33 research outputs found

    Modelling the formation of ordered acentrosomal microtubule arrays

    Get PDF
    Acentrosomal microtubules are not bound to a microtubule organising centre yet are still able to form ordered arrays. Two clear examples of this behaviour are the acentrosomal apico-basal (side wall) array in epithelial cells and the parallel organisation of plant cortical microtubules. This research investigates their formation through mathematical modelling and Monte Carlo simulations with the software programs developed ourselves. In epithelial cells there is a generally accepted `release and capture' hypothesis for the transfer of centrosomal microtubules onto the side wall array. We use a combination of mathematical and Monte Carlo simulation models to perform the first modelling of this hypothesis. We find that a tubulin concentration dependent dynamic instability is not a good�fit to this hypothesis but that a reduced centrosomal nucleation rate in response to an increased number of side wall microtubules makes the hypothesis work in biologically reasonable conditions. We propose that the loss of nucleation rate is a result of ninein being transferred from the centrosome to the side wall. We show OpenCL to be a useful tool in building a simulation program for parameter searches. We use a Monte Carlo simulation model to investigate how the collision induced catastrophe (CIC) probability affects the formation of the ordered array of cortical plant microtubules. We find that with entrainment an ordered array stops forming once the CIC drops below 0.5. We�find that the severing action of katanin is able to restore order at CIC probabilities below 0.5 but the speed at which crossovers must be severed becomes unfeasibly fast as the CIC decreases. This implies that at very low CICs observed in nature (�0.1), katanin may be necessary but not suffi�cient to create the ordered array. We also provide a customisable and intuitive cortical microtubule simulation software to aid in further research

    A computational framework for cortical microtubule dynamics in realistically shaped plant cells

    Get PDF
    Plant morphogenesis is strongly dependent on the directional growth and the subsequent oriented division of individual cells. It has been shown that the plant cortical microtubule array plays a key role in controlling both these processes. This ordered structure emerges as the collective result of stochastic interactions between large numbers of dynamic microtubules. To elucidate this complex self-organization process a number of analytical and computational approaches to study the dynamics of cortical microtubules have been proposed. To date, however, these models have been restricted to two dimensional planes or geometrically simple surfaces in three dimensions, which strongly limits their applicability as plant cells display a wide variety of shapes. This limitation is even more acute, as both local as well as global geometrical features of cells are expected to influence the overall organization of the array. Here we describe a framework for efficiently simulating microtubule dynamics on triangulated approximations of arbitrary three dimensional surfaces. This allows the study of microtubule array organization on realistic cell surfaces obtained by segmentation of microscopic images. We validate the framework against expected or known results for the spherical and cubical geometry. We then use it to systematically study the individual contributions of global geometry, cell-edge induced catastrophes and cell-face induced stability to array organization in a cuboidal geometry. Finally, we apply our framework to analyze the highly non-trivial geometry of leaf pavement cells of Arabidopsis thaliana, Nicotiana benthamiana and Hedera helix. We show that our simulations can predict multiple features of the microtubule array structure in these cells, revealing, among others, strong constraints on the orientation of division planes

    Biomolecular design elements : cortical microtubes and DNA-coated colloids

    Get PDF
    This thesis deals with the self-organizing properties of systems of biomolecules

    Microtubule organization is determined by the shape of epithelial cells.

    Get PDF
    Interphase microtubule organization is critical for cell function and tissue architecture. In general, physical mechanisms are sufficient to drive microtubule organization in single cells, whereas cells within tissues are thought to utilize signalling mechanisms. By improving the imaging and quantitation of microtubule alignment within developing Drosophila embryos, here we demonstrate that microtubule alignment underneath the apical surface of epithelial cells follows cell shape. During development, epidermal cell elongation and microtubule alignment occur simultaneously, but by perturbing cell shape, we discover that microtubule organization responds to cell shape, rather than the converse. A simple set of microtubule behaviour rules is sufficient for a computer model to mimic the observed responses to changes in cell surface geometry. Moreover, we show that microtubules colliding with cell boundaries zip-up or depolymerize in an angle-dependent manner, as predicted by the model. Finally, we show microtubule alignment responds to cell shape in diverse epithelia.This work was supported by grant BB/K00056X/1 from the UK Biotechnology, Biological Sciences Research Council. Gurdon Institute core funding was provided by the Wellcome Trust (092096) and Cancer Research UK (C6946/A14492). L.C. was supported by the Royal Society of Edinburgh/Scottish Government

