

Ricardo dos Santos Moreira

Licenciado em Ciências da Engenharia Electrotécnica

e de Computadores

Quadrotor Simulator for Control De-

velopment – Application to Autono-

mous Landing

Dissertação para Obtenção do Grau de Mestre em

Engenharia Electrotécnica e de Computadores

Orientador: Professor Doutor Fernando Coito, Professor Au-

xiliar, FCT-UNL

 Júri

Presidente: [Nome do orientador], [Cargo], [Instituição]

Arguentes: [Nome do co-orientador 1], [Cargo], [Institui-

ção]

Vogais: [Nome do Vogal 1]

Setembro de 2017

i

Quadrotor Simulator for Control Development – Application to Autonomous

Landing

Copyright © Ricardo dos Santos Moreira, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o

direito, perpétuo e sem limites geográficos, de arquivar e publicar esta disserta-

ção através de exemplares impressos reproduzidos em papel ou de forma digital,

ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a di-

vulgar através de repositórios científicos e de admitir a sua cópia e distribuição

com objectivos educacionais ou de investigação, não comerciais, desde que seja

dado crédito ao autor e editor.

iii

To my parents,

v

Acknowledgments

In the first place, I would like to thank my advisor, Professor Doctor Fer-

nando Coito, for the guidance and patience when silly questions were asked. The

knowledge I gain from this work and from his advices are certainly going to help

me as an engineer. For that, I thank you.

Thanks to Vasco Brito for helping me to understand some of his work,

which contributed to the development of this thesis.

For the best persons I know, a deeply thanks and acknowledgment for my

parents, who always gave me support and stood beside me in the good and bad

moments. Without them, I would not be where I am now.

To conclude, thanks to Faculdade de Ciências e Tecnologia of Universidade

Nova de Lisboa and to Electrical Engineering department, for gaving me the op-

portunity to meet good collegues and excellent and caring professors. All con-

tributed to my graduation.

vii

Abstract

In this thesis is studied the landing problem of a VTOL UAV and a 3D sim-

ulation environment is built to safely develop control for a quadrotor, resorting

to 3D modelling and simulation software.

In a time where the development of unmanned vehicles is a trend and it is

technologically in growth, the emergent difficulties are challenging when it

comes to aviation. In this field, it is useful a tool for researchers to have at their

disposal to conduct experiments without putting their real systems to real threat.

Also, the landing of UAV’s is currently one of the most serious cases of study

with a lot of investigation going on to solve the problems associated with it. In

this sense, some problematics are contemplated.

Based on a quadrotor in a X8 configuration – 4 frames and 8 propellers –,

are applied linear and nonlinear control design techniques with the intent to sta-

bilize and control the quadrotor and a 3D simulator is developed.

Keywords: 3D simulation; landing considerations; quadrotor; unmanned

aircraft vehicle; Unreal Engine.

ix

Resumo

São abordados, nesta tese, alguns problemas associados com a aterragem

de um veículo do tipo VTOL UAV. Em adição, um ambiente de simulação 3D é

construído com o intento de, em segurança, desenvolver controlo a aplicar em

quadrotores, recorrendo, assim, a ambientes de modelação e simulação 3D.

Numa época em que o desenvolvimento de veículos não-tripulados é uma

tendência e está tecnologicamente em crescimento, as dificuldades emergentes

são desafiantes no que concerne à aviação. Nesta área, é como uma mais-valia

uma ferramenta ao alcance de investigadores, de forma a que estes possam con-

duzir as suas experiências sem colocar em risco qualquer instalação física. Em

adição, a aterragem de veículos aéreos não-tripulados apresenta-se como um sé-

rio caso de estudo, existindo, ainda, bastante investigação a ser conduzida de

forma a resolver os problemas associados à mesma. Neste sentido, algumas pro-

blemáticas são contempladas.

Baseado num quadrotor em configuração X8 – 4 braços e 8 hélices –, são

aplicadas técnicas de controlo linear e não-linear com o intento de estabilizar e

controlar o quadrotor. Em adição, um simulador 3D é desenvolvido.

Palavras-chave: simulação 3D; aterragem; quadrotor; veículo aéreo não-tri-

pulado; Unreal Engine.

