5,600 research outputs found

    Final report TransForum WP-046 : images of sustainable development of Dutch agriculture and green space

    Get PDF
    In the project “Images of sustainable development of Dutch agriculture and green space” three PhD candidates studied the topic of images in sustainable development. Frans Hermans focused on the topic of societal images and their role and influence in innovation projects. The title of his subproject was “Social learning for sustainability in dynamic agricultural innovation networks.” Joost Vervoort explored the topic of “visualisation”, that is, using and producing images for specific purposes, in the context of innovation projects and programmes, in a subproject called “Step into the system: interactive media strategies for the exchange of insights on social-ecological change.” Finally, Dirk van Apeldoorn took a complex adaptive systems approach to images. He modelled various agro-ecosystems to compare images of those systems with the behaviour of those systems. His subproject was called “Modeling resilience of agro-ecosystems.

    A Fifty-Year Sustainability Assessment of Italian Agro-Forest Districts

    Get PDF
    DistrictAs cropland management and land use shifted towards more intensive practices, global land degradation increased drastically. Understanding relationships between ecological and socioeconomic drivers of soil and landscape degradation within these landscapes in economically dynamic contexts such as the Mediterranean region, requires multi-target and multi-scalar approaches covering long-term periods. This study provides an original approach for identifying desertification risk drivers and sustainable land management strategies within Italian agro-forest districts. An Environmental Sensitivity Area (ESA) approach, based on four thematic indicators (climate, soil, vegetation and land-use) and a composite index of desertification risk (ESAI), was used to evaluate changes in soil vulnerability and landscape degradation between the years 1960 and 2010. A multivariate model was developed to identify the most relevant drivers causing changes in land susceptibility at the district scale. Larger districts, and those with a higher proportion of their total surface area classified as agro-forest, had a significantly lower increase in land susceptibility to degradation during the 50 years when compared with the remaining districts. We conclude that preserving economic viability and ecological connectivity of traditional, extensive agricultural systems is a key measure to mitigate the desertification risk in the Mediterranean region

    Livelisystems: a conceptual framework integrating social, ecosystem, development and evolutionary theory

    Get PDF
    Human activity poses multiple environmental challenges for ecosystems that have intrinsic value and also support that activity. Our ability to address these challenges is constrained, inter alia, by weaknesses in cross disciplinary understandings of interactive processes of change in socio-ecological systems. This paper draws on complementary insights from social and biological sciences to propose a ‘livelisystems’ framework of multi-scale, dynamic change across social and biological systems. This describes how material, informational and relational assets, asset services and asset pathways interact in systems with embedded and emergent properties undergoing a variety of structural transformations. Related characteristics of ‘higher’ (notably human) livelisystems and change processes are identified as the greater relative importance of (a) informational, relational and extrinsic (as opposed to material and intrinsic) assets, (b) teleological (as opposed to natural) selection, and (c) innovational (as opposed to mutational) change. The framework provides valuable insights into social and environmental challenges posed by global and local change, globalization, poverty, modernization, and growth in the anthropocene. Its potential for improving inter-disciplinary and multi-scale understanding is discussed, notably by examination of human adaptation to bio-diversity and eco-system service change following the spread of Lantana camera in the Western Ghats, India

    Changing business perceptions regarding biodiversity: from impact mitigation towards new strategies and practices

    Get PDF
    Business activities play a major role in biodiversity loss and, as a result, firms are under increasing pressures from stakeholders to reduce their negative impacts on living systems. In response, business attitudes, behaviors and strategies regarding biodiversity are progressively changing, suggesting that interactions between business and biodiversity could go beyond the search of a compromise between development and conservation. This paper proposes an analysis of business perceptions regarding biodiversity. In its first part, we discuss how biodiversity is usually perceived as an external environmental constraint on business activities, and how economic tools may be used for arbitrages in that context. Building upon our work on the Business and Biodiversity Interdependence Indicator (BBII), we then discuss how assessing a firm's interdependences with biodiversity may bring about new business strategies and practices. We propose a typology of firm behavior regarding biodiversity and ecosystem services (BES), discuss business opportunities and property rights issues pertaining to markets for ecosystem services and propose preliminary conceptual foundations of new business standards needed to reverse current biodiversity trends.biodiversity; business; strategy; payments for ecosystem services; impact mitigation; standards.