    Models for spatial organization of microtubules and cell polarization

    Get PDF
    The main actors in this PhD thesis are microtubules, dynamic polymers built from protein subunits that play many important roles in cells of all higher organisms. We study a number of their functions using mathematical modelling and computer simulations. First, we consider the role of microtubules in establishing the ordered cortical array, a structure that plays a key role in the plant cell elongation. We show theoretically that the observed effect that new microtubules are nucleated from pre-existing microtubules strongly enhances the order of the array and makes it more robust against variations in the conditions. Next, we turn to the role the shape of the cell plays in the spatial organization of microtubules. We show that depending on how the microtubules interact with the cell boundary, either the long or the short axis of the cell determines the majority direction of the microtubules. Additionally, we formulate a model that predicts the positioning of the mitotic spindle, which is the cellular structure that segregates the duplicated chromosomes during eukaryotic cell division. We analyze how the speed, precision and final direction of the spindle orientation process depends on cell shape and the parameters that describe the microtubules. Finally, we turn to the potential role of microtubules in establishing cell polarity, the non-uniform distribution of cellular constituents, which is crucial for many developmental processes. Based solely on the propensity of microtubules to bind and transport proteins to the cell membrane, we set up a feasible and robust cell polarization mechanism, which could potentially be used to set up polarity in a minimal cell-like environment using a biochemical reconstitution approach. We study this model in its pure form in a perfectly spherical cell, in order to establish proof-of-principle, but also show that the effect remains in a more realistic non-spherical cell.</p

    Simple models for complex questions on plant development

    Get PDF
    This thesis combines several modelling studies on plant growth and development. The core interest is the nitrogen fixing legume-rhizobium symbiosis, specifically how different signals interact in specifying the location of the nodule primordium. For one of them, the hormone cytokinin, little is known about its movement through the tissue. All sufficiently small molecules, however, can move by non-targeted symplastic transport. We therefore start with a study of the biophysical properties of this often overlooked mechanism. The study of the nodule primordium proper starts with an investigation of different mechanisms for local auxin accumulation, because this hormone structurally accumulates at the site of the first cell divisions. Both studies are then combined to investigate how an epidermal cytokinin signal can induce auxin accumulation in the right -- species dependent -- cortical position. Plant growth and development also has strong mechanical components: the differential expansion of cell walls due to their anisotropic structure and the orientation of cell division planes. Both are controlled by the interphase cortical microtubule array. We investigate the effects of several experimental observations on array organisation and their resulting developmental impact. We conclude with a critical review of different ways of using models to address biological questions.</p

    Discovering novel mechanisms of human cortical development & disease using in vivo mouse model and in vitro human-derived cerebral organoids