xi

Nomenclature

Acronyms

2D – Plane representation

3D – Space representation

BLDC – Brushless Direct Current

CPU – Central Processing Unit

GE – Ground Effect

IGE – In Ground Effect

IMU – Inertial Measurement Unit

OGE – Out of Ground Effect

PD – Proportional-Derivative

PI – Proportional-Integral

PID – Proportional-Integral-Derivative

PSO – Particle Swarm Optimization

PWM – Pulse Width Modulation

RC – Remote Control

xii

TF – Transfer Function

UAV – Unmanned Aircraft Vehicle

VTOL – Vertical Take-off and Landing

Symbols

Symbol Description Unit

 Cd drag coefficient adimensional

 Cl lift coefficient adimensional

 F, f force N

 g gravity m.s-2

 h height m

 I body inertia kg.m2

 k discrete-time variable samples.s-1

 L, l length m

 M total body mass kg

 r radius m

 t continuous-time variable s

 T thrust N

 Tτ torque induced by thrust N.m

 TPWM PWM period s

𝑥, 𝑦, 𝑧 translational position m

𝜙, 𝜃, 𝜓 Euler angles rad

𝛼, 𝛽, 𝛾 body angles rad

xiii

𝑝, 𝑞, 𝑟 body axes rate rad.s-1

 τ Torque N.m

 v linear speed m.s-1

 𝜔 angular speed rad.s-1

14

Table of Contents

Abstract ... vii

Resumo ... ix

Nomenclature ... xi

Acronyms .. xi

Symbols ... xii

1 Introduction .. 23

1.1 Motivation .. 23

1.2 Research objective and main contributions ... 24

1.3 Thesis Structure .. 25

2 State of the Art ... 27

2.1 Introduction .. 27

2.2 The Landing Conundrum ... 28

2.2.1 Weather effect .. 28

2.2.2 Effect of Obstructions on Wind .. 29

2.2.3 Ground Effect .. 30

2.3 Quadrotor ... 31

2.4 3D Modelling Software .. 32

2.4.1 3ds Max .. 32

2.4.2 Maya ... 32

2.4.3 Blender ... 33

2.5 Game Engines ... 34

2.5.1 Unity .. 34

2.5.2 Unreal ... 34

15

2.6 Control Design Techniques ... 35

2.6.1 PID control ... 35

2.6.2 Adaptive Control .. 37

2.6.3 Optimal Control ... 37

2.7 Related Work .. 39

3 Quadrotor Dynamics and Control ... 42

3.1 Simplified Model.. 42

3.1.1 Model Parameters ... 43

3.1.2 Open-Loop system ... 44

3.2 Extended Model ... 45

3.2.1 Rotation Matrix .. 45

3.2.2 Newton-Euler equations of motion ... 46

3.2.3 Open-Loop System... 47

3.2.4 Euler angle and body axis rates .. 49

3.3 Motor dynamics and configuration .. 51

3.3.1 Motor dynamics ... 51

3.3.2 One-motor vs two-motor configuration .. 51

3.4 The landing Approach ... 53

3.4.1 Ground Effect .. 53

3.4.2 Touchdown... 53

3.4.3 Disturbances .. 54

3.5 Flight control .. 55

3.5.1 PID controller.. 56

3.5.2 Attitude control .. 61

3.5.3 Position control .. 62

3.5.4 Thrust control ... 64

4 Simulations and Results .. 67

4.1 Zero drag effect .. 68

4.1.1 Attitude .. 68

4.1.2 Position .. 77

4.1.3 Landing .. 82

4.2 Disturbances – zero air speed ... 85

4.2.1 Position .. 86

4.2.2 Touchdown... 89

5 Virtual environment .. 91

5.1 Software synthesis ... 91

5.2 Blender .. 93

5.2.1 Skeletal Mesh... 93

16

5.2.2 Quadrotor Mesh ... 93

5.3 Unreal .. 94

5.3.1 Project development .. 95

5.3.2 External actuation .. 98

6 Conclusions and Future work ... 101

6.1 Control system limitations .. 101

6.2 Unreal Engine blueprints limitations ... 102

6.3 Work synthesis ... 102

6.4 Future work .. 103

References.. 105

Attachments .. 109

Attachment A – Quadrotor Parameters ... cxi

Attachment B – Simulink Project ... cxiii

Attachment C – Unreal Engine Project ... cxv

Attachment D – Unreal Engine Gameplay .. cxvii

17

List of Tables

Table 3.1: Roll / pitch controllers’ gains obtained via PSO method. 58

Table 3.2: Controllers’ gains obtained via Ultimate Sensitivity method. 59

Table 3.3: Attitude controllers’ gains obtained via PSO method. 62

Table 3.4: Altitude controllers’ gains obtained via Ultimate Sensitivity method.

 .. 63

Table 3.5: Position controllers’ gains obtained via Ultimate Sensitivity method.

 .. 64

Table 5.1: Characteristics table of different 3D modelling tools. 92

Table 5.2: Characteristics table of different Game Engines. 92

19

List of Figures

Figure 2.1: Vasco Brito’s quadrotor. Retrieved from (Brito 2016). 31

Figure 2.2: Quadrotor and moving target (Lee, Ryan, and Kim 2012). 39

Figure 2.3: Quadrotor used for experimental results (Herissé et al. 2012). 40

Figure 2.4: Quadrotor used in experimental setup (Serra et al. 2016) 41

Figure 3.1: Representation of the quadrotor steady hovering. XYZ axes are

represented by RGB arrows, respectively. Retrieved from (Brito 2016). 43

Figure 3.2: One-rotor configuration. ... 52

Figure 3.3: Two-rotor configuration.. 52

Figure 3.4: PWM and Force signals conditioning. .. 55

Figure 3.5: Step response to pitch / roll speed closed-loop system. Controller’s

gains based on PSO method. .. 58

Figure 3.6: Marginally stable ascension speed closed-loop system. 60

Figure 3.7: Step response to ascension speed closed-loop system. Controller’s

gains based on Ultimate Sensitivity method. .. 60

Figure 3.8: Attitude control scheme. ... 61

Figure 3.9: Altitude control scheme. ... 62

Figure 3.10: Position control scheme... 63

Figure 3.11: Back-calculation Anti-Windup with PID controller. 65

Figure 4.1: Hovering. From left to right, position and altitude control action. .. 68

20

Figure 4.2: Rotation response to a variable pitch setpoint. From left to right,

body and Euler angles... 69

Figure 4.3: Control actions in response to pitch error. From left to right, altitude

and pitch control actions. ... 70

Figure 4.4: Control actions in response to pitch error. From left to right, force to

be applied by each rotor and pitch control action. ... 70

Figure 4.5: Rotation response to a variable yaw setpoint. From left to right, body

and Euler angles. .. 71

Figure 4.6: Control actions in response to yaw error. From left to right, altitude

and yaw control actions. ... 72

Figure 4.7: Rotation response to a step input signal applied to roll and pitch.

From left to right, body and Euler angles. ... 73

Figure 4.8: Control actions in response to roll and pitch error. From left to right,

altitude and attitude control actions. .. 73

Figure 4.9: Rotation response to a step input signal applied to pitch and yaw.

