoxic T Lymphocyte (CTL) precursors w, and

17

2. Case Study of Chemical Organization Theory

CTL effectors z:
M = {x, y,w, z}. (2.1)

The concentration of each species is specified by x, y, w, and z, respectively.
Wodarz and Nowak [1999] define the dynamics as an ordinary differential equa-
tion (ODE) system with kinetic parameters a, b, c, d, h, p, q, β, and λ:

ẋ = λ− dx− βxy
ẏ = βxy − ay − pyz
ẇ = cxyw − cqyw − bw
ż = cqyw − hz

(2.2)

From the given deterministic ODE model we derive chemical reaction rules,
which form a reaction network 〈M,R〉, so that the theory can be applied: The
ODE model includes a decay term for each species. Thus, for each species we
have a reaction rule transforming each molecular species into the empty set:
x→ ∅, y→ ∅, w→ ∅, and z→ ∅. Since the concentration of uninfected CD4+

T cells x increases with a constant rate λ, molecular species x is considered as
an input (or inflow) species, resulting in a reaction rule ∅ → x.

The infection by HIV viruses transforms a T cell x into an infected T cell
y, which is denoted by the term βxy in the ODE model and the reaction rule
x+y→ 2y. The destruction of the infected CD4+ T cells y by the CTL effectors
z as specified by the term pyz is transformed into y+ z→ z. Note that this is a
catalytic reaction with respect to the effector z because the concentration of z
is not effected by this reaction. CTL precursor w multiplies with the catalytic
help of both the infected and uninfected CD4+ T cell in accordance with the
term cxyw, which results in the reaction rule x + y + w → x + y + 2w. When
the infected CD4+ T cell y is detected by the CTL precursor w, the precursors
differentiate into effectors z as captured by the rule y + w → y + z. The
corresponding term in the ODE model is cqyw. The whole set of reaction rules
is listed in Table 2.1 The network derived from the HIV model investigated in
this chapter is “fortunately” consistent so that we can always generate uniquely
a self-maintaining set D for any given set S ⊆M.

A graphical representation of the network is shown in Figure 2.1, upper
right corner. Since the number of molecular species |M| is four and the size of
the reaction rule set |R| is nine, the stoichiometric matrix S is the following:

S =

x
y
w
z

1 −1 0 0 0 −1 0 0 0
0 0 −1 0 0 1 −1 0 0
0 0 0 −1 0 0 0 1 −1
0 0 0 0 −1 0 0 0 1

 (2.3)

where each row corresponds to a molecular species (x, y, w, z from the top)
and each column corresponds to a reaction. As can be seen, the stoichiometric
matrix does not contain all information of the reaction network. For example,
the reaction rule y + z → z appears only as the column vector (0,−1, 0, 0)T .
Molecular species y catalyzes the decay of z with no change of stoichiometric
coefficients. Catalysts are neglected in the stoichiometric matrix representa-
tion.

18

HIV Immunological Population Dynamics Model

Table 2.1: List of reaction rules modeling the response of the immune system
to HIV infection, derived from ODE model developed by Wodarz and Nowak
[1999]. See text for details.

ID Reaction rules Dynamics Description

1 ∅ → x λ inflow
2 x → ∅ dx decay
3 y → ∅ ay decay
4 w → ∅ bw decay
5 z → ∅ hz decay
6 x + y → 2y βxy HIV infection
7 y + z → z pyz immune counteraction
8 x + y + w → x + y + 2w cxyw effector production
9 y + w → y + z cqyw activation of CTL

2.1.2 Lattice of Organizations

For applying the theory we check every possible set of species (i.e., 16 sets)
whether it is closed and self-maintaining. As a result we found three organi-
zations. The Hasse-diagram is depicted in Figure 2.1, lower right corner. The
smallest organization consists only of the “healthy cells” x (uninfected CD4+

T cells). There cannot be a smaller organization (i.e. the empty set) because
x is an input species and therefore the empty set is not closed.

Looking at the reaction rules, we can see that x alone cannot produce any-
thing else, and thus the set {x} is closed. Since x is an input species, the
set {x} is obviously self-maintaining. We can also show formally that {x} is
self-maintaining. A flux vector, v = (1, 1, 0, 0, 0, 0, 0, 0, 0)T , is chosen such
that all conditions given in Definition 2 are fulfilled: all flows within the or-
ganization are positive, all flows outside are zero, and the production rates
Sv = (0, 0, 0, 0, 0, 0, 0, 0, 0)T are not negative in any component of the set {x}.

The second organization, {x, y}, contains “healthy cells” x together with “ill
cells” (infected CD4+ T cells). Looking at the reaction network, we can see
that {x, y} is closed, because there is no reaction rule that allows to produce
w or z just using x and y alone. We can show that {x, y} is self-maintaining
with the flux vector v = (10, 1, 1, 0, 0, 1, 0, 0, 0)T and the production rate Sv =
(8, 0, 0, 0)T .

The largest organization contains all species and is thus obviously closed.
From the reaction rules, we can see that because x can be produced at an
arbitrarily high rate, we can also produce y, z, and w at arbitrarily high rates.
For example, choosing v = (100, 1, 1, 1, 50, 1, 50, 10)T , Sv is positive in all
components and therefore {x, y,w, z} is self-maintaining.

2.1.3 Discussion

From a mathematical analysis conducted by Wodarz and Nowak [1999] and
simulation studies by Matsumaru et al. [2004] it is known that the model has
two modes of behavior belonging to two asymptotically stable fixed points: One

19

2. Case Study of Chemical Organization Theory

immune system
destroyed

controlled
virus is

{x}

{x, y}

{x, y, w, z}

uninfection
of HIV

x: uninfected CD4+ T cell
y: infected CD4+ T cell

z:CTL effectors
w:CTL precursors

w

y
x

z

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0 100 200 300 400 500C
on

ce
nt

ra
tio

n
(a

rb
itr

ar
y

un
its

)

Time (days)

Uninfected CD4+ T cell

Infected CD4+ T cell

CTL precursors

CTL effectors

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500C
on

ce
nt

ra
tio

n
(a

rb
itr

ar
y

un
its

)

Time (days)

Uninfected CD4+ T cell

Infected CD4+ T cell

CTL precursors

CTL effectors

2

2

Figure 2.1: Illustration of the analysis of the HIV immunological response
model by Wodarz and Nowak [1999]. The ODE model given in Eq. 2.2 is
transformed to a chemical reaction network (right top). The resulting hierarchy
of organizations is shown as a Hasse-diagram (right bottom). Two of the
organizations represent the attractors: virus under control (top) and immune
system destruction (middle). Dynamic simulations leading to both attractors
are shown on the left. Parameters were taken from λ = 1; d = 0.1; β = 0.5;
a = 0.2; p = 1; c = 0.1; b = 0.01; q = 0.5; h = 0.1. Initial concentrations for
left, top plot: x = 0.74; y = 0.75; w = 0.018; z = 0.49. Initial concentrations
for left, bottom plot: x = 0.75; y = 0.14; w = 0.0095; z = 0.17.

{x}

{x, y}

{x, y, w, z}
Strategy 2

Strategy 1

Figure 2.2: Illustration of two treatment strategies. Strategy 1 tries to remove
HIV entirely from the system. Strategy 2 aims at establishing a long-term
CTL-mediated control of viral load.

of the attractors is characterized by high virus load and no CTL precursors and
effectors present. This state is interpreted as the complete destruction of the
immune defense. The organization {x, y} represents this attractor. When the
HIV virus is controlled by the immune defense, all four molecular species are
present in the system, constituting the other attractor. This state is reflected
in the largest organization {x, y,w, z}. The smallest organization {x} can be
interpreted as the condition where neither HIV virus nor the infected CD4+ T
cell is present.

After identifying the lattice of organizations, we would like to show that

20

Comparison of HIV Models

the strategy of a drug treatment can be explained on a relatively high level of
abstraction, omitting details, using the lattice of organizations. The aim of the
treatment is the movement from an organization representing an ill state to an
organization representing a healthy state. Looking at the lattice of organiza-
tions of the model by Wodarz and Nowak [1999], we can envisage two strategies
for a drug therapy illustrated in Figure 2.2. The first one tries to move the
system into the smallest organizations {x}, where no virus is present at all. An
alternative strategy may move the system into the largest organization, where
the virus is present but also an immune system takes control over the virus
infection.

There are drugs available that can bring down the virus load by several
orders of magnitude.If by this procedure the virus could be completely removed,
the system would move into the smallest organization because the set {x,w, z}
is not self-maintaining so that the system moves down into organization {x}.
Using a term defined in Definition 8, the set {x,w, z} generates organization
{x}. It has been observed, however, that the virus cannot be fully removed
even though the virus load can be decreased below detection limit. After
stopping the treatment, the virus appears again. Therefore, the actual strategy
of a drug therapy is not to move the system into the lowest organization but
into the highest organization. In practice, this is achieved by applying the
drug periodically allowing the immune defense to increase [Wodarz and Nowak,
1999].

It is important to note that choosing the right level of abstraction depends
on what should be explained. The lattice of organizations is a suitable level
of abstraction for describing the overall strategy. However, how an actual
drug treatment should look like in order to move the system into the largest
organization cannot be answered by chemical organization theory. For this
we have to chose a lower, more detailed, level of abstraction, e.g., as in the
ODE model, which provides information on how the system can move from
one organization to another.

2.2 Comparison of HIV Models

The theory of chemical organization can be used to compare models [Mat-
sumaru et al., 2006a]. The results of analyzing five viral dynamics models
with chemical organization theory are summarized in Table 2.2. The level of
abstraction increases from left to right. Moving from right to left requires addi-
tional information, e.g., reaction kinetics to construct an ODE model from the
network model. Depending on the purpose of the model, the appropriate level
must be chosen carefully. Exact quantitative analysis of the model behavior
is possible with ODE models, but estimating kinetic parameters is critical as
pointed out by Wu et al. [1999].

2.2.1 Basic Model

The HIV infection process involves mainly three molecular species: uninfected
T cells x, infected T cell y, and free virus particles v. Provided that the con-
centration of each species is specified by x, y, and v, respectively, the infection

21

2. Case Study of Chemical Organization Theory

dynamics can be modeled as follows [Nowak and Bangham, 1996]:

ẋ = λ− dx− βxv
ẏ = βxv − ay
v̇ = ky − uv.

Since the deterministic ODE model is contrived on a basis of interactions be-
tween molecular species, the infection process can be represented as a form of
chemical reaction network. Since uninfected T cells are produced at a constant
rate λ, molecular species x is considered as an input species, resulting in the
reaction rule: ∅ → x. Each species is assumed to decay in the ODE model. As
a reaction rule, each species is transformed into the empty set: x → ∅, y → ∅,
and v→ ∅.

The infection with HIV transforms an uninfected T cell x into an infected
cell y, which is denoted by the term βxv. This interaction can be represented
by the reaction rule: x + v → y + v. Since variable v is not changed by that
term, virus species v is also included in the right-hand side of the reaction
rule. The last term to consider is ky representing the virus replication in the
infected cell: y → y + v. Alternatively we can simply write y → v instead of
two reactions because infected T cell y decays and, at the same time, produces
virus v. With respect to the theory, it does not change the result.

Computing the closed and self-maintaining sets of molecular species in the
HIV infection networks reveals the existence of two organizations. The smaller
organization consisting of only uninfected T cell x represents as the states with-
out virus infection. The larger organization contains all three molecular species
and corresponds to the infected state. From mathematical analysis [Nowak and
Bangham, 1996] it is known that the ODE model has two equilibrium states.
These two states correspond to the two organizations of the network. This
demonstrates that chemical organization theory delivers a proper analysis of
the reaction network regarding its dynamical behavior.

2.2.2 CTL Response

The HIV infection model is extended to include immune responses by Nowak
and Bangham [1996] by adding a new decay term for the infected T cell y:

ẏ = βxy − ay − pyz

where variable z represents the concentration of the cytotoxic T Lymphocyte
(CTL) species z. The dynamics of CTL is given as:

ż = cyz − bz.

Upon detection of infected T cells y, CTL proliferates at rate cyz.
In addition to the reaction rules from the previous model, a decay reaction

for CTL z and two further reactions are derived from the ODE model. The
collision of infected T cell y and CTL z can have two outcomes: annihilation
of infected cells (y + z→ z) or proliferation of the CTL cells (y + z→ y + 2z).
Analyzing the reaction network of nine reactions, the hierarchy of organiza-
tions contains three levels. The new species z is only involved in the largest

22

Comparison of HIV Models

organization. The two lower organizations are identical with the organizations
of the previous model. The top organization corresponds to the equilibrium
of the ODE model in which CTL immune response is continuously activated.
According to a mathematical analysis [Nowak and Bangham, 1996], the ac-
tivation of the immune system may be temporal if the concentration of the
infected cell is smaller than a threshold value. This equilibrium with infected
cells but without immune response is contained in the middle organization.
The smallest organization at the bottom of the hierarchy represents the state
with no infection.

2.2.3 Memory CTL

An ODE model with four molecular species is constructed in [Wodarz and
Nowak, 1999]: uninfected CD4+ T cells x, infected CD4+ T cells y, CTL pre-
cursors w, and CTL effectors z. The concentration of each species is specified
by x, y, w, and z, respectively. The dynamics is as follows:

ẋ = λ− dx− βxy
ẏ = βxy − ay − pyz
ẇ = cxyw − cqyw − bw
ż = cqyw − hz.

A set of chemical reaction rules is derived from the ODE model. Since the
virus species is omitted in the model, the virus infection occurs when infected
cells attach to the uninfected: x + y → 2y. The CTL precursor differentiates
to CTL effector on contact with virus infected T cells: y + w→ y + z, and the
CTL effector kills infected T cells: y + z → z. In accordance with the term
cxyw, proliferation of the CTL precursor is also dependent on both infected
and uninfected T cells: x + y + w → x + y + 2w. Despite the changes in the
model, we found no major differences in the reaction network with respect to
the organizational structure.

2.2.4 Quiescent Cell

Since the target T cell must be activated to be susceptible to infection, a model
including the resting cell has been analyzed in [Callaway et al., 1999] and was
simplified as follows [Callaway and Perelson, 2002] :

Q̇ = λ− dQQ− θ(v +B)Q
ẋ = sθ(v +B)Q− dx

−(1− κ)kvx
ẏ = (1− κ)kvx− ay
v̇ = ky − uv.

Variable Q represents the concentration of quiescent cell species Q and variable
B represents the concentration of any other antigen B than HIV v. The quies-
cent cell is activated by both HIV and other antigens into a T cell uninfected
at rate θ(v + B), and the activation is written in form of a reaction rule as

23

2. Case Study of Chemical Organization Theory

follows: Q + v → x + v,Q + B → x + B. Additionally, the chemical reaction
network derived from the ODE model is composed of the infection process by
HIV (x + v → y + v), virus proliferation (y → y + v), decay reactions, and an
influx of Q. In passing, this ODE model considers also drug therapy with a
reverse transcriptase inhibitor, and the efficacy of the drug is represented by
0 ≤ κ ≤ 1.

Analyzing the reaction network with the theory of chemical organizations
reveals four organizations. Since the quiescent cell has an influx, the smallest
organization is the set {Q}. Directly above it, there are two distinct orga-
nizations. The one with four molecular species corresponds to the activation
of the quiescent cell by HIV v and the infection of activated T cells x. Once
the quiescent cell is transformed into the uninfected T cell, the HIV infects
the T cell. At the same time, the infected T cell is necessary for the virus to
reproduce. Thus, the infected T cell y is also part of the organization so that
the species set becomes closed and self-maintaining. The other organization
indicates the activation of the quiescent cell by the other antigen B. Both or-
ganizations contain the activated form of the T cell x. They only differ in the
antigen responsible for the infection. The analysis using organization theory
allows to distinguish between the two infection scenarios.

2.2.5 Drug Effect

Perelson et al. [1996] developed a viral dynamics model to analyze the ef-
fects of two antiretroviral drug treatments. The reverse transcriptase inhibitor,
blocking the infection of HIV, is represented in the model as coefficient 1 − κ
(0 ≤ κ ≤ 1). High efficacy of the drug corresponds to κ ≈ 1. We should
note that the perfect inhibitor is represented by κ = 1, and the set {x} is the
only organization although it is impractical to assume perfect inhibitions. The
second antiviral drug, the protease inhibitor, impairs the protein synthesis pro-
cess in the cell with efficacy η so that infected T cell y produces non-infectious
virus vNI : y→ y + vNI . When the inhibition failed with probability 1− η, the
HIV reproduction reaction becomes as follows: y→ y + vI where vI represents
normal infectious free virus.

Considering also the extreme values of drug efficacy η, there are three dif-
ferent networks with respect to the proliferation of HIV giving rise to three
different organizational structures. In case the drug is not applied to the pa-
tient or does not have any effect (η = 0), only the infectious virus is generated.
This is identical case with the HIV infection model discussed before. The small-
est organization is the set containing only uninfected T cell x, and above it, free
virus particle v and infected T cell y are joined to form the organization. By
setting η = 1, perfect inhibition of the infectious virus proliferation is modeled
and only the non-infectious virus is produced from the infected T cell. The or-
ganization corresponding to the virus infected state is, in this case, composed of
non-infectious virus vNI instead of the infectious type. Statistically speaking,
however, reproduction processes of both infectious and non-infectious virus are
present in the dynamical reaction system, and the efficacy parameter is set
to a value within 0 < η < 1 to model the practical situation. If both of the
reactions are included in the network simultaneously, the set containing both
infectious and non-infections virus is found to be an organization.

24

C
om

parison
of

H
IV

M
odels

Table 2.2: Three levels of model abstraction. The level of abstraction increases from left to right, and additional information is required
to lower the abstraction level. At the highest abstraction level, we take organizations (sets of molecular species that are closed and
self-maintaining) to understand and describe the dynamical behavior. See text for details.

ODE Model Reaction Network Model Organizational Structure

A: (M. A. Nowak, C. R. M. Bangham:
Science 272, 5258 (1996), 74–79.)

ẋ = λ− dx− βxv
ẏ = βxv − ay
v̇ = ky − uv

∅ → x, x → ∅
y → ∅, v → ∅

x + v → y + v
y → y + v

{x,y,v}

{x}

B: (M. A. Nowak, C. R. M. Bangham:
Science 272, 5258 (1996), 74–79.)

ẋ = λ− dx− βxv
ẏ = βxv − ay − pyz
v̇ = ky − uv
ż = cyz − bz

∅ → x, x → ∅
y → ∅, v → ∅
z → ∅, x + v → y + v

y + z → z
y + z → y + 2 z

y → y + v

{x,y,v,z}

{x,y,v}

{x}

C: (D. Wodarz, M.A. Nowak:
PNAS 96, 25 (1999), 14464–14469.)

ẋ = λ− dx− βxy
ẏ = βxy − ay − pyz
ẇ = cxyw − cqyw − bw
ż = cqyw − hz

∅ → x, x → ∅
y → ∅, w → ∅
z → ∅, x + y → 2 y

y + z → z
y + w → y + z

x + y + w → x + y + 2 w

{x,y,w,z}

{x,y}

{x}

25

2
.

C
a
se

S
t
u
d
y

o
f

C
h
e
m
ic

a
l

O
r
g
a
n
iz

a
t
io

n
T

h
e
o
r
y

Table 2.2: (continued)

ODE Model Reaction Network Model Organizational Structure

D: (D. S. Callaway, A. S. Perelson:
Bull. Math. Biol. 64 (2002), 29–64.)

Q̇ = ξ − fQ− θ(v + B)Q
ẋ = sθ(v + B)Q− dx

−(1− κ)βxv
ẏ = (1− κ)βxv − ay
v̇ = NT δy − uv

∅ → Q, Q → ∅
x → ∅, y → ∅
v → ∅, x + v → y + v

y → y + NT v
Q + v → sx + v
Q + B → sx + B

{Q,x,y,v,B}

�
��

HHHH
{Q,x,y,v}

{Q,x,B}

�
��

HH
H

{Q}

E: (A.S. Perelson, et al.:
Science 271, 5255 (1996), 1582–1586.)

ẋ = λ− dx− (1− κ)kvIx
ẏ = (1− κ)kvIx− δy
v̇I = (1− η)NT δx− cvI
v̇NI = ηNT δy − cvNI

P = 1− η

∅ → x
x → ∅

vI → ∅
vNI → ∅

x + vI → y + vI
y → y + vI

P = η

∅ → x
x → ∅

vI → ∅
vNI → ∅

x + vI → y + vI
y → y + vNI

{x,y,vI,vNI}

{x}

{x,y,vNI}

{x}

{x,y,vI}

{x}

{x}

0 ≤ κ < 1, 0 < η < 1

η = 0, η = 1,
0 ≤ κ < 1 0 ≤ κ < 1

κ = 1

26

Comparison of HIV Models

2.2.6 Summary and Discussion

In this study we have shown that different models of immune response to HIV
infection possess different lattices of organizations. As we can see in Table 2.2,
a lattice provides a quick overview of the model’s structure and its potential
dynamics. We can see which kind of species together can constitute a steady
state, namely exactly those forming an organization.

The difference in organizational structure (naturally) reflects the way the
model has been extended. For example, changing the basic model by adding
the immune response (Table 2.2, Row 1 and 2) results in a new organization
to appear, which represents the infection antagonized by the immune response
z. Extending the model does not necessarily change the lattice structure, as
shown by the CTL memory model (Table 2.2, Row 3). The intention of the
modelers is to emphasize effects of CTL memory precursor w for long-term viral
load control mediated by CTL. The ODE model is designed for a steady state
to contain both the CTL precursor and CTL effector z. This design principle
is visible in the organizational structure as the largest organization to contain
both the precursor and the effector.

The fourth model is an example for extending Model A such that the orga-
nizations are not arranged in a chain in the Hasse-diagram. The main concern
of the model developers is to include quiescent cells Q, but the reason of the
lattice structure not being in a chain is the general antigen B in addition to
HIV virus particle v. From the organizational structure, both antigens B and
v appear with activated T cell x. Only v of the two antigens is associated with
infected T cell y, as intended by the model design.

Through the last model (Table 2.2, Row 5), we demonstrate how parameters
could be handled in the static reaction network analysis. The quantity of
some parameters determines the reaction network structure leading to different
results of the static analysis. The efficacy of protease inhibitors represented by η
is our example. Infected T cell y probabilistically produces infectious virus vI or
non-infectious virus vNI as shown in the reaction network model of ODE Model
E. Seeing the reaction as a stochastic process, the network structure alternates
between them. When analyzing such a network with chemical organization
theory, three cases are considered depending on the value of η. Two of them are
described as the success and the failure of the protease inhibitions represented
by η = 0 and η = 1, respectively. The other case 0 < η < 1 takes a probabilistic
view such that both reactions (infections and non-infections virus proliferation)
occur in the whole system. We obtained lattices that differ only in their species
composition. The other important parameter in this model κ, the efficacy of
reverse transcriptase inhibitors, affects the results of our analysis in a trivial
way.

From this perspective, the theory of chemical organization appears as a
useful tool, which creates a first, rough map of the structure and potential
dynamical behavior of a reaction system. The scaffold obtained as the set
of organizations can guide further more detailed analysis, which may study
the dynamics within or in-between organizations using classical tools from dy-
namical systems theory. The results of more detailed studies can in turn be
explained and summarized with respect to the lattice of organizations.

27

Source :

Matsumaru, N., Centler, F., and Dittrich, P. (2005a).
Chemical organization theory as a theoretical base for
chemical computing. In Teuscher, C. and Adamatzky, A.,
editors, Proceedings of the 2005 Workshop on Unconventional
Computing: From Cellular Automata to Wetware, pages 75–88.
Luniver Press, Beckington, UK.

Matsumaru, N., Centler, F., Speroni di Fenizio, P., and
Dittrich, P. (2007a). Chemical organization theory as a
theoretical base for chemical computing. International
Journal of Unconventional Computing, 3(4):285–309.Chapter 3

Chemical Boolean Devices

Contents
3.1 A Recipe For A Chemical Logic Circuit 30

3.2 Case Study I: A Chemical XOR . 32

3.2.1 Reaction Network and Organizational Analysis 32

3.2.2 Dynamical Simulation . 35

3.3 Case Study II: Multiple Logic Gates 36

3.3.1 AND Gate by Connecting Two NAND Gates 37

3.3.2 OR Gate by Connecting Three NAND Gates 37

3.4 Case Study III: A Chemical Flip-Flop 39

3.4.1 Reaction Network and Organizational Analysis 39

3.4.2 Dynamical Simulation . 41

3.5 Case Study IV: An Oscillator . 42

3.5.1 Chemical Implementation without Amplified Feedback . . . 42

3.5.2 Chemical Implementation with Amplified Feedback 43

3.5.3 Dynamical Simulation . 44

3.6 Conclusion . 45

In this chapter, we apply chemical organization theory as a design principle
for chemical computing systems. Various boolean functions are exercised,
and the formal procedure to implement the boolean functions with chemical
reaction systems was devised. In short, the procedure starts with assigning two
molecular species to each of the boolean variable. Those two pair-wise species
are defined to vanish upon collision due to the contradictory states they are
representing. The mapping from the input to the output variables is simply
the reactions of transforming input species into proper output species. To
initiate the computation, input species are injected, and topological structure
of the reaction network is changed by influxes of the species. Outcomes of the
computation are interpreted from the output species present in the reaction
vessel.

When analyzing the organizational structure in the resulting reaction net-
work including the influxes, there is only one organization of the species rep-
resenting the desired input-output pair. We safely conclude according to the
theorem that the output species desired only is persistent in the reaction ves-
sel, and an ordinary differential equation system is simulated to validate that
conclusion in a dynamical situation.

The outline of this chapter is following: A general procedure of converting

29

3. Chemical Boolean Devices

a logic circuit into a chemical reaction network is described in Section 3.1. Like
others (cf., Adamatzky and De Lacy Costello [2002]; Tsuda et al. [2004]; Zauner
and Conrad [2001]), a simple non-linear logical operation xor is implemented
first (Section 3.2). Then, in Section 3.3, multiple nand gates are combined,
demonstrating the scalability of the method. Recurrent circuit like a flip-
flop logic circuit (Section 3.4) and a controllable oscillator (Section 3.5) are
also constructed. Both circuits contain a simple feedback loop, which is an
important building block in biological signaling networks [Bhalla and Iyengar,
1999] to achieve robustness [Stelling et al., 2004] or multi-stationarity.

3.1 A Recipe For A Chemical Logic Circuit

In this section we present a procedure for designing chemical reaction networks
implementing a logic circuit (see Table 3.1 for a non-formal recipe). A logic
circuit is a composition of logic gates. As such it can be fully described by a set
of boolean functions and boolean variables, forming a boolean network [Kauff-
man, 1969]. Let the boolean network be defined by a set of M boolean functions
and a set of N (≥M) boolean variables:

{b1, . . . , bM , . . . , bN} (3.1)

where {bj |1 ≤ j ≤ M} are determined by the boolean functions (internal
variables) and the remaining variables {bj |M < j ≤ N} are the input variables
of the boolean network. The set of boolean functions is

{bi = Fi(bq(i,1), . . . , bq(i,ni)) | i = 1, . . . ,M} (3.2)

where bq(i,k) indicates the boolean variable listed as the k-th argument of the
i-th function. Since the i-th boolean function Fi takes ni boolean variables as
arguments, there are 2ni possible inputs. Thus the truth table Ti for function
Fi has 2ni rows and ni + 1 columns:

Ti :

 ti1,1 · · · ti1,ni ti1,ni+1
...

. . .
...

...
ti2ni ,1 · · · , ti2ni ,ni ti2ni ,ni+1

 (3.3)

where tih,k ∈ {0, 1} is the boolean value of the k-th argument in the h-th input
case for the i-th boolean function. The (ni + 1)-th column contains the output
of Fi.

Given the boolean network, a reaction network 〈M,R〉 is designed as fol-
lows. For each boolean variable bj we assign two molecular species s2j−1 and
s2j representing the value 0 and the value 1 in it, respectively. Thus the set of
molecular species M contains 2N molecular species as follows:

M = {s2j−1, s2j | j = 1, . . . , N} (3.4)

The set of reaction rules can be decomposed into two sets of reactions:

R = L ∪ D. (3.5)

Set of reactions L is derived from the logical operations of the boolean functions

30

A Recipe For A Chemical Logic Circuit

with L =
⋃M
i=1 Li where Li is a set of logical reactions associated with the truth

table Ti of boolean function Fi. For each input case h (each row of the truth
table), one reaction rule is created:

Li = {Ai,h → Bi,h | h = 1, . . . , 2ni}. (3.6)

The left-hand side is a set of reactants Ai,h = {ai,1,h+ · · ·+ai,k,h+ · · ·+ai,ni,h}
where ai,k,h is a molecular species representing the boolean variable that is
taken as the k-th argument of function Fi and thus bq(i,k). Since two molecular
species s2q(i,k)−1 and s2q(i,k) are assigned to boolean variable bq(i,k) depending
on its content, the truth table Ti is used to select from the two. If the entry
tih,k of the truth table is equal to 0, bq(i,k) must be set to 0 in the h-th input
case, and thus s2q(i,k)−1 is chosen as the reactant. Otherwise, ai,k,h is s2q(i,k):

ai,k,h =
{
s2q(i,k)−1 if tih,k = 0 ,
s2q(i,k) if tih,k = 1 . (3.7)

Similarly, the right-hand side is a set of products Bi,h = {bi,h}, and

bi,h =
{
s2i−1 if tih,ni+1 = 0 ,
s2i if tih,ni+1 = 1 , (3.8)

since the (ni + 1)-th column of truth table Ti contains the output.
The other component of the set R is the set of destructive reactions D.

Since binary states of a boolean variable bj are coded with two molecular
species s2j−1 and s2j , the state becomes undefined when both or neither of the
species are present. In order to avoid such a case, the two opposite molecular
species are defined to vanish upon collision:

D = {s2j−1 + s2j → ∅|j = 1, . . . , N}. (3.9)

The resulting reaction network 〈M,R〉 implements the logic circuit without
any input specified. The input variables of the boolean network {bj |M < j ≤
N} must be initialized externally because they are not set by the boolean
functions. The initialization of the input variables is encoded by an inflow
reaction, which is a zero-order reaction producing substances from the empty
set. If an input variable bj is initialized to 0, for example, the reaction network
is changed to 〈M, (R∪{∅ → s2j−1})〉. It is possible for more than one variable
to be initialized in this manner as it is possible for more than one molecular
species to be injected by the influx.