    Get PDF
    This thesis combines three research studies with the common interest of identifying novel mechanisms underlying human cortical development. This aim is pursued from different angles, always basing the investigations on human induced pluripotent stem cell-derived 2D and 3D in vitro model systems that are partly combined with in vivo studies in the developing mouse cortex. Namely, in the pieces of work combined here, we 1) bring to light a neurodevelopmental role of a gene already implicated in adult nervous system function, 2) discover a novel mechanism that fine-tunes human neurogenesis, and 3) identify a novel gene whose mutations lead to a malformation of cortical development. The entirety of this work thus adds several aspects to the existing knowledge. In the first study, we identified a neurodevelopmental function of a gene mutated in patients with the progressive gait disorder hereditary spastic paraplegia (HSP). In this group of inherited neurodegenerative diseases, mutations in lipid, mitochondrial, cytoskeletal or transport proteins lead to degeneration of primary motor neurons, which, due to the length of their axons, are particularly sensitive to disruption of these processes. Here, were generated cerebral organoids (COs) derived from HSP patients with mutations in SPG11 coding for spatacsin. Previous work had shown impaired proliferation of SPG11 patient-derived neural progenitor cells (NPCs). We found a proliferation defect also in CO NPCs, leading to a thinner progenitor zone and premature neurogenesis due to increased asymmetric progenitor divisions, along with smaller size of patient-derived COs. Molecularly, we found a decrease in deactivated GSK3β and increase in P-βcatenin at the basis of the observed proliferation/neurogenesis imbalance. We thus confirmed the neurodevelopmental role of SPG11 that had previously been suggested from 2D human in vitro findings. Both the observed reduction in proliferating progenitors and in organoid size were rescued through inhibition of GSK3β, with the Food and Drug Administration (FDA) approved compound tideglusib only affecting patient COs. These rescue experiments thus stressed the opportunity that COs represent for drug testing and translation of findings to precision medicine. In the second study, we investigated the role of a novel posttranslational modification (PTM) termed AMPylation in neurogenesis. Using a novel probe for the detection of AMPylated proteins and a combination of mass spectrometry-based proteomics, immunohistochemistry, and acute interference with the expression of the AMPylating enzyme, we made several interesting findings: AMPylation takes place on a cell type-specific set of proteins, is responsive to the predominant environmental condition, and both AMPylator and targets localize to cell type-specific intracellular localizations. During the process of neuronal differentiation, the set of AMPylated proteins is completely remodeled, with a very high number of unique targets in neurons. These include metabolic enzymes as in all analyzed cell types and, additionally and specifically, cytoskeletal and motor proteins. Cytoskeletal and motor proteins in neural progenitors and neurons are known to be differentially modified by several PTMs whose correct establishment is highly important during neurodevelopment; AMPylation may thus be an additional one. To assess the role of AMPylation in neurodevelopment, we manipulated the expression of the AMPylating enzyme FICD in COs. Downregulation kept cells in a proliferating progenitor state, whereas overexpression increased neurogenesis. We thus suggest AMPylation as a novel PTM fine-tuning neurogenesis. The third study focused on the identification of new mechanisms underlying cortical malformations, aiming at a better understanding of how the human brain develops. In patients with periventricular heterotopia (PH), a neuronal migration disorder in which a subset of neurons fail to migrate to the developing cortical plate and instead form nodules of grey matter lining the lateral ventricles as their site of production, biallelic mutations in endothelin converting enzyme 2 (ECE2) were identified as candidate causative. Combining in vitro and in vivo models, we found a role for ECE2 in neuronal migration and cortical development. In the absence of ECE2, several processes of general importance to proper neuronal migration were disrupted. Namely, changes in progenitor cell polarity and morphology and in apical adherens junctions led to their delamination, restricting their use as a scaffold for neuronal migration. This resulted in ectopic neurons reminiscent of nodules in PH. Besides a deregulation of cytoskeletal, polarity, and apical adhesion proteins, extracellular matrix (ECM) proteins were reduced in absence of ECE2, suggesting its role in ECM production and underlining the necessity of ECM components for proper neuronal migration during cortical development. Moreover, we detected differential phosphorylation of several cytoskeletal, motor and adhesion proteins in the absence of ECE2, which is functionally in line with the former findings and suggests an additional involvement of ECE2 in the regulation of PTMs. Altogether, the studies presented here underline the heterogeneity and complexity of pathways and mechanisms that contribute to human cortical development and its disorders, converging on the regulation of cytoskeleton and transport within the involved cells and of the ECM on their outside

    Discovering novel mechanisms of human cortical development & disease using in vivo mouse model and in vitro human-derived cerebral organoids