From left to right, body and Euler angles. ... 74

Figure 4.10: Control actions in response to pitch and yaw error. From left to

right, altitude and attitude control actions. ... 75

Figure 4.11: Rotation response to a step input signal applied to roll, pitch and

yaw. From left to right, body and Euler angles. .. 76

Figure 4.12: Control actions in response to roll, pitch and yaw error. From left to

right, altitude and attitude control actions. ... 76

Figure 4.13: Translational response to a variable altitude setpoint. 77

Figure 4.14: Control action in response to altitude error. 77

Figure 4.15: Translational response to a variable setpoint applied to X axis. 78

Figure 4.16: Control actions in response to X error. From left to right, altitude

and pitch control actions. ... 79

Figure 4.17: Translational response to a step input signal applied to X and Y

axes... 80

Figure 4.18: Control actions in response to X and Y error. From left to right,

altitude and attitude control actions. .. 80

21

Figure 4.19: Translational response to a step input signal applied to X, Y and Z

axes... 81

Figure 4.20: Control actions in response to X, Y and Z error. From left to right,

altitude and attitude control actions. .. 82

Figure 4.21: Thrust ratio at zero air speed and constant power. 83

Figure 4.22: Thrust ratio at forward speed and constant power. 83

Figure 4.23: Fall, touchdown and rebound: Altitude variation, reaction to

impact and control action 𝑈1. .. 84

Figure 4.24: Fall, touchdown and rebound: rest.. 85

Figure 4.25: Translational response to a variable altitude setpoint. Air drag is

considered. .. 86

Figure 4.26: Control action in response to altitude error. Air drag is considered.

 .. 87

Figure 4.27: Translational response to a variable setpoint applied to X axis. Air

drag is considered. ... 88

Figure 4.28: Control actions in response to X error. From left to right, altitude

and pitch control actions. Air drag is considered. .. 88

Figure 4.29: Translational response to a step input signal applied to X, Y and Z

axes. Air drag is considered. .. 89

Figure 4.30: Control actions in response to X, Y and Z error. From left to right,

altitude and attitude control actions. Air drag is considered. 89

Figure 4.31: Fall, touchdown and rebound: Altitude variation, reaction to

impact and control action 𝑈1. Air drag is considered.................................... 90

Figure 5.1: Quadrotor 3D model assembled in Blender. .. 93

Figure 5.2: Example of Blender v2.78 workspace. .. 94

Figure 5.3: Quadrotor physics assembly. Collision detection and other physics

considerations are embodied for simulation. .. 95

Figure 5.4: Project inputs. Definition of the input commands and the hardware

from which they are sent. ... 96

Figure 5.5: Set linear speed function on the constructor graph. Event graph has

similar representation. .. 97

22

Figure 5.6: Game viewport. The quadrotor 3D model and the scene are

represented. .. 97

Figure 5.7: Input process flow. From the player actuation to the resultant game

action. Retrieved from (Epic Games 2017). .. 99

23

1 Introduction

1.1 Motivation

One of the main reasons why technology has accomplished many and great

deeds has to do with wars. Every challenge that stepped in the way of science,

were keenly overcame in order for groups of individuals to compete and surpass

their foes. Or, in other words, to do harm. Nowadays, and fortunately, the

thoughts are settled elsewhere. People are encouraged to thrive so others can

benefit from the results and learn more about the planet and universe we live in.

And even if the results are not that appealing, at least a piece of knowledge can

be extracted and can motivate others to do better.

Aircrafts are one of the wonders born of war. Manned, or even RC ones, can

be rather difficult to manoeuvre, even though the CPU is our brain, the actuators

our hands and the sensors our eyes. It takes an enormous amount of skill to fly

one of these machines and that is why a pilot need so many hours of flight expe-

rience before heading to pilot a commercial one, for example. It is even heard,

from time to time, that a plane, helicopter or the emergent RC quadrotors have

crashed somewhere. But these difficulties are nothing compared to the challenges

of letting one aircraft to take-off from a specific location and landing on another,

24

in complete autonomy. These are called UAV and are most likely the future of

private and commercial flights.

The UAV’s are currently used for scouting, mapping, leisure, professional

photography and others, but can have a key role in the near future, as such in

rescue missions, environmental monitoring, terrain analysis, infrastructures in-

spection, and much more.

Despite some important achievements concerning attitude and trajectory

control, the landing control is still an issue and is one of the most vital systems in

an UAV. Also, to prevent any type of accidents, which can be disastrous, a 3D

simulation environment for a quadrotor is developed, which is the main contri-

bution of this work.

1.2 Research objective and main contributions

This research purpose is to discuss the landing problems of UAV’s and de-

velop a 3D simulation environment where this and other flight problems may be

tested in safety.

The main goal of this thesis is to design a simulation environment with the

intent to perform several tests concerning the landing of a UAV. For this purpose,

a kinematics model of the aircraft has to be considered. As such, a specific quad-

rotor is studied and controllers are developed on Matlab software, with the re-

spective results presented at Chapter 4. The simulator will only include the quad-

rotor model, but it will be possible to manually control it, with the prospective to

receive the input commands from an external controller or one to be built-in.

The main contributions are the 3D simulation environment, which is ex-

pected to recreate a physical one, where the quadcopter 3d model and the sur-

rounded environment are furnished with a set of features as similar as possible

to real physics. Furthermore, a quadrotor model is proposed and determined if

25

the designed controllers are able to provide the necessary stability and perfor-

mance to execute a successful flight.

1.3 Thesis Structure

This thesis is structured in 6 chapters, which are organized as follows:

Introduction: In this chapter, are presented the motivation, the objectives

and the main contributions to unmanned aviation. Also, the thesis structure is

described.

State of the Art: In this chapter, the most relevant background information

that supports this thesis is provided. Are referred the landing problems, the

quadrotor for which the control is to be developed, an analysis on computer

graphics software, control design techniques and finally the related work.

Quadrotor Dynamics and Control: Here is presented the quadrotor model

used as starting point for this project, followed by improvements for a better nav-

igation. Additionally, each motor TF is considered, problems associated with

landing are considered and, to complete this chapter, are designed the controllers

to be implemented on the closed-loop system.

Simulation and Results: This chapter intent is to validate the efficiency of

the control architecture in the proposed model. Also, tests are conducted on cer-

tain physics aspects to understand their influence in a real landing manoeuvre.

Virtual Environment: In this chapter, an explanation about the choice of the

3D modelling and game development tools is given, along with a brief discussion

of the steps to follow, so anyone can use these tools.