Implementing logic circuits with periodic attractors While converting
boolean networks into chemical reaction networks, feedback loops need special
treatment. When considering boolean networks in general, the network can
form feedback loops by connecting an output to an input so that the input
is dependent on the output. This configuration can give rise to attractors
having a period greater than one so that the system starts to oscillate between
two (or more) states. An example of such a periodic attractor is an oscillator.
When an oscillator is implemented with a reaction network, the complementary
molecular species are alternating and thus decay instantaneously. To delay the

31

3. Chemical Boolean Devices

Table 3.1: Recipe for mapping a boolean circuit to a chemical reaction network.

Input: Boolean network given by two sets: a set of M boolean functions
{F1, . . . , FM} and a set of N boolean variables {b1, . . . , bM , . . . , bN}. Vari-
ables {b1, . . . , bM} are determined by the boolean functions (internal vari-
ables); the remaining variables {bM+1, . . . , bN} are input variables of the
boolean network.
Output: Reaction network 〈M,R〉 (a set of molecular speciesM and a set of
reaction rulesR) representing the boolean network without any input variable
specified.a

Algorithm:
1. For each boolean variable bj :

(a) Add two molecular species, bj and Bj , to M;b

(b) Add one destructive reaction of the form bj +Bj → ∅ to R;

2. For each boolean function Fi:
(a) Create the truth table of Fi with 2ni input cases

(where ni is the arity of Fi);
(b) For each input case, create a logical reaction.c

i Left-hand side (reactants) corresponds to the input of Fi.
ii Right-hand side (products) consists of one molecular species represent-

ing the respective boolean output of Fi.
aSpecifying an input variable of the boolean network is coded by an inflow reaction.
bAs a naming convention of molecular species in this paper, the lowercase species

represents value 0 in the boolean variable, and the uppercase stands for 1.
cFor example, the xor-function is converted into reactions as follows:

b2 b3 b1 = F1(b2, b3)
0 0 0
0 1 1
1 0 1
1 1 0

⇒

Reactants → Products
b2 + b3 → b1

b2 + B3 → B1

B2 + b3 → B1

B2 + B3 → b1

complete destruction of the two species, an amplification process has to be
introduced for variables that change in the periodic attractors. A detailed
description of the implementation can be found in Section 3.5.

3.2 Case Study I: A Chemical XOR

To demonstrate how chemical organization theory can be used for chemical
computing, an (artificial) chemical reaction network is designed to implement
an xor logic gate.

3.2.1 Reaction Network and Organizational Analysis

The xor logic gate is defined as a set of three boolean variables {a, b, c} and
a set of one boolean function {Fc} where the function is: c = Fc(a, b), and the

32

Case Study I: A Chemical XOR

truth table is:
a b c

Tc :

0 0 0
0 1 1
1 0 1
1 1 0

 (3.10)

Since boolean variable c is the internal variable which is determined by
a boolean function, the set of boolean variable should be listed as {c, a, b}
according to the recipe in Section 3.1. Boolean variables and molecular species
are ordered alphabetically for readability, however. Furthermore, the variable
name is adopted as an index of functions.

Given the definition of the xor boolean network, an algebraic chemistry
〈Mxor,Rxor〉 is generated to implement the logic gate. Since there are N = 3
boolean variables, the set of molecular species consists of six molecular species:

Mxor = {a,A, b, B, c, C} (3.11)

where the lower- and uppercase version of the variable name are assigned to
the boolean variable of that name. For example, molecular species a represents
boolean variable a = 0, and A stands for a = 1.

The set of reaction rules Rxor is decomposed into two parts:

Rxor = Lxor ∪ Dxor (3.12)

where Lxor is a set of reactions for the logical operation and Dxor is a set of
destructive reactions. Since there is only one function in the boolean network,
Lxor = Lc

xor where Lc
xor is a set of logical reactions constructed from the

boolean function Fc. From the truth table Tc, four logical reactions are derived:

Lxor = Lc
xor = {a+ b→ c, a+B → C, A+ b→ C, A+B → c}. (3.13)

The Hasse diagram in Figure 3.1 (A) shows the hierarchy of organizations of
the reaction network that includes only the logical reactions Lxor. Twenty-
eight sets of molecular species are found to be organizations. The remaining
36 sets do not satisfy either the closure or the self-maintenance property.

The set {a, b}, for example, is not an organization because it is not closed.
The reaction a + b → c is applicable and produces a new molecular species c
that is not a member of the set {a, b}. The set {a, b, c} is closed but not an
organization because it is not self-maintaining. A production rate vector f is
calculated as follows:

f =

fa
fA
fb
fB
fc
fC

 = Mv =

−1 −1 0 0
0 0 −1 −1
−1 0 −1 0
0 −1 0 −1
1 0 0 1
0 1 1 0

v1

0
0
0

 =

−v1

0
−v1

0
v1

0

 (3.14)

where a stoichiometric matrix M is multiplied by the flux vector v with v1 > 0
satisfying the condition 1 and condition 2 from the definition of self-maintenance.
The third condition cannot be satisfied because the production rates fa for

33

3. Chemical Boolean Devices

{B}{b}C{ }{c}{A}{a}

0{ }

}{b, c, C B, c, C{ } }{b, B, C}{b, B, c

}a, A, c, C{ }b, B, c, C{

}{b, B{B, C}{a, A} {a, c} a, C}{ A, c{ } { }A, C }{c, C }{b, c }{b, C }{B, c

{ A, c, C}{a, c, Ca, A, C {}{ }}a, A, c

0{ }

{a, c} a, C{ } b, C{ } {B, C}

{A} {c} C{ } {b} {B}{a}

}{A, c A, C}{ {b, c} {B, c}

0 B

0 a

0 A

0 b

0 B

0 A

0 A

0 a

0 a

0 b

0 B

0 b
B

A C

XOR
)

)

XOR
,

XOR=(
XOR

)
XOR

XOR
,

XOR

D

)

) }{a, b, c

{ }a, B, C

}A, b, C{

{ }A, B, c

:

:

:

) :

{A}

{ {A, C}}A, c

{ }a

{a, c} a, C{ }

B{ }

}{B, C}B, c{

b, C}{

b}{

}{b, c

XOR
,(

XOR
{ })

}{
XOR ,(XOR

}{,
XOR

(
XOR

{
XOR ,()}

XOR

)
XOR

XOR

XOR
,

,

,

,(

(

(

(

XOR

XOR

XOR

XOR

{

{

,

,

,

,

}

}

}

}{

{

M R L D

M L

M R

M R

M R

M R

M

M

M

M

R

R

R

R

Figure 3.1: Hierarchy of organizations for the chemical reaction network im-
plementing an xor logic gate. (A) The network consists only of the logical
reactions Lxor. (B) Destructive reactions Dxor are added to exclude contra-
dictions. The resulting reaction network 〈Mxor,Rxor〉 implements the xor
logic gate without any input specified. (C) One input is defined by adding one
influx reaction. (D) Adding the second input. The hierarchy of organizations
collapses from (A) to (D), with the desired output as the only organization left
in (D).

molecular species a and fb for molecular species b cannot be greater or equal
than 0 at the same time.

In this particular case of the reaction network, all organizations consist of
combinations of molecular species that do not react with each other. A set of
molecular species where no reaction can take place is obviously closed and self-
maintaining. Provided that a set contains molecular species with no reactions
among them, Condition 1 of Definition 2 is automatically fulfilled. According
to Condition 2 of Definition 2, a zero flux vector v = 0 is multiplied by the
stoichiometric matrix M . The result is a zero production rate vector f = 0.
The zero vector fulfills Condition 3 of Definition 2, and thus all conditions for
self-maintenance are satisfied.

With the species set of an organization being closed and self-maintaining,
it is more likely to observe the presence of molecular species of an organization
than of any other species combination in the reaction vessel. If the dynamics
of the reaction network is modelled using ordinary differential equations, there
exists a related organization for every fixed point of the system Dittrich and
Speroni di Fenizio [2007].

The second component of the set Rxor is a set of destructive reactions:

Dxor = {a+A→ ∅, b+B → ∅, c+ C → ∅}. (3.15)

Combining Dxor and Lxor the reaction network 〈Mxor,Rxor〉 implements the
xor logic gate without any input specified. Its Hasse diagram of organizations
is shown in Figure 3.1 (B). The number of organizations is reduced from 28 to
15.

Now we set the input variables of the boolean network a and b to initiate
the computational process. For the initialization, an inflow reaction is added to

34

Case Study I: A Chemical XOR

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500

C
on

ce
nt

ra
tio

n
[p

ar
tic

le
s/

m
l]

Time [s]

0 a, 0 b 0 a, 0 B 0 A, 0 B

output: C

output: coutput: c

a
A
b
B

Figure 3.2: Dynamic behavior of the chemical reaction network implementing
an xor logic gate. The time course of all 6 molecular species is shown. Irre-
versible mass action kinetics are assumed for all reactions. Reaction rates are
set to k = 0.001 for logical reactions. Reaction rates of destruction reactions
are set to k = 0.1. For all irreversible constant influxes (e.g., ∅ → A), the
rates are set to k = 1. The reaction system is stochastically simulated with the
biochemical network simulator Copasi using a compartment size of 1 ml. See
text for details.

the reaction network. We start with providing one input only, leaving the other
input variable undefined. Figure 3.1 (C) shows the results for the four resulting
algebraic chemistries 〈Mxor, (Rxor ∪ {∅ → a})〉, 〈Mxor, (Rxor ∪ {∅ → A})〉,
〈Mxor, (Rxor ∪ {∅ → b})〉, and 〈Mxor, (Rxor ∪ {∅ → B})〉, respectively. We
can see that providing one input signal has further reduced the behavioral
freedom of the reaction system. Only three combinations of molecular species
are left, which may be encountered in the reaction vessel as a stationary state.
Furthermore we can see that – in this special case – the output is not determined
from a stoichiometric point of view since, in all four Hasse diagrams, sets
containing c and C are found to be closed and self-maintaining.

When we finally provide both inputs, the Hasse diagram of organizations
collapses so that only one organization remains for every input condition (Fig-
ure 3.1 (D)). This implies that, no matter how we chose the dynamics, no
other molecular species than those of the organization can be sustained in the
reaction vessel regardless of the initial state. We can see that the remain-
ing organization contains the desired output molecular species c or C, respec-
tively. The analyzed algebraic chemistries are 〈Mxor,Rxor ∪ {∅ → a, ∅ → b}〉,
〈Mxor,Rxor ∪ {∅ → a, ∅ → B}〉, 〈Mxor,Rxor ∪ {∅ → A, ∅ → b}〉, and
〈Mxor,Rxor ∪ {∅ → A, ∅ → B}〉.

3.2.2 Dynamical Simulation

To validate the results from applying organization theory to the xor reaction
network, stochastic simulations are performed using the simulator packages
MGS [Giavitto and Michel, 2001] and Copasi [Sahle et al., 2006].

Figure 3.2 shows a typical simulation run. The influx is defined as an irre-
versible constant flux with kinetic parameter set to 1. For all other reactions,
we chose irreversible mass action kinetics. The parameters for the destructive
reactions Dxor are set to k = 0.1, and those for the logical reactions Lxor are

35

3. Chemical Boolean Devices

a

b c
d

AND
,

AND =(
AND

)
AND

B, d}{ {B, D}

{B}

b, d{ } {b, D}

}{b

{a, d} {a, D}

{ }a

{A, d A, D{ } }

{ }A0{ }

{A} {b} {B}{a} {d} D{ }

{ } a, D{ } }{A, d A, D}{ {b, d} b, D{ } {B, d} {B, D}a, d

0 a 0 b

0 B0 A

0 A 0 B0 b0 a 0 a 0 B 0 b0 A

{a, b, C, d} }{a, B, C, d { }A, b, C, d { }A, B, c, D

) ,)

CB

A

D

)}
AND

(,
AND

{ (
AND

{)},
AND

}){
AND

(,
AND

)}{
AND

(,
AND

}{
AND

})})},{ { , { ,
AND

(,
ANDAND

(
AND

,
AND

(,
AND AND

,(

M R L D
RM RM

RMRM

RMRM RM M R

Figure 3.3: Results of the theoretical analysis of the chemical reaction network
implementing the logic circuit consisting of multiple gates. (A) Circuit diagram
of an and gate with two nand gates. (B) The network consists of six logical
reactions Land and four destructive reactions Dand. (C) An influx is added to
define one input. Note that a single input like ∅ → B does not determine the
output. (D) Another inflow is added so that both inputs are defined. Despite
the combination of two chemical logic gates, only the organization containing
the desired output species is left in (D).

set to k = 0.001. At several simulation times, the input is changed in order
to observe the switching of the xor gate. Initially, there exist no molecular
particles in the reactor, and two influxes of a and b are present. This corre-
sponds to the case in which both the input variables a and b are set to 0. Since
molecular species c is generated, the output is computed to c = 0.

At simulation time 100 s, the content of input variable b is switched to 1 by
replacing the influx of molecular species b with the influx ∅ → B. The molec-
ular particles b and c, whose concentrations are still high from the previous
computation, deteriorate and finally vanish. The desired output C does not
appear until the time point of approximately 200 s. Then, instead of a, the
molecular species A is applied as an input starting from simulation time 300 s.
The remaining molecules of species a and C from the previous computation
decay first and the desired answer c appears in the end.

As seen from the dynamical simulation, the computational result repre-
sented by the qualitative final state of the reaction vessel is independent of
the initial state. The applied continuous input is the only factor deciding on
the final state. The output molecules are generated continuously while un-
desired species are removed from the reaction vessel by collisions with their
anti-particles. When applying two inputs, the analysis of the reaction network
revealed that only one organization exists, predicting only one species compo-
sition (the species of that organization) to be closed and self-maintaining, and
thus likely to be observed in the reactor. The stochastic simulation confirms
the result.

3.3 Case Study II: Multiple Logic Gates

Extensibility and scalability is an advantage of conventional logic gates. Mul-
tiple logic gates can be easily connected to realize different forms of computa-
tion. In this section, we demonstrate the connectivity of chemical logic gates

36

Case Study II: Multiple Logic Gates

and scalability of the theoretical analysis. As an example, we implement an
and and an or gate by combining nand gates.

3.3.1 AND Gate by Connecting Two NAND Gates

An and gate can be constructed by sequentially connecting two nand gates
(Figure 3.3 (A)). The single logic nand gates are chemically implemented in
the same way as the xor gate in the previous example.

The boolean network is defined by a set of four boolean variables {a, b, c, d}
and a set of two boolean functions {c = Fc(a, b), d = Fd(c)}. The first nand
is associated with Fc and the second is with Fd. The truth table Tc for the
first nand gate has four rows. On the other hand, the truth table Td of the
second nand gate has only two rows, since the function Fd requires only one
argument. The reaction network 〈Mand,Rand〉 is constructed as follows:

Mand = {a,A, b, B, c, C, d,D} (3.16)

and
Rand = Land ∪ Dand = (Lc

and ∪ Ld
and) ∪ Dand (3.17)

where

Dand = {a+A→ ∅, b+B → ∅, c+ C → ∅, d+D → ∅},
Lc

and = {a+ b→ C, a+B → C, A+ b→ C, A+B → c},
Ld

and = {2c→ D, 2C → d}.

The two reaction rules in Ld
and are equivalent to a not operation.

The reaction network 〈Mand,Rand〉 with six reactions and four destruc-
tive outflows is analyzed for organizations (closed and self-maintaining sets of
molecular species), and the result is shown as the Hasse diagram in Figure 3.3
(B) depicting a hierarchy of organizations in the reaction network. The reaction
network implements the and gate without any input specified. Initialization
of input variables a and b is represented by adding inflows to the set of reac-
tions. In Figure 3.3 (C), hierarchies of organizations in the reaction network
are shown when one inflow is provided. Hasse diagrams in Figure 3.3 (D) show
the hierarchy of organizations in the reaction network with two input fluxes in
which both input variables are defined. The same discussion as in the previous
xor logic gate example can be applied. When both inputs are provided, only
one organization remains for every input condition and the organization con-
tains the desired output molecular species d or D, respectively. The theoretical
analysis suggests that and behavior emerges regardless of an initial state and
regardless of the dynamics chosen (cf. Section 1.4).

3.3.2 OR Gate by Connecting Three NAND Gates

Another example of connecting chemical logic gates is an or circuit with three
nand gates (Figure 3.4 (A)). The logic circuit can be defined by five boolean
variables {a, b, c, d, e} and three boolean functions {c = Fc(a), d = Fd(b), e =
Fe(c, d)}. The reaction network 〈Mor,Ror〉 implementing the logic circuit

37

3. Chemical Boolean Devices

{ }a, b, C, D, e {a, B, C, d, E} { }A, b, c, D, E }A, B, c, d, E{

0{ }

{ }

{c} {C} {e} E{ } {d} {D}

c, E{ } }{C, e C, E}{ {d, e} d, E{ } {D, e} {D, E}c, e

c
e

a

b d
OR

,
OR= (

OR OR
)

{A, c, e} A, c, E{ }

}A, c{

B, d, E{ }}B, d, e{

B, d}{

a, C{ }

}a, C, e{ a, C, E}{ }b, D, e{ b, D, E}{

}b, D{

0 a 0 b

0 B0 A

0 0 B0 A0 b 0 a 0 A 0 b0 B

D

)(,) ()

A

CB

))

()

}{
OR

(,OR

}
OR,(OR

{

}{OR(,OR

{,OR OR
)}

}a ,{{{ }, { , } , })
OR

(,OROR,OROROROR, OR
(

M R L D

R

RM

M R

RM

M

RMRMRMM R

Figure 3.4: Results of the theoretical analysis of a chemical reaction network
implementing the logic circuit consisting of multiple gates. (A) Circuit diagram
of an or gate with three nand gates. (B) The network consists of eight logical
reactions Lor and five destructive reactions Dor. (C) An influx is added. (D)
Two inflows are added, specifying two input values. Despite the combination of
three chemical logic gates, only the organization including the desired output
species is left in (D).

(without any input specified) consists of ten molecular species:

Mor = {a,A, b, B, c, C, d,D, e, E}. (3.18)

The set of reaction rules is

Ror = Lor ∪ Dor = (Lcor ∪ Ldor ∪ Leor) ∪ D (3.19)

where

Lc
or = {2a→ C, 2A→ c},
Ld

or = {2b→ D, 2B → d},
Le

or = {c+ d→ E, c+D → E, C + d→ E, C +D → e},
Dor = {a+A→ ∅, b+B → ∅, c+ C → ∅, d+D → ∅, e+ E → ∅}.

The reaction network given is analyzed with chemical organization theory
and the result is shown in Figure 3.4 (B). In Figure 3.4 (C) and (D), Hasse
diagrams depicting the hierarchy of organizations in the chemical reaction net-
work including influxes are shown. As the other cases, one inflow is not enough
to determine the output since output molecular species e and E are both found
to be a member of the organizations. Defining a value for both input variables,
by adding two influxes to the reaction network, reduces the number of organi-
zations in the network to one, and the only organization consists of the desired
combination of molecular species.

It is interesting to note that in our current implementation of a chemical
or gate, the output is not determined by a single input flux like ∅ → B
(b = 1), while input a is unspecified (Figure 3.4 (C), right). Theoretically, for
b = 1 the output should be 1, independently of a. We can now use chemical
organization theory to search for chemical networks that are also able to cope
with unspecified inputs (not shown here).

38

Case Study III: A Chemical Flip-Flop

{ }a, b a, B{ } }{A, b A, B}{ { }a, c a, C{ } {A, c} {A, C} {b, d} b, D{ } }{B, d B, D}{ {c, d} c, D{ } {C, d} {C, D}

{a} {A} {b} B{ } {c} {C} {d} {D}

0{ }

R Q

S S R

d

c Q

b

a

BA

1
0

0 0
0 1
1 0
1 1

1 1
0
1

t tQ Q

Q Qt+1 t+1

reset
set

hold

{a}

{a, C}{a, b} {a, B} {a, c}

{B}

{a, B} {A, B} {B, d} {B, D}

{A}

}A, b{ }A, B{ A, c}{ A, C}{

{b}

{a, b} {A, b} {b, d} {b, D}

}{a, B, C, d

{ }a, B

A, B, C, d{ } A, B, c, D{ }

{ }A, B

}{A, b, c, D

{ }A, b

set
set

set

reset

reset

hold hold reseta, b, C, D{ }

{ }a, b

RSff, RSff=(
RSff RSff

)

0 B0 b0 a 0 A

0 A 0 b

0 A 0 B

0 a 0 B

0 a 0 b

C

D

E

))
RSff,(RSff RSff,(RSff

{ }{ }
RSff,(RSff

{ })
RSff,(RSff

{ })

(,
RSffRSff

(, RSff
{

RSff,(RSff

RSff,(RSff
{ , })

RSff
{ , })

{ , })

, })

M R L D

M R M RM R M R

RMM R

M R

M R

Figure 3.5: Analysis of a chemical reaction network implementing an RS flip-
flop circuit with respect to its emergent behavior at the systems level. (A)
Circuit diagram of the RS flip-flop. (B) Truth table describing its behavior.
(C) Hierarchy of organizations of the reaction network. (D) An influx is added
to define one input. (E) Two inflows are added, specifying two input values.
The analysis using chemical organization theory reveals that we can expect a
dynamical behavior corresponding to the operation of a flip-flop circuit. See
text for details.

3.4 Case Study III: A Chemical Flip-Flop

In this section, we apply our approach to a more complicated example: the
flip-flop logic circuit. As opposed to the previous example, a flip-flop circuit
is bistable, which is achieved by two feedback connections. When we analyze
the organizations of our chemical instantiation of the flip-flop, the bistability of
the circuit will also become apparent. This allows us to explain the dynamical
behavior of the chemical flip-flop in terms of chemical organization theory on
an abstract level, which does not need to refer to concentration levels.

3.4.1 Reaction Network and Organizational Analysis

The RS (Reset and Set) flip-flop circuit consists of two nand gates connected in
parallel as shown in Figure 3.5 (A). The behavior can be described by the truth
table as shown in Figure 3.5 (B). The output of one logic gate is connected to
one of the two inputs of the other gate, forming a feedback loop. The “set”
operation (S̄, R̄) = (0, 1) changes the output Q to 1, and the “reset” operation
(S̄, R̄) = (1, 0) sets Q to 0. When both inputs are set to 1, the output is kept
as in the previous state. The one-bit information whether the output Q has
been 0 or 1 is stored by the “hold” operation, i.e. (S̄, R̄) = (1, 1). Normally,
the input (S̄, R̄) = (0, 0) is prohibited because the circuit will go into a state
where Q = 1 and Q̄ = 1. Application examples for the flip-flop are memory

39

3. Chemical Boolean Devices

and counter circuits.
The flip-flop logic circuit can be defined by the set of four boolean variables

{a, b, c, d} and the set of two boolean functions {c = Fc(a, d), d = Fd(b, c}.
Variables a and b are input variables for the boolean network and the inter-
nal variables are c and d. According to the recipe described in Section 3.1,
the algebraic chemistry 〈MRSff ,RRSff 〉 is constructed. The set of molecular
species consists of eight molecular species

MRSff = {a,A, b, B, c, C, d,D}. (3.20)

The set of reaction rules is composed of three sets

RRSff = LRSff ∪ DRSff = (LcRSff ∪ LdRSff) ∪ DRSff (3.21)

where

LcRSff = {a+ d→ C, a+D → C,A+ d→ C,A+D → c},
LdRSff = {b+ c→ D, b+ C → D,B + c→ D,B + C → d},
DRSff = {a+A→ ∅, b+B → ∅, c+ C → ∅, d+D → ∅}.

When we apply our analysis to the reaction network 〈MRSff ,RRSff 〉 im-
plementing the RS flip-flop without any input specified, we found 25 organiza-
tions consisting of up to two molecular species, which do not react (Figure 3.5
(C)). If values of the two input variables are defined, two influxes are added
to the set of reaction rules RRSff so that four algebraic chemistries are ana-
lyzed 〈MRSff ,RRSff ∪ {∅ → a, ∅ → b}〉, 〈MRSff ,RRSff ∪ {∅ → a, ∅ → B}〉,
〈MRSff ,RRSff ∪ {∅ → A, ∅ → b}〉, and 〈MRSff ,RRSff ∪ {∅ → A, ∅ → B}〉.
As seen in Figure 3.5 (E), the number of organizations found in the network
is reduced to two or three for each input case. Since the output species c,
C, d, and D are in the set of the reactants, no reaction occurs when those
species are not present in the reaction vessel. Thus, the smallest organization
contains only the two inflow species. Above it, the designated output species
are included in the organizations. This implies that the presence of the output
species c, C, d, or D in the reaction vessel is necessary for the flip-flop oper-
ation. In other words, the input molecular species alone cannot generate the
organization representing an operational mode of the flip-flop.

The operation of the flip-flop can be described by transitions between or-
ganizations containing output species: The set and reset operation move the
reaction system to the states corresponding to organization {a,B,C, d} (set)
and {A, b, c,D} (reset). Recall that for the set and reset operation we add
{∅ → a, ∅ → B} and {∅ → A, ∅ → b} to the set of reaction rules, respectively.

For the hold operation (including ∅ → A, ∅ → B), the flip-flop has two
stable states represented by the organizations {A,B,C, d} and {A,B, c,D}. If
the reaction vessel had been in organization {a,B,C, d} previously, it will move
into organization {A,B,C, d}; and if it had been in organization {A, b, c,D}
before, it will move into organization {A,B, c,D}. Symbolically speaking, the
lowercase input species is replaced by its uppercase due to the input change,
but the output state remains unchanged.

For the sake of completeness, the cases in which only one influx is added
to the network are shown in Figure 3.5 (D). A set of molecular species that no

40

Case Study III: A Chemical Flip-Flop

 0.0
 2.0
 4.0
 6.0
 8.0

10.0
12.0
14.0
16.0

 0 50 100 150 200 250 300 350 400

C
on

ce
nt

ra
tio

ns
 [p

ar
tic

le
s/

m
l]

Time [s]

(hold) (reset) (hold) (set)
0 A, 0 B 0 A, 0 b 0 A, 0 B 0 a, 0 B

c
C
d
D

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

C
on

ce
nt

ra
tio

ns
 [p

ar
tic

le
s/

m
l]

a
A
b
B

Figure 3.6: Dynamic behavior of the chemical reaction network implementing
a RS flip-flop logic circuit. The top figure shows the time course of the input
species a, A, b, and B. The bottom figure shows the concentrations of the
output species. Irreversible mass action kinetics is assumed for all reactions.
The kinetic parameters are set to k = 1 for all zero-order reactions (e.g.,
∅ → A). The kinetic parameter is set to k = 0.001 for destructive reactions.
For the other second-order reactions producing output species c, C, d, or D, the
kinetic parameter is k = 0.1. The reaction system is stochastically simulated
with the biochemical network simulator Copasi of 10 ml.

reaction rule (including decay reaction) is applicable is an organization because
no molecular species is produced (closed) or consumed (self-maintaining). The
smallest organizations contain only the input species with the influx. Adding
one species that does not interact with the input species forms another orga-
nization. Since adding another species makes a reaction rule applicable and
molecular species are used up with no reproduction, there exists no organiza-
tion of size greater than two.

3.4.2 Dynamical Simulation

In order to validate the discussion of the previous section we performed stochas-
tic simulations (using MGS Giavitto and Michel [2001] and Copasi [Sahle et al.,
2006]) of reaction systems implementing the chemical flip-flop. Figure 3.6 shows
a typical simulation run. The influx is defined as an irreversible constant flux
with kinetic parameter set to 1. For all other reactions we chose irreversible
mass action kinetics. The kinetic parameters are set to 0.1 for the second-order
reactions that produce output species c, C, d, or D. For destructive reactions,
the kinetic parameters are set to 0.001. During the first “hold” phase (0 -
100 s), the concentration of C and d remain high. In the following “reset”
phase (100 - 200 s), the input reactions ∅ → A and ∅ → b are added to “reset”
the system so that the output variable c is set to 0. The concentration of C and
d decreases gradually and species c and D accumulate in the reaction vessel.
The system eventually reaches a state in which only members of the organi-
zation {A, b, c,D} are present as expected from the algebraic analysis. In the

41

3. Chemical Boolean Devices

next phase (200 - 300 s), the input flow of b is replaced by that of B, ∅ → B,
to “hold” the output of the previous phase. Although the input species have
changed, no qualitative change is detected in the bottom graph. Finally, in the
last phase (300 - 400 s), the “set” operation is executed by changing the influx
∅ → A to ∅ → a. The transition to the state represented by the organization
{a,B,C, d} is observed.

Although the same input species are injected in the two “hold” phases, the
states of the reaction vessel in terms of molecular species present are different
depending on the initial conditions. The bistable behavior of the flip-flop circuit
is implemented dynamically by the chemical reaction system, which we have
expected from our theoretical analysis in the previous section. The reaction
network with the two influxes ∅ → A and ∅ → B has two organizations with
four species: The system state in the first “hold” phase corresponds to the
organization {A,B,C, d}, and the members of the organization {A,B, c,D}
are present during the second “hold” phase.

3.5 Case Study IV: An Oscillator

The final case study should elucidate how our method behaves when applied to
boolean circuits exhibiting periodic attractors. With a direct feedback, a nand
logic gate can be configured as a controllable oscillator. Analyzing this system
shows that the two alternating states are represented by only one organization
in the corresponding chemical system. The organization is the union of the sets
of molecular species representing each of these states. We will show that, com-
pared to organizations representing fixed points, the organization representing
an oscillation contains “contradicting” molecular pairs like a and A.

Figure 3.7 (A) shows a circuit diagram of the oscillator with a nand gate
(decomposed into an and and a not gate) and a truth table describing the
oscillatory behavior. A feedback loop is formed by feeding the output from the
not gate to one of the inputs. The dynamical behavior has two operational
modes depending on the value of the input variable a, which is the open input
of the circuit. When a = 0, output variable d and the linked input variable b
become 1, independently of an initial value of the other variable b.

The stationary state with b = d = 1 is one operational mode of the circuit,
while the other is an oscillation between two states. Setting a = 1 causes the
output variable d and linked variable b to alternate between 0 and 1. Provided
that b contained 0 at time t, output variable d becomes 1. Since variable d is
connected to variable b, the contents of variable b at time t+ 1 is switched to
1 which is b̄ at time t. When the value of b becomes 1 at time t, variable d will
get a value of 0, and so does variable b at time t + 1. Repeating the process
successively, the value of boolean variables b and d will oscillate between 0 and
1 for each time step.