    Get PDF
    This thesis combines three research studies with the common interest of identifying novel mechanisms underlying human cortical development. This aim is pursued from different angles, always basing the investigations on human induced pluripotent stem cell-derived 2D and 3D in vitro model systems that are partly combined with in vivo studies in the developing mouse cortex. Namely, in the pieces of work combined here, we 1) bring to light a neurodevelopmental role of a gene already implicated in adult nervous system function, 2) discover a novel mechanism that fine-tunes human neurogenesis, and 3) identify a novel gene whose mutations lead to a malformation of cortical development. The entirety of this work thus adds several aspects to the existing knowledge. In the first study, we identified a neurodevelopmental function of a gene mutated in patients with the progressive gait disorder hereditary spastic paraplegia (HSP). In this group of inherited neurodegenerative diseases, mutations in lipid, mitochondrial, cytoskeletal or transport proteins lead to degeneration of primary motor neurons, which, due to the length of their axons, are particularly sensitive to disruption of these processes. Here, were generated cerebral organoids (COs) derived from HSP patients with mutations in SPG11 coding for spatacsin. Previous work had shown impaired proliferation of SPG11 patient-derived neural progenitor cells (NPCs). We found a proliferation defect also in CO NPCs, leading to a thinner progenitor zone and premature neurogenesis due to increased asymmetric progenitor divisions, along with smaller size of patient-derived COs. Molecularly, we found a decrease in deactivated GSK3β and increase in P-βcatenin at the basis of the observed proliferation/neurogenesis imbalance. We thus confirmed the neurodevelopmental role of SPG11 that had previously been suggested from 2D human in vitro findings. Both the observed reduction in proliferating progenitors and in organoid size were rescued through inhibition of GSK3β, with the Food and Drug Administration (FDA) approved compound tideglusib only affecting patient COs. These rescue experiments thus stressed the opportunity that COs represent for drug testing and translation of findings to precision medicine. In the second study, we investigated the role of a novel posttranslational modification (PTM) termed AMPylation in neurogenesis. Using a novel probe for the detection of AMPylated proteins and a combination of mass spectrometry-based proteomics, immunohistochemistry, and acute interference with the expression of the AMPylating enzyme, we made several interesting findings: AMPylation takes place on a cell type-specific set of proteins, is responsive to the predominant environmental condition, and both AMPylator and targets localize to cell type-specific intracellular localizations. During the process of neuronal differentiation, the set of AMPylated proteins is completely remodeled, with a very high number of unique targets in neurons. These include metabolic enzymes as in all analyzed cell types and, additionally and specifically, cytoskeletal and motor proteins. Cytoskeletal and motor proteins in neural progenitors and neurons are known to be differentially modified by several PTMs whose correct establishment is highly important during neurodevelopment; AMPylation may thus be an additional one. To assess the role of AMPylation in neurodevelopment, we manipulated the expression of the AMPylating enzyme FICD in COs. Downregulation kept cells in a proliferating progenitor state, whereas overexpression increased neurogenesis. We thus suggest AMPylation as a novel PTM fine-tuning neurogenesis. The third study focused on the identification of new mechanisms underlying cortical malformations, aiming at a better understanding of how the human brain develops. In patients with periventricular heterotopia (PH), a neuronal migration disorder in which a subset of neurons fail to migrate to the developing cortical plate and instead form nodules of grey matter lining the lateral ventricles as their site of production, biallelic mutations in endothelin converting enzyme 2 (ECE2) were identified as candidate causative. Combining in vitro and in vivo models, we found a role for ECE2 in neuronal migration and cortical development. In the absence of ECE2, several processes of general importance to proper neuronal migration were disrupted. Namely, changes in progenitor cell polarity and morphology and in apical adherens junctions led to their delamination, restricting their use as a scaffold for neuronal migration. This resulted in ectopic neurons reminiscent of nodules in PH. Besides a deregulation of cytoskeletal, polarity, and apical adhesion proteins, extracellular matrix (ECM) proteins were reduced in absence of ECE2, suggesting its role in ECM production and underlining the necessity of ECM components for proper neuronal migration during cortical development. Moreover, we detected differential phosphorylation of several cytoskeletal, motor and adhesion proteins in the absence of ECE2, which is functionally in line with the former findings and suggests an additional involvement of ECE2 in the regulation of PTMs. Altogether, the studies presented here underline the heterogeneity and complexity of pathways and mechanisms that contribute to human cortical development and its disorders, converging on the regulation of cytoskeleton and transport within the involved cells and of the ECM on their outside

    Discovering novel mechanisms of human cortical development disease using in vivo mouse model and in vitro human-derived cerebral organoids.