27

2 State of the Art

2.1 Introduction

In this chapter, it is presented the literature and scientific surveys of the

areas of study used as milestones for this work. A briefly insight into some main

problems in the aeronautics field is given, as well as their influence on landing

phase of flight.

Following the problems associated with landing, the quadrotor kinematics

model in which this thesis is grounded is presented. This model is a simplified

version and does not considers several physics phenomena that has impact on

landing approach.

The next subject consists of a 3D software assessment. The goal is to develop

a simulation environment where tests can be conducted without damaging the

physical structure and to be an interactive way to learn by playing. Firstly, are

analysed software responsible for 3D modelling, so a 3D representation of the

quadrotor can be constructed. Secondly, game engines to animate and describe

the physics of the quadrotor, apply disturbances and create a scenery.

28

Afterwards, are specified the techniques to be applied, so a satisfactory con-

trol over the aircraft can be provided. The main steps to land a VTOL are to ac-

quire the target, stabilize the aircraft, analyse the target surface and execute the

right control actions for a perfect landing.

To end this chapter, it is presented the ground work for this thesis consti-

tuted by a few researches conducted in past recent years.

2.2 The Landing Conundrum

Many are the effects that can cause a quadrotor to experience some difficul-

ties. Since the first flight attempts that inventors and researchers are trying to

nullify these. The most relevant ones are explained below.

2.2.1 Weather effect

Weather plays a significant role in every step of an aircraft navigation, from

take-off to landing. For instance, changes in temperature lead to a variation of air

density, which in turn leads to changes of air pressure. Ultimately, due to these

events, air currents are formed. Altitude is also relevant, because the higher the

aircraft, lesser the pressure and thinner the air, causing the aircraft to experience

stability issues. These phenomena alters both the stall speed and minimum flying

speed necessary for any aircraft to take-off or land, respectively (Federal Aviation

Administration 2016).

Air flows, also known as winds, can interfere greatly on flight control. It can

be a major setback on the quadrotor normal operation mode, because not only

the quadrotor tends to deviate in a randomly way, but without a sufficiently ro-

bust controller it might crash.

Wind’s pattern and formation are primarily due to changes of pressures.

These variations are driven by distinct types of events. Three of which are the

29

atmospheric pressure, the Coriolis effect and even the topography. As a result, it

is of an utmost difficulty to write down a mathematical notation to characterize

this phenomenon. However, the impact of it over an object can be measured. A

way to represent this is through eq. (2.2.1) and eq. (2.2.2).

 𝐹 = 𝑃 ∙ 𝐴 ∙ 𝐶𝑑 (2.2.1)

 𝐹 =
1

2
∙ 𝜌 ∙ 𝑉2 ∙ 𝐴 ∙ 𝐶𝑑 (2.2.2)

Where 𝐹 is the drag force, or wind load, 𝑃 [Pa] is the wind pressure, 𝐴 [m2]

is the area section of the object where the force is being exerted, ρ [kg∙m-3] is the

air density, 𝑉 [m∙s-1] is the speed of the body relative to the air flow and 𝐶𝑑 is the

drag coefficient.

2.2.2 Effect of Obstructions on Wind

As denoted in the previous subsection, wind is very unpredictable in each

time instant, if taking solely into account natural causes. This condition might be

aggravated if structures are near and on wind’s side, wherein forms more turbu-

lence and the changes of wind direction become even more random.

Manmade constructions, e.g., buildings, ships superstructure, bridges and

amongst others, can create air pressures that burst in several directions and dif-

ferently from natural deformations. Buildings, for instance, cut the wind and on

the opposite side turbulence appears with air currents flowing in many indistinct

directions. In contrast, when the structure is a mountain, for example, and the

wind is flowing up the windward side of the mountain, the currents tend to point

downwards on the leeward side of the mountain (Federal Aviation

Administration 2016).

30

2.2.3 Ground Effect

When a VTOL aircraft is about to land, it experiences some undesirable phe-

nomena due to ground effect. This happens when the air mass generated by the

rotor blades is reflected by the surface, thus creating an air cushion, which is an

air pressure on the lower side of the aircraft. This airflow can provide more

thrust, leading to an increase of efficiency of the rotors. The main consequences

of this principle includes vibration, which can lead to irreversible instability of

the aircraft, altitude fluctuations (Davis and Pounds 2016; Sharf et al. 2014; Aich

et al. 2014), and possible bounce after touching a rigid surface (ArduPilot Dev

Team 2016).

A work conducted by Cheeseman and Beckett produced a first mathemati-

cal description of this effect on the lift of a helicopter rotor at different forward

speeds. The simplest situation, and the most important one to consider in this

thesis, occurs when the rotor is rotating at constant power, zero air speed and

zero forward speed. Thus, the thrust ratio between the thrust IGE and OGE is

dependent of the rotor radius and the propellers distance away from the ground.

The mathematical expression is given by eq. (2.2.3) (Cheeseman and Bennett

1957).

𝑇𝐼𝐺𝐸

𝑇𝑂𝐺𝐸
=

1

1−
𝑟2

16𝑧2

 (2.2.3)

𝑇𝐼𝐺𝐸 [N] is the rotor thrust under the influence of the air cushion, 𝑇𝑂𝐺𝐸 [N]

is the rotor thrust away from the ground, 𝑟 is the rotor radius and 𝑧 [m] is the

distance of the propeller from the ground.

Another situation occurs when the aircraft is moving parallel to a surface

and at constant power. In this case, both aircraft speed 𝑣𝐴 and induced speed 𝑣𝑖

at the rotor appears in the eq. (2.2.4).

31

𝑇𝐼𝐺𝐸

𝑇𝑂𝐺𝐸
=

1

1−
𝑟2

16𝑧2(1+(
𝑣𝐴
𝑣𝑖
)
2
)

 (2.2.4)

2.3 Quadrotor

Back in 2016, Vasco Silva developed a quadrotor with 4 frames and 8 thrust-

ers, 2 in each frame, whose mathematical model contemplates several physical

properties like gravity, gyroscopic effect and the overall force produced by the

motors. In addition, it has a control scheme for failure detection. (Brito 2016).