3.5.1 Chemical Implementation without Amplified Feedback

The oscillator can be defined by a set of three boolean variables {a, b, c} and a
set of two boolean functions {c = Fc(a, b), b = Fb(c)} . According to the recipe
given in Section 3.1, a reaction network 〈Mosc1,Rosc1〉 is designed as follows:

Mosc1 = {a,A, b, B, c, C} (3.22)

42

Case Study IV: An Oscillator

{b}{a} {B}

0{ }

{A}
0 0
0 1
1 0
1 1

1
1

a bt+1d =

1 =
0 = bt

t

bt

b

a

b
c d osc2

,
osc2=(

osc2 osc2 osc2
)

a}{

{ }a, B, c, E }{

A{ }

A, b, B, c, C, e, E

0 a 0 A

BA
C

){)}
osc2

(,
osc2 osc2

,(
osc2

}{M R L C D RM M R

Figure 3.7: Result of analyzing a chemical reaction network implementing a
controllable oscillator using chemical organization theory. (A) Circuit diagram
and the dynamical oscillatory behavior described as a truth table. (B) Catalytic
reactions Cosc2 for amplifying feedback signals are introduced into the set of
reactions Rosc2. (C) When an influx ∅ → A is added, a set {A, b, B, c,
C, e, E} is also found to be an organization which could be interpreted as
the oscillatory behavior since pair-wise molecular species (e.g., b and B) are
both in the organization. The destructive reactions Dosc2 allow alternative
dis-/appearance of the two species.

and
Rosc1 = Losc1 ∪ Dosc1 (3.23)

where

Losc1 = {a+ b→ c, a+B → c, A+ b→ c, A+B → C, c→ B,C → b},
Dosc1 = {a+A→ ∅, b+B → ∅, c+ C → ∅}.

The reaction network 〈Mosc1,Rosc1〉 implements the oscillator circuit with-
out input a specified so far. Without input, there are five organizations each
containing not more than one molecular species: {∅}, {a}, {A}, {b}, and {B}
As a result, there cannot be any oscillation.

The same is true, as expected, when the input variable a is initialized to 0.
In that case the reaction network is modified to 〈Mosc1, (Rosc1 ∪ {∅ → a})〉.
There are two organizations {a} and {a,B, c}. The latter set of molecules
corresponds to the expected (stationary) behavior of the boolean circuit.

For a = 1 the boolean circuit oscillates. When considering the correspond-
ing reaction network 〈Mosc1, (Rosc1 ∪ {∅ → A})〉, the set {A} is found to be
the only organization. Hence, given dynamics, no matter how we initialize the
reaction system, only molecules of species A and nothing else will inevitably
remain after some transient, and there is obviously no oscillation possible. The
reason for this behavior is that, apart from {A}, there is no set of molecular
species that is self-maintaining. The lack of self-maintenance is due to the de-
struction of molecules through the reactions b+B → ∅and c+C → ∅, as long
as there are molecules of type b, B, c, and C left.

3.5.2 Chemical Implementation with Amplified Feedback

The preceding investigation showed that the naively derived chemical system
cannot oscillate like the boolean circuit because the necessary molecular species
are not self-maintaining. A solution to this problem is to counteract the con-
sumption of molecules by introducing an amplification mechanism for each
periodically changing variables, as already noted in the last paragraph of Sec-
tion 3.1

We chose variable b to be amplified, which is realized by a catalytic reaction.

43

3. Chemical Boolean Devices

The new reaction network 〈Mosc2,Rosc2〉 contains two additional molecular
species e and E, which are produced instead of b and B, respectively (i.e., they
replace b and B in the previous reaction rules). Molecular species b and B are
now produced by catalytic reactions of the form e→ e+b and E → E+B. We
can see that b and B can now be consumed by other reactions without causing
a drain of the output of the nand gate.

The resulting chemistry is defined as follows: the set of molecular species is

Mosc2 = {a,A, b, B, c, C, e, E} (3.24)

and the set of reaction rules is

Rosc2 = Losc2 ∪ Cosc2 ∪ Dosc2 (3.25)

where Cosc2 is a set of catalytic reactions. The set of logical reactions becomes

Losc2 = {a+ b→ c, a+B → c, A+ b→ c, A+B → C, c→ E,C → e},

and the set of catalytic reactions is

Cosc2 = {e→ e+ b, E → E +B}.

Since there are four pairs of molecular species in the algebraic chemistry, the
set of destructive reactions is now

Dosc2 = {a+A→ ∅, b+B → ∅, c+ C → ∅, e+ E → ∅}.

Given the reaction network 〈Mosc2,Rosc2〉 implementing the controllable
oscillator, chemical organization theory is applied to find organizations in the
reaction network. The result of the analysis is shown in Figure 3.7 (B) as a
hierarchy of organizations. The reaction network is extended by an influx to
analyze the case in which variable a is initialized to 0 or 1. Figure 3.7 (C) shows
the hierarchies of organizations found in the extended reaction networks. The
smallest organizations for both input cases are composed of the single molecular
species with influx because no reaction occurs without a feedback signal. For
each input case, the biggest organizations correspond to the operational modes
of the oscillator.

When influx ∅ → A is added to the reaction network, the biggest orga-
nization is the set {A, b, B, c, C, e, E}. This implies that the pair-wise
molecular species like b and B or c and C are sustained in a reaction vessel
even though the two pair-wise molecules decay instantly upon collision due to
the destructive reactions such as b+B → ∅. An interpretation of the situation
is the oscillating operational mode. Due to the amplified feedback reaction,
coexistence of the pair-wise species is now possible.

3.5.3 Dynamical Simulation

To confirm the interpretation of the persistence of the pair-wise species in an or-
ganization, we stochastically simulated the reaction vessel using C opasi [Sahle
et al., 2006]. As an initial state of the reaction vessel, it is necessary to have a
positive concentration of non-input molecular species because input molecules

44

Conclusion

 0.0

 5.0

 10.0

 15.0

 20.0

 25.0

 0 5000 10000 15000 20000

C
on

ce
nt

ra
tio

ns
 [p

ar
tic

le
s/

10
 m

l]

Time [s]

Dd

a
A
c
C

 0.0

 50.0

100.0

150.0

200.0

250.0

300.0

B b

Figure 3.8: Dynamical oscillatory behavior of the chemical reaction network
involving a feedback loop as shown in Figure 3.7. The loop is implemented with
a catalytic reaction producing an input species using an output species as an
catalyst. The upper figure shows the dynamical concentration changes of the
species B and b, and those of the other species are shown in the lower figure.
For all first- and second-order reactions, irreversible mass action kinetics is
assumed, and the kinetic parameter is set to 0.01. An influx is assumed as an
irreversible constant flux with a kinetic parameter of 0.001. The compartment
volume is set to 10 ml.

a and A cannot produce anything else without other molecular species (cf.
Figure 3.7 (D)). We chose the concentration of molecular species B as ap-
proximately 25 molecules per ml. The dynamical concentration profile in the
reaction compartment is shown in Figure 3.8. Alternative appearance of the
pair-wise molecular species b and B in the upper graph or d and D in the lower
graph is apparent.

In general, we can say that a boolean circuit that has periodic attractors
(e.g., a circuit that can oscillate) will lead to chemical organizations that con-
tain “contradicting” molecular pairs such as b and B. Thus we can take those
organizations as indicators for oscillatory behavior. However, our theory does
not allow to say more about the nature of that oscillation. Actually, it is pos-
sible that for specific rate laws chosen, we might obtain a stationary state in
the chemical system, whereas the corresponding attractor of the boolean net-
work is periodic. Under which circumstance this is the case and how periodic
attractors appear in the light of chemical organization theory has to be studied
theoretically in more detail in the future.

3.6 Conclusion

In this chapter, using various boolean functions as case studies, we demon-
strated how chemical organization theory can be useful for constructing chem-
ical reaction networks. When analyzing organizational structure in a reaction
network implementing a logic gate, only the desired output form an organi-
zation within the network with input flows. This analysis concludes that the

45

3. Chemical Boolean Devices

dynamical reaction systems based on the constructed reaction networks are
certainly utilized for the chemical logic gates intended, and the conclusion was
validated through simulations. The scalability of this analysis method is also
demonstrated.

Significant results are illustrated in the cases of flip-flop and oscillator.
The bistability of flip-flop is reflected by two organizations within the reaction
network. Using chemical organization theory, we were able to explain the
properties of the chemical flip-flop in a new, comprehensible way by referring
to the Hasse diagram of organizations as a movement between organizations
(Figure 3.5 (E)). This description is more compact than a classical description
referring to the 8-dimensional concentration state space, as demonstrated in
Section 3.4.2. The oscillatory behavior, on the other hand, causes chemical
organizations containing “contradictory” molecular pairs such as a and A. In
this light it should be noted that the chemical system is more complex than
the original boolean circuit because an on- and off-signal can be present at
the same time. Furthermore, variables can be unspecified, e.g. representing
an unspecifed “open” input. Even in that case, the dynamics of the chemical
system is well defined, as opposed to the boolean network.

46

source :
Matsumaru, N. and Dittrich, P. (2006). Organization-oriented chemical
programming for the organic design of distributed computing systems. In
1st international conference on bio inspired models of network, information
and computing systems (BIONETICS), volume 275 of ACM International
Conference Proceeding, Cavalese, Italy. IEEE. also available at
http://www.x-cd.com/bionetics06cd/.

Matsumaru, N., Lenser, T., Hinze, T., and Dittrich, P. (2007b). Designing
a chemical program using chemical organization theory. BMC Systems
Biology, 1(Suppl 1):P26. from BioSysBio 2007: Systems Biology,
Bioinformatics, and Synthetic Biology, Manchester, UK, 11-13 January
2007.

Matsumaru, N., Lenser, T., Hinze, T., and Dittrich, P. (2007c). Toward
organization-oriented chemical programming: A case study with the
maximal independent set problem. In Dressler, F. and Carreras, I.,
editors, Advances in Biologically Inspired Information Systems, volume 69 of
Studies in Computational Intelligence, pages 147–163. Springer, Berlin.

Chapter 4

Maximal Independent Set
Problem

Contents
4.1 Chemical Programming for the MIS problem 48

4.2 Proof of exact correspondence between MISs and organizations of
size N . 51

4.3 Examples of Chemical Programming to Solve the MIS Problem . . . 54

4.3.1 Linear graph with three vertexes 54

4.3.2 Circular graph with three vertexes 56

4.3.3 Graph with 6 vertexes . 57

4.4 Conclusion . 57

Our next target is the maximal independent set problem. The problem is
defined in an undirected graph, and a solution is a set of vertexes such that
there exists no direct edge between any of those vertexes. It is maximal when
no more vertexes can be added in the set without violating that property. See
Figure 4.1 for a simple example. A simple algorithm to find a solution can
be described as follows: The set is initialized to contain all of vertexes. A
vertex in the set is randomly selected, and neighboring vertexes are excluded
from the set. Neighboring vertexes are a set of vertexes that are connected
to the target vertex by an edge. Continuing these steps, the resulting set is
a maximal independent set. Conventional algorithms to solve the maximal
independent set problem were theoretically studied (e.g., [Luby, 1986]). The
problem becomes NP-hard only when the largest maximal independent set in
the given graph is to find, referred as maximum independent set problem.

What this maximal independent set problem makes interesting becomes ap-
parent when discussed in the context of distributed computing. Assuming each
vertex is a computing entity, and each edge is a communication link between
entities so that it corresponds to distributed computing environments. Maxi-
mal independence is a global emerging property from local properties (namely,
whether two vertexes are connected). Algorithms for a distributed computing
environment to solve this problem are investigated for self-stabilizing proper-
ties [Shukla et al., 1995; Herman, 2003; Ikeda et al., 2002] because maximal
independent set is stable in a global view. Since our motivation to chemical
computing, or more generally bio-inspired computing, includes possible ad-
vantages on distributed computing, this problem is discussed in this chapter.

47

4. Maximal Independent Set Problem

v1 v2 v3

∅

{v1} {v3} {v2}

{v1, v2} {v1, v3} {v2, v3}
MIS

MIS× ×

Figure 4.1: Illustration of the Maximal Independent Set (MIS) problem. (Left)
The base undirected graph given consists of three vertexes linearly connected.
(Right) Schematic representation of solving the MIS problem by adding a ver-
tex. On the contrary to the simple algorithm described in the text, we start
with the empty set for the explanatory purpose. The empty set is clearly the
independent set. Adding vertex v1 or v3 keeps the property of independence
in the set. These sets are not maximal yet since v3 or v1, respectively, can be
added without violating the independence property. The set {v1, v3} is a max-
imal independent set. Another solution to the MIS problem in this example is
the set {v2}. The solution to the maximum independent set problem is {v1, v3}
because of the largest size 2 while the other independent sets has size of 1 for
{v1}, {v2}, or {v3}; or 0 for ∅.

An application of this problem lies in wireless sensor networks to determine
cluster-heads, which manage logical clustering structures in the networks. Sen-
sor nodes that can communicate directly with the cluster-head form a cluster,
and no cluster-heads are neighbors. Assigning a role to each sensor node ben-
efits to increase lifetime of the whole network [Reichenbach et al., 2006].

In this chapter, we show how chemical organization theory helps program-
ming distributed processes of chemical computing, taking the maximal inde-
pendent set (MIS) problem as an example. Section 4.1 presents a chemical
programming for that problem, converted and adapted from the algorithm
proposed by Shukla et al. [1995]. In Section 4.2, the correspondence between
MIS and chemical organizations is given as a proof1. Specific problem instances
and the corresponding chemical programs are followed in Section 4.3. For each
instance, the chemical program is analyzed using chemical organization theory,
investigating the organizational structures embedded in the constructed reac-
tion network. From these examples, the correspondence between MIS and the
organizations is observed.

4.1 Chemical Programming for the MIS problem

Chemical reaction systems for MIS problem can be described shortly at first,
then, formal description follows. The procedure starts with assigning two
molecular species to each vertex, specifying the positive membership or nega-
tive membership in the set of vertexes. Those two pair-wise species are defined
to vanish upon collision due to the contradictory states they are representing.

1with the great help of Thorsten Lenser

48

Chemical Programming for the MIS problem

For each vertex, there are two sorts of reactions: one to promote adding the
vertex to the set and the other to exclude the vertex from the set. The promot-
ing reactions are defined for each vertex to react from the negative membership
species of the neighboring vertex. The existence of positive membership species
for all neighboring vertexes collaboratively reacts and produces negative mem-
bership species to exclude the vertex from the set.

Maximal independent set (MIS) is formally defined: Let an undirected
graph G = 〈V,E〉 be defined by a set of N vertexes V = {v1, . . . , vN} and
a set of edges E. When two vertexes vp and vq are connected, the pair of the
vertexes is in the set of edges: (vp, vq) ∈ E. Note that the order of the pair is
insignificant, that is, (vp, vq) = (vq, vp). A set of vertexes I ⊂ V is independent
if no two vertexes in the set are adjacent: (∀vp, vq ∈ I : (vp, vq) /∈ E). An inde-
pendent set is maximal if no vertex can be added to the set while keeping the
property of independence. Including another vertex in the MIS should violate
the independence property.

We now present formally a procedure for designing chemical reaction net-
works solving MIS problem (see Table 4.1 for a short recipe). Given the undi-
rected graph G, a reaction network 〈M,R〉 is designed as follows: For each
vertex vj , we assign two molecular species s0

j and s1
j representing the member-

ship of the vertex in the MIS. The subscript of the species name corresponds
to the index number of the vertex. High concentration of species s1

j , higher
than a threshold chosen to be smaller than any positive coordinate of any fixed
point, means that the vertex vj is included in the MIS. High concentration of
species s0

j expresses that the vertex vj is not included in the MIS. Thus the set
of molecular species M contains 2N molecular species:

M = {s0
j , s

1
j | j = 1, . . . , N} (4.1)

The set of reaction rules R is constructed by assembling reactions for each
vertex:

R =
N⋃
i=1

Ri =
N⋃
i=1

(Vi ∪N i ∪ Di). (4.2)

For each reaction set Ri, there are three sorts of reactions. The first two sorts
are adapted from two predicates constituting a program for any distributed
processor to solve the MIS problem under a central scheduler [Shukla et al.,
1995]. A reaction rule to produce species s1

i is the first:

Vi = (

ni︷ ︸︸ ︷
s0
j + s0

k + · · ·+ s0
l→ nis

1
i) (4.3)

where ni is the number of vertexes connected to vertex vi and vj , vk, . . . , vl
are its neighboring vertexes, that is, (vi, vj), (vi, vk), . . . , (vi, vl) ∈ E. The left-
hand side of the reaction contains ni terms, and this reaction is interpreted as
follows: When no neighboring vertex is included in the MIS, the target vertex
vi should be included in the set.

The negation of this predicate is considered by a set of ni reactions:

N i = {s1
j → s0

i |(vi, vj) ∈ E}. (4.4)

49

4. Maximal Independent Set Problem

Table 4.1: Recipe for mapping an undirected graph to a chemical reaction
network to solve maximal independent set problem.

Input: Undirected graph G = 〈V,E〉 where V is a set of N vertexes V =
{v1, . . . , vN} and E is a set of edges. When two vertexes vp and vq are
connected, (vp, vq) ∈ E.
Output: Reaction network 〈M,R〉 (a set of molecular species M and a set
of reaction rules R) representing the chemical program to solve the maximal
independent set problem.
Algorithm:
1. For each vertex vj :
(a) Add two molecular species, s0

j and s1
j , to M;2

(b) Add one destructive reaction of the form s0
j + s1

j → ∅ to R;
(c) Add one reaction to R of the form:

(· · ·+ s0
i + . . .→ njs

1
j)

where nj is the number of edges connected to vertex vj and (vj , vi) ∈ E.
(d) Add a set of nj reactions to R:

{s1
i → s0

j |(vi, vj) ∈ E}.

2As a naming convention of molecular species in this paper, the superscript indicates the

membership for the maximal independent set.

This is the second type of reactions, which produce species s0
i from any species

corresponding to the neighboring vertexes with superscript 1. This rule can be
interpreted as follows: If there exists at least one neighboring vertex included
in the MIS, then the target vertex vi should be excluded from the maximal
independent set (otherwise the definition of the MIS would be violated). Gen-
erating species s0

i forces vertex vi not to be included in the set.
The last component of set Ri is a destructive reaction. Since the member-

ship of the MIS is a binary state, the state becomes undefined when neither
or both of the species are present. In order to avoid the latter case, the two
opposite molecular species are defined to vanish upon collision:

Di = s0
i + s1

i → ∅. (4.5)

Note that the reaction network is defined such that molecules react only
if they are located on the same vertex or are neighbors. Thus, the result-
ing (artificial) chemical system can be interpreted as a spatially distributed
compartmentalized reaction system, where a compartment j holds only the
two chemical species representing a vertex vj , namely s0

j and s1
j and where

the topological structure of the compartments is equivalent to the undirected
graph.

50

Proof of exact correspondence between MISs and organizations of size N

4.2 Proof of exact correspondence between MISs and
organizations of size N

Given an undirected graph G = 〈V,E〉 where V = {v1, . . . , vN} is a set of N
vertexes and E is a set of edges, a reaction network 〈M,R〉 can be constructed
as described in Section 4.1, where M = {a1, . . . , a2N} = {s0

i , s
1
i |i = 1, . . . , N}

is a set of 2N molecular species and R = {(Aj → Bj)} is a set of reaction
rules. Here, we show with a proof that the constructed reaction network con-
tains organizations with N species forming the largest and those organizations
correspond to MIS in the given graph. To prove this, we first introduce the
following lemma stating the maximum number of species each organization in
the constructed reaction network can contain.

Lemma 1. In the reaction network 〈M,R〉 constructed as described in Sec-
tion 4.1, no organization can contain species s0

k and s1
k together. Therefore, no

organization with a size (number of species) greater than N can exist.

Proof. Let O ⊂ M be an organization, and suppose the organization con-
tains s0

k and s1
k simultaneously (s0

k, s
1
k ∈ O) regarding vertex vk. From the

definition of the organization to be self-maintaining, there exists a flux vector
v = (v1, . . . , v|R|)T satisfying the three conditions listed in Definition 2. Due to
the third condition, the production rates fi with respect to species belonging
to the organization is greater than or equal to zero. Sum of those production
rates should also be greater than or equal to zero.

∑
{i|ai∈O}

fi =
∑

{i|ai∈O}

|R|∑
j=1

mijvrj ≥ 0.

Since organizationO is also closed, the production rates for the species excluded
from O should be zero: fi = 0 if ai /∈ O. Therefore, this equation can be
extended to:

|M|∑
i=1

fi =
∑

{i|ai∈O}

fi +
∑

{i|ai /∈O}

fi =
|M|∑
i=1

|R|∑
j=1

mijvrj ≥ 0 (4.6)

Here, j-th reaction Aj → Bj is denoted as rj .
The set R of reaction rules can be divided into the three sets V,N ,D

(Section 4.1):∑|M|
i=1 fi

=
∑|M|
i=1

[∑
{j|rj∈V}mijvrj +

∑
{j|rj∈N}mijvrj +

∑
{j|rj∈D}mijvrj

]
=
∑
{j|rj∈V}

∑|M|
i=1 mijvrj +

∑
{j|rj∈N}

∑|M|
i=1 mijvrj

+
∑|M|
i=1

∑
{j|rj∈D}mijvrj

=
∑
{j|rj∈(V∪N)} vrj (

∑|M|
i=1 mij) +

∑|M|
i=1

∑
{j|rj∈D}mijvrj

(4.7)

For the reactions of type V and N , sum of the stoichiometric coefficients is

51

4. Maximal Independent Set Problem

arranged to be zero:

∀j|rj ∈ (V ∪ N) :
|M|∑
i=1

mijvrj = 0 (4.8)

Thus, the last term of Equation (4.7) must be non-negative:

|M|∑
i=1

∑
{j|rj∈D}

mijvrj ≥ 0 (4.9)

To keep this inequality, fluxes for the reactions of type D should be zero
because all of the stoichiometric coefficients for the type D reactions are neg-
ative. The flux for reaction (s0

k + s1
k → ∅) ∈ D must be set to a positive

value, however, if both s0
k and s1

k are contained in organization O at the same
time (Condition 1). The sum of the production rates cannot be positive, and
at least one production rate has to be negative. This contradicts the defini-
tion of the organization, and hence, two species s0

k, s1
k cannot coexist in the

organization.

Next we define the set of species induced by a set of vertexes:

Definition 9. Let I ⊂ V be a set of vertexes. We call SI = {sb11 , . . . , s
b|V |
|V | }

the set of species that is induced by I if bi = 1 when vi ∈ I and bi = 0 when
vi /∈ I.

Given a subset of vertexes I ⊂ V in an undirected graph G = 〈V,E〉, a
set of species SI can be “induced” such that the subscript of the species name
specifies the vertex identification number and the superscript is the binary
state whether the vertex vi is a member of set I (bi = 1) or not (bi = 0). The
constructed set of species consists of |V | species so that all of the vertexes in
the graph are considered.

Using this notation, the exact correspondence between maximal indepen-
dent sets and organizations of size N = |V | can be stated as follows:

Theorem 2. Given an undirected graph G = 〈V,E〉, a set I ⊂ V of vertexes is
a maximal independent set iff the induced set SI of species is an organization.

Proof. The first part of the proof is to show the necessary condition, namely a
set of species induced by a MIS is an organization. Let I ⊂ V be a MIS and
SI be the set of species induced by I. To show that SI is an organization, two
criteria will be tested: closure and self-maintenance.

Closure: Assume that SI is not closed, i.e. there exists a reaction (Aj →
Bj) ∈ R that is applicable to SI and that produces a species that is not in
the set SI . If such a reaction has the form of (s1

j → s0
k) ∈ N for an edge

(vj , vk) ∈ E, then we know s1
j ∈ SI and thus vj ∈ I. Since that reaction is

assumed to violate the closure property, s0
k /∈ SI . The induced set of species

SI is defined to include either s0
k or s1

k, so s1
k ∈ SI . As a result, set SI

contains s1
j and s1

k, meaning that set I includes both vj and vk. This leads to
a contradiction that set I containing vj and vk is a MIS even though there is
an edge (vj , vk) ∈ E.

52

Proof of exact correspondence between MISs and organizations of size N

The reaction to violate the closure property can have the form (s0
h + s0

l +
· · ·+ s0

m → nks
1
k) ∈ V. In that case no neighboring vertexes vp with respect to

vk are included in set I because s0
p ∈ SI for any p such that (vp, vk) ∈ E. To

violate the closure, s1
k should be excluded from SI so that vertex vk is not in

I. Since none of neighboring vertexes are in I, however, vk can be added to I
with keeping the independence. This contradicts the fact that the independent
set I is maximal.

The third type of reactions (D) can be neglected because there are no
products. From these arguments, no reaction can produce new species that is
not in SI . It follows that SI is closed.

Self-maintenance: To satisfy the conditions of self-maintenance, the flux
vector v is set as: vrj = 1 if Aj ∈ PM (SI) and vrj = 0 if Aj /∈ PM (SI). Given
this v, we show that production rates for all species in SI are non-negative.
From the definition of set SI induced by a set of vertexes, either s0

m or s1
m, not

both, is included in SI . Therefore, The fluxes for reaction type D are set to
zero.

Assume a species with the superscript of one, s1
m, is in SI . This implies

s0
p ∈ SI for any neighboring vertexes vp of vertex vm since vm is in MIS but

none of neighboring vertexes vp are included. There is only one reaction in V
producing s1

m with the stoichiometry of nm, where nm is the number of vertexes
connected to vertex vm, and containing reactants Aj ∈ PM (SI). Production
rate of species s1

m caused by reaction type V is calculated to nm because flux
for the reaction is set to 1. In the type of N , there are nm reactions with s1

m

as the reactant. Setting the fluxes to 1 for these reactions, the production rate
caused by this type of reactions is −nm. Combining those, the production rate
of species s1

m is 0.
Next, a species with the superscript of zero, s0

m, is assumed to be in SI .
Since vm /∈ I from the definition, at least one or maximum nm neighboring
vertexes are in the MIS I. Let 1 ≤ g ≤ nm be the number of neighboring
vertexes in the MIS I. There are g reactions of type N applicable to SI
depending on I. Stoichiometric coefficients of these reactions for s0

m are all
1. In the reactions of type V, the same number of reactions as type N are
applicable. For a vertex in the MIS, no neighbors are included in the MIS
according to the definition. It follows that a reaction in V should be applicable
for each vertex included in the MIS. If vm has g neighboring vertexes included
in the MIS I, there have to be g reactions of type V with the coefficients −1.
Hence, production rate of the species s0

m is equal to zero.
The second part shows the sufficient condition. Namely, if a set of species

induced by a set of vertexes is an organization, then this set of vertexes is a
MIS. Given a set of vertexes I and its induced set of species SI , which is an
organization, we need to show that I is a MIS. Taken any of two vertexes vp
and vq from the set I, we know that s1

p ∈ SI and s1
q ∈ SI from the definition of

the induced set of species. Suppose there exists an edge (vp, vq) ∈ E between
those two vertexes. The reaction s1

p → s0
q defined for that edge would produce

s0
q inside the organization SI . In order to keep SI as an organization, s1

q and
s0
q should coexist, which is impossible according to Lemma 1 given above.

Therefore, we conclude that (vp, vq) /∈ E and I is an independent set.
If I does not represent a “maximal” independent set, we could add a vertex

vp′ ∈ V \I to I, and I ∪{vp′} remains an independent set. To be more general,
there exists a non-empty set of vertexes I ′ ⊆ V \I such that the union of these

53

4. Maximal Independent Set Problem

sets I ∪I ′ becomes the MIS. Since we showed in the first part of this proof that
a MIS induces an organization, SI∪I′ induced by set I ∪ I ′ is an organization
whereas SI is also an organization from the assumption. Set SI∪I′ differs from
SI with respect to any vertex vp′ in I ′: s0

p′ ∈ SI , s1
p′ ∈ SI∪I′ . Those indexes

p′ have to be chosen such that vertexes vp′ are not in I and no neighboring
vertexes vq′ are in set I. If vertex vq′ is already contained in I and vertex vp′
is added, then set I ∪ I ′ cannot be an independent set. However, the absence
of those neighboring vertexes vq′ in SI would produce s1

p′ by the reactions in
V, which violates the closure property of the organization SI because the set
only contains s0

p′ . Thus, there are no such indexes p′, and set I ′ is an empty
set.

4.3 Examples of Chemical Programming to Solve the
MIS Problem

4.3.1 Linear graph with three vertexes

Provided that an undirected graph G = 〈V,E〉 consists of three vertexes and
those vertexes are connected linearly as shown in Fig. 4.2 (A):

G = 〈{v1, v2, v3}, {(v1, v2), (v2, v3)}〉. (4.10)

Following the recipe, a reaction network 〈M,R〉 is constructed. The set of
molecular species M consists of six species because the graph contains N = 3
vertexes:

M = {s0
1, s

1
1, s

0
2, s

1
2, s

0
3, s

1
3}. (4.11)

Our naming convention for the species is that the subscript of the species name
is associated with the index of the graph vertex and that the superscript stands
for the membership of the MIS. For example, species s1

2 stands for vertex v2

being included in the MIS, and s0
2 represents the opposite for the same vertex.

For each vertex v1, v2, and v3, reaction rules are constructed. The destruc-
tive reactions are:

D =
3⋃
i=1

Di = {s0
1 + s1

1 → ∅, s0
2 + s1

2 → ∅, s0
3 + s1

3 → ∅}.

The reaction rules to produce positive membership species are composed of
three reactions:

V =
3⋃
i=1

Vi = {s0
2 → s1

1, s
0
1 + s0

3 → 2s1
2, s

0
2 → s1

3}

Finally, the non-membership species are also produced:

N =
3⋃
i=1

N i = {s1
2 → s0

1, s
1
1 → s0

2, s
1
3 → s0

2, s
1
2 → s0

3}

54

Examples of Chemical Programming to Solve the MIS Problem

The whole set of reactions R results in:

R = V ∪ N ∪ D
= {s0

2 → s1
1, s

1
2 → s0

1, s
0
1 + s0

3 → 2s1
2,

s1
1 → s0

2, s
1
3 → s0

2, s
0
2 → s1

3, s
1
2 → s0

3,

s0
1 + s1

1 → ∅, s0
2 + s1

2 → ∅, s0
3 + s1

3 → ∅} (4.12)

The reaction network is analyzed for its hierarchical organizational structure
within the reaction network. When applying chemical organization theory
(Chapter 1), the chemical reaction network is decomposed into a hierarchy of
overlapping sub-networks, called organizations. These organizations provide
an overview of the potential (emergent) behavior of the system because only
a set of molecular species forming an organization can be stable [Dittrich and
Speroni di Fenizio, 2007]. Furthermore, the dynamics of the system can be
explained as a transition between organizations instead of a movement in the
potentially more complex state space.

