5,654 research outputs found

    Applying Schwarzschild's orbit superposition method to barred or non-barred disc galaxies

    Full text link
    We present an implementation of the Schwarzschild orbit superposition method which can be used for constructing self-consistent equilibrium models of barred or non-barred disc galaxies, or of elliptical galaxies with figure rotation. This is a further development of the publicly available code SMILE; its main improvements include a new efficient representation of an arbitrary gravitational potential using two-dimensional spline interpolation of Fourier coefficients in the meridional plane, as well as the ability to deal with rotation of the density profile and with multicomponent mass models. We compare several published methods for constructing composite axisymmetric disc--bulge--halo models and demonstrate that our code produces the models that are closest to equilibrium. We also apply it to create models of triaxial elliptical galaxies with cuspy density profiles and figure rotation, and find that such models can be found and are stable over many dynamical times in a wide range of pattern speeds and angular momenta, covering both slow- and fast-rotator classes. We then attempt to create models of strongly barred disc galaxies, using an analytic three-component potential, and find that it is not possible to make a stable dynamically self-consistent model for this density profile. Finally, we take snapshots of two N-body simulations of barred disc galaxies embedded in nearly-spherical haloes, and construct equilibrium models using only information on the density profile of the snapshots. We demonstrate that such reconstructed models are in near-stationary state, in contrast with the original N-body simulations, one of which displayed significant secular evolution.Comment: 15 pages, 9 figures; MNRAS, 450, 2842. The software is available at http://td.lpi.ru/~eugvas/smile

    Modelling the Galaxy for GAIA

    Full text link
    Techniques for the construction of dynamical Galaxy models should be considered essential infrastructure that should be put in place before GAIA flies. Three possible modelling techniques are discussed. Although one of these seems to have significantly more potential than the other two, at this stage work should be done on all three. A major effort is needed to decide how to make a model consistent with a catalogue such as that which GAIA will produce. Given the complexity of the problem, it is argued that a hierarchy of models should be constructed, of ever increasing complexity and quality of fit to the data. The potential that resonances and tidal streams have to indicate how a model should be refined is briefly discussed.Comment: 7 pages to appear in The Three Dimensional Universe with GAIA, eds M. Perryman & C. Turo

    SKIRT: the design of a suite of input models for Monte Carlo radiative transfer simulations

    Full text link
    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.Comment: 15 pages, 4 figures, accepted for publication in Astronomy and Computin

    Magnetic fields in ring galaxies

    Full text link
    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling αΩ\alpha-\Omega galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers for the counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration, unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes and evolution.Comment: 25 pages, 12 figure

    Modelling Galaxies with f(E,Lz); a Black Hole in M32

    Full text link
    A technique for the construction of axisymmetric distribution functions for individual galaxies is presented. It starts from the observed surface bright- ness distribution, which is deprojected to gain the axisymmetric luminosity density, from which follows the stars' gravitational potential. After adding dark mass components, such as a central black hole, the two-integral distribu- tion function (2I-DF) f(E,Lz), which depends only on the classical integrals of motion in an axisymmetric potential, is constructed using the Richardson- Lucy algorithm. This algorithm proved to be very efficient in finding f(E,Lz) provided the integral equation to be solved has been properly modified. Once the 2I-\df\ is constructed, its kinematics can be computed and compared with those observed. Many discrepancies may be remedied by altering the assumed inclination angle, mass-to-light ratio, dark components, and odd part of the 2I-DF. Remaining discrepancies may indicate, that the distribution function depends on the non-classical third integral, or is non-axisymmetric. The method has been applied to the nearby elliptical galaxy M32. A 2I-DF with ~55 degrees inclination and a central black hole (or other compact dark mass inside ~1pc) of 1.6-2*10^6 Msun fits the high-spatial-resolution kinema- tic data of van der Marel et al. remarkably well. 2I-DFs with a significantly less or more massive central dark mass or with edge-on inclination can be ruled out for M32. Predictions are made for HST-observations: spectroscopy using its smallest square aperture of 0.09"*0.09" should yield a non-gaussian central velocity profile with broad wings, true and gaussian-fit velocity dispersion of 150-170km/s and 120-130km/s, respectively.Comment: 14 pages, 9 figures, uuencoded compressed ps file (468k), Ref: OUTP-94-04

    Magnetic topologies of cool stars

    Get PDF
    Stellar magnetic fields can be investigated using several, very complementary approaches. While conventional spectroscopy is capable of estimating the average magnetic strength of potentially complex field configurations thanks to its low sensitivity to the vector properties of the field, spectropolarimetry can be used to map the medium- and large-scale structure of magnetic topologies. In particular, the latter approach allows one to retrieve information about the poloidal and toroidal components of the large-scale dynamo fields in low-mass stars, and thus to investigate the physical processes that produce them. Similarly, this technique can be used to explore how magnetic fields couple young stars to their massive accretion disc and thus to estimate how much mass and angular momentum are transfered to the newly-born low-mass star. We present here the latest results in this field obtained with spectropolarimetry, with special emphasis on the surprising discoveries obtained on very-low mass fully-convective stars and classical T Tauri stars thanks to the ESPaDOnS spectropolarimeter recently installed on the 3.6m Canada-France-Hawaii Telescope.Comment: 10p invited review paper, 3 figures, to be published in the proceedings of the 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, November 6-10, 2006, ed. G. van Belle (ASP Conf Ser

    Dynamics of Barred Galaxies

    Get PDF
    Some 30% of disc galaxies have a pronounced central bar feature in the disc plane and many more have weaker features of a similar kind. Kinematic data indicate that the bar constitutes a major non-axisymmetric component of the mass distribution and that the bar pattern tumbles rapidly about the axis normal to the disc plane. The observed motions are consistent with material within the bar streaming along highly elongated orbits aligned with the rotating major axis. A barred galaxy may also contain a spheroidal bulge at its centre, spirals in the outer disc and, less commonly, other features such as a ring or lens. Mild asymmetries in both the light and kinematics are quite common. We review the main problems presented by these complicated dynamical systems and summarize the effort so far made towards their solution, emphasizing results which appear secure. (Truncated)Comment: This old review appeared in 1993. Plain tex with macro file. 82 pages 18 figures. A pdf version with figures at full resolution (3.24MB) is available at http://www.physics.rutgers.edu/~sellwood/bar_review.pd

    Magnetic fields from low mass stars to brown dwarfs

    Get PDF
    Magnetic fields have been detected on stars across the H-R diagram and substellar objects either directly by their effect on the formation of spectral lines, or through the activity phenomena they power which can be observed across a large part of the electromagnetic spectrum. Stars show a very wide variety of magnetic properties in terms of strength, geometry or variability. Cool stars generate their magnetic fields by dynamo effect, and their properties appear to correlate - to some extent - with stellar parameters such as mass, rotation and age. With the improvements of instrumentation and data analysis techniques, magnetic fields can now be detected and studied down to the domain of very-low-mass stars and brown dwarfs, triggering new theoretical works aimed, in particular, at modelling dynamo action in these objects. After a brief discussion on the importance of magnetic field in stellar physics, the basics of dynamo theory and magnetic field measurements are presented. The main results stemming from observational and theoretical studies of magnetism are then detailed in two parts: the fully-convective transition, and the very-low mass stars and brown dwarfs domain.Comment: 30 pages, 9 figures. Notes for lectures presented at the Evry Schatzman school on "Low-mass stars and the transition from stars to brown dwarfs", September 2011, Roscoff, France. To appear in the EAS Conference Series, edited by C. Charbonnel, C. Reyle, M. Schulthei
    corecore