The real structure is based on the DJI Flamewheel 450 and some compo-

nents were especially made in a 3D printer in order to accommodate the eight

motors. The control unit comprises an Arduino Due, wherein lies all the pro-

grammable logic to control the quadrotor (Brito 2016). Amongst other features, it

is equipped with GPS, absolute orientation and altiMU sensors, allowing a good

data acquisition for reliable information about the quadrotor positioning, atti-

tude, and others.

For these reasons and since it is in a very early stage, it is an interesting

challenge to continue the legacy of a former colleague. Figure 2.1 represents the

quadrotor assembled by Brito.

Figure 2.1: Vasco Brito’s quadrotor. Retrieved from (Brito 2016).

32

2.4 3D Modelling Software

In this section, are presented three 3D modelling software, 3ds Max, Maya

and Blender, and the respective attributes for further review.

2.4.1 3ds Max

This software property of Autodesk is commonly used in the industry for

3D computer graphics development. It provides the necessary tools for model-

ling, animation, simulation and rendering, supporting the creation of films and

games.

Autodesk has several programs prone to similar purposes, like Maya,

which is the next program approached, with little differences between these and

3ds Max (Autodesk 2016). In a more intrinsic view, 3ds Max is considered not

very user friendly as the user interface is not quite intuitive, with a learning curve

a bit steep, especially for new developers in the field (Tay 2014). The simulation

tools are slightly complex even for people with experience and its own scripting

language, MAXScript, is not straightforward. Despite these not positive features,

it offers an ease of use Material Editor and a rich set of tools essential for model-

ling. It is possible to import or export FBX files, which are widely used and there-

fore is compatible with many other 3D software (Yang 2016). It also has many

plugins at disposal and, as well as other software from Autodesk, the full version

is paid. Nevertheless, a student version is available and is free for three years

with almost the same features as the paid one (Yang 2016).

2.4.2 Maya

Here is another program from Autodesk with similar features as the previ-

ous 3ds Max. Maya stands out for its animation and effects tools, but lacks in

what concerns to modelling, contrasting with 3ds Max. It is not very intuitive and

33

the creation and handling of materials along with professional computer anima-

tion and simulation is generally complex to develop, in part due to the need to

use some programming (Carrasquinho 2015). In this matter, Maya scripts can be

written in Python or in its own programming language, MEL. Like 3ds Max,

there are many plugins and add-ins to support the 3D development. The soft-

ware is paid but it can be acquired, with less features, with a student licence, free

for three years.

2.4.3 Blender

Blender is a 3D computer graphics software from Blender Foundation,

mostly used by artists and small companies in this area (blender.org 2015). It sup-

ports the tools for modelling, animation, simulation and rendering, as so does

the previous software mentioned, but can also be used as a game engine, alt-

hough this is not its best feature. The major advantage of using Blender lies in

being an open source software, therefore it is free. There are also several tutorials

and documentation and occasionally it is updated with the help of contributions

provided by the community. The most significant setback using this software are

software faults (commonly referred as “bugs”) that appear each time an update

happens to fix other bugs. Additionally, the tutorials, documentation and other

types of support are not up-to-date, even though the software is (Carrasquinho

2015; Supernat 2012).

Regarding the technical aspects, it has all features available and the only

weak element is the user interface, which is little intuitive with a relatively harsh

learning curve (Carrasquinho 2015).

34

2.5 Game Engines

After a 3D model is complete, it must be imported to a simulation software

in order to conduct tests or simply to play and enjoy. Ahead, is available the de-

scription of two game engines commonly used in the game industry.

2.5.1 Unity

Unity, also known as Unity 3D, is a software property of Unity Technolo-

gies and is one of the most popular game engines, commonly known for being

intuitive and proper for beginners. It has a vast set of tools and a very complete

asset store to help in the projects development. It is compatible with many 3D

simulation and modelling software as it can read several file formats. The pro-

jects can be developed in a node editor written mainly in C-sharp or Javascript

and exported into several file formats as well. Unity is a paid software but a free

version is available for the common user. However, the free version has a lot less

features in comparison with the paid one.

2.5.2 Unreal

Unreal Engine is a software developed by Epic Games and is considered

one of the best game engines in the market due to its remarkable graphical capa-

bilities (Mayden 2014). In comparison with Unity engine, it has also a lot of pow-

erful features and tools but perhaps the most differentiation aspect is the Blue-

print visual scripting. This feature is a node-based scripting editor, providing the

ability to create equations using blocks diagram. Notwithstanding, one can also

write code in C++ (Epic Games 2017).

Unity has a larger store asset than Unreal, with the Unreal one to be reason-

able regardless. In Unity, is also possible to import / export projects within a vast

range of file formats, whilst Unreal supports only FBX format. A major factor is

the pricing issue and Unreal Engine 4 leads in this subject as it is free with all its

35

features accessible by anyone, if not used for commercial activities. Otherwise,

royalties must be paid to Epic Games.

2.6 Control Design Techniques

In this chapter are presented the control techniques used in this thesis with

the purpose to incorporate them in a quadrotor model. The first method de-

scribed is the classical PID controller.

2.6.1 PID control

One of the most commonly used control techniques is the classical Propor-

tional-Integrative-Derivative algorithm. This method appeared in the 1920’s by

Minorsky while observing the way a helmsman steered a ship. It was then im-

proved and applied during the following decade in pneumatic industry and in

1942 John G. Ziegler and Nathaniel B. Nichols developed the well-known tuning

rules to find the optimum parameters of a PID controller, given certain con-

straints (Bennett 1996). Presently, this type of controller is commonly used in in-

dustry, offering reliable results for most industrial processes.