In our example, the reaction network 〈M,R〉 possesses five organizations:

O = {∅, {s0
1}, {s0

3}, {s0
1, s

1
2, s

0
3}, {s1

1, s
0
2, s

1
3}} (4.13)

Figure 4.2 (B) visualizes these organizations as a Hasse diagram. In passing we
note that the organizations do not form a lattice, because there is not a unique
largest organizations. The two largest organizations represent the two desired
solutions to the MIS problem, namely “010” and “101”. This explains that
in a dynamical reaction system implementing the designed reaction network,
the species combinations representing desired solutions are more likely to stay
in the dynamical system and the other solutions consisting of species that are
not an organization cannot stably exist (cf. [Dittrich and Speroni di Fenizio,
2007]). Interestingly the analysis has also uncovered three smaller organiza-
tions. These organizations represent uncompleted computations due to a lack
of molecules. For example, the empty organization trivially implies: if there
are no molecules in the system, no molecule will enter the system and there
will be no computation. If we setup our chemical computing system such that
these small organizations are avoided, the system must produce a solution.

We can now ask whether these solutions, organizations {s0
1, s

1
2, s

0
3} and

{s1
1, s

0
2, s

1
3}, are stable or whether the system, once they have been found, might

move spontaneously down to a smaller organization below them. In general,
this type of question requires to investigate the dynamics, such as, rate con-
stants, in detail. Here, however, we can see already by looking at the reaction
rules that organization {s1

1, s
0
2, s

1
3} must be stable, because all reactions are

mass-conserving so that the empty organization (the only organization below)
can never be reached. The deficiency value [Feinberg and Horn, 1974] for the
organization is calculated to be zero so that the asymptotically stable state
is contained, assuming mass action kinetics. The situation with organization
{s1

1, s
0
2, s

1
3} is more complicated. It contains also the small organizations {s0

1}
and {s0

3}, and the deficiency value for the organization is one. Hence, we cannot
use the same argument as before. The stability of that organization depends
on the kinetics applied (not shown here).

55

4. Maximal Independent Set Problem

Figure 4.2: Analysis of a chemical program with organization theory. (A)
Graph structure and (B) hierarchy of organizations within the chemical reac-
tion network for the maximal independent set problem for the linear 3-vertex
graph.

0{ }

0s 1
0s 2

1s 3
0s 1

1s 2
0s 3

1s 1
0s 2

0s 3

BA

v
1

v
2

v
3

}{ , , },{ , }{ , ,

}{}{}{ 0

3s
0

2s
0

1s

Figure 4.3: Analysis of a chemical program with organization theory. (A)
Graph structure and (B) hierarchy of organizations within the chemical reac-
tion network for the maximal independent set problem for the circular 3-vertex
graph.

4.3.2 Circular graph with three vertexes

The similar discussion is applicable to the circular graph structure. For in-
stance, three vertexes are connected as depicted in Fig. 4.3 (A) to form a
circular structure. The undirected graph can be defined as follows:

G = 〈V = {v1, v2, v3}, E = {(v1, v2), (v2, v3), (v1, v3)}〉. (4.14)

According to the recipe, a reaction network is constructed, and the resulting
network is following:

M = {s0
1, s

1
1, s

0
2, s

1
2, s

0
3, s

1
3} (4.15)

and

R = {s0
2 + s0

3 → 2s1
1, s

1
2 → s0

1, s
1
3 → s0

1,

s0
1 + s0

3 → 2s1
2, s

1
1 → s0

2, s
1
3 → s0

2,

s0
1 + s0

2n→ s1
3, s

1
1 → s0

3, s
1
2 → s0

3,

s0
1 + s1

1 → ∅, s0
2 + s1

2 → ∅, s0
3 + s1

3 → ∅, }. (4.16)

Analyzing this reaction network reveals seven overlapping organizations as
shown in Fig. 4.3 (B). The largest organizations are composed of three species,

56

Conclusion

Figure 4.4: Analysis of a chemical program with organization theory. (A)
Graph structure with six vertexes and seven edges. (B) The largest organiza-
tions within the chemical reaction network for the maximal independent set
problem with respect to the graph. Each organization with the size of six
corresponds to a solution to the maximal independent set problem.

and each species specifies the different vertex state.

{s1
1, s

0
2, s

0
3}, {s0

1, s
1
2, s

0
3}, {s0

1, s
0
2, s

1
3} (4.17)

Apparently, each organization corresponds to a solution to the maximal in-
dependent set problem on this graph structure. When vertex v1 is included
in the maximal independent set, the other two vertexes should not be in the
independent set.

4.3.3 Graph with 6 vertexes

Two circular graphs with three vertexes are connected as shown in Fig. 4.4
(A) so that both circles and lines are contained. Since the graph consists
of six vertexes, the reaction network holds 12 molecular species. Twenty-six
reactions among those species constitute the reaction network. Within that
reaction network, there are 49 organizations in total. In Fig. 4.5, a whole
hierarchy of the organizations is shown, and only the largest organizations
with six species are listed in Fig. 4.4 (B). Focusing on the largest organizations
within the reaction network, only the sets of species representing solutions to
the maximal independent set problem are found to be the organization.

4.4 Conclusion

We have shown that chemical organization theory can serve as a tool to predict
the potential behavior of a chemical program given its “microscopic” reaction
rules, without need to know the kinetics in detail. The desired solutions to
the MIS problem appeared as organizations. Furthermore, the organizational
analysis uncovers organizations representing incomplete computations due to
a lack of molecules. Chemical organization theory can now guide further im-
provements of the chemical program, which aim at reducing or even removing
completely these “undesired” organizations.

57

4. Maximal Independent Set Problem

Figure 4.5: Hierarchy of chemical organizations within the reaction network
programmed to solve the maximal independent set problem in the graph struc-
ture depicted in Fig. 4.4 (A). There are 49 organizations in total, and eight
organizations with six species are the largest on top of the diagram. The
potential dynamical behaviors of the reaction network to solve the maximal
independent set problem appear as the largest organizations.

58

Source :

Dittrich, P. and Matsumaru, N. (2007).
Organization-oriented chemical programming. In 7th
International Conference on Hybrid Intelligent Systems (HIS),
IEEE Conference Proceedings, pages 18–23. IEEE.Chapter 5

Conclusion and Outlook

Contents

5.1 Organization-Oriented Programming 60

5.1.1 Design Principles . 60

5.2 Outlook . 63

5.2.1 Benchmark problem scenario 63

5.2.2 Potential technical environment 63

In the previous chapters, a constructive approach as a design method for
chemical computing has been exemplified. In these examples, a general con-
structive design principle of chemical computing systems are conformed. That
design principle is summarized and discussed here.

The term “constructive” refers to a bottom-up approach such that the re-
action rules are manually and rationally chosen or designed to build the whole
network. A great deal of this design procedure depends on the programmers’
intuition about how the constructed program would behave, similar to con-
ventional programming paradigms. Especially for the chemical programming
paradigms, however, perceiving that intuitive image of the system behavior
becomes quickly overwhelming because of the highly parallelized computation
processes. Furthermore, counting fully on the programmers’ intuition is not an
entirely adequate way to develop reliable systems. Hence, an analytical tool
to help understanding dynamical behaviors of the chemical programs is highly
beneficial.

We programmed a chemical computing system at the level of reaction net-
works, a pair of a set of molecular species and a list of reaction rules among
those. By restricting ourselves to modify those lists for programming pro-
cesses, we were able to employ the notion of chemical organizations for that
purpose. Chemical reaction networks were constructed so that, when analyzing
the organizational structure within, the desired output forms an organization.
Through case studies in Chapter 3 with boolean functions, we observed a no-
ticeable association between output behaviors and organizational structure.
When implementing flip-flop with two steady states, the bistability reflected
two different organizations in the constructed network. It is also important to
note that there was an undesired organization below those two, which could
not be removed. Similarly, examples of organizational structures with respect
to MIS problem in Chapter 4 are composed of both desired organizations and

59

5. Conclusion and Outlook

undesired. Furthermore, the organizational analysis uncovers organizations
representing incomplete computations due to a lack of molecules. Chemical
organization theory can now guide further improvements of the chemical pro-
gram, which aim at reducing or even removing completely these undesired or-
ganizations. This idea has been outlined by Dittrich and Matsumaru [2007] as
general principles of “organization-oriented chemical programming”, presented
also in Section 5.1. As the outlook, in Section 5.2.1, we present a benchmark
problem so that a quantitative evaluation of the chemical system properties
is possible. Moreover, in Section 5.2.2, our vision of a technical environment
is sketched, providing an architecture for easy implementation of a chemical
program.

5.1 Organization-Oriented Programming

Chemical computing can be distinguished whether a computation takes places
within one organization or whether the computation can be explained as a
movement between organizations. Computation within one organization ex-
ploits quantitative changes of species concentration in a chemical system. For
an example, chemical reaction system developed by [Deckard and Sauro, 2004]
computes the square-root so that the final concentration xT of a molecular
species is the square root of the initial concentration x0, xT =

√
x0. Enzymatic

computation investigated by Zauner and Conrad [2001] is another example of
chemical computing within one organization in general because the concentra-
tion value of the enzymatic reaction products is mapped to outcomes of the
computation.

Computation between organizations, on the other hand, is characterized by
the qualitative state changes of the reaction system, such as appearance of new
species and/or disappearance of existing species. The classical DNA comput-
ing [Adleman, 1994] is a case of such computation. Through the computation
processes, the combination of molecular species present in the reaction system
changes over time. The fundamental assumption of organization-oriented pro-
gramming is that the change should be understood as a movement between
chemical organizations.

In passing, the qualitative state changes is not the necessary condition of
the organization-oriented approach. In other words, not all of the qualitative
state changes can be understood as a movement between chemical organiza-
tions because not all of the species combinations are organizations. The reac-
tion system may be in a state where the consisting species combination is not
an organization although strongly depending on dynamical implementations.
Dynamical experimental setup of the reaction system to implement chemical
programs should be arranged so as to end up in such an organization. Alter-
natively, theory of chemical organization provides a view such that a chemical
organization covers not only the exact species combination but also the other
combinations from which the organization is “generated” [Dittrich and Speroni
di Fenizio, 2007].

5.1.1 Design Principles

When following an organization-oriented approach, we first concentrate on the
reaction network neglecting kinetic laws. The reaction network is designed with

60

Organization-Oriented Programming

respect to its organizational structure, considering the following principles P1-
P5. Then, in the second step, the kinetics including kinetic parameters is
specified for fine tuning of the computation as stated in P6. the kinetic laws
determine the dynamics between and inside organizations.

P1: There should be one organization for each output behavior class
Assume that computation appears as a movement between organizations, and
the output behavior can be categorized in different discrete behavior classes.
That is, species combinations in the computational reaction system uniquely
identify the output behavior. The reaction network should be designed so
that there should exist at least one organization corresponding to each output
behavior class categorized. For an instance, the output behavior of RS flip-
flop logic circuit on the hold operation are categorized into two: reset state
and set state. The chemical flip-flop described in Section 3.4 are designed to
contain two organizations in the base reaction network, which correspond to
two different states of the flip-flop.

P2: The set of molecular species (and the organization) represent-
ing a result should be in the closure of the species representing the
initial input The closure denotes a set of molecular species that is gener-
ated by adding all possible reaction products until no more new species can be
produced. This principle assures that there is a reaction path from the initial
input configuration to the desired output species. Otherwise, the desired out-
put will not appear as a result of the computation. The chemical logic gates
described in Section 3.2 or Section 3.3 are designed with strictly following this
principle.

Furthermore, it is expected that the desired output set is contained in a self-
maintaining set within that closure. The self-maintenance property of the set of
molecular species indicates theoretical possibilities to sustain all the species in
the dynamical reaction systems, so the desired output species may be sustained
in the reaction system until the outcomes of the computation is observed. The
ideal case is that the desired output is represented by a largest self-maintaining
set within that closure. In case that there exists a larger self-maintaining set
than the desired output set, the dynamics may settle above the desired one.
This argument leads to the next principle.

P3: The set of molecular species representing an input should gen-
erate the organization representing the desired output To generate
the organization from a set of species, by definition given in Section 8, the
closure of the given set is taken at first. Then we remove species until we reach
a largest self-maintaining set contained in the closure. This principle will be
fulfilled on the following two conditions: the desired output is contained within
the closure of the input (P2 is fulfilled), and the largest self-maintaining set
contained in the closure corresponds to the desired output. For the chemical
logic gate examples in Section 3.2 and Section 3.3, this case was also fulfilled.
When inflow reactions are added, the closure of the input species turns out to
be also self-maintaining.

The largest self-maintaining set within a closure is not always unique in
general although it is uniquely generated in a specific class of reaction net-

61

5. Conclusion and Outlook

works, called semi-consistent [Dittrich and Speroni di Fenizio, 2007]. In chem-
ical computing, the uniqueness is not required. It can be even beneficial, on
the contrary, as in the chemical flip-flop in Section 3.4. The two distinctive
organizations are largest self-maintaining sets contained in the closure of all
species.

P4: Eliminate organizations not representing a desired output Since
each organization potentially includes fixed points, the reaction system’s dy-
namics may converge to one of the organizations. Hence, it makes sense to
eliminate organizations not representing an output in order to avoid false com-
putational outputs. This can be achieved by destroying either its closure prop-
erty or its self-maintenance.

P5: An output organization should have no organization below The
dynamics of the reaction system that moves from one organization O1 to an-
otherO2 below (i.e., O2 ⊂ O1) is called a downward movement. This dynamical
move can be theoretically prevented by the self-maintenance property with the
right kinetics. Practically speaking, this move may occur spontaneously due
to, e.g., stochastic effects because the self-maintenance property only ensures
the possibilities to sustain all species. Following this principle, a downward
movement can be restricted.

P6: Assure, if possible, stoichiometrically the stability of an output
organization Instead of eliminating organizations below the desired output
as in the previous principle P5, the downward movement can be ruled out
by purely stoichiometric argument. It may be possible to design the reaction
network such that the organization representing the desired output is stable for
any kinetic law. As a simple example consider the system R = {a→ b, b→ a},
which has two organizations: {∅} and {a, b}. Doe to mass-conservation, the
system can never move spontaneously from the organization with two species
to the empty one.

P7: Use kinetic laws for fine tuning The kinetic laws determines the
systems’ behavior within an organization and the transition dynamics between
organizations. One of rationals for the right kinetics is to assure that the dy-
namical reaction systems are stable in the output organizations, restricting
mainly the downward movement. Finding the right kinetic laws is in general
a non-trivial task. However, the existence of such laws is ensured by chemi-
cal organization theory to a certain extend, and we have seen in the examples
(Chapter 3 and 4) that following principles P1-P6 simplify this tasks signifi-
cantly. Classical dynamical systems theory is certainly reliable for this task,
and it is even possible to derive at lease in some cases rigorously dynami-
cal stability from network structure [Clarke, 1980; Feinberg and Horn, 1974].
Another point of consideration is a trade-off between that stability and the
speed of computation since chemical reaction systems may compute by moving
amongst organizations.

62

Outlook

inject molecules

molecules
distribute

reorganization
(self−repair)

cells differentiate
(self−organization)

a cell is removed
(perturbation)

Figure 5.1: Scenario of a benchmark problem, where a set of sensor nodes have
to differentiate such that pairwise neighbors are in different states.

5.2 Outlook

5.2.1 Benchmark problem scenario

To allow not only qualitative but also quantitative evaluation of our approach, a
benchmark problem is desirable. We envision a variant of the maximal indepen-
dent set problem addressed in Chapter 4 as a simple benchmark. The scenario,
shown in Figure 5.1, takes place on a distributed computational system, ex-
pressing self-organizing and self-repair (or self-adaptive) behaviors. Computing
entities are linked, and the communications between them are established via
the link. An actual application area of this scenario is sensor networks Culler
et al. [2004] because of the following reasons: Since the network consists of a
large number of small sensor particles spread over a large area, self-organizing
properties are practical to take control over such systems. In fact, this idea
is the motivations of the research field Organic Computing [Müller-Schloer,
2004]. Self-adaptability is demanded because of unpredictable change of net-
work structure and environments.

A simple benchmark problem is sketched in Figure 5.1: Assume that sensor
nodes are arranged linearly. Specific molecules are distributed over the network.
Then the network should self-organize such that pairwise neighboring nodes
are in different states, for example, one class should perform a measurement at
night and the other at daytime. When nodes are removed or added dynamically,
spontaneous reconfiguration should occur (self-repair). The recovery time or
number of acceptable perturbations can serve as a quantitative measure of the
systems performance.

5.2.2 Potential technical environment

For a concrete application a chemical programming environment and a runtime
system as sketched in Fig. 5.2 could be implemented. It consists of a compiler
that takes a high level description of a chemical program as input. A chemi-

63

5. Conclusion and Outlook

ChemOS

ChemVM

a+b −> c+b

c −> d

d+e −> b+e..

Programming tools

.

b

a
e

dc

Analysis tools

Low level language

High level language

Compiler

Hardware
memory, sensor, actuator ...

(e.g., workstation or sensor node)

(e.g., Linux or TinyOS)
OS

Figure 5.2: Schematic representation of architecture of the chemical program-
ming workbench. ChemVM: a virtual machine that is able to run a (low-level)
chemical program. Compiler: compiles a high-level chemical language to a
lower-level language that can be run on a ChemVM. ChemOS: its main task is
to handle input-output to other (conventional) software processes running on
the same system, or to hardware sensors and actuators. The architecture should
allow to “plug in” different compilers, which may compile the same program
to different virtual machines, e.g., a deterministic or a stochastic machine.

cal program consists of a list of molecules and reaction rules including kinetic
laws. The compiler generates “chemical byte code”, which can be processed by
the chemical virtual machine. The advantage of the compilation step is that
different chemical languages can be run on the same virtual machine. For ex-
ample, a simple language where molecules are just symbols and reaction rules
are explicit transformation rules, or a more complex language where molecules
posses a structure and reaction rules are defines implicitly by referring to that
structure (e.g., prime number chemistry). The virtual machine requires some
input-output functionality, which is partly taken from the underlying operat-
ing system. Special communication between the chemical program and other
hardware, such as sensors or actuators, is handled by the ChemOS (chemical
operating system).

The sketched architecture and the theoretical approach exemplified through-
out this Part should lead to a practical framework for “chemical programming”.
By doing so, we expect to make available a technology that allows to create
computational systems with the properties of their biological counterpart.

64

Autonomous Design

65

Introduction

In the previous part, we followed a constructive programming strategy where
modifications of the reaction networks are made only by a rational human pro-
grammer. For that approach, it is inevitable that the target problem should be
divided into sub-problems, or at least the programmer should be aware of the
structure of the problem intuitively or logically. This is similar to conventional
programming. While that constructive approach for designing the chemical
reaction network in vivo has been also pursued by [Guido et al., 2006], our
focus here is to design chemical systems in an autonomous manner. The main
difference is that human interactions during the programming process are min-
imized. As a result, the programmer is now free of the structural analysis of
the problems. In other words, it is not necessarily clear for the programmer
how the target problem is solved. The most popular comparison of the these
two approaches may be the systems engineered and evolved.

Comparing the two approaches of constructing and evolving, the engineered
system tends to be simpler and more effective because irrational components
are usually omitted. These simplicity and effectiveness lead to the stiffness so
that the system is intolerant to modifications. Tiny modifications cause un-
predictable effects on the system’s, and the effects are normally negative such
as function failure. There may be also a case such that major system changes
cause no effects at all. On the other hand, evolved systems embraces more
components than necessary, and that extra complexity may lead to distinc-
tive characteristics such as robustness and adaptability. The evolved systems
may be robust against a functional failure of components, for example, by as-
signing an identical sub-function to different components in order to sustain
the functionality as a whole. This mechanisms also influenced engineers so
that a module to keep a complete duplicate may be explicitly implemented in
the system although this is out of favor because it just doubles the necessary
space and resources without definitive payoffs. Güdemann et al. [2007] mod-
eled self-adaptive behaviors of systems with three kinds of robotic tools such
that a malfunctioning robots are substituted by the other robots. The adapt-
ability, in principle, is another aspect of evolvability for biological organisms
to adapt to the ever-changing environments. Making use of this evolvability
is believed to distinguish the chemical computing systems from conventional
computers because conventional computing systems exhibit severe difficulties
on this point due to the intolerance to modifications. Hence, one main theme
in this part is to program chemical reaction systems by evolution, and we focus
on the analysis of the evolutionary process. This investigation may lead to the
deeper understanding of evolvability.

As autonomous design techniques, two approaches constitute this Part, and

67

Autonomous Chemical Programming

the first is to employ the principles of evolution. The next Chapter 6 discusses
programming chemical reaction network using evolutionary algorithms, based
on a work together with Lenser et al. [2008], in comparison with constructed
reaction systems. In Chapter 7, the idea to understand evolutionary processes
using chemical organization theory is further elaborated. Chapter 8 and 9
present the other approach of autonomous design, cooperating with principles
of exploration. This explorative approach is fundamentally different because
programming is not associated with modification of chemical computing sys-
tems. Instead, systems are explored and searched for interesting behaviors.
The basic idea is that an autonomous system is used, as a preliminary step, to
explore the behavior of the chemical reaction system. Then, a specific aspect of
the system’s behavior will be utilized for a particular computational purpose.

Those two approaches, evolution and exploration, share the common as-
sumption: the effects of changing a reaction system are hard to predict in
advance. The evolutionary design approach modifies reaction networks at ran-
dom. Whether the modifications are fit or not is evaluated after those have
been made. A prediction process is not involved in this way of programming.
For the explorative approach, the intention to alter reaction systems are even
disregarded. When dealing with natural systems, however, this assumption
is believed to be appropriate since factor interactions established within the
systems are complex and tangled. A substantial amount of efforts must have
been spent to prevent undesired side-effects in order to implement a theoret-
ical blueprint of chemical computing systems. Moreover, that undesired be-
haviors can be novel. Extensive interactions between components should not
be hindered so that unpredictable behaviors occur. That way, there would be
possibilities to utilize abundant complexities embraced within those natural
systems. Controlling or programming such systems is difficult, but price of
programmability may be received as other systems’ feature of computational
efficiency and adaptability [Conrad, 1988].

68

Source :

Lenser, T., Matsumaru, N., Hinze, T., and Dittrich, P.
(2008). Tracking the evolution of chemical computing
networks. In Bullock, S., Noble, J., Watson, R. A., and
Bedau, M. A., editors, Proceedings of the Eleventh
International Conference on Artificial Life. MIT Press,
Cambridge, MA.

Chapter 6

Comparing Evolved Reaction
Networks with Constructed
Reaction Networks

Contents
6.1 Method of Evolutionary Design . 70
6.2 Evolutionary Process . 71
6.3 Analysis of Evolved Network . 73

6.3.1 A Chemical Flip-Flop Evolved 73
6.3.2 Dynamical Behavior . 74

6.4 Discussion . 77

In a previous work, Lenser et al. [2007] have developed a software designed
to evolve biological networks (called SBMLevolver) and measured the perfor-
mance impact of certain design decisions for that algorithm. Adopting that
software package, we evolved a reaction network capable of flip-flop opera-
tion [Lenser et al., 2008] 1, on which this chapter is based. There are mainly
two focuses in this study. One is the final product of the evolution, that is, the
network evolved to function as flip-flop. We compared the evolved networks
with a manually constructed one presented in Chapter 3, Section 3.4. This
comparison was possible because the identical coding scheme was chosen to
represent boolean values with molecular species. Additionally, the evolution-
ary process itself was our focus, as pointed out by Bedau and Brown [1999],
in order to distinguish relevant evolutionary activities. We used chemical or-
ganization theory [Dittrich and Speroni di Fenizio, 2007], described also in
Chapter 1, for that purpose to trace the trajectory of evolving chemical reac-
tion networks. Similarly, Matsumaru et al. [2006b] used that theory to study
the evolutionary dynamics of artificial chemical systems, which is presented in
the next chapter.

We concluded that evolution selects for an organizational structure that is
related to function. That is, the resulting computation can be explained as a
transition between organizations. Furthermore, an evolutionary process can be
successfully tracked as a change of the organizational structure, which provides
a fundamentally different view than looking at the structural changes of the

1the author is listed as the second author

69

6. Comparing Evolved Reaction Networks with Constructed
Reaction Networks

R Q

S S R

d

c
Q

b

a

BA

1

0

0 0

0 1

1 0

1 1

1 1

0
1

t tQ Q

Q Qt+1 t+1

reset
set

hold

Figure 6.1: Circuit diagram and operation mode of flip-flop.

reaction networks. In our experiments, 90% of evolutionary improvements
coincide with a change in the organizational structure.

This chapter consists of four sections: In the following section (Section 6.1),
the experimental setting to evolve a reaction network is presented. As results
in Section 6.2, three aspects of the evolutionary process are given. In addi-
tion to the traditional aspect of the dynamical behavior of the evolution, we
analyse the dynamical change in terms of the chemical organization within the
reaction networks. We also show a reaction network evolved for the flip-flop
function in Section 6.3.1, and the organizational structure within the network
is investigated. The flip-flop operation is described on the level of organizations
and dynamically simulated. In Section 6.4, we discuss the evolved network in
comparison with the hand-designed chemical flip-flop.

6.1 Method of Evolutionary Design

We employ an evolutionary algorithm that instantiates a natural selection
process on chemical reaction networks [Fernando and Rowe, 2007]. The al-
gorithm can mutate the reaction rules R of a reaction network with a fixed
predefined set of molecular species M. There are three mutation operators:
to add a reaction , to delete a reaction, or to replace a reaction with a differ-
ent one. To keep things simple, we employ a (1+1)-EA. That is, one parent
generates one offspring, while the better of the two survives. If both have the
same fitness, the offspring is kept so that neutral mutations and thus search
space exploration is enabled. No parameter fitting is done, and each reaction
is always associated with randomly chosen reaction parameters. A change in
that parameters can only be realized through a replacement of a reaction with
the same reaction, which has a different value. Only mass-action kinetics of
first and second order are used in the evolution.

We employ the identical coding scheme to represent boolean values with
molecular species as in [Matsumaru et al., 2007] and in Chapter 3, Section 3.4.
In Figure 6.1, an (RS - Reset and Set) flip-flop is, once again, shown for the
structure and the behavior in form of a truth table. To represent the four
binary variables a, b, c and d, two opposing species x0 and x1 for each binary
variable x are assigned. The presence of x0 denotes the value x = 0, and x1

denotes x = 1. To help maintain a valid state inside the system, we fix four
destructive reactions x0 + x1 → ∅ for all four species pairs xi = ai, bi, ci, di.
These reactions cannot be changed or deleted by the evolutionary algorithm.

The ideal flip-flop that is the target of the artificial evolution works in the
following way: The set operation (S̄, R̄) = (0, 1) changes the state Q to 1,
while the reset (S̄, Q̄) = (1, 0) changes Q to 0. To hold the previous state, both
inputs are set to 1. The forbidden input (S̄, Q̄) = (0, 0) is not considered in the

70

Evolutionary Process

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

normalised evolutionary progress

fit
ne

ss

Figure 6.2: Average fitness value from beginning to end of evolutionary runs,
from 30 independent repetions. The x-axis denotes the normalised evolutionary
progress from the random initial solution (x = 0) to finding a solution with
fitness 0 (x = 1). For this, the different runs were resampled to 1000 samples,
as described in the text. Errorbars indicate standard deviation.

fitness evaluation. In chemical form, the input (S̄, R̄) = (0, 1) is represented by
defining an inflow for a0 and b1, that is, {∅ → a0, ∅ → b1} ⊆ R; and the other
two cases are treated similarly. The initial concentrations of ci and di are set
according to the previous state Qt. Taking this together, we get six different
test cases, coming from three different operations with two initial conditions
each.

For each case, we specify either the presence or the absence of each species
as desired, measured in steady state after simulating the reaction system for
1000 seconds. Numerical integration is done using the SBML ODE Solver
Library [Machné et al., 2006]. The classification as present or absent is decided
by a concentration threshold of 10−9 (arbitrary units). For example, in the
reset case, the following steady state concentrations are considered as correct:
a1 = 1, a0 = 0, b1 = 0, b0 = 1, c1 = 0, c0 = 1, d1 = 1, d0 = 0 where 1 and 0 are
the classification of presence or absence, respectively, not the concentration.
The fitness value is then calculated by counting the number of wrong presence
/ absence measurements, with 0 being the best possible fitness value. Once a
fitness of 0 is reached, the evolution stops.

6.2 Evolutionary Process

To analyse the evolution of reaction networks acting as flip-flops, we performed
30 indepent runs in order to evaluate properties of a “typical” run. A statistical
analysis of those 30 runs is shown in this section.

The average fitness development (Figure 6.2) shows a stronger gain in fit-
ness at the beginning, while the convergence towards zero is slower later on.
Eventually, all runs reached a fitness of zero, i.e. the networks behaved as
specified in the fitness function. Since a run stops exactly when the fitness of
the current individual is 0, the number of generations usually differ between
runs. In order to be able to average over these runs, we had to resample the

71

6. Comparing Evolved Reaction Networks with Constructed
Reaction Networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

normalised evolutionary progress

nu
m

be
r

of
 o

rg
an

is
at

io
ns

(a1, b1)

(a0, b1)

(a1, b0)

Figure 6.3: Average number of organizations from 30 independent runs of the
evolution. Colors denote the (a0, b1) input (blue), the (a1, b0) input (red), and
the (a1, b1) input (green). Errorbars indicate the standard error. Unit of x-axis
as in figure 6.2.

data on fitness and number of organizations, such that a common number of
measurements for each run is achieved. To this end, we constructed a timescale
of “normalised evolutionary progress”, defined by its endpoints 0.0 at the be-
ginning of the evolution and 1.0 at the end when the final solution is found.
The MATLAB function resample, which applies an anti-aliasing lowpass FIR
filter during the resampling process, was used to create new data points at 1001
equally spaced points between 0.0 and 1.0.

Figure 6.3 shows the average number of organizations from 30 independent
runs. The graph is a combination of three lines corresponding to three flip-flop
operations. Since the three input settings are realized by enabling or disabling
inflow reactions for input species a1, a0, b1 and b0, the reaction network struc-
ture for each operation is different, and so is the organizational structure. We
need to compute three organizational structures for each candidate solution
evaluated, one for each input settings. Looking at the number of organizations
for the three different input cases, we can see that starting from around four
to five organizations on average, the numbers diverge between the set/reset
operations and the hold operation. While the number of organizations for the
set/reset organization converges between two and three, the hold operation
yields around seven organizations on average.