    Strategic Research Agenda for organic food and farming

    Get PDF
    The TP Organics Strategic Research Agenda (SRA) was finalised in December 2009. The purpose of the Strategic Research Agenda (SRA) is to enable research, development and knowledge transfer that will deliver relevant outcomes – results that will contribute to the improvement of the organic sector and other low external input systems. The document has been developed through a dynamic consultative process that ran from 2008 to 2009. It involved a wide range of stakeholders who enthusiastically joined the effort to define organic research priorities. From December 2008 to February; the expert groups elaborated the first draft. The consultative process involved the active participation of many different countries. Consultation involved researchers, advisors, members of inspection/certification bodies, as well as different users/beneficiaries of the research such as farmers, processors, market actors and members of civil society organisations throughout Europe and further afield in order to gather the research needs of the whole organic sector

    Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science

    Get PDF
    © 2021 Graham, Averill, Bond-Lamberty, Knelman, Krause, Peralta, Shade, Smith, Cheng, Fanin, Freund, Garcia, Gibbons, Van Goethem, Guebila, Kemppinen, Nowicki, Pausas, Reed, Rocca, Sengupta, Sihi, Simonin, Słowiński, Spawn, Sutherland, Tonkin, Wisnoski, Zipper and Contributor Consortium.Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or methodologies exist. This inconsistency presents an increasingly urgent challenge due to accelerating global change and the threat of interacting disturbances that can destabilize ecosystem responses. By harvesting the expertise of an interdisciplinary cohort of contributors spanning 42 institutions across 15 countries, we identified an essential limitation in disturbance ecology: the word ‘disturbance’ is used interchangeably to refer to both the events that cause, and the consequences of, ecological change, despite fundamental distinctions between the two meanings. In response, we developed a generalizable framework of ecosystem disturbances, providing a well-defined lexicon for understanding disturbances across perspectives and scales. The framework results from ideas that resonate across multiple scientific disciplines and provides a baseline standard to compare disturbances across fields. This framework can be supplemented by discipline-specific variables to provide maximum benefit to both inter- and intra-disciplinary research. To support future syntheses and meta-analyses of disturbance research, we also encourage researchers to be explicit in how they define disturbance drivers and impacts, and we recommend minimum reporting standards that are applicable regardless of scale. Finally, we discuss the primary factors we considered when developing a baseline framework and propose four future directions to advance our interdisciplinary understanding of disturbances and their social-ecological impacts: integrating across ecological scales, understanding disturbance interactions, establishing baselines and trajectories, and developing process-based models and ecological forecasting initiatives. Our experience through this process motivates us to encourage the wider scientific community to continue to explore new approaches for leveraging Open Science principles in generating creative and multidisciplinary ideas.This research was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program’s Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830

    Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science

    Get PDF
    Disturbances fundamentally alter ecosystem functions, yet predicting their impacts remains a key scientific challenge. While the study of disturbances is ubiquitous across many ecological disciplines, there is no agreed-upon, cross-disciplinary foundation for discussing or quantifying the complexity of disturbances, and no consistent terminology or methodologies exist. This inconsistency presents an increasingly urgent challenge due to accelerating global change and the threat of interacting disturbances that can destabilize ecosystem responses. By harvesting the expertise of an interdisciplinary cohort of contributors spanning 42 institutions across 15 countries, we identified an essential limitation in disturbance ecology: the word 'disturbance' is used interchangeably to refer to both the events that cause, and the consequences of, ecological change, despite fundamental distinctions between the two meanings. In response, we developed a generalizable framework of ecosystem disturbances, providing a well-defined lexicon for understanding disturbances across perspectives and scales. The framework results from ideas that resonate across multiple scientific disciplines and provides a baseline standard to compare disturbances across fields. This framework can be supplemented by discipline-specific variables to provide maximum benefit to both inter- and intra-disciplinary research. To support future syntheses and meta-analyses of disturbance research, we also encourage researchers to be explicit in how they define disturbance drivers and impacts, and we recommend minimum reporting standards that are applicable regardless of scale. Finally, we discuss the primary factors we considered when developing a baseline framework and propose four future directions to advance our interdisciplinary understanding of disturbances and their social-ecological impacts: integrating across ecological scales, understanding disturbance interactions, establishing baselines and trajectories, and developing process-based models and ecological forecasting initiatives. Our experience through this process motivates us to encourage the wider scientific community to continue to explore new approaches for leveraging Open Science principles in generating creative and multidisciplinary ideas.Peer reviewe
    corecore