The generic PID control algorithm assumes the following form:

 𝑢(𝑡) = 𝐾 ∙ (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑 ∙

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
) (2.6.1)

In the previous eq. (2.6.1), 𝑢 is the control action, 𝑒 the error between the

reference and output signals of the process, 𝐾 the proportional gain, 𝑇𝑖 [s] the

integral time and 𝑇𝑑 [s] the derivative time.

2.6.1.1 Proportional Action

The simplest form of a PID controller occurs when the integral and deriva-

tive actions of eq. (2.6.1) are cancelled, thus leaving a pure proportional controller

given by eq. (2.6.2).

36

 𝑢𝑝(𝑡) = 𝐾 ∙ 𝑒(𝑡) + 𝑏 (2.6.2)

Here appears a new variable 𝑏, which stands for the reset or bias. When

control error equals zero, 𝑢𝑝 = 𝑏. This factor acts like a disturbance and can be

manually adjusted so that the stationary control error equals zero at a specific

condition of operation (K. Astrom 1995).

A high value of the proportional gain can lead to accentuated oscillations

of the process output without cancelling the stationary control error. Therefore,

the integral action is introduced (K. Astrom 1995).

2.6.1.2 Integral Action

The integral action main purpose is to nullify the control error in stationary

state, when a variation of the proportional gain by itself is not enough. This inte-

gral effect is represented by eq. (2.6.3).

 𝑢𝑖(𝑡) = 𝐾 ∙
1

𝑇𝑖
∙ ∫ 𝑒(𝜏)𝑑𝜏

𝑡

0
 (2.6.3)

When the control error is positive, the control action increases to compen-

sate the low value of the process output. When it is negative, the control action

decreases so the process output decreases as well and follows the reference value.

A PI controller type is able to effectively nullify the control error in steady

state, but it might need more time than the desirable to do so due to present and

long-lasting oscillations (K. Astrom 1995).

2.6.1.3 Derivative Action

An integral effect provides a prior knowledge of the system past states, but

it can’t predict how it is going to behave, leading to possible underdamping. A

derivative action is able to predict the next process outputs through the tangent

to the error curve, decreasing the oscillations and thus increase the stability of

the closed-loop system (K. Astrom 1995). The eq. (2.6.4) represents this action.

 𝑢𝑑(𝑡) = 𝐾 ∙ 𝑇𝑑 ∙
𝑑𝑒(𝑡)

𝑑𝑡
 (2.6.4)

37

The combination of the three aforementioned actions constitutes a classical

PID controller.

2.6.2 Adaptive Control

The PID algorithm proves to be a good and practical method to solve many

cases of industrial processes. However, some processes parameters are unknown

or vary unpredictably in time, which can pose a threat to system stability. To

counter that, the controller parameters should be adjusted dynamically, which is

the main focus behind adaptive control theory (Landau et al. 2011).

An adaptive control consists in the capture of a system’s dynamics and

specification of the control-design algorithm, along with a fit controller design

method for an estimation on-line of the controller’s parameters. This type of con-

trol is therefore inherently nonlinear and has several applications regarding both

linear and nonlinear systems (Landau et al. 2011; K. J. Astrom and Wittenmark

1996).

Applications for this control technique are found on multirotors for attitude

stabilization (Zairi and Hazry 2011), trajectory control (Santos et al. 2017) or gen-

eral control (Buyukkabasakal et al. 2015). On the first two works, artificial neural

networks are included to improve precision and minimize control errors.

2.6.3 Optimal Control

Another control method with particular interest is the optimal control. The

Optimal Control Theory is an extension of the calculus of variations which in-

tends to minimize or maximize a given functional subject to constraints. In con-

trol problems, the functional is usually a cost function, or minimization function,

subject to constraints, which is intended to be minimized. The founders of this

theory are Bellman and Pontryagin, providing solutions to stochastic and deter-

ministic problems, respectively (Todorov 2006).

38

When the goal is to achieve optimal solutions, optimal estimation is com-

monly used due to sensor noises and delays and because the two problems are

dual, meaning that one is closely related to another via control and filtering equa-

tions, respectively (Todorov 2006).

2.6.3.1 PSO

The Particle Swarm Optimization is a method based on the collective intel-

ligence and first proposed by Russel Eberhart and James Kennedy in 1995. This

method intent is to optimize continuous nonlinear functions (Kennedy and

Eberhart 1995). It has several applications, one of which to obtain a controller’s

parameters for a given nonlinear system.

One version of the PSO method consists in the achievement of the best value

considering all the particles in the swarm, where each particle is a solution of the

system and can be represented in a Cartesian system with any dimensions. The

respective algorithm for one-dimension solution is hence described.

The first step is to create particles in random positions and with random

velocities. Secondly, with these particles, apply the desired minimization func-

tion and calculate its value. This value is thus compared with the current parti-

cle’s best value (𝑝𝑏𝑒𝑠𝑡). If the result is positive, this value is now considered the

particle’s best value and is compared with the group’s best value (𝑔𝑏𝑒𝑠𝑡). Again,

if it is true, this pbest is now equal to gbest. The change of speed and position of

each particle on each axis is given by eq. (2.6.5) and eq. (2.6.6), calculated in this

specific order. This process restarts on the particle evaluation and the loop is re-

peated. (Eberhart and Kennedy 1995).

 𝑠𝑖 = 𝑠𝑖 + 𝑐1 ∙ 𝑟𝑎𝑛𝑑 ∙ (𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑖) + (2.6.5)

 + 𝑐2 ∙ 𝑟𝑎𝑛𝑑 ∙ (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖)

 𝑝𝑖 = 𝑝𝑖 + 𝑠𝑖 (2.6.6)

39

On the previous equations, 𝑠𝑖 and 𝑝𝑖 stands for speed and position of the i-

-th particle, respectively, 𝑐1 and 𝑐2 are the adjustment coefficients and 𝑟𝑎𝑛𝑑 is a

random value in the range [0;1].