By comparing the organizational structures between successive candidate
solutions, we calculated that 90% of all fitness improvements are accompanied
by a change in the organizational structure for at least one input case. In con-
trast, only 18% of organizational changes also come with a fitness improvement.

72

Analysis of Evolved Network

When looking at the lineage of networks that led to the final solution, disre-
garding unsuccessful candidates, we find that 35% of all mutations changed the
organizational structure for at least one input.

6.3 Analysis of Evolved Network

6.3.1 A Chemical Flip-Flop Evolved

An outcome of the evolutionary process described above is analyzed. The
reaction network considered here has a fitness value of 0, i.e. it solves the
given task. Comparing the fitness development of this evolution (not shown
here) with the average of the 30 runs shown in Figure 6.2, we can conclude
that this single run progressed in a fairly standard way. This is especially
true given that the behavior of the 30 runs is quite diverse, as indicated by
the large standard deviations. The length of this run (162 generations) is also
in the usual region, with an average run taking 221 generations. Moreover,
with respect to the number of organizations, the product analyzed here is in
agreement with the average shown in Figure 6.3, even though the number of
organizations for the set/reset operations are at the outer limits of the typical
range (five and one, respectively). The product chosen here is a “typical”
solution the evolutionary process finds.

The chemical flip-flop evolved by the evolutionary process is shown in Fig-
ure 6.4 as a reaction network. There are seven reactions, labeled as rea1 to
rea7 in the figure, in addition to four reactions of cooperative decay (not shown
in the figure), a1 +a0 → ∅, b1 + b0 → ∅, c1 + c0 → ∅, d1 +d0 → ∅. This base re-
action network is extended to include inflow reactions, representing the inputs
to the flip-flop circuit, depending on the operations. Organizational structures
of the reaction system for each operational mode are shown in Figure 6.5.

Analysing the organizational structure of the reaction network, it becomes
evident that the reaction system based on this reaction network is surely us-
able for the flip-flop computation. Including the two inflows ∅ → a1 and
∅ → b0 in the reaction network, as shown in Figure 6.5 A, only one set of
species {a1, b0, c0, d1} satisfies the conditions to be an organization. It implies
that only this species combination can be found in the dynamical reaction sys-
tem in equilibrium states. Therefore, the reset operation can be realized in
the evolved reaction system. The network with the inflows of ∅ → a0 and
∅ → b1 contains five organizations as shown Figure 6.5 B, and one of those
{a0, b1, c1, d0} corresponds to the set operation.

Changing inflow reactions to ∅ → a1 and ∅ → b1 achieves the hold operation.
In terms of the organizations, as shown in Figure 6.5 C, the two organizations
orgHR= {a1, b1, c0, d1} and orgHS= {a1, b1, c1, d0} in the reaction network
with those inflows reflect the bistability of the flip-flop circuit. Depending on
the state at the previous time step, the hold operation results in a different
state, namely the previous one. When the reaction system has been in the
state after the set operation, (i.e., orgS), the hold operation brings the system
to the state of orgHS, keeping the output species unchanged as c1 and d0.
Holding the information that the system has been reseted can be achieved by
moving the system state from orgR to orgHR.

The last operation of setting both inputs to be zero (a = b = 0) is for-
bidden for the flip-flop circuit. If adding two inflows of ∅ → a0 and ∅ → b0

73

6. Comparing Evolved Reaction Networks with Constructed
Reaction Networks

a0 a1

c0 c1

d0 d1

b0 b1

rea1

rea2

rea3

rea4

rea5
rea6

rea7

Figure 6.4: Chemical reaction network implementing flip-flop circuits, designed
through an evolutionary process. Cooperative decay reactions (a1 + a0 → ∅,
b1 + b0 → ∅, c1 + c0 → ∅, d1 + d0 → ∅) are omitted.

to the base reaction network, one set of species becomes the organization:
{a1, a0, b0, c1, c0, d1, d0}. Only b1 is not involved to form the organizational
structure.

If no inflow reaction is presented, there are 42 organizations in the base
reaction network. The smallest organization is the empty set ∅. The sets
containing four species forms the largest organizations, and there are four or-
ganizations of that size. The organizations with the size of four in Figure 6.5
are also found to be the organization without inflows, except the organization
labeled as orgR. In fact, all organizations in Figure 6.5 except orgR are also
organizations without inflows.

6.3.2 Dynamical Behavior

To validate the organizational analysis of the reaction network, a dynamical
reaction system is constructed and simulated with Copasi [Sahle et al., 2006],
a biochemical reaction system simulator. Agreeing to the fitness calculation
of the evolutionary design process, mass action kinetics is assumed for every
reaction, if applicable. The ordinary differential equations (ODEs) for the input

74

Analysis of Evolved Network

a1, b1

a1, b1, d0a1, b1, c0a1, b1, d1 a1, b1, c1

a1, b1, c0, d0a1, b1, c0, d1 a1, b1, c1, d0

orgHR orgHS

a1, b0, c0, d1

orgR

a0, b1

a0, b1, c1a0, b1, d1 a0, b1, d0

a0, b1, c1, d0

orgS

∅ → a1

∅ → b0
∅ → a0

∅ → b1

∅ → a1

∅ → b1
C

A B

hold

reset

hold

set

setreset

Figure 6.5: Organizational structure in the reaction network shown in Fig-
ure 6.4.

species read:

˙[a1] = k1[a0][c0]
+k4[c1][c0] + k6[c1][d1]− da[a1][a0] + Ia1(1− [a1]) (6.1)

˙[a0] = −k5[a0][c0] + k6[c1][d1]− da[a1][a0] + Ia0(1− [a0]) (6.2)
˙[b1] = −db[b1][b0] + Ib1(1− [b1]) (6.3)
˙[b0] = −k2[b0]− k7[b0]− db[b1][b0] + Ib0(1− [b0]) (6.4)

where a kinetic parameter for a reaction rea id is denoted as krea id. Kinetic
parameters for the cooperative decay reactions are represented by d, and the
subscript specifies the pair. For example, the decay rate of the cooperative
decay reaction a0 + a1 → ∅ is denoted as da.

Inflow reactions representing the operation of reset, set, and hold are con-
trolled by the four parameters: Ia1 , Ia0 , Ib1 , and Ib0 . These parameters are
binary variables, accepting only 0 or 1. For example, when the chemical flip-flop
is set, Ia0 and Ib1 are set to one and the other pair of parameters Ia1 = Ib0 = 0
is set to zero. Inflows are assumed to be constant fluxes. Furthermore, the
inflows are linked to normal decay reactions such as a1 → ∅ in order to avoid
endless increase of the input species concentration. The resulting term of the
ODE is Ia1(1− [a1]), for example.

75

6. Comparing Evolved Reaction Networks with Constructed
Reaction Networks

0

0.2

0.4

0.6

0.8

1

700 725 750 775 800

C
o
n
ce

n
tr

a
ti

o
n

[m
o
l/

l]

Time [s]

a1

a0b1

5b0

0

0.4

0.8

1.2

1.6

700 725 750 775 800

C
o
n
ce

n
tr

a
ti

o
n

[m
o
l/

l]

Time [s]

20c1

c0

d1

0.5d0

reset hold set hold

OrgR OrgHR OrgS OrgHS

Figure 6.6: Dynamical simulation of chemical flip-flop designed by evolution.
Parameters are set as follows: da = db = 0.1, k4 = 2.33941, k6 = 2.83745,
k1 = 4.44231, k5 = 3.62963, k7 = 4.82838, k3 = 1.0, k2 = 0.1, dc = 0.001, dd =
1.0. Additionally, for each operation of reset, set, and hold, inflow reactions are
activated. For the set operation, the parameters are set such that Ia0 = Ib1 = 0
and Ia1 = Ib0 = 1 to activate inflows of a1 and b0 species and to deactivate
the others. The reset operation is initiated by setting Ia0 = Ib1 = 1 and
Ia1 = Ib0 = 0. The hold operation is achieved with the parameter settings of
Ia1 = Ib1 = 1 and Ia0 = Ib0 = 0.

The ODEs for the output species read:

˙[c1] = k3[d1][d0]− k6[d1][c1]− dc[c1][c0]− Ib0 [c1] (6.5)
˙[c0] = −k1[a0][c0] + k7[b0]− dc[c1][c0]− Ib0 [c0] (6.6)
˙[d1] = k2[b0]
−k3[d1][d0]− k6[d1][c1] + k7[b0]− dd[d1][d0]− Ib0 [d1] (6.7)

˙[d0] = −k3[d1][d0] + k5[a0][c0]− dd[d1][d0]− Ib0 [d0] (6.8)

Kinetic parameter values are also provided as the outcome of the evolutionary

76

Discussion

design, but we manually adjusted the values so that the operations can be
continuously repeated. When the fitness of the reaction system was calculated
during the evolution process, three of the operations were evaluated separately
and the reaction system was reinitialized for each case. This re-initialization
step between operations is prevented so that the end state of the previous
operation becomes the initial state of the next operation. For that purpose,
the outflows of the input species are added as described above in order to
restrict the increase of the concentration. For the output species, the outflows
are also added as shown above, activated only when the inflow of b0 is present.
This modification is also to restrict the increase of the concentrations of the
output species, specially, when the system is reseted.

The last modification is the kinetic parameter of the reaction rea1, k1, from
4.44231 to 0.5. The rational of this adjustment is: under the input condition
“set”, the system is observed to converge to the organization of {a0, b1, d1},
instead of orgS. This behavior is results from the fast extinction of c0 species
so that the generation of d0 by rea5 is insufficient. Slowing down the reaction
speed of rea1, species c0 stays in the system longer and produces d0 enough to
neutralize d1.

6.4 Discussion

We found that most fitness improvements come together with change in or-
ganizational structure (90%), showing that organization analysis indeed yields
insight into the evolutionary process. On the other hand, most organizational
changes are fitness-neutral (82%), indicating that a lot of the information given
in the set of organizations does not directly relate to the measured function of
the networks. We have also observed a fitness improvement caused purely by
the change of a kinetic parameter, as well as by changes of network structure
not reflected in the organizations.

Another observation is that the number of organizations for the set and
reset operations is substantially smaller than that for the hold operation, in
analogy to the hand-constructed flip-flop by Matsumaru et al. [2007] and Chap-
ter 3, Section 3.4. In comparison to that solution, the evolved networks show
a larger number of organizations for each input case. To realize the flip-flop
behavior in the reaction system, the minimum number of organizations in the
reaction network is one for the set and reset operation and three for the hold
operation. The hand-designed flip-flop implementation shown in Section 3.4
has two organizations for set and reset and three for hold. The evolved net-
works, on the other hand, have more organizations on average between two
and three each for set and reset, and seven for hold. This implies that even
though the function of the flip-flop networks is reflected in their organizational
structure, this structure contains more information than only the operational
modes specified in the fitness function.

Evolving organizations For this work, the notion of chemical organizations
is used only passively such that the evolutionary processes are analyzed with
it. As an interesting extension of this work, one could use organizational anal-
ysis actively in order to direct the evolution of reaction networks. By first
designing the perfect organizational structure and then evolving networks with

77

6. Comparing Evolved Reaction Networks with Constructed
Reaction Networks

this structure, it would be possible to study whether these network have the
desired functionality. This idea can be rationalized by the findings in this work
such that the change of organizational structures contributed largely to the
improvements of the fitness values. In addition, the original fitness evaluation
involves a step of random assignments of kinetic parameters, and these param-
eter values are influential to the behaviors of reaction systems. It is possible
that proper reaction networks are discarded because of the wrong choice of
kinetic parameters. If including the organizational analysis in the fitness eval-
uation and giving an extra reward for the properness of the network structure,
convergence of the fitness value will be accelerated. To make it even more
rapid, the notion of organizations can be utilized to control mutation processes
so that the evolution is guided to eliminate unnecessary organizations. Further
investigation regarding the effect of different structural mutation operators on
the organizational structures is beneficial.

78

Source :

Matsumaru, N., Speroni di Fenizio, P., Centler, F., and
Dittrich, P. (2006b). On the evolution of chemical
organizations. In Artmann, S. and Dittrich, P., editors,
Explorations in the complexity of possible life: abstracting and
synthesizing the principles of living systems, Proceedings of the
7th German Workshop of Artificial Life, pages 135–146. Aka,
Berlin.

Chapter 7

Tracking Chemical Evolution

Contents
7.1 Two Levels of Chemical Evolution 80
7.2 Experimental Setup . 80

7.2.1 Automata Chemistry . 81
7.2.2 Reaction Dynamics: Pseudo Code 82
7.2.3 Analysis Method . 82

7.3 Results . 85
7.3.1 Dynamical behavior as downward movement 85
7.3.2 Upward and sideward movement 86
7.3.3 Diversity and Organization 88

7.4 Discussion and Conclusion . 88

As a conclusion of the previous chapter, transformation of organizational
structures can be an important step in the evolution of a chemical comput-
ing system to improve the fitness 1. In this chapter, we further elaborate
how an evolution of chemical systems can be tracked. A method is to distin-
guish the organizational evolution in the set of organizations from the actual
evolution. There are three types of movements in the level of organizational
evolutions [Dittrich and Speroni di Fenizio, 2007], and those movements are
illustrated as the method using a constructive artificial chemistry. It is shown
that the two levels of evolutions interact with each other in a non-trivial man-
ner. Employing also the representation of the organizational evolution to study
chemical evolution is useful.

Two Evolutionary Processes Before proceeding further, we would like to
emphasize the essential differences of two evolutionary processes presented in
this chapter and the previous chapter. In the previous chapter, the target sys-
tem of the evolutionary process is the reaction network. The network structure
was given explicitly in the global domain external to the reaction systems, and
it is the network structure that is mutated directly. In this case, the appli-
cation of chemical organization theory was straightforward. When observing
dynamical evolutionary processes of reaction systems in general, on the other
hand, molecular concentration profiles of the systems are obtained but the re-
action network structure is not immediately available. Analysis of evolutionary

1experimented and analyzed chiefly by Thorsten Lenser and presented in Chapter 6

79

7. Tracking Chemical Evolution

processes targets the changes of concentration profiles in reaction systems. To
simulate such a case, the molecules for the experiment in this chapter are de-
fined to have a structure, and that determines the reaction rules. The reaction
rules are, so to speak, implicit because they are encoded into the structure of
the molecules. The extinction of one molecular species from the reaction vessel
results in the removal of a reaction rule. The appearance of new species adds
a rule to the reaction network. For the analysis of such systems using chemical
organization theory, reconstruction of the reaction network is obligatory.

7.1 Two Levels of Chemical Evolution

In the theory of chemical organization, the dynamical change of the concen-
tration profile in state space X can be mapped to the set of organizations L.
This mapping arises two-level representation of the dynamical (evolutionary)
behavior. We distinguish the movement in L as organizational evolution from
actual evolution in X. Figure 7.1 schematically describes, including the two-
level evolutions, the analysis of a reaction system using chemical organization
theory. Given a reaction network 〈M,R〉, the organizational structure em-
bedded within the network structure is derived (Figure 7.1, Left) in order to
abstract behavioral modes of dynamical reaction systems. To realize a move-
ment in the state space X, dynamics of the reaction systems are necessary
to be given additionally. Regarding two states xt1 ,xt2 ∈ X at time points t1
and t2 (t1 < t2), the organizations Ot1 , Ot2 ∈ L can be generated as follows:
Ot1 = Gorg(φ(xt1)), Ot2 = Gorg(φ(xt2)). Applying the abstraction φ mapping,
we can obtain the set of species St = φ(xt) at time t. The organizational
evolution denotes the transition between two organizations, and the movement
can be categorized into three directions [Dittrich and Speroni di Fenizio, 2007]:
upward, downward, and sideward (Figure 7.1, Right). In case Ot1 ⊃ Ot2 , the
movement in the state space is classified as a downward movement. The other
way of inclusion, namely Ot1 ⊂ Ot2 , is an upward movement. The dynamical
change (Ot1 6= Ot2) that is neither downwards nor upwards is called a sideward
movement. The equality, Ot1 = Ot2 , is excluded since no movement is detected
on the level of organizations.

Evolution and Organization Evolution has been recognized as a main
process of developing natural organisms with complex behaviors from a simple
form. Associating organizations in reaction networks with behavioral modes
of the reaction systems, the high complexity of organisms’ behaviors might
be correlated to high complexities of the organizational structure. Extending
this argument, the upward movement and the sideward movement becomes
particularly significant in the field of evolution. Those two transitions effect
the new sub-organization in the reaction network.

7.2 Experimental Setup

In this section, we demonstrate how the chemical organization theory gives an
insight to chemical evolution. An artificial chemistry system called automata
chemistry [Dittrich and Banzhaf, 1998] is used to generate chemical evolution.

80

Experimental Setup

φ
g+1x

Movement
in the state space

(actual evolution)

Movement in the set
of organizations

φ
x g

GSM C g+1

GCL

Sg+1

O g+1

O g

GOrg

O g+1GCL

Sg

C g
GSM

O g

GOrg

3
3 4

1

3

2 2

2

downward

upward

sideward

(organizational evolution)

1 2 3 4

1 3 4

2 3

1

Figure 7.1: Illustration of the two levels of chemical evolution. Left: Based on
the static network structure, the reaction network is decomposed into overlap-
ping sub-networks called organizations. The hierarchical organizational struc-
ture of the network is visualized by a Hasse-diagram. Middle: To analyze the
system’s dynamics, a movement from state xg to a state xg+1 in state space is
mapped to a movement from organization Og to organization Og+1. The actual
evolution of the state x from g to g + 1 does not necessarily lead to a change
of the organizations, that is why we distinguish the actual evolution of the set
of molecules actually present in the reactor from the organizational evolution
of the organizations reachable from that molecules. Right: The organiza-
tional evolution is categorized into three movements: upward, downward, and
sideward. See text for detail.

7.2.1 Automata Chemistry

Molecular species are binary strings s ∈ {0, 1}32 with a constant length of
32 bit. Two strings can catalyze the production of a third string: s1 +s2 ⇒ s3.
One of the strings s1 is mapped to an automaton As1 according to a well
defined instruction table (we used code table II in [Dittrich and Banzhaf, 1998]
allowing self-replication). The other s2 serves as the input to As1 . The result
of executing the program on the input string is the product s3 = As1(s2).

The dynamical system consists of the following three components:
i A soup (population) of objects

The soup contains a collection of objects, and these objects may be char-
acter sequences, lambda-expressions, or numbers. Here, we use as an
object binary strings s ∈ {0, 1}32 with a constant length of 32 bit.

ii A collision or reaction rule
A collision rule defined the interaction among two objects which may lead
to the generation of new objects. Here, automata reaction with code table
II [Dittrich and Banzhaf, 1998] is adopted. To instantiate a deterministic
reaction s1 + s2 → s3 where s1, s2, s3 ∈ {0, 1}32, binary string s1 is
“folded” into the instruction for an automaton As1 and string s2 is read
by the automaton as the input. The instruction is a sequence of register
commands, and each command is represented by four bits. Hence, the
32 bit string is converted into the sequence of eight commands. The
product string s3 is the result of the manipulation on the input string
by the instruction. The detail explanation can be found in [Dittrich and
Banzhaf, 1998].

iii Dynamics specification
This is the component to specify how the objects locates/moves in the

81

7. Tracking Chemical Evolution

soup and how the reaction rule is applied. Here, the soup is well-stirred so
that every object can interact with every other objects. The application of
the reaction is defined as a stochastic process. The pseudo code specifying
the dynamics is listed in Table 7.1

Preparing a reactor (or reaction vessel) containing N string objects, mul-
tiple copies of the species are placed in the reactor to simulate the dynamical
behavior of the reaction system. In each time step, two string objects are
randomly chosen to react, and the reactants are inserted back into the reac-
tor without deleting the two reactands. One randomly chosen molecule in the
reactor is replaced by the product in order to keep the total number of the
objects in the reactor constant. In short, the system is a catalytic flow system
in a well stirred reactor. In one generation, N steps are executed.

7.2.2 Reaction Dynamics: Pseudo Code

The algorithmic reaction dynamics is presented here as pseudo code. In line 1–
4, the parameters to determine simulation settings are set. Reactor (or reaction
vessel) R of size N is initialized in line 5 such that there exists N string objects
in the reactor R. The reactor is filled with N copies of a string to realize a
homogeneous state. A heterogeneous state can be achieved with one copy of N
random strings. Within a generation repeated with the for-loop from line 7,
there are two kinds of processes: reaction and mutation. The reaction process
is executed in line 9–16, which specifies how reaction rules are applied and
affect states of the reactor. Two string s1 and s2 are chosen randomly from
the reactor (line 11 and 12) as an operator and an operand, respectively. The
operator string of 32 bits is converted into a program consisting of eight register
commands. The program gets the operand as the input and manipulates the
input string. The output of the program is the result of the + operation in the
automata chemistry (line 13). The reactor state is altered by replacing a string
object with the reaction product so that the total quantity of the objects in
the reactor is unchanged. There are N reactions in a generation, repeated by
the for-loop in line 9. As a result, it is probable that every string object in the
reactor is updated via reactions in one generation.

The mutation process is within the for-loop of line 19–25 when the if -
condition in line 18 is satisfied. Generations between two mutation events are
counted with variable tinterval. A randomly chosen string object sm is mutated
to s′m by negating the k-th bit of the original string.

7.2.3 Analysis Method

Theoretically speaking, the automata chemistry consists of 232 = |M| binary
strings as molecular species and reactions among them, forming the reaction
network 〈M,R〉. Since it is impractical to consider the entire network, however,
only the small part related to the reactor state xg ∈ X at generation time g is
considered as 〈Mg,Rg〉 where Mg = GCL(φ(xg)) is the set of molecules that
can be generated from xg.

Representing the reactor state as a multiset: xg = {m1,m2, . . . ,mN} where
N is the size of the reactor, the abstraction φ of the reactor state is the set
Sg of molecular species present in the reactor, ignoring the multiplicity: Sg =
φ(xg) = {s ∈ xg|#(s ∈ xg) > 0} where #(s ∈ xg) denotes the number of

82

Experimental Setup

Table 7.1: Listing to define dynamics of automata chemistry

Algorithm: Automata chemistry
1 gmax ← maximum generation #
tmut ← mutation interval # interval between mutations
nmut ← mutation bit # number of bits to be mutated
N ← reactor size # (0 for no mutation)

5 M ← InitReactor(N) # initialization
tinterval ← tmut # init. mutation interval counter

7 for g ← 0 to gmax do
g ← g + 1 # start new generation

9 for i← 0 to N do
i ← i+ 1 # N reactions in one gen.
s1 ← chooseRandom(M) # choose operator
s2 ← chooseRandom(M) # choose operand
p ← s1 + s2 # react
s3 ← chooseRandom(M) # an obj. to be replaced
M ← (M \ {s3}) ∪ {p} # new reactor state

end
tinterval ← tinterval − 1 # count down till next mutation
if tinterval == 0 then

19 for j ← 0 to nmut do
j ← j + 1 # nmut obj. to be mutated
sm ← chooseRandom(M) # obj. to be mutated
k ← random[0,31] # k-th bit to be mutated
s′m ← negate(sm,k) # negate k-th bit of sm
M ← (M \ {sm}) ∪ {s′m} # new reactor state

end
tinterval ← tmut # re-init. mutation counter

end
end

Table 7.2: Listing of function to generate closed set.

Function : Generate closure GCL
Input: Set of species (S)
Output: Closed set of species (CL)

begin
CL← S
A← ∅
while A 6= ∅ do

A ← ∅
foreach (si, sj) : si, sj ∈ CL do

p ← si + sj
if p /∈ CL then A ← A ∪ {p}

end
CL ← CL ∪A

end
end

83

7. Tracking Chemical Evolution

Table 7.3: Listing of function to generate self-maintaining set.

Function : Generate self-maintaining set GSM
Input: Set of species (S)
Output: Self-maintaining set of species (SM)

begin
SM ← S
B ← SM
while SM 6= B do

B ← ∅
foreach (si, sj) : si, sj ∈ SM do

p ← si + sj
B ← B ∪ {p}

end
SM ← SM ∩B

end
end

occurrences of element s in multiset xg. Taking the closure of the set of species:
Cg = GCL(Sg) listed as the pseudo code in Table 7.2, the reaction network is
constructed by setting Mg = Cg. The set of reaction rules Rg = (Cg ∪ Dg) is
composed of two kinds of reactions: catalytic reactions Cg and decay reactions
Dg. Decay reactions Dg = {(m → ∅)|m ∈ Mg} are included since every
object is subject to be replaced by a reaction product. In this dynamical
simulation, it is not possible for the reaction vessel to be empty even though
every object species is defined to decay. Since two objects initiating a reaction
are not altered by the reaction, the process is defined as a catalytic reaction
Cg = {(mi + mj → mi + mj + mk)|mi,mj ∈ Mg,mi + mj ⇒ mk} where the
rule mi +mj ⇒ mk is defined in the automata chemistry. Note that mk ∈Mg

because of the closure property of the reaction network. As a result, there are
|Rg| = |Cg|+ |Dg| = |Mg|2 + |Mg| reaction rules.

Considering the characteristics of the reaction network, the function GSM
to generate the self-maintaining set can be defined as listed in Table 7.3. The
reaction network is designed so that every molecular species decays but the
reactants of all catalytic reactions are conserved. Only the decay reactions
contribute to the negative production rate of species. To be self-maintaining
for the set of species, those negative production rates must be compensated.
Therefore, the set is self-maintaining if all of the elements are produced by
the catalytic reactions. In order to generate the biggest self-maintaining set
contained in the original, species not produced by the reactions are excluded
from the set until every species is produced.

Given the reaction network 〈Mg,Rg〉, we compute all organizations to ex-
tract the hierarchical organizational structure in the reaction network. The
set of all organizations is denoted as Lg. It forms together with the union t
and intersection u of organizations an algebraic structure 〈Lg,t,u〉 called a
lattice2. The biggest organization Og ∈ Lg is generated from the whole set
of the species present in the reaction vessel: Og = Gorg(Sg) where Gorg ≡

2Since the algebraic chemistry is designed as a reactive flow system, the set of all or-

84

Results

724457068a:
724457070b:
2200852076c:

d: 2200852078

2486064748e:
2486064750
f:
2637059692g:
2637059694h:

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

C
on

ce
nt

ra
tio

ns
 [#

 /
10

00
]

338581102
724457068
724457070

2200852078
2486064750
2637059692
2637059694

 1

 10

 100

 1000

0 100 200 300 400 500 600 700D
iv

er
si

ty
 [s

pe
ci

es
]

Time [generations]

g a h beg c a h f b d

h

g h

Figure 7.2: Dynamical behavior of automata chemistry showing several down-
ward movements. The reactor of size N = 1000 is filled initially with one
copy each of N species of random binary string with fixed length 32 bits. Top:
concentration profile of the reactor with respect to some prominent species.
Middle: diversity as the number of different species present in the reactor.
Bottom: lattice of organizations at generation 200, 400, 500, and 700. Dot-
ted boxes and lines are the organizations and links missing compared with the
previous lattice structure.

GSM ◦GCL. The other sub-organizations are generated from any subset of the
set: O′g = Gorg(S′g ⊂ Sg)

7.3 Results

In order to study downward movements, we simulate our artificial chemistry
without any external perturbations, that is, mutations, at first. Then, in Sec-
tion 7.3.2, we will demonstrate upward and sideward movements by introducing
moderate mutations, which cause constructive perturbations.

7.3.1 Dynamical behavior as downward movement

The reactor of size N = 1000 is heterogeneously initialized with N random
objects. Figure 7.2 shows the typical dynamical behavior of the simulated
chemical evolution in three forms. The concentration change of some species
(with relatively high quantity) is plotted to view the dynamical change of the
reactor state. As in the middle graph, the number of molecular species present
in the reactor is plotted as diversity. A tendency to decrease diversity may
describe this evolutionary behavior. This dynamical behavior is analyzed with
the theory of chemical organization, and the results are given as a series of

ganizations in such a system is proved by Dittrich and Speroni di Fenizio [2007] to form a
lattice.

85

7. Tracking Chemical Evolution

Hasse-diagrams, visualizing the lattice of organizations L200, L400, L500, and
L700 (Figure 7.2, bottom). The labels in the box indicate species that are new
in the corresponding organization and are not contained in any of the organi-
zations below it. Since the organizational structure depends on the qualitative
state of the reaction vessel, the result is not affected as long as the diversity
stays the same.

At g = 200, there are eight species in the reactor, and those species form
the biggest organizations: O200 = Gorg(S200) = S200. Forty-six organizations
are found as shown in the leftmost Hasse-diagram. In the next 200 generations,
four species are drained so that the diversity value of the reactor becomes four.
The lattice of organizations L400 consists of ten organizations including the
biggest organizations formed by the remaining four species. Comparing two
sets of the organizations L200 and L400, we found that L200 ⊂ L400 so that it
is possible to impose the lattice L400 on L200 as shown in the figure. The solid
lines represent the lattice at g = 400, and the organizations vanished during
the 200 generations are drawn by the dotted lines

This dynamical change of the reactor state can be explained as a downward
movement. The sets of species present in the reactor at generation g = 200 and
400 are the organizations: O200 = Gorg(S200) = S200 and O400 = Gorg(S400) =
S400. The inclusion O400 ⊂ O200 is true since species present in the reactor only
disappear and no new species appears within that 200 generations. Similarly,
this argument is applicable between S400 and S500 and between S500 and S700.
In this simulation settings, only the reactions can produce possibly new species,
but applying the chemical reactions to the set of existing species cannot disrupt
the closure property of the organization. Only the downward movement is thus
feasible.

7.3.2 Upward and sideward movement

To demonstrate upward and sideward movement, a mutation process is intro-
duced. Every 100 generation, ten objects are chosen randomly, and each binary
string object is mutated by inverting one randomly chosen bit. The reactor is
initialized homogeneously with N = 1000 copies of a certain species, so the
diversity value is 1 in the beginning. Figure 7.3 (top) shows the dynamical be-
havior of the concentration profile with respect to the prominent species, and
the number of the species existing in the reactor is plotted as diversity. The
rapid increase of the diversity every 100 generation is caused by the ten new
mutants. The organizational structure in the reaction network is computed
every 10 generation. At the moment of the mutation event, the network is
analyzed just before the mutation, and the effect of the mutation is observed
only after ten generations. At the bottom, the dynamical change of the lattice
structure from g = 360 is depicted. The organizations and links are drawn
by bold lines if inherited from the previous structure, and the dotted lines are
used if vanished.

