1,992 research outputs found

    Single-picture reconstruction and rendering of trees for plausible vegetation synthesis

    Get PDF
    State-of-the-art approaches for tree reconstruction either put limiting constraints on the input side (requiring multiple photographs, a scanned point cloud or intensive user input) or provide a representation only suitable for front views of the tree. In this paper we present a complete pipeline for synthesizing and rendering detailed trees from a single photograph with minimal user effort. Since the overall shape and appearance of each tree is recovered from a single photograph of the tree crown, artists can benefit from georeferenced images to populate landscapes with native tree species. A key element of our approach is a compact representation of dense tree crowns through a radial distance map. Our first contribution is an automatic algorithm for generating such representations from a single exemplar image of a tree. We create a rough estimate of the crown shape by solving a thin-plate energy minimization problem, and then add detail through a simplified shape-from-shading approach. The use of seamless texture synthesis results in an image-based representation that can be rendered from arbitrary view directions at different levels of detail. Distant trees benefit from an output-sensitive algorithm inspired on relief mapping. For close-up trees we use a billboard cloud where leaflets are distributed inside the crown shape through a space colonization algorithm. In both cases our representation ensures efficient preservation of the crown shape. Major benefits of our approach include: it recovers the overall shape from a single tree image, involves no tree modeling knowledge and minimal authoring effort, and the associated image-based representation is easy to compress and thus suitable for network streaming.Peer ReviewedPostprint (author's final draft

    Architectural Digital Photogrammetry

    Get PDF
    This study is to exploit texturing techniques of a common modelling software in the way of creating virtual models of an exist architectures using oriented panoramas. In this research, The panoramic image-based interactive modelling is introduced as assembly point of photography, topography, photogrammetry and modelling techniques. It is an interactive system for generating photorealistic, textured 3D models of architectural structures and urban scenes. The technique is suitable for the architectural survey because it is not a «point by point» survey, and it exploit the geometrical constraints in the architecture to simplify modelling. Many factors are presented to be critical features that affect the modelling quality and accuracy, such as the way and the position in shooting the photos, stitching the multi-image panorama photos, the orientation, texturing techniques and so on. During the last few years, many Image-based modelling programmes have been released. Whereas, in this research, the photo modelling programs was not in use, it meant to face the fundamentals of the photogrammetry and to go beyond the limitations of such software by avoiding the automatism. In addition, it meant to exploit the potent commands of a program as 3DsMax to obtain the final representation of the Architecture. Such representation can be used in different fields (from detailed architectural survey to an architectural representation in cinema and video games), considering the accuracy and the quality which they are vary too. After the theoretical studies of this technique, it was applied in four applications to different types of close range surveys. This practice allowed to comprehend the practical problems in the whole process (from photographing all the way to modelling) and to propose the methods in the ways to improve it and to avoid any complications. It was compared with the laser scanning to study the accuracy of this technique. Thus, it is realized that not only the accuracy of this technique is linked to the size of the surveyed object, but also the size changes the way in which the survey to be approached. Since the 3D modelling program is not dedicated to be used for the image-based modelling, texturing problems was faced. It was analyzed in: how the program can behave with the Bitmap, how to project it, how it could be an interactive projection, and what are the limitations

    3D Dynamic Scene Reconstruction from Multi-View Image Sequences

    Get PDF
    A confirmation report outlining my PhD research plan is presented. The PhD research topic is 3D dynamic scene reconstruction from multiple view image sequences. Chapter 1 describes the motivation and research aims. An overview of the progress in the past year is included. Chapter 2 is a review of volumetric scene reconstruction techniques and Chapter 3 is an in-depth description of my proposed reconstruction method. The theory behind the proposed volumetric scene reconstruction method is also presented, including topics in projective geometry, camera calibration and energy minimization. Chapter 4 presents the research plan and outlines the future work planned for the next two years

    Posing 3D Models from Drawing

    Get PDF
    Inferring the 3D pose of a character from a drawing is a complex and under-constrained problem. Solving it may help automate various parts of an animation production pipeline such as pre-visualisation. In this paper, a novel way of inferring the 3D pose from a monocular 2D sketch is proposed. The proposed method does not make any external assumptions about the model, allowing it to be used on different types of characters. The inference of the 3D pose is formulated as an optimisation problem and a parallel variation of the Particle Swarm Optimisation algorithm called PARAC-LOAPSO is utilised for searching the minimum. Testing in isolation as well as part of a larger scene, the presented method is evaluated by posing a lamp, a horse and a human character. The results show that this method is robust, highly scalable and is able to be extended to various types of models