2.7 Related Work

To understand in what way this thesis could contribute to science, a survey

was conducted and some researches related to autonomous landing of multi-

rotors were found. Some of the most significant are referred below.

There are several studies conducted in this field and most uses image pro-

cessing or optical flow to determine the relative position of a target. A work de-

veloped by Lee, Ryan and Kim in 2012 consisted in using image-based visual

servoing (IBVS) algorithm to locate the target and get its velocity relatively to the

quadrotor. Their main contributions are image processing in a 2D instead of a 3D

representation, thus decreasing computational calculations and complexity, and

an adaptive SMC – Sliding Mode Control – control regarding landing step for

precision control as well for GE compensation. An IMU is also used to provide

information about the quadrotor attitude and Lyapunov Stability Theory to sta-

bilize the quadrotor during landing procedure (Lee, Ryan, and Kim 2012). The

Figure 2.2 shows the quadrotor and target used for the experiments.

Figure 2.2: Quadrotor and moving target (Lee, Ryan, and Kim 2012).

40

In the same year, Hérissé, Hamel, Mahony, and Russotto improved their

earlier work from 2010 on the use of optical flow as hovering and landing control

on a moving platform. This system is composed by a camera, to capture the vis-

ual motion, or optical flow, and by a IMU, to determine the attitude and linear

position of the UAV (Herissé et al. 2012).

The control schemes used in this project includes nonlinear PI control, op-

tical-flow based control, time-to-contact based control, Lyapunov Stability The-

ory and a guidance and control approach (Herissé et al. 2012). The quadrotor

used for testing is shown in Figure 2.3.

Figure 2.3: Quadrotor used for experimental results (Herissé et al. 2012).

A more recent project dates from 2016 and it was written by Serra, Cunha,

Hamel, Cabecinhas and Silvestre. Their main contribution to the landing prob-

lematics over a moving surface is the use of a dynamic IBVS control to detect the

target amongst noise and an optical flow measurement to detect surface move-

ment (Serra et al. 2016).

In their paper, an innovative IBVS control is proposed, and other control

techniques are approached like optical flow control, Lyapunov Stability Theory

and a cascade control architecture. An IMU is also used. The setup is shown in

Figure 2.4.

41

Figure 2.4: Quadrotor used in experimental setup (Serra et al. 2016)

42

3 Quadrotor Dynamics and Control

In this chapter are presented both the kinematics model used by Brito’s

work and an extended version, respectively. Some experiments conducted on

Brito’s work are considered and physics intrinsically related to landing are char-

acterized. At the end, control architectures are presented along with techniques

for the estimation of the controllers’ parameters.

3.1 Simplified Model

The core of Vasco Brito work was the development of a system tolerant

against motor failures, thus some considerations being wittingly neglected in the

model proposed. From Brito’s work, the focus is entirely on the model and air-

craft dimensions, improving the first and assuming values for unknown param-

eters to face several physics properties regarding the aircraft landing.

43

3.1.1 Model Parameters

In this subsection, the model parameters are described, with a similar nota-

tion from the one adopted by Brito in his thesis.

Figure 3.1: Representation of the quadrotor steady hovering. XYZ axes are repre-

sented by RGB arrows, respectively. Retrieved from (Brito 2016).

On the Figure 3.1 illustrated above, are identified the angular speed 𝜔𝑛 and

the respective force 𝑓𝑛 produced by each rotor 𝑛. Particularly, this image illus-

trates a hovering flight, since all forces have equal magnitude. In addition, con-

trolling each rotor independently enables the control of each of the three funda-

mental rotations: roll, pitch and yaw. The altitude and angular position control

actuations are, therefore, mathematically represented by eq. (3.1.1).

 [

𝑈1
𝑈2
𝑈3
𝑈4

] =

[

∑ 𝑓𝑛
8
𝑛=1

𝑓4 + 𝑓8 − 𝑓2 − 𝑓6
𝑓3 + 𝑓7 − 𝑓1 − 𝑓5

𝑓1 + 𝑓3 + 𝑓6 + 𝑓8 − 𝑓2 − 𝑓4 − 𝑓5 − 𝑓7]

 (3.1.1)

The roll, pitch and yaw are rotations about the longitudinal, transverse and

vertical axes, respectively. Each rotation represents a rate of change of angular

position. The combined three-dimensional angular positions are henceforth

44

named attitude. The attitude and the translational position matrices are repre-

sented by eq. (3.1.2) and (3.1.3), correspondingly.

 𝚯𝑬 = [𝜙 𝜃 𝜓]𝑇 (3.1.2)

 𝐏 = [𝑥 𝑦 𝑧]𝑇 (3.1.3)

The first matrix refers to Euler angles and the second to the position seen

from an inertial observer.

On Brito’s work, some of the aircraft parameters are explicitly referred, but

others must be assumed to develop the control system. For detailed documenta-

tion on the quadrotor inertial and geometric parameters see Attachment A.

3.1.2 Open-Loop system

Finally, it is presented the kinematics model represented by eq. (3.1.4),

whose mathematical deduction and the model itself are found on Brito’s thesis

(Brito 2016).

{

 �̈� = (sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜃))

𝑈1

𝑀

�̈� = (cos(𝜓) sin(𝜙) − cos(𝜙) sin(𝜓) sin(𝜃))
𝑈1

𝑀

�̈� = −𝑔 + cos(𝜙) cos(𝜃)
𝑈1

𝑀

�̈� = ((𝐼𝑦𝑦 − 𝐼𝑧𝑧)�̇��̇� − 𝐽𝑟�̇�Ω𝑟 + 𝐿𝑈2)
1

𝐼𝑥𝑥

�̈� = ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)�̇��̇� − 𝐽𝑟�̇�Ω𝑟 + 𝐿𝑈3)
1

𝐼𝑦𝑦

�̈� = ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)�̇��̇� + 𝐿𝑈4)
1

𝐼𝑧𝑧

 (3.1.4)

In the previous system of equations, 𝑔 represents the gravity action, 𝐽𝑟

[𝐾𝑔.𝑚2] each rotor inertia – eq. (3.1.5) – and Ω𝑟 [𝑟𝑎𝑑. 𝑠
−1] the sum of angular

velocities produced by each rotor – eq. (3.1.6). These last two parameters influ-

ence the gyroscopic effect on the aircraft, occurring due to an unbalance of the

sum of the angular velocities.