Starting with two organizations (empty set and set of two species), the
mutation at g = 400 introduces new species to the reaction system and the re-
action network is expanded. After ten generations, the reaction system settles
to the state with four species. The reaction network with the four species is
composed of six organizations, and the biggest organization is the set of those
four species. This lattice structure is sustained in the next 200 generations

86

Results

k, l

m n

k, l tk, lr, sp, q

o mn

k, l

m n

e, fk, l

nm

k, lg, ha, b

c, d

i j m n

e, f

890 - 900

 0

 200

 400

 600

 800

 1000

C
on

ce
nt

ra
tio

ns
 [#

 /
10

00
] a: 1491813386

b: 1491813387
c: 1491813390
e: 1491821578
f: 1491821579
i: 1525374990

k: 1525376010
l: 1525376011

m: 1525376014
n: 1525376015
p: 1525376026
q: 1525376027

 0

 5

 10

 15

 20

D
iv

er
si

ty
 [s

pe
ci

es
]

Org. size

 0
 20
 40
 60
 80

 100

0 100 200 300 400 500 600 700 800 900 1000

La
tti

ce
 s

iz
e

[o
rg

.]

Time [generations]

g=360

d: 1491813391
g: 1525374986
h: 1525374987
j: 1525374991

o: 1525380106
r: 3672859658
s: 3672859659
t: 1525380107

Time:

360 - 400
620 - 700 710 - 800610410 - 600

Figure 7.3: Dynamical behavior of automata chemistry exhibiting upward and
sideward movement. The reactor of size N = 1000 is initialized heteroge-
neously. Every 100 generations, 10 string objects are chosen to be mutated
by an one-bit negation. Top: dynamical change of concentration profile of
the reactor with respect to prominent species. Second top: the number of
unique species in the reactor as diversity and the size of the biggest organi-
zation generated, calculated every 10 generations. Third top: the number of
the organizations in the reaction network. Bottom: Hasse-diagrams depicting
organizational structure in the reaction network. Starting from g = 360, two
upward movements are achieved until g = 610 although the lattice immedi-
ately shrinks (downward movement). From 800 to 900, a sideward movement
is observed.

including one mutation at g = 500. Temporarily, the next mutation at g = 600
brings up the system to the organization of ten species and thirty-four organi-
zations in the reaction network as observed at g = 610. After 20 generations,
all of the new organizations are vanished, and the lattice structure comes back
to that prior to the mutation at g = 600.

These are typical upward and downward movements. The mutation process
produces new species outside of the closure and causes upward movement. The
dilution flow removes species from the reaction vessel randomly, and the system
goes to the organization below. Since the concentration of the new species is
very low, the new organizations brought about by the upward movement has
a disadvantage statistically. Thus, the upward movement is canceled mostly.

The sideward movement is observed between O800 and O900. The mutation
process at g = 800 introduces new species to the reactor system and pushes
the system into the bigger organization consisting of sixteen species. Ninety-
eight organizations are found in the reaction network. Each of the sixteen

87

7. Tracking Chemical Evolution

species is maintained for a relatively long period (90 generations), but four
of the species are eventually depleted. In consequence, lattice structure L900

has 32 organizations. As illustrated in Figure 7.3 bottom, four organizations
associated with species e and f are missing in L900 in comparison with L800.

7.3.3 Diversity and Organization

In the previous examples, the generated organization from the reactor state is
mostly the same as the abstraction (i.e., Gorg(φ(x)) = φ(x)). In other words,
the set of species present in the reactor is an organization. In that case the
diversity (number of different species present) seems an adequate representa-
tion of the evolutionary behavior. However, the benefit to apply the generate
function becomes evident in Figure 7.4, where we can see that a decrease in
diversity does not necessarily imply a decrease of the generated organization.

For this simulation the reactor of size N = 1000 is initialized with sixteen
species, which form a reaction network holding 146 organizations as shown in
Figure 7.5 (left). Mutation is disabled so that the only downward movement
can occur. The reactor is in the biggest organization at the top of the lattice
structure, and there are four organizations directly below as shown in Fig-
ure 7.5 (right). The organizational structure is sustained for a long time ≈ 800
generations until a series of species destruction causes the reaction system to
move downwards. Around generation 200, the diversity is reduced due to the
disappearance of the species from the reactor, and the reduction is dynami-
cally compensated by regenerating the disappeared species. When the set of
species present in the reactor is not an organization anymore, violating the
closure property in this case, the dynamical reaction system tends to move
to the state that is the instance of an organization. The organizational set
is a candidate of the steady state and the other species combinations are not
stable [Dittrich and Speroni di Fenizio, 2007].

The organization generated from the reduced set of species is, however, un-
changed during that period. Applying the generate function takes the structure
of the reaction network into consideration. By representing the dynamical be-
havior on the level of the organization, the dynamical change of the underlying
reaction network is focused. Furthermore, temporal stochastic effects can be
separated from the permanent effects, causing downward movements.

7.4 Discussion and Conclusion

In this chapter, we have demonstrated that chemical organization theory can
provide another level of explanation to understand chemical evolution. With
the help of the theory, we can consider two levels of chemical evolution: (1) the
actual evolution of the reaction vessel, that is, the arrival and disappearance of
chemical species; and (2) the “organizational evolution”, that is, the change of
the organization generated by the current set of molecules present in the vessel
(Figure 7.1, middle). Our results suggest that actual evolution of the reaction
vessel does not trivially imply its organizational evolution and vice versa.

We have characterized, as usual in evolution theory, the actual evolution
of the reactor by the change of its diversity, which reflects the arrival and dis-
appearance of chemical species. The evolution on the organizational level was
characterized as downward, upward, or sideward movement in the organization

88

Discussion and Conclusion

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

C
on

ce
nt

ra
tio

ns
 [#

 /
10

00
]

3205012105
 3205012109
 3205012172
 3205012173

 8
 10
 12
 14
 16

0 100 200 300 400 500 600 700 800 900 1000

D
iv

er
si

ty
 [s

pe
ci

es
]

Time (generations)

 0

 5

 10

 15

 20

 25

C
on

ce
nt

ra
tio

ns
 [#

 /
10

00
]

 8
 10
 12
 14
 16

150 160 170 180 190 200 210 220 230 240 250

D
iv

er
si

ty
 [s

pe
ci

es
]

Time (generations)

org. size

3205012104
3205012105
3205012106
3205012107
3205012108
3205012109
3205012110
3205012111

780 790 800 810 820 830 840 850
Time (generations)

Figure 7.4: Dynamical behavior of automata chemistry exhibiting long-term
preservation of an organization and then downward movement. The reactor
of size N = 1000 is initialized with sixteen species, and the organizational
structure in the reaction network among those species consists of 146 organi-
zations as shown in Figure 7.5 (left). Top: concentration profile of the reactor
with respect to the prominent species and diversity as the number of unique
species present in the reactor. Bottom left: zoomed into [150:250] to show
in detail the dynamical behavior compensating qualitative disturbance. Bot-
tom right: zoomed into [780:850] where stochastic effects eventually caused
downward movement.

space. As suggested by our experimental results (Figures 7.2- 7.4), downward
movement correlates with decreasing diversity whereas an upward movement
correlates with increasing diversity. However, in general, the relation between
the actual level (actual state of the system) and the organizational level (or-
ganization the system is in) is not that simple. In fact, we have shown that
there can be a decrease or increase in diversity without any change on the
organizational level (i.e., the organization generated does not change). Even a
process that appears like a creative evolutionary process on the actual level can
in fact be just a downward movement on the organizational level (see e.g. Fig-
ures 6 and 7 in Ref. [Dittrich and Banzhaf, 1998]). In other words, an increase
in diversity or the appearance of new molecular species (on the actual level)
does not necessarily imply an upward or sideward movement but a downward
movement (on the organizational level). Finally, it is even possible that an
upward movement is accompanied by a decrease of diversity, e.g., in case some
new molecular species take a large portion of the reaction vessel, although we
have not experimentally demonstrated this case, yet.

An important aspect left for future research is to characterize the intrin-

89

7. Tracking Chemical Evolution

3205012169

3205012171
3205012170

3205012168

3205012175
3205012174
3205012173
3205012170
3205012169
3205012168
3205012110
3205012109
3205012108
3205012107
3205012106
32050121053205012174

3205012175

3205012105
3205012106
3205012107
3205012169
3205012170
3205012171
3205012173

3205012104

3205012111
3205012110
3205012109
3205012108
3205012107
3205012106
3205012105

145

140

144

106

143

Figure 7.5: Organizational structure in the reaction network of the sixteen
species with which the reactor for Figure 7.4 is initialized. Left: the whole
lattice structure containing 146 organizations. Right: four organizations di-
rectly below the biggest organization (labeled as 145). For each link to below,
the missing species are listed. Since twelve species constitute the organization
labeled as 144, for instance, the link to that organization is associated with
four species. The downward movement demonstrated in Figure 7.4 is from
organization 145 to 140.

sic stability of organizations. As we observed, not all organizations show the
same level of stability: some organizations are sustained over long periods while
others are inherently unstable, or unstable under the small external perturba-
tion. What exactly makes an organization stable or unstable is at the moment
only a speculation, yet the topology of the reaction network [Stelling et al.,
2004; Klemm and Bornholdt, 2005] and the existence of an attractor inside the
organization could be important aspects to take into account.

When investigating evolutionary processes, the issue of complexity is in-
evitable and controversial. Previous studies suggest that evolution shows un-
limited growth of complexity [Bedau and Brown, 1999]. According to a recent
analysis by McMullin [2000], the research about machines that grow in com-
plexity can be traced back to works by John von Neumann or even further
to western philosophical and theological thinking. Fontana and Buss [1994]
presented an artificial chemistry in which systems’ complexity would increase
by combining multiple non-complex systems. Another example is biochemical
signaling pathways which are coupled and display emergent behaviors such as
bistability [Bhalla and Iyengar, 1999]. We speculate that the organizational
structure of the reaction network (the lattice structure of organizations) has a
close relation to the complexity of the dynamical reaction system. The number
of organizations in the network is a facet of the system complexity because of
the possible association between sub-organizations and dynamical behaviors.
The structural features of the lattice, not only the size of the organizational
structure, must also be taken into consideration. The sub-organizations are
connected linearly, or they form a hypercube or even more complex patterns.
All these aspects may be relevant to the evolution of the system, yet the exact
way in which they would affect it is still to be investigated and evaluated.

90

Source :

Matsumaru, N., Centler, F., Zauner, K.-P., and Dittrich, P.
(2004). Self-adaptive scouting - autonomous experimentation
for systems biology. In Raidl, G. R., Cagnoni, S., Branke, J.,
Corne, D. W., Drechsler, R., Jin, Y., Johnson, C., Machado,
P., Marchiori, E., Rothlauf, F., Smith, G. D., and Squillero,
G., editors, Applications of Evolutionary Computing,
EvoWorkshops2004: EvoBIO, EvoCOMNET, EvoHOT,
EvoIASP, EvoMUSART, EvoSTOC Coimbra, Portugal, April
2004, Proceedings, volume 3005 of LNCS, pages 52–62.
Springer, Berlin.Chapter 8

Scouting: an Exploration
algorithm

Contents
8.1 Exploration as Design Approach . 91
8.2 Scouting Algorithms . 92
8.3 The Self-adaptive Scouting Algorithm 94

8.3.1 Adaptive Mutation Strength 94
8.3.2 Adaptive Population Size 94
8.3.3 Pseudo Code . 95

8.4 Scouting an HIV-immune System Model 96
8.4.1 Experiment Setup . 97
8.4.2 Scouting the Model Behavior 97

8.5 Concluding Remarks . 99
8.5.1 Scouting is not optimization 99

8.1 Exploration as Design Approach

This chapter and the following chapter are devoted to an explorative approach.
Programming strategies discussed in Part I and in Chapter 6 are always associ-
ated with modifying the reaction network structure. The explorative approach
is conceived to use chemical reaction systems as they are. The basic idea is to
use an automated system to explore the behavior of the chemical reaction sys-
tem, as a preliminary step. Then, a specific aspect of the system’s behavior will
be chosen to be utilized for a particular computational purpose. When dealing
with real chemical systems, this approach has an apparent advantage because
modifying the reaction network is very much restricted. Manipulating only one
specific reaction link with no effect on other links is also impractical. Further-
more, it may be most reasonable to let biological or biochemical systems run
as they are supposed by nature. Our knowledge about those natural systems is
too limited to fully predict effects, including impacts on environments, of the
system modifications.

The explorative approach is motivated by a preceded study of an exploration
algorithm called scouting by Pfaffmann and Zauner [2001]. In this chapter, this
algorithm is introduced together with two self-adaptive mechanisms we incor-

91

8. Scouting: an Exploration algorithm

Experiment
Observation

(x,r) r=f(x)

Evolution

Evaluate

g(r)

x

xSpecification

=⇒

Experiment
Observation

Expectation

Experience

x

(x,r’)

r’=f’(x)

(x,r) r=f(x)
(x,r)

Evolution

Surprise

d(r,r’)

database

x

xSpecification

Figure 8.1: Scouting combines the notion of information being equivalent
to surprise value with evolutionary computation for autonomous exploration.
Conventional evolutionary experimentation (left) is compared with Scouting
algorithms (right). See text for details.

porated into. The operational behaviors of the algorithm are demonstrated
through examples of three applications: one in this chapter (Section 8.4) and
two in the next chapter. Note that this programming approach is still sug-
gestive, and only the behaviors of the scouting algorithms are studied in this
thesis.

8.2 Scouting Algorithms

The scouting algorithm [Pfaffmann and Zauner, 2001] is an evolutionary exper-
imentation method for autonomous experimentation. Experiments are dynam-
ically scheduled to explore systems’ behavior such that maximal information
gain at each step is achieved. In accordance with communication theory, in-
formation is quantified as the surprise value of arriving data [Cherry, 1966].
Motivations of this algorithm are to obtain experimental data sufficient to build
quantitative system-level models as intended in Systems Biology Kitano [2002].
Automated high-throughput methods and recent sensor technologies made it
possible to produce a large quantity of data. To realize their potential, however,
computational techniques have to be bear not only to discover regularities in
existing data, but rather the experimental procedure itself has to be embedded
in a closed-loop discovery process [Langley et al., 1987; King et al., 2004].

In the present context, the work by Kulkarni and Simon [1990] is of particu-
lar interest. They developed a program that attempts to generate experiments,
in which unexplained phenomena are enhanced. Notably, the program does not
start out with a pre-set goal as is common in optimization experiments but de-
cides on its objectives dynamically. This work demonstrated that an algorithm
can successfully navigate an immense search space by emulating the interplay
of adjusting hypotheses and modifying experiments, which is characteristic of
human experimenters [Gooding, 1990].

Figure 8.1 shows a general scheme of the scouting algorithm in a compari-
son with the conventional evolutionary experimentation. An evolution strategy
breeds a genotype specifying experimental conditions such as parameter set-
tings, annotated as specification x. The experiment specification is forwarded
to experiment setup f to conduct the experiment as specified. Response r is

92

Scouting Algorithms

measured, forming observation (x, r) together with the experiment specifica-
tion. The empirically observed response, i.e., the phenotype, is evaluated to
determine the fitness of the corresponding genotype. In a conventional algo-
rithm (Figure 8.1 left), the phenotype is evaluated using a prescribed fitness
function g. The conventional evolutionary algorithm is renowned as an opti-
mization method to find optimal value of x to satisfy the given criteria. An
example is parameter fitting, to determine parameter values x such that the re-
sulting response r fits to the predetermined observations or pre-obtained data.
The scouting algorithm (Figure 8.1 right) is not considered as a classical op-
timization method, however. The extension of the conventional evolutionary
algorithm is rather intended to direct an empirical exploration of a complex
system in order to gain as much information about the experiment as possible.

In the scouting algorithm as shown in the right-hand side of Figure 8.1, there
are additional actions to determine the fitness of a genotype, specification x. In
addition to conducting the experiment for response r, the experience obtained
in the past experiments is used to make a prediction of what would happen
if an experiment were performed as specified by x. This is the expectation
r′ regarding the outcome of the specified experiment. These two phenotypical
values r and r′ are compared in order to appraise the corresponding genotype x.
When the deviation between expectation (x, r′) and observation (x, r) is large,
high fitness value is assigned to that genotype x. It follows that the more
unexpected the outcome of an experiment is, the more likely similar parameter
settings will be investigated in subsequent experiments. Hereto we borrow from
communication theory the notation that the information contents of a message
corresponds to its ’surprise value’ [Cherry, 1966; Hartley, 1928; Shannon and
Weaver, 1949; Lindley, 1956].

Simultaneously, the scouting algorithm contains another dynamics related
to the experience database. After the fitness value is assigned, the new obser-
vation is added to the experience database, and every experiment performed
contributes to the database during the scouting run. This database together
with a prediction mechanics forms an empirical model f ′ of the experiment
given, and this model is used to formulate an expected response r′ of the ex-
periment. As a consequence the expectations for experiments under similar
conditions are likely to be more accurate to the measured responses. Thus a
parameter setting that leads to a surprising response will initially attract fur-
ther investigation through the descendants of the genotype that discovered the
setting. Then, as more information on the conditions accumulates in the expe-
rience database, the response to such settings will become ’common knowledge’
and therefore the fitness of genotypes specifying experiments in this region of
the parameter space will be low. Parameter settings in the other regions will
be selected for subsequent experiments. Incidentally this property prevents
the scouting method from getting stuck on a local fitness peak—an important
issue in the context of evolutionary experimentation. This aspect is notewor-
thy when the cost of experiments is high. Costly fitness evaluation, including
getting empirical observations, necessitates the use of small populations, and
this issue of trapped in a local peak becomes critical when the small size of
population is used.

93

8. Scouting: an Exploration algorithm

8.3 The Self-adaptive Scouting Algorithm

Combining the scouting algorithm with two parameter adaptation strategies,
we advanced the algorithm to be self-adaptive. Mutation strength, how differ-
ent from a parent an offspring is, and population size, how many offsprings are
generated from one parent, are two parameters whose values are automatically
adapted as scouting runs. Those two parameters are known to be critical for
the behavior of even conventional evolutionary algorithms. In this section, that
adaptation strategies for mutation strength and population size are described.
Then, we present the pseudo code of Self-adaptive Scouting algorithm [Mat-
sumaru et al., 2004].

8.3.1 Adaptive Mutation Strength

In former implementations of the scouting algorithm, mutation strength σ was
a manually defined step-function dependent on the surprise value of the parent
experiment (cf. [Centler et al., 2003] and Section 9.2). In the evolution step
of the algorithm, an offspring is created from the parent by adding a normally
distributed value with mean 0 and standard deviation σ. Varying σ controls the
strength of the mutation. Given the current surprise value s and the current
mutation strength σ, the mutation strength is adapted as follows:

σ ← σ · e(s̄−s)/s̄, (8.1)

where s̄ is the average surprise value over all past experiments. As a result
of this adaptation, the region from which offspring are chosen shrinks if the
current surprise is above the average surprise. A surprise value below the
average, on the other hand, causes the region to expand—eventually leading
to random search.

We also investigated standard step size adaption methods from evolution
strategies (ES), e.g., [Rechenberg, 1994; Hansen and Ostermeier, 2001], and
found that those adaptation methods fail to keep up with the rapid dynamics
of our fitness landscape. In the scouting algorithm, the fitness is obtained as the
deviation between an expectation computed from the experience database and
an observation. Since every experiment is stored in the experience database, the
expectation improves continuously and the fitness landscape changes rapidly.
In a deterministic setting (e.g., where the experiment is a simulation without
randomness) even the individual with the highest fitness will have zero fitness
when it is evaluated a second time (cf. [Weicker and Weicker, 1999; Arnold and
Beyer, 2002]).

8.3.2 Adaptive Population Size

Originally, the population size λ had to be given by the user and determines
the number of offspring generated from one parent (i.e., a (1, λ)-strategy in ES-
terminology). If the population size is constant, we found that some individuals
with high fitness are discarded because there was one individual with even
higher fitness selected as the parent for the next generation. Conversely, it also
happened that individuals with low fitness are selected as a parent.

94

The Self-adaptive Scouting Algorithm

The second adaptation scheme is developed to avoid this situation. We
introduced an adaptive generation change with employing a threshold value.
Whenever the surprise value is higher than a threshold, the specification of the
experiment is selected as a parent. The threshold at generation g is denoted as
Θ(g) and defined as the average surprise value of the second-best individuals in
the past generations:

Θ(g) :=
1

g − 1

g−1∑
k=1

s
(k)
2;λk

for g > 1, Θ(1) := 0. (8.2)

Following Beyer and Schwefel [2002], we use the notation of order statistics
(e.g., Arnold et al. [1992]) by identifying the surprise value of the second-best
individual out of λk individuals of generation k by s(k)

2;λk
. The population size

at generation k is λk. Generally speaking, the mth-best individual out of n
individuals of generation k is denoted as s(k)

m;n. For a generation with only one
member, we define this individual to be the “second-best”: s(k)

2;1 := s
(k)
1 , where

s
(k)
i is the surprise value of the ith individual of generation k (in the order of

experiments performed).
The threshold is calculated as described above because the second-best sur-

prise value separates the best, which is selected as the parent for the next
generation, from the other offspring. The second-best surprise value works
implicitly as a threshold in each generation. Furthermore, this method guar-
antees the threshold to be above the average surprise value s̄, so that the
mutation strength σ can become both bigger and smaller using the scheme of
Section 8.3.1.

8.3.3 Pseudo Code

The complete scouting algorithm is presented here in more detail as pseudo
code. During initialization (line 1–5), the minimum mutation strength σmin
and the number of experiments to perform tmax is set by the user. The muta-
tion strength σ is initialized with 1. The number of the current experiment t
and the number of the current generation g is set to 0. In line 6–9, an initial
experiment specification is randomly chosen, the experiment performed, and
stored with response r in the experience database DB. x(g)

i is the experiment
specification of the ith individual of generation g. Within the while-loop, a
new generation is started by choosing the parent x(g) of generation g to be
the last individual of the last generation (line 13). The new generation is then
populated within the repeat-loop. In line 16, a new experiment specification is
created as a mutated copy of the parent individual (see Section 8.3.1), and the
expectation r′ is computed from the experience database. This is done here, as
in [Matsumaru et al., 2002], by averaging over the (up to) 5 closest experiment
entries from the experience database with inverse cubic distance weighting. The
response r is derived by performing the experiment, and the result is stored in
the experience database. Finally, the surprise value is calculated in line 21, and
the mutation strength is adapted in line 22 (see Section 8.3.1). In generation

95

8. Scouting: an Exploration algorithm

Table 8.1: Listing of self-adaptive scouting. The scouting algorithm is incorpo-
rated with two self-adaptive mechanisms of mutation strength and population
size.

Algorithm: Self-adaptive Scouting
1 σmin ← minimum resolution
tmax ← maximum experiments # number of exp. to perform
σ ← 1 # mutation strength
t ← 0 # time (experiments)

5 g ← 0 # time (generations)

x(0)
λ0
← random specification # choose initial experiment

r ← f(x(0)
λ0

) # conduct experiment
t ← t+ 1 # increment time (experiments)

DB ← InsertIntoDB(DB, (x(0)
1 , r)) # initialize experience DB

10 while t < tmax do
g ← g + 1 # start a new generation
λg ← 0 # number of individuals

x(g) ← x(g−1)
λ(g−1)

choose the parent

repeat
15 λg ← λg + 1 # add a new individual by

x(g)
λg
← Mutate(x(g), σ) # mutating the parent

r′ ← Predict(DB,x(g)
λg

) # compute expectation

r ← f(x(g)
λg

) # conduct experiment

t ← t+ 1 # increment time (experiments)

20 DB ← InsertIntoDB(DB, (x(g)
λg
, r)) # update DB

s
(g)
λg
← d(r, r′) # evaluate fitness as surprise

σ ← Max(σmin, σ · exp(1− s(g)
λg
/s̄))

adapt mutation strength

until s(g)
λg

> Θ(g) or t ≥ tmax
end

g, the mean surprise value over all experiments is calculated as follows:

s̄ :=
1
g

g∑
k=1

1
λk

λk∑
i=1

s
(k)
i . (8.3)

The repeat-loop is left and a new generation started, once the surprise value
of an experiment is above the threshold Θ(g) (see Section 8.3.2).

8.4 Scouting an HIV-immune System Model

Now we demonstrate the behavior of our new algorithm by applying it to a
concrete model of immunological control of HIV by Wodarz and Nowak [1999].
The model is a 4-dimensional ordinary differential equation (ODE) system. A

96

Scouting an HIV-immune System Model

mathematical analysis reveals that the model has two asymptotically stable
fixed points. Using scouting, we will now explore how the model behaves
depending on its initial state given a fixed parameter setting. In passing, this
model is also analyzed using chemical organization theory in Chapter 2.

8.4.1 Experiment Setup

The experiment is a dynamic simulation of the immunological control model
taken from [Wodarz and Nowak, 1999]. which contains 4 variables: uninfected
CD4+ T cells x, infected CD4+ T cells y, cytotoxic T lymphocyte (CTL)
precursors (CTLp) w, and CTL effectors z. The dynamics is given by the
ODE system:

ẋ = λ− dx− βxy,
ẏ = βxy − ay − pyz,
ẇ = cxyw − cqyw − bw,
ż = cqyw − hz.

(8.4)

Uninfected CD4+ T cells are produced at a rate λ, decay at a rate dx, and
become infected at a rate βxy. Infected cells decay at a rate ay and are killed
by CTL effectors at a rate pyz. The production of CTLp at rate cxyw requires
uninfected CD4+ cells, virus load represented by y, and CTLp themselves.
CTLp decay at a rate bw and differentiate in CTL effectors at a rate cqyw.
CTL effectors decay at a rate hz. Here we set the parameters as in [Wodarz
and Nowak, 1999] λ = 1, d = 0.1, β = 0.5, a = 0.2, p = 1, c = 0.1, b = 0.01, q =
0.5, h = 0.1.

Given a specification x = (x1, x2, x3, x4), we perform the experiment and
obtain the response r = (r1, r2, r3, r4) in the following way: (1) We set the
initial state of the ODE system as follows: xt=0 = x1, yt=0 = x2, wt=0 =
x3 × 0.05, zt=0 = x4. (2) We integrate the ODE numerically (using lsode built
in octave [Eaton, 2002]) for a duration of t1 (here, t1 = 500) and obtain the
response as the final state: r1 = xt=t1 , r2 = yt=t1 , r3 = wt=t1 , r4 = zt=t1 .

8.4.2 Scouting the Model Behavior

For scouting, we set the range of specification x of the experiment to [0, 1]4

and the minimum mutation strength σmin = 0.01. We allow a total number
of tmax = 2000 experiments in a scouting run. Every experiment integrates
numerically the ODE representing the HIV immunological dynamics.

Figure 8.2 shows the progress of the surprise value s(g)
j (top) and mutation

strength σ (bottom) of a typical run of (self-adaptive) scouting. In Figure 8.3,
experiments 50–100 are shown in detail. Surprise value and mutation strength
are plotted together with the average surprise value s̄ to illustrate the mutation
strength adaptation. The difference between the current surprise value and the
average surprise determines the adaptation of the mutation strength according
to Equation. 8.1.

The time evolution of the population size λg is plotted on the left-hand side
of Figure 8.4. For the purpose of explaining the population size adaptation,
the right-hand side of the graph shows in detail the surprise value of every
individual experiment from generation 10–17, the second-best surprise, and
the threshold. Generation 17 consists of 6 individuals x40 . . .x45 (xi denotes

97

8. Scouting: an Exploration algorithm

0

5000

10000

15000

S
ur

pr
is

e
va

lu
e

0.01

0.1

1

0 500 1000 1500 2000

M
ut

at
io

n
st

re
ng

th

Time t (experiments)

Figure 8.2: Surprise value s(g)
i and mutation strength σ while exploring the be-

havior of the HIV immunology model with the self-adaptive scouting algorithm.
See text and Figure 8.3 for details.

0

5000

10000

15000

50 55 60 65 70 75 80 85 90 95 100
0.01

0.1

1

S
ur

pr
is

e
va

lu
e

M
ut

at
io

n
st

re
ng

th

Time t (experiments)

Surprise value
Average surprise value

Mutation strength

Figure 8.3: Surprise value s(g)
i and mutation strength σ while exploring the

behavior of the HIV immunology model with self-adaptive scouting. A surprise
value higher than the average decreases the mutation strength. The mutation
strength is increased, when the surprise value is less than the average (see
Equation 8.1). This mutation strength adjustment helps the scouting algorithm
to concentrate the samples on surprising regions

the ith experiment conducted). Because the surprise of the 6th offspring is
greater than the threshold, the individual x45 is selected to be the parent of
generation 18. The surprise experienced by the experiment x43 = x(17)

4 is the
second-best surprise value in the generation. This value is used to calculate the
threshold for the following generation. Since the first offspring of generation 15
(x35 = x(15)

1) yields a higher surprise than the threshold, the population size
of generation 15 is 1. The second-best surprise value for this generation is, in
this case, the best one.

Figure 8.5 shows the 2000 specifications sampled by the scouting algorithm.
The 4-dimensional data is projected on 6 graphs showing every possible com-

98

Concluding Remarks

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

S
iz

e
(#

 in
di

vi
du

al
s)

Time g (generations)

0

2

4

6

10 12 14 16 18 20

0

1000

2000

3000

4000

5000

6000

7000

25 30 35 40 45

S
ur

pr
is

e
va

lu
e

Time t (experiments)

Time g (generations)

10 11 12 13 14 15 16 17

Surprise value
Threshold value

Second best value

Figure 8.4: Population size λg and threshold Θ(g). See text for details

bination of the four dimensions. Each point represents an initial state of the
ODE model. The sampling points seem to spread equally except for the last
graph with CTL precursors and effectors as axes. The pattern appearing in
the last graph matches with the border of the two basins of attraction of the
two asymptotically stable fixed points of the ODE model. The respective dy-
namical behavior of the model is shown in Figure 8.6. As seen in Figure 8.5,
scouting has explored the borderline between the two modes of behavior more
accurately, thus the borderline can be described much more precisely than for
cases where systematic or random sampling would have been used. To illus-
trate this, a 2-dimensional projection of systematic sampling given by a full 74

factorial design is shown in Figure 8.7. In this design of experiments, each of
the 4 factors x1, . . . , x4 is explored equidistantly on 7 levels [Hinkelmann and
Kempthorn, 1994]. With approximately the same number of experiments as in
the scouting method, the borderline can only roughly be approximated.