    Marching Intersections: An Efficient Approach to Shape-from-Silhouette

    Get PDF
    A new shape-from-silhouette algorithm for the creation of 3D digital models is presented. The algorithm is based on the use of the Marching Intersection (MI) data structure, a volumetric scheme which allows ef\ufb01cient representation of 3D polyhedra and reduces the boolean operations between them to simple boolean operations on linear intervals. MI supports the de\ufb01nition of a direct shape-from-silhouette approach: the 3D conoids built from the silhouettes extracted from the images of the object are directly intersected to form the resulting 3D digital model. Compared to existing methods, our approach allows high quality models to be obtained in an ef\ufb01cient way. Examples on synthetic objects together with quantitative and qualitative evaluations are given

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware p\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    Concise and Effective Network for 3D Human Modeling from Orthogonal Silhouettes

    Full text link
    In this paper, we revisit the problem of 3D human modeling from two orthogonal silhouettes of individuals (i.e., front and side views). Different from our prior work {\cite{wang2003virtual}}, a supervised learning approach based on \textit{convolutional neural network} (CNN) is investigated to solve the problem by establishing a mapping function that can effectively extract features from two silhouettes and fuse them into coefficients in the shape space of human bodies. A new CNN structure is proposed in our work to exact not only the discriminative features of front and side views and also their mixed features for the mapping function. 3D human models with high accuracy are synthesized from coefficients generated by the mapping function. Existing CNN approaches for 3D human modeling usually learn a large number of parameters (from {8.5M} to {355.4M}) from two binary images. Differently, we investigate a new network architecture and conduct the samples on silhouettes as input. As a consequence, more accurate models can be generated by our network with only {2.4M} coefficients. The training of our network is conducted on samples obtained by augmenting a publicly accessible dataset. Learning transfer by using datasets with a smaller number of scanned models is applied to our network to enable the function of generating results with gender-oriented (or geographical) patterns

    Active modelling of virtual humans

    Get PDF
    This thesis provides a complete framework that enables the creation of photorealistic 3D human models in real-world environments. The approach allows a non-expert user to use any digital capture device to obtain four images of an individual and create a personalised 3D model, for multimedia applications. To achieve this, it is necessary that the system is automatic and that the reconstruction process is flexible to account for information that is not available or incorrectly captured. In this approach the individual is automatically extracted from the environment using constrained active B-spline templates that are scaled and automatically initialised using only image information. These templates incorporate the energy minimising framework for Active Contour Models, providing a suitable and flexible method to deal with the adjustments in pose an individual can adopt. The final states of the templates describe the individual’s shape. The contours in each view are combined to form a 3D B-spline surface that characterises an individual’s maximal silhouette equivalent. The surface provides a mould that contains sufficient information to allow for the active deformation of an underlying generic human model. This modelling approach is performed using a novel technique that evolves active-meshes to 3D for deforming the underlying human model, while adaptively constraining it to preserve its existing structure. The active-mesh approach incorporates internal constraints that maintain the structural relationship of the vertices of the human model, while external forces deform the model congruous to the 3D surface mould. The strength of the internal constraints can be reduced to allow the model to adopt the exact shape of the bounding volume or strengthened to preserve the internal structure, particularly in areas of high detail. This novel implementation provides a uniform framework that can be simply and automatically applied to the entire human model

    Modelling and Visualisation of the Optical Properties of Cloth

    Get PDF
    Cloth and garment visualisations are widely used in fashion and interior design, entertaining, automotive and nautical industry and are indispensable elements of visual communication. Modern appearance models attempt to offer a complete solution for the visualisation of complex cloth properties. In the review part of the chapter, advanced methods that enable visualisation at micron resolution, methods used in three-dimensional (3D) visualisation workflow and methods used for research purposes are presented. Within the review, those methods offering a comprehensive approach and experiments on explicit clothes attributes that present specific optical phenomenon are analysed. The review of appearance models includes surface and image-based models, volumetric and explicit models. Each group is presented with the representative authors’ research group and the application and limitations of the methods. In the final part of the chapter, the visualisation of cloth specularity and porosity with an uneven surface is studied. The study and visualisation was performed using image data obtained with photography. The acquisition of structure information on a large scale namely enables the recording of structure irregularities that are very common on historical textiles, laces and also on artistic and experimental pieces of cloth. The contribution ends with the presentation of cloth visualised with the use of specular and alpha maps, which is the result of the image processing workflow
    corecore