    Get PDF
    This thesis combines three research studies with the common interest of identifying novel mechanisms underlying human cortical development. This aim is pursued from different angles, always basing the investigations on human induced pluripotent stem cell-derived 2D and 3D in vitro model systems that are partly combined with in vivo studies in the developing mouse cortex. Namely, in the pieces of work combined here, we 1) bring to light a neurodevelopmental role of a gene already implicated in adult nervous system function, 2) discover a novel mechanism that fine-tunes human neurogenesis, and 3) identify a novel gene whose mutations lead to a malformation of cortical development. The entirety of this work thus adds several aspects to the existing knowledge. In the first study, we identified a neurodevelopmental function of a gene mutated in patients with the progressive gait disorder hereditary spastic paraplegia (HSP). In this group of inherited neurodegenerative diseases, mutations in lipid, mitochondrial, cytoskeletal or transport proteins lead to degeneration of primary motor neurons, which, due to the length of their axons, are particularly sensitive to disruption of these processes. Here, were generated cerebral organoids (COs) derived from HSP patients with mutations in SPG11 coding for spatacsin. Previous work had shown impaired proliferation of SPG11 patient-derived neural progenitor cells (NPCs). We found a proliferation defect also in CO NPCs, leading to a thinner progenitor zone and premature neurogenesis due to increased asymmetric progenitor divisions, along with smaller size of patient-derived COs. Molecularly, we found a decrease in deactivated GSK3β and increase in P-βcatenin at the basis of the observed proliferation/neurogenesis imbalance. We thus confirmed the neurodevelopmental role of SPG11 that had previously been suggested from 2D human in vitro findings. Both the observed reduction in proliferating progenitors and in organoid size were rescued through inhibition of GSK3β, with the Food and Drug Administration (FDA) approved compound tideglusib only affecting patient COs. These rescue experiments thus stressed the opportunity that COs represent for drug testing and translation of findings to precision medicine. In the second study, we investigated the role of a novel posttranslational modification (PTM) termed AMPylation in neurogenesis. Using a novel probe for the detection of AMPylated proteins and a combination of mass spectrometry-based proteomics, immunohistochemistry, and acute interference with the expression of the AMPylating enzyme, we made several interesting findings: AMPylation takes place on a cell type-specific set of proteins, is responsive to the predominant environmental condition, and both AMPylator and targets localize to cell type-specific intracellular localizations. During the process of neuronal differentiation, the set of AMPylated proteins is completely remodeled, with a very high number of unique targets in neurons. These include metabolic enzymes as in all analyzed cell types and, additionally and specifically, cytoskeletal and motor proteins. Cytoskeletal and motor proteins in neural progenitors and neurons are known to be differentially modified by several PTMs whose correct establishment is highly important during neurodevelopment; AMPylation may thus be an additional one. To assess the role of AMPylation in neurodevelopment, we manipulated the expression of the AMPylating enzyme FICD in COs. Downregulation kept cells in a proliferating progenitor state, whereas overexpression increased neurogenesis. We thus suggest AMPylation as a novel PTM fine-tuning neurogenesis. The third study focused on the identification of new mechanisms underlying cortical malformations, aiming at a better understanding of how the human brain develops. In patients with periventricular heterotopia (PH), a neuronal migration disorder in which a subset of neurons fail to migrate to the developing cortical plate and instead form nodules of grey matter lining the lateral ventricles as their site of production, biallelic mutations in endothelin converting enzyme 2 (ECE2) were identified as candidate causative. Combining in vitro and in vivo models, we found a role for ECE2 in neuronal migration and cortical development. In the absence of ECE2, several processes of general importance to proper neuronal migration were disrupted. Namely, changes in progenitor cell polarity and morphology and in apical adherens junctions led to their delamination, restricting their use as a scaffold for neuronal migration. This resulted in ectopic neurons reminiscent of nodules in PH. Besides a deregulation of cytoskeletal, polarity, and apical adhesion proteins, extracellular matrix (ECM) proteins were reduced in absence of ECE2, suggesting its role in ECM production and underlining the necessity of ECM components for proper neuronal migration during cortical development. Moreover, we detected differential phosphorylation of several cytoskeletal, motor and adhesion proteins in the absence of ECE2, which is functionally in line with the former findings and suggests an additional involvement of ECE2 in the regulation of PTMs. Altogether, the studies presented here underline the heterogeneity and complexity of pathways and mechanisms that contribute to human cortical development and its disorders, converging on the regulation of cytoskeleton and transport within the involved cells and of the ECM on their outside. <br
    corecore