8.5 Concluding Remarks

We introduced an algorithm capable of exploring unknown phenomena without
the need for manual adjustments aimed at an application domain. We described
how the two parameters crucial for the exploration, the mutation strength and
the population size, can be adapted automatically, and why existing techniques
for evolutionary optimization were not applicable. Our experience with the al-
gorithm provides some evidence that it can be applied usefully for exploring
complex systems. However, the next important step is to quantify the perfor-
mance of scouting systematically. A suitable assessment measure may be the
predicting strength of the experience database after a given number of sam-
ples. The process of evolution underlies the complexity observed throughout
the realms of biology—it may also hold the key to tackle this complexity.

8.5.1 Scouting is not optimization

Finally, it is important to emphasize here that scouting algorithms are not
classical optimization methods even though they are a variant of evolutionary
algorithms. Generally, the aim of an optimization algorithm is finding the
best solution among all possible solutions. More formally, given an objective
function F: Y → Q, which assigns a certain quality q ∈ Q to each solution from
the search space Y , an optimization algorithm tries to find the solution y ∈ Y

99

8. Scouting: an Exploration algorithm

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

In
fe

ct
ed

 C
D

4+
 T

 c
el

l (
x2

)

Uninfected CD4+ T cell (x1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L
pr

ec
ur

so
rs

 (
x3

)

Uninfected CD4+ T cell (x1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L
ef

fe
ct

or
s

(x
4)

Uninfected CD4+ T cell (x1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L
pr

ec
ur

so
rs

 (
x3

)

Infected CD4+ T cell (x2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L
ef

fe
ct

or
s

(x
4)

Infected CD4+ T cell (x2)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L
ef

fe
ct

or
s

(x
4)

CTL precursors (x3)

A

B

Figure 8.5: Six different 2-dimensional projections of 2000 sampled locations
(specifications) of a typical scouting run on the HIV immunology model devel-
oped by Wodarz and Nowak [1999]. This model is described as an ODE with
four variables. The scouting algorithm initializes the variables, which are plot-
ted as dots (the range of CTL precursors is scaled to [0, 0.05]), and observed the
states of the model after 500 time steps as the response. When the locations
are plotted with CTL precursors and effectors as axes (lower rightmost plot),
a pattern of dense area shows up. The pattern matches with the border of two
modes of behavior of the model, which are shown in Figure 8.6

such that F (y) gets maximized. The result of optimization is a single best-so-
far solution y. For scouting, an experiment f : X → R is given, where X is
the search space consisting of all possible experiment specifications and R the
set of all possible responses. In contrast to optimization, the objective here is
not to find a single best experiment x ∈ X (or a pareto set), but to gain as
much information about f as possible by conducting experiments. The result
of scouting is an experience database, which embodies the complete knowledge
acquired about f and can be considered as an empirical model. There is no
objective function f given, and thus scouting is not optimization.

Trivially, every computational problem can be formulated as an optimiza-
tion problem, e.g., by defining the objective function returning an optimum
when its argument is the solution of the problem. For example, a sorted se-
quence y = (y1, . . . , yn) optimizes the objective function F (y) =

∑
i<j(yi <

yj). Most sorting algorithms, however, contradict the typical picture of op-
timization where a sequence of evaluations of the objective function leads to
a solution. Bubble sort, for instance, might be better regarded as a greedy
strategy that seeks a local optimum to achieve the global optimum. The same
is true for scouting with respect to the (implicit) aim of maximizing the total
information about the experiment f . Every step (or every generation) of the
scouting algorithm can be viewed as a step of a greedy strategy that tries to

100

Concluding Remarks

A B

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

0 50 100 150 200 250 300 350 400 450 500

C
on

ce
nt

ra
tio

n
(a

rb
itr

ar
y

un
its

)

Time (days)

Uninfected CD4+ T cell

Infected CD4+ T cell

CTL precursors

CTL effectors

0.01

0.1

1

10

100

1000

0 50 100 150 200 250 300 350 400 450 500

C
on

ce
nt

ra
tio

n
(a

rb
itr

ar
y

un
its

)

Time (days)

Uninfected CD4+ T cell

Infected CD4+ T cell

CTL precursors

CTL effectors

Figure 8.6: The HIV immunology model has two modes of behavior: (A)
immune system damaged and (B) CTL response established. The labels cor-
respond to those in Figure 8.5

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L
ef

fe
ct

or
s

CTL precursors

Figure 8.7: Two-dimensional projection of systematic sampling. Initial state
leading to a damaged immune system are marked by •; initial states estab-
lishing CTL response are indicated by ◦. Experiments with no initial infected
CD4+ T cells are excluded. Comparing to the lower rightmost panel in Fig-
ure 8.5, the borderline of the two modes of behavior of the model can be
approximated only roughly

maximize the local information gain in terms of maximal surprise in the next
experiment.

101

Source :

Matsumaru, N., Colombano, S., and Zauner, K.-P. (2002).
Scouting enzyme behavior. In Fogel, D. B., El-Sharkawi,
M. A., Yao, X., Greenwood, G., Iba, H., Marrow, P., and
Shackleton, M., editors, Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, pages 19–24. IEEE
Press, Piscataway, NJ.

Centler, F., Dittrich, P., Ku, L., Matsumaru, N., Pfaffmann,
J., and Zauner, K.-P. (2003). Artificial life as an aid to
astrobiology: Testing life seeking techniques. In Banzhaf, W.,
Christaller, T., Dittrich, P., Kim, J. T., and Ziegler, J.,
editors, Advances in Artificial Life, ECAL 2003, volume 2801
of LNAI, pages 31–40. Springer, Berlin.

Chapter 9

Further Applications of Scouting

Contents
9.1 Scouting Enzyme Behavior . 103

9.1.1 Experiment Setup . 103
9.1.2 Results . 106

9.2 Artificial life as an Aid to Astrobiology 106
9.2.1 Experiment setup . 107
9.2.2 Results . 110

We continue on studying explorative behaviors of scouting algorithms. In
this chapter, two further examples are presented: The scouting algorithms
are applied to explore enzyme behaviors in conjunction with automated wet-
lab experiment apparatus, in order to demonstrate the possibilities for the
algorithms to cope with real chemical reaction systems1. The other application
is in the context of artificial life research, as a tool for the life-seeking endeavor2.
These applications was investigated with original scouting algorithms, no self-
adaptive mechanisms are incorporated. We only give a highlight here, so please
consult the source publication for further details.

9.1 Scouting Enzyme Behavior

Enzymes are known to be context sensitive such that the catalytic activity is
modulated by physicochemical signals from milieu components, which are se-
lected and fused through the conformational dynamics [Conrad, 1992; Freire,
1998; Sols, 1981]. By changing milieu conditions, enzymes vary their activity
level. This response has been suggested by Zauner and Conrad [2001] to be a
computing principle using bio-macromolecules. In conjunction with the com-
puter controlled fluidics setup shown in Figure 9.2, the scouting algorithms are
employed to probe the enzyme malate dehydrogenase (MDH) for its response
to chemical signals of MgCl2 and citrate.

9.1.1 Experiment Setup

1This wok has been done as a part of the author’s thesis for the degree of Master of
Science from Wayne State University, Detroit, Michigan, USA.

2This work is reported in the publication by my colleagues, Centler et al. [2003]

103

9. Further Applications of Scouting

0

0.5

1

0 30 60 90 120 150

Time [s]

Absorption

0

0.5

1

0 30 60 90 120 150

Time [s]

Absorption

Figure 9.1: Schematic representation of the enzymatic reaction as in Eq. 9.1
(left) and empirical data of Mg2+ effects on the enzyme activity (right). Mg2+

and citrate in milieu do not participate in the reaction the enzyme MDH cat-
alyzes, but the catalytic activity of the enzyme is influenced by those factors
through the conformational dynamics. The activity corresponds to the produc-
tion rate, which can be measured with spectrophotometer due to the different
light absorption characteristics at the wave length of 339nm. The graphs on
right-hand side show the progress of the reaction catalyzed. The enzyme is
activated by a small amount of Mg2+ as shown in the bottom graph, compared
with no Mg2+ in milieu as shown in the above graph.

The laboratory setup conducts an enzyme assay that measures enzyme ac-
tivity with respect to milieu composition. An enzyme malate dehydroge-
nase (MDH) catalyzes the oxidation of malate to oxalacetate by reducing the
oxdized form (NAD+) of nicotinamide adenine dinucleotide to the reduced form
NADH [Englard and Siegel, 1969]:

L−malate + NAD+ MDH←−−→ oxalacetate + NADH + H+ (9.1)

NADH differs in its absorption of ultraviolet light significantly from NAD+, a
property that allows for the convenient monitoring of the reaction by measuring
the increase in NADH concentration with a spectrophotometer [King, 1965].
At high pH the equilibrium for the reaction is on the right side. The progress
of the reaction is affected by the composition of the reaction milieu. The two
factors which we vary are citrate, a known regulator with context dependent
activating or inhibiting effect on MDH [Gelṕı et al., 1992] and MgCl2, also
reported to have both activating and inhibiting effects on MDH [Wong and
Smith, 1976; Bracht and de P. Campello, 1979; Dér and Ramsden, 1998]. The
factors that could be investigated are not limited to chemical compounds known

104

Scouting Enzyme Behavior

Figure 9.2: Laboratory setup used in the scouting experiments. A peristaltic
pump and a reservoir of distilled water (a) serve to flush the cuvette that is
installed in the spectrophotometer (b). Servo driven syringe pumps and valves
(c) are controlled through a serial interface (e) by the computer that runs the
evolutionary search program. The syringe pumps first mix chemical milieus
from stock solutions (d) in the photometer cuvette. A reaction is then initiated
by injecting enzyme solution into the cuvette and its progress is monitored with
the photometer. Adopted from [Matsumaru et al., 2002]

to have a physiological function, however.
Every genotype evaluation causes a computer controlled experiment to be

performed. The outcome of the experiment is a time series of (over 300) ab-
sorption measurements reflecting the activity of the enzyme. To facilitate the
representation of this response in the experience database we fit the following
expression to the measured data:

a(t) = c1
(
1− c2e−c3t

)
+ c4t+ c5t

2 + c6t
3 (9.2)

The entry in the experience database is a pair of the factor levels and the param-
eters representing the observation. To obtain the expectation corresponding to
a particular factor setting, first n = 5 (or less if not enough entries exist) near-
est neighbors in the parameter space and their distances to the factor setting
under consideration are determined. Then the expectation aex(t) is calculated
from the parameter sets of these n entries averaging with inverse cubic distance
weighting (wi):

aex(t) =
n∑
i=1

wiai(t), aex(0) = 0 (9.3)

The surprise value (s) of an observation is calculated by numerically integrating
the absolute difference between the expected absorption aex(t) and the observed
absorption aob(t):

s =
1
3

∫ t=300s

t=0

abs [aex(t)− aob(t)] (9.4)

105

9. Further Applications of Scouting

0

5

10

15

20

0 5 10 15 20

S
ur

pr
is

e
va

lu
e

Gen.

Average

0

1

0 1

C
itr

at
e

MgCl2
0 1

MgCl2
0 1

MgCl2
0 1

MgCl2

Figure 9.3: Temporal progress of scouting, see text for details.

Accordingly the fitness of a genotype is the surprise value.

9.1.2 Results

The scouting above described was used to conduct an experiment aimed at
mapping out the sensitivity of the reaction catalyzed by MDH with respect to
two effector substances, MgCl2 and citrate. Both were varied over the range
0–300 mM. The system probed 120 locations in the factor space, evolving for
23 generations. Figure 9.3 depicts the progress of these sampling dynamics.
In the lower graphs, the locations in the factor space at which experiments
were performed are shown for four time slices. Note that the milieu component
axes are scaled as relative concentration, therefore only the milieu compositions
represented by the lower left half of the diagrams are possible. Bars in the upper
graph show the development of the maximum surprise value found within the
population; the curve shows its average surprise value in a population. The
population size was 5 except in generation 0 which was initialized with three
genotypes. As can be seen from the bar graph in the figure, peak surprise
values have not yet leveled off and consequently further information about the
behavior of the enzyme would be gained by taking more than the 120 samples.

The observations collected in the scouting process can be combined into an
empirical description of the probed phenomenon. Two snapshots of the time
development of the absorption during the reaction are shown in Figure 9.4. The
contours allow us to visualize the interaction between the two milieu-factors.

9.2 Artificial life as an Aid to Astrobiology

106

Artificial life as an Aid to Astrobiology

A B

Figure 9.4: Contours show interpolated NADH absorption in arbitrary units
at times 90 s (A) and at 200 s (B) after the reaction start. The axes show
relative concentration of MgCl2 as component 1 and citrate as component 2.
The contours represent the information gained from 120 assays run with the
milieu compositions marked by crosses.

The scouting algorithm is also studied in the context of seeking for signs of
extraterrestrial biota. There are two special aspects to regard for this en-
deavor. One is a broader view about life form as outlined in NASA Astrobi-
ology Roadmap [2002] since our biosphere’s specific molecular machinery such
as DNA and proteins may not work to identify examples of life elsewhere. The
capability of recognizing life in whatever form it may take is crucial. This is
already addressed in artificial life research from its very onset; in Langton’s
words:

“[. . .] certainly, the dynamic processes that constitute life—in what-

ever material bases they might occur—must share certain universal features—

features that will allow us to recognize life by its dynamic form, without

reference to its matter.” [Langton, 1989, p. 2]

The other aspect is the demand of highly autonomous devices because the
search for signs of extraterrestrial biota is characterized by vast, hard to ac-
cess areas and severe restrictions on communication bandwidth with limited
assistance from earth. The scouting algorithm has addressed the autonomous
guide of experiments. Combing these two, we reported on the application of
artificial chemistry modeling [Dittrich et al., 2001] to evaluate an autonomous
experimentation technique with regard to its capability to detect chemical sig-
natures of life. The results presented in this section is based on the publication
by Centler et al. [2003]3.

9.2.1 Experiment setup

To create a test scenario for the study of the behavior of the scouting algorithm,
we simulated an abstract artificial planetary sphere with an inanimate chem-
istry. The assumption here is that life necessitates the synthesis of a larger

3the author is listed as the fourth author.

107

9. Further Applications of Scouting

variety of substances than commonly produced by inorganic reactions. The
chemical composition is locally perturbed when life forms are introduced. The
scouting algorithm is then used to explore the planetary sphere.

For simulating spatially inhomogeneous chemistry a two-dimensional cellu-
lar automata implementation of the chemical dynamics is convenient [Adamatzky,
1994]. The field is arranged as a 200×200 cellular automaton, and the state of
each cell represents a chemical component present at the location of the cell.
All reaction rules take the form A+B

p−→ C+D, two reactants and two prod-
ucts associated with the probability p of the reaction to occur. If component
B is present within the set of four (von Neumann) neighbors of component A,
then A may be substituted by C and B substituted by D. The probability for
this event to take place is proportional to p. Because the order of components
in the reaction rules matters, diffusion is expressed by the rules of the form
A + B

p−→ B + A.
In the cellular automaton field, randomly created constructive artificial

chemistry described in [Speroni di Fenizio and Dittrich, 2002] is implemented.
The chemical model is defined so that substances are always created by the co-

operative action of two catalysts: X
(E,F)−→ Y where X is a substrate molecule, E

and F are co-acting catalysts and Y is the reaction product. This was motivated
by biopolymer synthesis process and entails the assumption of an inexhaustible
pool of building blocks being available, but the present model does take sub-
strates explicitly into account. To realize these reactions, in which a substrate,
a product, and two catalysts participate, with the binary reaction scheme of
the cellular automata, intermediate agents have been introduced for each re-
action. Above reaction would be represented in the cellular automata by two
rules:

E + F
p1−→ E + I, (9.5)

X + I
p2−→ Y + F. (9.6)

The intermediate agent I is assumed to be highly reactive and leads to a rapid
transformation of substrate X to product Y, i.e., p1 � p2.

In Table 9.1, the reaction network is shown. Note that the reaction matrix
is asymmetric. Each column represents reactions when the substance referred
at the top row takes the place of E in Equation 9.5. Each row corresponds to
reactions occurring when F in Equation 9.5 and Equation 9.6 is substituted with
the substances referred in the leftmost column. Entries in the table represents
the reaction product Y. Substance numbers marked with bold face are selected
to serve as substrates X.

For the purpose of supplying the enough substrates, the reaction network
includes decay reactions that transform any substance other than intermediates
into the substrate substances through rules of the form A + B

p−→ X + B,
where A,B ∈ {0, 1, . . . , 9},X ∈ {0, 6, 7}. Finally, an additional catalyst is
introduced as biota. It consumes the substrate molecules {0,6,7} and excretes
the substance 1. For all simulations in which the biota is present, exactly six
cells are set to the biota state: 6 cells for one biota patch, 3 cells each of two
patches, and 2 cells each of three patches. All substances, but not the biota,
had the ability to diffuse.

Initialized with a pseudo-random distribution of components, the cellular

108

Artificial life as an Aid to Astrobiology

Table 9.1: The network of potential reactions. Numbers in the leftmost column
refer to substances that take the place of E in equation 9.5, numbers in the
top row correspond to F in equations 9.5 and 9.6, and entries in the table
correspond to Y in equation 9.6. Substances that can serve as substrates are
marked with bold face.

0 1 2 3 4 5 6 7 8 9

0 0 6
1 2 5
2 1 0
3 5 0 1
4 8 6 6 4 8 4 8 5
5 1 9 8
6 8 0 7 2
7 5 5 9
8 1 2 9 1 6 3 2
9 0 8 0 3 6 0 0

automaton field is updated 108 times (2500 updates per cell). To update the
simulation space, a cell and one of its von Neumann neighbors are pseudo-
randomly selected. The subset of rules applicable to the two chemical com-
ponents located in the two cells is determined and in accordance with their
probabilities one of these rules may be applied to transform the content of the
two cells. A snapshot of the updated component distribution in the simulation
space is the target system to explore using the scouting algorithm.

Experience and expectation The scouting algorithm is applied to detect
unusual chemical signatures in a complex background chemistry [Yung and
DeMore, 1999]. It is assumed that the chemical composition can be sampled
locally, but no a priori knowledge of the chemical effects of potentially present
biota is available to the algorithm. For sampling the algorithm has to choose a
location x = (x, y) in the simulation space. The measured data at this location
is a concentration vector r = (r1, . . . , rn) for each of the n substances in a ±2
pixel vicinity. Correspondingly the entries (x, r) in the experience database
and the expectations (x, r′) formed for a location prior to its sampling are
such vectors. The surprise value d constitutes the fitness criteria, computed as
follows:

d(r, r′) = −
n∑
i=1

|ri − r′i| ln |ri − r′i| (9.7)

The expectation r′ for a location x = (x, y) is computed as distance-weighted
average over the (up to) 25 measurements nearest to x available in the expe-
rience database. A population size of 10 genomes, all offspring of the single
best parent was used for evolution (i.e., a (1, 10)-strategy [Beyer and Schwe-
fel, 2002]). We mutate an offspring by adding an equally distributed random
number taken from within a radius of δ. The mutation strength δ depends on

109

9. Further Applications of Scouting

A

0 50 100 150 200

0
50

10
0

15
0

20
0

V1

V
2

B

0 50 100 150 200

0
50

10
0

15
0

20
0

V1

V
2

C

0 50 100 150 200

0
50

10
0

15
0

20
0

V1

V
2

D

0 50 100 150 200

0
50

10
0

15
0

20
0

V1

V
2

Figure 9.5: Detection of an unusual chemical composition. Actual location of
biota (◦) and the 800 locations (·) probed by scouting, are shown for 1, 2, 3,
and 0 biota patches, A, B, C, and D, respectively.

the previous surprise

δ =

0.03 if

√
4.2 ≤d(r,r’),

0.04 if 2.0 ≤d(r,r’)<
√

4.2,
0.1 if

√
3.5 ≤d(r,r’)< 2.0,

0.99 else .

(9.8)

9.2.2 Results

As a result of applying scouting algorithm to the simulation space, Figure 9.5
shows the 800 locations probed. Their density indicates areas of high interest to
the scouting algorithm. As seen in figures, sampling locations are successfully
concentrated in the vicinity of the biota patches. To identify clusters in the
sampling positions, hierarchical clustering method with subsequent expectation
maximization (performed with mclust in R [Ihaka and Gentleman, 1996; Fraley
and Raftery, 2002]) is employed. Taking the mean position of the samples
allocated to one cluster, the location of biota is predicted fairly good, despite
the complex chemical background.

110

Chapter 10

Hybrid Approach

In this thesis, we argued how to program chemical reaction systems in order
to exploit their computational properties. Methods are categorized into two:
constructive design and autonomous design. In Part I, constructive design, we
showed mainly how chemical organization theory can serve as a tool to facilitate
programming of chemical reaction systems at the level of the reaction network.
This programming method is summarized under the organization-oriented pro-
gramming principles in Section 5.1 as a generalized programming guideline us-
ing the notion of chemical organizations. In Part II, autonomous design, we
considered methods to program chemical reaction systems autonomously, using
two strategies of evolution and exploration.

These two design approaches are not necessarily separated, however. The
combination, a hybrid approach, is rather fruitful for each other. When com-
bining two programming methods, it is logical to structure the programs in a
form of hierarchy [Dittrich et al., 2007]. Parts of the programs are designed
with one method, while another method guides the design of the whole pro-
grams using also those parts as building blocks. An example of this hybrid
approach was already presented in Chapter 6 where a chemical flip-flop is de-
signed by evolution. The overall programming process is governed by evolution-
ary algorithms, an autonomous method, and the building blocks of the reaction
system are manually predefined in order to improve the performance of that
process. Particularly, the cooperative decay of the contradictory species, such
as a0 +a1 → ∅, is fixed as a building block. From the experiences of construct-
ing a chemical flip-flop in Chapter 3, these rules are meaningful especially for
that coding scheme in which two species are assigned to one boolean variable
to represent contradicting states, respectively. Another example is outlined by
our colleague1. Taking the chemical boolean functions and the chemical flip-
flop constructed in Chapter 3 as building blocks, computational universality is
established so that any computational program could be evolved, in principle.
These building blocks could be arranged using evolutionary algorithms to build
arbitrary chemical programs.

Reversing the order of the hierarchy, the constructive approach can be im-
proved by autonomous programming methods. Specifically, parts are designed
by evolution and combined manually to construct chemical programs. This
includes the idea to employ models of biological organisms for our computa-

1by Thomas Hinze, unpublished and through personal communication

111

10. Hybrid Approach

tional purpose as building blocks since the organisms in nature are evolved.
The field of Systems Biology, especially, provides varieties of biology-oriented
models for chemical computing, and the employment is straightforward thanks
to the language compatibility of those fields: chemical reaction network. One
may further extend to employ real biological systems as building blocks, not
just the computational models. That way, rich complexity of physio-electro-
chemical interactions, embedded within natural systems, becomes available.

Besides, there is another level of benefits received through analysis from au-
tonomously designed systems for constructing computational systems. As men-
tioned in Chapter 5.2.2, an advantage of autonomous approaches is the possi-
bilities to find novel, not rationalized (yet) solutions. Needless to say, this is the
main motivations of evolutionary algorithms, an autonomous design method.
Aspirin has once and still shown a noticeable example of un-rationalized nov-
elties. The effects are known for a long time but without knowing the exact
mechanisms [Flower, 2003]. By analyzing evolved systems, we can gain knowl-
edge about those novelties, and that knowledge can be used as a source of
inspiration for constructing computational systems.

112

Bibliography

Adamatzky, A. (1994). Identification of Cellular Automata. Taylor and Francis,
London.

Adamatzky, A. and De Lacy Costello, B. (2002). Experimental logical gates
in a reaction-diffusion medium: The XOR gate and beyond. Phys. Rev. E,
66(4):046112.

Adleman, L. M. (1994). Molecular computation of solutions to combinatorial
problems. Science, 266:1021–1024.

Anderson, P. W. (1972). More is different. Science, 177(4047):393–396.

Arnold, B., Balakrishnan, N., and Nagaraja, H. (1992). A First Course in
Order Statistics. New York. Wiley.

Arnold, D. V. and Beyer, H.-G. (2002). Random dynamics optimum tracking
with evolution strategies. In Guervós, J. J. M., Adamidis, P., Beyer, H.-
G., nas, J.-L. F.-V., and Schwefel, H.-P., editors, Parallel Problem Solving
from Nature VII (PPSN-2002), volume 2439 of LNCS, pages 3–12, Granada,
Spain. Springer Verlag.

Artmann, S. (2003). Artificial life as a structural science. Philosophia naturalis,
40(2):183–205.

Babaoglu, O., Canright, G., Deutsch, A., Caro, G. A. D., Ducatelle, F., Gam-
bardella, L. M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A.,
and Urnes, T. (2006). Design patterns from biology for distributed comput-
ing. ACM Transactions on Autonomous and Adaptive Systems, 1(1):26 –
66.

Bäck, T., Fogel, D. B., and Michalewicz, Z., editors (1997). Handbook of
Evolutionary Computation. Oxford University Press, New York, NY and
Institute of Physics Publishing, Bristol.

Bailey, J. E. (2001). Complex biology with no parameters. Nat. Biotechnol.,
19(6):503–504.

Banâtre, J.-P., Fradet, P., and Radenac, Y. (2004). Principles of chemical
programming. In Abdennadher, S. and Ringeissen, C., editors, RULE’04
Fifth International Workshop on Rule-Based Programming, pages 98–108.
Tech. Rep. AIB-2004-04, Dept. of Comp. Sci., RWTH Aachen, Germany.

Banâtre, J.-P. and Métayer, D. L. (1986). A new computational model and its
discipline of programming. Tech. Rep. RR-0566, INRIA.

113

Bibliography

Banâtre, J.-P. and Métayer, D. L. (1990). The GAMMA model and its disci-
pline of programming. Sci. Comput. Program., 15(1):55–77.

Banzhaf, W., Dittrich, P., and Rauhe, H. (1996). Emergent computation by
catalytic reactions. Nanotechnology, 7(1):307–314.

Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology: Understanding the
cell’s functional organization. Nat. Rev. Gen., 5:101–113.

Beale, R. and Jackson, T. (1990). Neural Computing: An Introduction. Insti-
tute of Physics Publishing.

Bedau, M. and Brown, C. T. (1999). Visualizing evolutionary activity of geno-
types. Artif. Life, 5:17–35.

Berry, G. and Boudol, G. (1992). The chemical abstract machine. Theor.
Comput. Sci., 96(1):217–248.

Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies - a comprehensive
introduction. Natural Computing, 1(1):3–52.

Bhalla, U. S. and Iyengar, R. (1999). Emergent properties of networks of
biological signaling pathways. Science, 283:381–387.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (2000). Inspiration for optimiza-
tion from social insect behaviour. Nature, 406:39–42.

Bracht, A. and de P. Campello, A. (1979). Effect of the ionic strength on the
kinetic properties of the mitochondrial l-malate dehydrogenase. Experientia,
35:1559–1561.

Buchholz, W. (1959). Fingers or fists? (the choice of decimal or binary repre-
sentation). Commun. ACM, 2(12):3–11.

Callaway, D. S. and Perelson, A. S. (2002). HIV-1 infection and low steady
state viral loads. Bull. Math. Biol., 64:29–64.

Callaway, D. S., Ribeiro, R. M., and Nowak, M. A. (1999). Virus pheno-
type switching and disease progression in HIV-1 infection. Proc. Biol. Sci.,
266(1437):2523–2530.

Centler, F., Dittrich, P., Ku, L., Matsumaru, N., Pfaffmann, J., and Zauner,
K.-P. (2003). Artificial life as an aid to astrobiology: Testing life seeking
techniques. In Banzhaf, W., Christaller, T., Dittrich, P., Kim, J. T., and
Ziegler, J., editors, Advances in Artificial Life, ECAL 2003, volume 2801 of
LNAI, pages 31–40. Springer, Berlin.

Cherry, C. (1966). On Human Communication: A Review, a Survey, and a
Criticism, chapter 5. MIT Press, Cambridge, MA, 2nd edition.

Clarke, B. L. (1975). Theorems on chemical network stability. The Journal of
Chemical Physics, 62(3):773–775.

Clarke, B. L. (1980). Stability of complex reaction networks. Advances in
Chemical Physics, 42:1–213.

114

Conrad, M. (1988). The price of programmability. In Herken, R., editor, The
Universal Turing Machine: A Fifty Year Survey, pages 285–307. Oxford
University Press, New York.

Conrad, M. (1989). The brain-machine disanalogy. BioSystems, 22:197–213.

Conrad, M. (1990). Molecular computing. In Yovits, M. C., editor, Advances
in Computers, volume 31, pages 235–324. Academic Press, Boston.

Conrad, M. (1992). The seed germination model of enzyme catalysis. BioSys-
tems, 27:223–233.

Conrad, M. (1995). Scaling of efficiency in programmable and non-
programmable systems. BioSystems, 35:161–166.

Csete, M. E. and Doyle, J. C. (2002). Reverse engineering of biological com-
plexity. Science, 295(5560):1664–1669.

Culler, D., Estrin, D., and Srivastava, M. (2004). Overview of sensor networks.
Computer, 37(8):41–49.

Deckard, A. and Sauro, H. (2004). Preliminary studies on the in silico evolution
of biochemical networks. ChemBioChem, 5:1423–1431.

Dér, A. and Ramsden, J. J. (1998). Evidence for loosening of a protein mech-
anism. Naturwissenschaften, 85:353–355.

D’haeseleer, P., Forrest, S., and Helman, H. (1996). An immunological ap-
proach to change detection: Algorithms, analysis and implications. In Pro-
ceedings of the 1996 IEEE Symposium on Security and Privacy, pages 110–
119. IEEE Computer Society Press.

Dittrich, P. (2001). On Artificial Chemistries. PhD thesis, University of Dort-
mund, Department of Computer Science, D-44221 Dortmund, Germany.

Dittrich, P. (2005). The bio-chemical information processing metaphor as a
programming paradigm for organic computing. In Brinkschulte, U., Becker,
J., Hochberger, C., Martinetz, T., Müller-Schloer, C., Schmeck, H., Ungerer,
T., and Würtz, R., editors, ARCS ’05 - 18th International Conference on
Architecture of Computing Systems 2005, pages 95–99. VDE Verlag, Berlin.

