341 research outputs found

    Control of VTOL Vehicles with Thrust-direction Tilting

    Full text link
    An approach to the control of a VTOL vehicle equipped with complementary thrust-direction tilting capabilities that nominally yield full actuation of the vehicle's position and attitude is developed. The particularity and difficulty of the control problem are epitomized by the existence of a maximal thrust-tilting angle which forbids complete and decoupled control of the vehicle's position and attitude in all situations. This problem is here addressed via the formalism of primary and secondary objectives and by extending a solution previously derived in the fixed thrust-direction case. The proposed control design is also illustrated by simulation results involving a quadrotor UAV with all propellers axes pointing in the same monitored tilted direction

    Control of VTOL Vehicles with Thrust-Tilting Augmentation

    Get PDF
    International audienceAn approach to the control of a VTOL vehicle equipped with complementary thrust-tilting capabilities that nominally yield full actuation of the vehicle's position and attitude is developed. The particularity and difficulty of the control problem are epitomized by the existence of a maximum tilting angle which forbids complete and decoupled control of the vehicle's position and attitude in all situations. This problem is here addressed via the formalism of primary and secondary objectives and by extending a solution previously derived in the fixed thrust-direction case. The proposed control design is also illustrated by simulation results involving a quadrotor UAV with all propellers axes pointing in the same monitored tilted direction

    Quadrotor Simulator for Control De-velopment – Application to Autono-mous Landing

    Get PDF
    In this thesis is studied the landing problem of a VTOL UAV and a 3D sim-ulation environment is built to safely develop control for a quadrotor, resorting to 3D modelling and simulation software. In a time where the development of unmanned vehicles is a trend and it is technologically in growth, the emergent difficulties are challenging when it comes to aviation. In this field, it is useful a tool for researchers to have at their disposal to conduct experiments without putting their real systems to real threat. Also, the landing of UAV’s is currently one of the most serious cases of study with a lot of investigation going on to solve the problems associated with it. In this sense, some problematics are contemplated. Based on a quadrotor in a X8 configuration – 4 frames and 8 propellers –, are applied linear and nonlinear control design techniques with the intent to sta-bilize and control the quadrotor and a 3D simulator is developed

    Voliro: An Omnidirectional Hexacopter With Tiltable Rotors

    Full text link
    Extending the maneuverability of unmanned areal vehicles promises to yield a considerable increase in the areas in which these systems can be used. Some such applications are the performance of more complicated inspection tasks and the generation of complex uninterrupted movements of an attached camera. In this paper we address this challenge by presenting Voliro, a novel aerial platform that combines the advantages of existing multi-rotor systems with the agility of omnidirectionally controllable platforms. We propose the use of a hexacopter with tiltable rotors allowing the system to decouple the control of position and orientation. The contributions of this work involve the mechanical design as well as a controller with the corresponding allocation scheme. This work also discusses the design challenges involved when turning the concept of a hexacopter with tiltable rotors into an actual prototype. The agility of the system is demonstrated and evaluated in real- world experiments.Comment: Submitted to Robotics and Automation Magazin

    Validation of Quad Tail-sitter VTOL UAV Model in Fixed Wing Mode

    Get PDF
    Vertical take-off and landing (VTOL) is a type of unmanned aerial vehicle (UAV) that is growing rapidly because its ability to take off and land anywhere in tight spaces. One type of VTOL UAV, the tail-sitter, has the best efficiency. However, besides the efficiency offered, some challenges must still be overcome, including the complexity of combining the ability to hover like a helicopter and fly horizontally like a fixed-wing aircraft. This research has two contributions: in the form of how the analytical model is generated and the tools used (specifically for the small VTOL quad tail-sitter UAV) and how to utilize off-the-shelf components for UAV empirical modeling. This research focuses on increasing the speed and accuracy of the UAV VTOL control design in fixed-wing mode. The first step is to carry out analysis and simulation. The model is analytically obtained using OpenVSP in longitudinal and lateral modes. The next step is to realize this analytical model for both the aircraft and the controls. The third step is to measure the flight characteristics of the aircraft. Based on the data recorded during flights, an empirical model is made using system identification technique. The final step is to vali-date the analytical model with the empirical model. The results show that the characteristics of the analytical mode fulfill the specified requirements and are close to the empirical model. Thus, it can be concluded that the analytical model can be implemented directly, and consequently, the VTOL UAV design and development process has been shortened

    Aeronautical engineering: A special bibliography with indexes, supplement 80

    Get PDF
    This bibliography lists 277 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977

    Rotorcraft Blade Pitch Control Through Torque Modulation

    Get PDF
    Micro air vehicle (MAV) technology has broken with simple mimicry of manned aircraft in order to fulfill emerging roles which demand low-cost reliability in the hands of novice users, safe operation in confined spaces, contact and manipulation of the environment, or merging vertical flight and forward flight capabilities. These specialized needs have motivated a surge of new specialized aircraft, but the majority of these design variations remain constrained by the same fundamental technologies underpinning their thrust and control. This dissertation solves the problem of simultaneously governing MAV thrust, roll, and pitch using only a single rotor and single motor. Such an actuator enables new cheap, robust, and light weight aircraft by eliminating the need for the complex ancillary controls of a conventional helicopter swashplate or the distributed propeller array of a quadrotor. An analytic model explains how cyclic blade pitch variations in a special passively articulated rotor may be obtained by modulating the main drive motor torque in phase with the rotor rotation. Experiments with rotors from 10 cm to 100 cm in diameter confirm the predicted blade lag, pitch, and flap motions. We show the operating principle scales similarly as traditional helicopter rotor technologies, but is subject to additional new dynamics and technology considerations. Using this new rotor, experimental aircraft from 29 g to 870 g demonstrate conventional flight capabilities without requiring more than two motors for actuation. In addition, we emulate the unusual capabilities of a fully actuated MAV over six degrees of freedom using only the thrust vectoring qualities of two teetering rotors. Such independent control over forces and moments has been previously obtained by holonomic or omnidirection multirotors with at least six motors, but we now demonstrate similar abilities using only two. Expressive control from a single actuator enables new categories of MAV, illustrated by experiments with a single actuator aircraft with spatial control and a vertical takeoff and landing airplane whose flight authority is derived entirely from two rotors
    • …
    corecore