Dittrich, P. and Banzhaf, W. (1998). Self-evolution in a constructive binary
string system. Artif. Life, 4(2):203–220.

Dittrich, P., Hinze, T., Ibrahim, B., Lenser, T., and Matsumaru, N. (2007).
Hierarchically evolvable components for complex systems: Biologically in-
spired algorithmic design. In Jost, J., Helbing, D., Kantz, H., and Deutsch,
A., editors, Proceedings of the European Conference on Complex Systems
(ECCS2007), page 85. TU Dresden.

Dittrich, P. and Matsumaru, N. (2007). Organization-oriented chemical pro-
gramming. In 7th International Conference on Hybrid Intelligent Systems
(HIS), IEEE Conference Proceedings, pages 18–23. IEEE.

115

Bibliography

Dittrich, P. and Speroni di Fenizio, P. (2007). Chemical organisation theory.
Bull Math Biol, 69(4):1199–1231.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial chemistries - a
review. Artif. Life, 7(3):225–275.

Dorigo, M., Caro, G. D., and Gambardella, L. (1999). Ant algorithms for
discrete optimization. Artif. Life, 5(2):137–172.

Eaton, J. W. (2002). GNU Octave Manual. Network Theory Limited, Bristol,
UK.

Ebenhöh, O., Handorf, T., and Heinrich, R. (2004). Structural analysis of
expanding metabolic networks. Genome Informatics, 15(1):35–45.

Edwards, J. S. and Palsson, B. O. (2000). The escherichia coli mg1655 in silico
metabolic genotype: Its definition, characteristics, and capabilities. PNAS,
97:5528–5533.

Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G.
(2003). Formal systems for gene assembly in ciliates. Theoretical Computer
Science, 292(1):199–219.

Ellacott, S. and Bose, D. (1996). Neural Networks: Deterministic Methods of
Analysis. International Thomson Computer Press.

Englard, S. and Siegel, L. (1969). Mitochondrial L-malate dehydrogenase of
beef heart. In Lowenstein, J. M., editor, Citric Acid Cycle, volume XIII of
Methods in Enzymology, pages 99–106. Academic Press, New York.

Feinberg, M. and Horn, F. J. M. (1974). Dynamics of open chemical systems
and the algebraic structure of the underlying reaction network. Chemical
Engineering Science, 29:775–787.

Fernando, C. and Rowe, J. (2007). Natural selection in chemical evolution. J.
Theor. Biol., 247(1):152–167.

Flower, R. J. (2003). The development of cox2 inhibitors. Nat Rev Drug Discov,
2(3):179–191.

Fontana, W. and Buss, L. W. (1994). ’The arrival of the fittest’: Toward a
theory of biological organization. Bull Math Biol, 56:1–64.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant
analysis, and density estimation. Journal of the American Statistical Asso-
ciation, 97:611–631.

Freire, E. (1998). Statistical thermodynamic linkage between conformational
and binding equilibria. Adv.in Prot. Chem., 51:255–279.

Furusawa, C. and Kaneko, K. (1998). Emergence of rules in cell society: Dif-
ferentiation, hierarchy, and stability. Bull. Math. Biol., 60:659–87.

Gardner, T. S., Cantor, C. R., and Collins, J. J. (1999). Construction of a
genetic toggle switch in escherichia coli. Nature, 403:339–342.

116

Gelṕı, G. L., Dordal, A., Montserrat, J., Mazo, A., and Cortés, A. (1992).
Kinetic studies of the regulation of mitochondrial malate dehydrogenase by
citrate. Biochem. J., 283:289–297.

Giavitto, J.-L. and Michel, O. (2001). MGS: a rule-based programming lan-
guage for complex objects and collections. In van den Brand, M. and Verma,
R., editors, Electr. Notes in Theor. Comput. Sci., volume 59. Elsevier Science
Publishers.

Gooding, D. (1990). Experiment and the Making of Meaning. Kluwer Academic
Publishers, Dordrecht.

Güdemann, M., Angerer, A., Ortmeier, F., and Reif, W. (2007). Modeling of
self-adaptive systems with SCADE. In Circuits and Systems, 2007. ISCAS
2007. IEEE International Symposium on, pages 2922–2925. IEEE.

Guido, N. J., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor,
C. R., Elston, T. C., and Collins, J. J. (2006). A bottom-up approach to
gene regulation. Nature, 439(7078):856–860.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-
adaptation in evolution strategies. Evol. Comput., 9(2):159–195.

Hartley, R. V. L. (1928). Transmission of information. Bell System Tech. J.,
7:535–563.

Herman, T. (2003). Models of self-stabilization and sensor networks. In Das,
S. R. and Das, S. K., editors, IWDC, volume 2918 of LNCS, pages 205–214.
Springer, Berlin.

Hinkelmann, K. and Kempthorn, O. (1994). Design and Analysis of Experi-
ments, Volume 1, Introduction to Experimental Design. Wiley, New York.

Hjelmfelt, A., Weinberger, E. D., and Ross, J. (1991). Chemical implementa-
tion of neural networks and turing machines. Proc. Natl. Acad. Sci. USA,
88:10983–10987.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A.,
Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J.,
Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L.,
Kremling, A., Kummer, U., Novère, N. L., Loew, L. M., Lucio, D., Mendes,
P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F.,
Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D.,
Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003).
The systems biology markup language (sbml): a medium for representation
and exchange of biochemical network models. Bioinformatics, 19(4):524–531.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and
graphics. Journal of Computational and Graphical Statistics, 5(3):299–314.

Ikeda, M., Kamei, S., and Kakugawa, H. (2002). A space-optimal self-
stabilizing algorithm for the maximal independent set problem. In Pro-
ceedings of the Third International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), pages 70–74.

117

Bibliography

Jain, S. and Krishna, S. (2001). A model for the emergence of cooperation,
interdependence, and structure in evolving networks. Proc. Natl. Acad. Sci.
U. S. A., 98(2):543–547.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L. (2000).
The large-scale organization of metabolic networks. Nature, 407:651–654.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly con-
structed genetic nets. J. Theor. Biol., 22:437–467.

King, J. (1965). Practical Clinical Enzymology. D. Van Nostrand, London.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K., Bryant, C. H.,
Muggleton, S. H., Kell, D. B., and Oliver, S. G. (2004). Functional genomic
hypothesis generation and experimentation by a robot scientist. Nature,
427:247–252.

Kitano, H. (2002). Systems biology: A brief overview. Science, 295:1662–1664.

Klamt, S. and Gilles, E. D. (2004). Minimal cut sets in biochemical reaction
networks. Bioinformatics, 20(2):226–234.

Klemm, K. and Bornholdt, S. (2005). Topology of biological networks
and reliability of information processing. Proc. Natl. Acad. Sci. U.S.A.,
102(51):18414–9.

Krüger, B. and Dressler, F. (2004). Molecular processes as a basis for au-
tonomous networking. In International IPSI-2004 Stockholm Conference:
Symposium on Challenges in the Internet and Interdisciplinary Research
(IPSI-2004 Stockholm).

Kulkarni, D. and Simon, H. A. (1990). Experimentation in machine discovery.
In Shrager, J. and Langley, P., editors, Computational Models of Scientific
Discovery and Theory Formation, pages 255–273. Morgan Kaufmann Pu-
bishers, San Mateo, CA.

Küppers, B.-O. (1990). Information and the Origin of Life. MIT Press, Cam-
bridge, MA.

Langley, P., Simon, H. A., Bradshaw, G. L., and Zytkow, J. M. (1987). Sci-
entific discovery: Computational exploration of the creative processes. MIT
Press, Cambridge, MA.

Langton, C. G. (1989). Artificial life. In Langton, C. G., editor, Artificial Life,
SFI Studies in the Science of Complexity, pages 1–45. Santa Fe Institute,
Los Alamos, New Mexico, Addison-Wesley, Redwood City, CA.

Lautenbach, K. (1973). Exact liveness conditions of a petri net class (in ger-
man). GMD Report 82, GMD, Bonn, German.

Lenser, T., Hinze, T., Ibrahim, B., and Dittrich, P. (2007). Towards evolu-
tionary network reconstruction tools for systems biology. In E. Marchiori,
J.H. Moore, J. R. E., editor, Proceedings of the Fifth European Conference
on Evolutionary Computation, Machine Learning and Data Mining in Bioin-
formatics (EvoBIO), volume 4447 of LNCS.

118

Lenser, T., Matsumaru, N., Hinze, T., and Dittrich, P. (2008). Tracking the
evolution of chemical computing networks. In Bullock, S., Noble, J., Watson,
R. A., and Bedau, M. A., editors, Proceedings of the Eleventh International
Conference on Artificial Life. MIT Press, Cambridge, MA.

Lindley, D. V. (1956). On a measure of the information provided by an exper-
iment. Ann. Math. Statist., 27:986–1005.

Lodding, K. N. (2004). The hitchhiker’s guide to biomorphic software. Queue,
2(4):66–75.

Luby, M. (1986). A simple parallel algorithm for the maximal independent set
problem. SIAM Journal on Computing, 15:1036 – 1055.

Machné, R., Finney, A., Müller, S., Lu, J., Widder, S., and Flamm, C. (2006).
The sbml ode solver library: a native api for symbolic and fast numerical
analysis of reaction networks. Bioinformatics, 22(11):1406–1407.

Matsumaru, N., Centler, F., Speroni di Fenizio, P., and Dittrich, P. (2006a).
Chemical organization theory applied to virus dynamics. it - Information
Technology, 48(3):154–160.

Matsumaru, N., Centler, F., Speroni di Fenizio, P., and Dittrich, P. (2007).
Chemical organization theory as a theoretical base for chemical computing.
International Journal of Unconventional Computing, 3(4):285–309.

Matsumaru, N., Centler, F., Zauner, K.-P., and Dittrich, P. (2004). Self-
adaptive scouting - autonomous experimentation for systems biology. In
Raidl, G. R., Cagnoni, S., Branke, J., Corne, D. W., Drechsler, R., Jin, Y.,
Johnson, C., Machado, P., Marchiori, E., Rothlauf, F., Smith, G. D., and
Squillero, G., editors, Applications of Evolutionary Computing, EvoWork-
shops2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART,
EvoSTOC Coimbra, Portugal, April 2004, Proceedings, volume 3005 of
LNCS, pages 52–62. Springer, Berlin.

Matsumaru, N., Colombano, S., and Zauner, K.-P. (2002). Scouting enzyme
behavior. In Fogel, D. B., El-Sharkawi, M. A., Yao, X., Greenwood, G.,
Iba, H., Marrow, P., and Shackleton, M., editors, Proceedings of the 2002
Congress on Evolutionary Computation CEC2002, pages 19–24. IEEE Press,
Piscataway, NJ.

Matsumaru, N., Speroni di Fenizio, P., Centler, F., and Dittrich, P. (2005).
A case study of chemical organization theory applied to virus dynamics. In
Kim, J. T., editor, Systems Biology Workshop at ECAL 2005, Workshop
Proceedings CD-ROM, Kent, UK.

Matsumaru, N., Speroni di Fenizio, P., Centler, F., and Dittrich, P. (2006b).
On the evolution of chemical organizations. In Artmann, S. and Dittrich,
P., editors, Explorations in the complexity of possible life: abstracting and
synthesizing the principles of living systems, Proceedings of the 7th German
Workshop of Artificial Life, pages 135–146. Aka, Berlin.

Mayer, B. and Rasmussen, S. (2000). Dynamics and simulation of micellar
self-reproduction. Int. J. Mod. Phys. C, 11(4):809–826.

119

Bibliography

McMullin, B. (2000). John von Neumann and the evolutionary growth of com-
plexity: Looking backwards, looking forwards... In Bedau, M. A., McCaskill,
J. S., Packard, N. H., and Rasmussen, S., editors, Artificial Life VII. MIT
Press, Cambridge, MA.

Montresor, A. and Babaoglu, O. (2003). Biology-inspired approaches to peer-
to-peer computing in bison. In The Third International Conference on In-
telligent System Design and Applications.

Müller-Schloer, C. (2004). Organic computing: On the feasibility of con-
trolled emergence. In Proceedings of the 2nd IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS2004, pages 2–5. ACM Press, New York.

NASA Astrobiology Roadmap (November 2002). Astrobiology roadmap. U.S.
National Aeronautics and Space Administration (NASA). Available at:
http://astrobiology.arc.nasa.gov/roadmap/roadmap.pdf.

Nowak, M. A. and Bangham, C. R. M. (1996). Population dynamics of immune
responses to persistent viruses. Science, 272(5258):74–79.

Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., and Ho,
D. D. (1996). Hiv-1 dynamics in vivo: Virion clearance rate, infected cell
life-span, and viral generation time. Science, 271(5255):1582–1586.

Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Universität
Bonn.

Pfaffmann, J. O. and Zauner, K.-P. (2001). Scouting context-sensitive compo-
nents. In Keymeulen, D., Stoica, A., Lohn, J., and Zebulum, R. S., editors,
The Third NASA/DoD workshop on Evolvable Hardware, pages 14–20, Long
Beach, California. Jet Propulsion Laboratory, California Institute of Tech-
nology, IEEE Computer Society.

Păun, G. (2000). Computing with membranes. J. Comput. Syst. Sci.,
61(1):108–143.

Rechenberg, I. (1994). Evolutionsstrategie’94. frommann-holzboog, Stuttgard.

Reddy, V. N., Mavrovouniotis, M. L., and Liebman, M. N. (1993). Petri net
representations in metabolic pathways. In Proceedings of the 1st Interna-
tional Conference on Intelligent Systems for Molecular Biology, pages 328–
336. AAAI Press.

Reichenbach, F., Bobek, A., Hagen, P., and Timmermann, D. (2006). Increas-
ing lifetime of wireless sensor networks with energy-aware role-changing. In
Proceedings of the 2nd IEEE International Workshop on Self-Managed Net-
works, Systems & Services (SelfMan 2006), pages 157–170, Dublin, Ireland.

Sahle, S., Gauges, R., Pahle, J., Simus, N., Kummer, U., Hoops, S., Lee,
C., Singhal, M., Xu, L., and Mendes, P. (2006). Simulation of biochemical
networks using copasi - a complex pathway simulator. In Winter Simulation
Conference, 2006. WSC 06. Proceedings of the, pages 1698–1706.

120

Schilling, C. H., Schuster, S., Palsson, B. O., and Heinrich, R. (1999). Metabolic
pathway analysis: Basic concepts and scientific applications in the post-
genomic era. Biotechnol. Prog., 15:296–303.

Schoonderwoerd, R., Bruten, J. L., Holland, O. E., and Rothkrantz, L. J. M.
(1996). Ant-based load balancing in telecommunications networks. Adapt.
Behav., 5(2):169–207.

Schuster, S., Fell, D. A., and Dandekar, T. (2000). A general definition of
metabolic pathways useful for systematic organization and analysis of com-
plex metabolic networks. Nat. Biotechnol., 18:326–332.

Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana. Reprinted 1967.

Shukla, S. K., Rosenkrantz, D. J., and Ravi, S. S. (1995). Observations on
self-stabilizing graph algorithms for anonymous networks. In Proceedings of
the Second Workshop on Self-Stabilizing Systems, pages 7.1–7.15.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Pérez-Uribe, A., and
Stauffer, A. (1997). A phylogenetic, ontogenetic, and epigenetic view of
bio-inspired hardware systems evolutionary computation. IEEE TRANS-
ACTIONS ON EVOLUTIONARY COMPUTATION, 1(1):83–97.

Sols, A. (1981). Multimodulation of enzyme activity. Current Topics in Cellular
Regulation, 19:77–101.

Speroni di Fenizio, P. and Dittrich, P. (2002). Artificial chemistry’s global
dynamics. movement in the lattice of organisation. The Journal of Three
Dimensional Images, 16(4):160–163.

Speroni di Fenizio, P., Dittrich, P., Ziegler, J., and Banzhaf, W. (2000). To-
wards a theory of organizations. In German Workshop on Artificial Life
(GWAL 2000), in print, Bayreuth, 5.-7. April, 2000.

Steels, L. (1990). Towards a theory of emergent functionality. In Proceedings of
the first international conference on simulation of adaptive behavior on From
animals to animats, pages 451–461, Cambridge, MA, USA. MIT Press.

Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J., and Doyle, J. (2004). Robust-
ness of cellular functions. Cell, 118:675–685.

Teuscher, C., Mange, D., Stauffer, A., and Tempesti, G. (2003). Bio-inspired
computing tissues: towards machines that evolve, grow, and learn. Biosys-
tems, 68:235–244.

Tsuda, S., Aono, M., and Gunji, Y.-P. (2004). Robust and emergent physarum
logical-computing. Biosystems, 73(1):45–55.

Tu, P. N. V. (1994). Dynamical systems : an introduction with applications in
economics and biology. Springer, Berlin, 2 edition.

Tyson, J. J., Chen, K., and Novak, B. (2001). Network dynamics and cell
physiology. Nature Reviews Molecular cell biology, 2:908–916.

121

Bibliography

Weicker, K. and Weicker, N. (1999). On evolution strategy optimization in
dynamic environments. In Angeline, P. J., Michalewicz, Z., Schoenauer, M.,
Yao, X., and Zalzala, A., editors, Proceedings of the Congress on Evolution-
ary Computation, volume 3, pages 2039–2046, Mayflower Hotel, Washington
D.C., USA. IEEE Press.

Weiss, R., Homsy, G., and Knight, T. (1999). Toward in vivo digital circuits.
In Proceedings of the Dimacs Workshop on Evolution as Computation.

Wodarz, D. and Nowak, M. A. (1999). Specific therapy regimes could lead
to long-term immunological control of HIV. Proc. Natl. Acad. Sci. U.S.A.,
96(25):14464–9.

Wong, P. C.-P. and Smith, A. F. (1976). Assay of serum NAD-dependent
malate dehydrogenase using malate as substrate. Clinica Chemica Acta,
72:409–412.

Wu, H., Ruan, P., Ding, A. A., Sullivan, J. L., and Luzuriaga, K. (1999).
Inappropriate model-fitting methods may lead to significant underestimates
of viral decay rates in hiv dynamic studies. J. Acquir. Immune Defic. Syndr.,
21(5):426–428.

Yung, Y. L. and DeMore, W. B. (1999). Photochemistry of Planetary Atmo-
spheres. Oxford University Press, New York.

Zauner, K.-P. (2005). From prescriptive programming of solid-state devices
to orchestrated self-organisation of informed matter. In Banâtre, J.-P., Gi-
avitto, J.-L., Fradet, P., and Michel, O., editors, Unconventional Program-
ming Paradigms: International Workshop UPP 2004, volume 3566 of LNCS,
pages 47–55. Springer, Berlin.

Zauner, K.-P. and Conrad, M. (2001). Enzymatic computing. Biotechnology
Progress, 17(3):553–559.

122

About The Author

Curriculum Vitae

Name Naoki Matsumaru
Citizenship Japan
Date of birth 28. August, 1974 (Shinshiro, Aichi, Japan)

Contact: Biosystemanalyse
Institut für Informatik
D-07743 Jena, Germany
(+49) 3641-9-46461
E-Mail:naoki@minet.uni-jena.de
URL:www.minet.uni-jena.de/~naoki/

Home address: Sophienstr. 27, D-07743 Jena, Germany
(+49)-3641-597275

Education ◦ M.S. in Computer Science: Automated Protein Ex-
ploration for a Biologically Inspired Molecular Infor-
mation Processor, Advisor: Prof. Klaus-Peter Zauner,
Wayne State University, Detroit, MI, USA, May 2002.

◦ B.S. in Computer Science and Engineering, Advi-
sor: Prof. Kshirasager Knaik, University of Aizu,
Fukushima, Japan, March 1998.

Employment ◦ August 2000 – May 2001: Graduate Teaching Assis-
tant, Department of Computer Science, Wayne State
University

◦ August 2001 – December 20001: Graduate Teaching
Assistant, Department of Computer Science, Wayne
State University

◦ January 2002 – September 2002: Graduate Research
Assistant (funded by NASA), Department of Com-
puter Science, Wayne State University

◦ 2002 October – 2005 August : wissenschaftlicher
Mitarbeiter (research associate) (funded by BMBF),
Department of Mathematics and Computer Science,
Friedrich-Schiller-Universität Jena

◦ 2005 September – present : wissenschaftlicher Mitar-
beiter (research associate) (funded by DFG - SPP 1183
Organic Computing), Department of Mathematics and
Computer Science, Friedrich-Schiller-Universität Jena

Research interests: Chemical computing, Molecular computing, Computa-
tional models of biological information processing The role of information in
living matter Bio-inspired computing Biophysics

Autobiographical Statement

Naoki Matsumaru received his Bachelor of Science, supervised by Prof.
Kshirasagar Naik, with a major in computer science and engineering from
the University of Aizu, Fukushima, Japan, in March, 1998. His thesis for the
degree was to compare wireless communication network strategies using object-
oriented programming with Java. Subsequently, he went to the United States
to pursue his interest in the interface of nature and technology by enrolling
in chemical engineering at Oklahoma State University, Stillwater, Oklahoma.
There he learned about Dr. Michael Conrad’s research on biological informa-
tion processing. He traveled to Wayne State University, Detroit, Michigan, in
1999 to learn from Dr. Michael Conrad. Numerous discussions with him and
his colleagues were enjoyable and inspiring, and the author took all the classes
Dr. Conrad offered until his death in December, 2000. The author continued
his study with the help of Dr. Klaus-Peter Zauner, one of Dr. Conrad’s col-
leagues, by joining a NASA funded project to develop a molecular controller for
a robot. He achieved his Master of Science in Computer Science in May, 2002,
(advisor: Prof. Dr. Klaus-Peter Zauner, Wayne State University, Detroit).
The title of his thesis is “Automated Protein Exploration for a Biologically
Inspired Molecular Information Processor” (successfully defended March 29th,
2002), and he developed a system to autonomously explore protein behaviors.
When he had an opportunity to join the Bio Systems Analysis group led by
PD Dr. Peter Dittrich, at Friedrich-Schiller University Jena, Jena, Germany
(funded by BMBF - Federal Ministry of Education and Research), he was ex-
cited about the possibilities to pursue further his research interest in biological
information processing and chemical computing. There, he extended his exper-
tise in autonomous experimentations, and simultaneously, he became familiar
with Dr. Dittrich’s theory of chemical organizations. He was fascinated by
the theory and its potential application to chemical programming. When Dr.
Dittrich decided to apply for a project under the Organic Computing initiative
funded by DFG - German Research Foundation, the author supported his de-
cision and also contributed to the application. The acceptance of the project
application motivated the author to investigate further in chemical computing.

The author is married since 2003, and in 2007, his first daughter was born.

Publications

————— 1998 —————

• N. Matsumaru, K. Naik, and D. S. L. Wei. Comparing three loca-
tion management strategies for tracking mobile systems. In Proceedings
of the International Conference on Parallel and Distributed Processing
Techniques and Applications 1998 (PDPTA 1998), 1998.

————— 2002 —————

• N. Matsumaru, S. Colombano, and K.-P. Zauner. Scouting enzyme be-
havior. In D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood,
H. Iba, P. Marrow, and M. Shackleton, editors, Proceedings of the 2002
Congress on Evolutionary Computation CEC2002, pages 19–24. IEEE
Press, Piscataway, NJ, 2002.

————— 2003 —————

• N. Matsumaru, S. Ziagos, F. Centler, K.-P. Zauner, S. Wölfl, and P. Dit-
trich. Autonomous exploration of dynamic biological systems by scout-
ing. In H.-W. Mewes, V. Heun, D. Frishman, and S. Kramer, editors,
Proceedings of German Conference on Bioinformatics, Volume II, page
210. Belleville Verlag Michael Farin, München, oct 2003.

• F. Centler, P. Dittrich, L. Ku, N. Matsumaru, J. Pfaffmann, and K.-P.
Zauner. Artificial life as an aid to astrobiology: Testing life seeking
techniques. In W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and
J. Ziegler, editors, Advances in Artificial Life, ECAL 2003, volume 2801
of LNAI, pages 31–40. Springer, Berlin, 2003.

————— 2004 —————

• N. Matsumaru, F. Centler, K.-P. Zauner, and P. Dittrich. Autonomous
experimentation for systems biology. Poster abstract presented at BioP-
erspectives 2004, Wiesbaden, Germany, may 2004.

• N. Matsumaru, F. Centler, K.-P. Zauner, and P. Dittrich. Towards ap-
plied systems biology: application centered models from autonomous ex-
perimentation. 5th International Conference on Systems Biology (ICSB),
Heidelberg, Germany, oct 2004. Poster abstract.

• N. Matsumaru, F. Centler, K.-P. Zauner, and P. Dittrich. Self-adaptive
scouting - autonomous experimentation for systems biology. In G. R.
Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drechsler, Y. Jin, C. John-
son, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith, and G. Squillero,
editors, Applications of Evolutionary Computing, EvoWorkshops2004:
EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC
Coimbra, Portugal, April 2004, Proceedings, volume 3005 of LNCS, pages
52–62. Springer, Berlin, 2004.

————— 2005 —————

• N. Matsumaru, F. Centler, and P. Dittrich. Chemical organization the-
ory as a theoretical base for chemical computing. In C. Teuscher and
A. Adamatzky, editors, Proceedings of the 2005 Workshop on Unconven-
tional Computing: From Cellular Automata to Wetware, pages 75–88.
Luniver Press, Beckington, UK, 2005.

• N. Matsumaru, P. Speroni di Fenizio, F. Centler, and P. Dittrich. A
case study of chemical organization theory applied to virus dynamics. In
J. T. Kim, editor, Systems Biology Workshop at ECAL 2005, Workshop
Proceedings CD-ROM, Kent, UK, 5-9 September 2005.

————— 2006 —————

• N. Matsumaru, F. Centler, P. Speroni di Fenizio, and P. Dittrich. Chem-
ical organization theory applied to virus dynamics. it - Information
Technology, 48(3):154–160, 2006.

• N. Matsumaru, P. Speroni di Fenizio, F. Centler, and P. Dittrich. On
the evolution of chemical organizations. In S. Artmann and P. Dittrich,
editors, Explorations in the complexity of possible life: abstracting and
synthesizing the principles of living systems, Proceedings of the 7th Ger-
man Workshop of Artificial Life, pages 135–146. Aka, Berlin, 2006.

• N. Matsumaru and P. Dittrich. Organization-oriented chemical program-
ming for the organic design of distributed computing systems. In 1st
international conference on bio inspired models of network, information
and computing systems (BIONETICS), volume 275 of ACM International
Conference Proceeding, Cavalese, Italy, December 11-13 2006. IEEE. also
available at http://www.x-cd.com/bionetics06cd/.

————— 2007 —————

• N. Matsumaru, F. Centler, P. Speroni di Fenizio, and P. Dittrich. Chem-
ical organization theory as a theoretical base for chemical computing.
International Journal of Unconventional Computing, 3(4):285–309, 2007.

• F. Centler, P. Speroni di Fenizio, N. Matsumaru, and P. Dittrich. Chem-
ical organizations in the central sugar metabolism of escherichia coli. In
Mathematical Modeling of Biological Systems, Volume I. A Birkhäuser
book, 2007.

• N. Matsumaru, T. Lenser, T. Hinze, and P. Dittrich. Designing a chem-
ical program using chemical organization theory. BMC Systems Biology,
1(Suppl 1):P26, 2007. from BioSysBio 2007: Systems Biology, Bioinfor-
matics, and Synthetic Biology, Manchester, UK, 11-13 January 2007.

• N. Matsumaru, T. Lenser, T. Hinze, and P. Dittrich. Toward organization-
oriented chemical programming: A case study with the maximal indepen-
dent set problem. In F. Dressler and I. Carreras, editors, Advances in
Biologically Inspired Information Systems, volume 69 of Studies in Com-
putational Intelligence, pages 147–163. Springer, Berlin, 2007.

• P. Dittrich and N. Matsumaru. Organization-oriented chemical program-
ming. In 7th International Conference on Hybrid Intelligent Systems
(HIS), IEEE Conference Proceedings, pages 18–23. IEEE, 17-19 Sept.
2007 2007.

• T. Hinze, R. Faßler, T. Lenser, N. Matsumaru, and P. Dittrich. Effizient
chemisch rechnen durch deterministische reaktionssysteme mit regelpri-
orisierung. In M. Droste and M. Lohrey, editors, Proceedings of 17.
Theorietag Automaten und Formale Sprachen, pages 68–73. Universität
Leipzig, 2007.

• T. Hinze, S. Hayat, T. Lenser, N. Matsumaru, and P. Dittrich. Hill
kinetics meets p systems: A case study on gene regulatory networks as
computing agents in silico and in vivo. In G. Eleftherakis, P. Kefalas,
and G. Păun, editors, Proceedings of the Eight Workshop on Membrane
Computing (WMC8), pages 363–381. SEERC Publishers, 2007.

• T. Hinze, S. Hayat, T. Lenser, N. Matsumaru, and P. Dittrich. Hill kinet-
ics meets p systems. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozen-
berg, and A. Salomaa, editors, Membrane Computing, volume 4860 of
LNCS, pages 320–335. Springer Verlag, 2007.

• P. Dittrich, T. Hinze, B. Ibrahim, T. Lenser, and N. Matsumaru. Hierar-
chically evolvable components for complex systems: Biologically inspired
algorithmic design. In J. Jost, D. Helbing, H. Kantz, and A. Deutsch,
editors, Proceedings of the European Conference on Complex Systems
(ECCS2007), page 85. TU Dresden, 2007.

————— 2008 —————

• T. Hinze, S. Hayat, T. Lenser, N. Matsumaru, and P. Dittrich. Biosignal-
based computing by ahl induced synthetic gene regulatory networks.
In P. Encarnacao and A. Veloso, editors, Proceedings of the First In-
ternational Conference on Bio-Inspired Systems and Signal Processing
(BIOSIGNALS2008), volume 1, pages 162–169. IEEE Engineering in
Medicine and Biology Society, Institute for Systems and Technologies of
Information Control and Communication (INSTICC) press, 2008.

• T. Lenser, N. Matsumaru, T. Hinze, and P. Dittrich. Tracking the
evolution of chemical computing networks. In S. Bullock, J. Noble,
R. A. Watson, and M. A. Bedau, editors, Proceedings of the Eleventh
International Conference on Artificial Life. MIT Press, Cambridge, MA,
2008.

• T. Hinze, R. Faßler, T. Lenser, N. Matsumaru, and P. Dittrich. Event-
driven metamorphoses of P systems. In Proceedings of 9th Workshop
on Membrane Computing, WMC9, LNCS. Springer, Berlin, 2008. (ac-
cepted).