45

 𝐽𝑟 =
𝑀 . 𝑟𝑟𝑜𝑡𝑜𝑟

2

2
 (3.1.5)

 Ω𝑟 = 𝜔1 −𝜔2 + 𝜔3 −𝜔4 −𝜔5 +𝜔6 −𝜔7 + 𝜔8 (3.1.6)

The established relation between body axes rate and Euler angles rate im-

plies two important limitations. First, it is only precise for one rotation at a time.

If a second rotation is desired, the aircraft attitude must be carried to the origin

state, assuming this state as (0,0,0). Second, and although an inequality is formed

between the two reference frames, the model can be considered valid for narrow

changes in attitude.

3.2 Extended Model

The issue with the simplified version is that the hovering fluctuations must

not be neglectable, as they are relevant when the aircraft needs to perform rota-

tions, e.g., on take-off and landing approach or in the presence of crosswinds.

Another consideration is the presence of drag, associated to air resistance. There-

fore, a distinction must be made between the body axes rate and the Euler angles

rate. The deduction for the extended model version is presented throughout the

following subsections.

3.2.1 Rotation Matrix

The root step of a rotating body modelling is to formulate, through mathe-

matics, its own rotational dynamics. To accomplish this mathematical relation,

the right-hand rule is applied to each axis of the Euclidean space system.

The rotation vectors defined by eq. (3.2.1), (3.2.2) and (3.2.3) respect the

right-hand rule and describe the angular displacement of the rotating object in

relation to the inertial reference frame.

46

 𝐑𝜙 = [

1 0 0
0 cos(𝜙) sin(𝜙)

0 −sin(𝜙) cos(𝜙)
] (3.2.1)

 𝐑𝜃 = [
cos(𝜃) 0 − sin(𝜃)
0 1 0

sin(𝜃) 0 cos(𝜃)
] (3.2.2)

 𝐑𝜓 = [
cos(𝜓) sin(𝜓) 0

− sin(𝜓) cos(𝜓) 0
0 0 1

] (3.2.3)

𝑹𝜙 identifies roll rotation, 𝑹𝜃 pitch rotation and 𝑹𝜓 yaw rotation. With these

three vectors and applying the three elemental rotations in a given order, it is

obtained a specific rotation matrix. For this work, it is chosen a XYZ intrinsic

rotation convention. Multiplying the three elemental rotations, as 𝐑𝛩 = 𝐑𝜙𝐑𝜃𝐑𝜓,

results in the rotation matrix described by eq. (3.2.4).

 𝐑𝛩 = (3.2.4)

[

cos(𝜃) cos(𝜓) cos(𝜃) sin(𝜓) − sin(𝜃)

sin(𝜙) sin(𝜃) cos(𝜓) − cos(𝜙) sin(𝜓) sin(𝜙) sin(𝜃) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜙) cos(𝜃)

cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓) cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓) cos(𝜙) cos(𝜃)
]

Important is to notice that 𝐑𝛩 is an orthogonal matrix, meaning that 𝐑𝛩
−1 =

𝐑𝛩
𝑇. This relation is relevant for applications seen ahead.

3.2.2 Newton-Euler equations of motion

A quadrotor is a specific type of aircraft. Assuming zero drag force of any

nature, it only acquires linear motion if its attitude vector is non-null. For this

case, a mathematical relationship between translational and rotational dynamics

is needed and it is obtained through Newton-Euler equations.

47

 {
𝐅 = 𝑀𝐚 + 𝛀 × (𝑀𝐕)

𝛕 = 𝐈𝛂𝒓 +𝛀× (𝐈𝛀)
 (3.2.5)

 {
𝐅 = 𝐓 − 𝐅𝑔 − 𝐅𝐷 +𝛀× (𝑀𝐕)

𝛕 = 𝐓𝝉 + 𝛕𝐺𝑦𝑟𝑜 +𝛀 × (𝐈𝛀)
 (3.2.6)

The eq. (3.2.6) is an extended expression of eq. (3.2.5). In these equations,

𝐅 = [𝐹𝑥 𝐹𝑦 𝐹𝑧]𝑇 represents the force, 𝛕 = [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 the momentum, a

[𝑚. 𝑠−2] the acceleration, 𝜶𝒓 [𝑟𝑎𝑑. 𝑠
−2] the angular acceleration, v the velocity, 𝛀

[𝑟𝑎𝑑. 𝑠−1] the angular velocity, T is the thrust, Fg the gravitational force, FD the

drag force caused by air resistance and τGyro the momentum generated due to the

gyroscopic effect. The external products that appears in the equations are relative

to the centrifugal and centripetal forces, respectively. Because this type of aircraft

is assumed to be symmetric, the inertial moment matrix 𝐈 is defined as shown in

eq. (3.2.7).

 𝐈 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (3.2.7)

3.2.3 Open-Loop System

First, we take in consideration only the aircraft reference frame. By this

light, both linear and angular velocity vectors are given by eq. (3.2.8) and (3.2.9),

respectively.

 𝐕 = [𝑢 𝑣 𝑤]𝑇 (3.2.8)

 𝛀 = [𝑝 𝑞 𝑟]𝑇 (3.2.9)

These vectors are decomposed in three axes each, fulfilling the six degrees

of freedom of the overall open-loop system, represented by eq. (3.2.10).

48

[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = [
0
0
𝑈1

] − 𝐑𝛩 [

0
0
𝐹𝑔

] − 𝐾𝑣 [

𝑢 −𝑊𝑥
𝑣 −𝑊𝑦
𝑤 −𝑊𝑧

] − 𝑀 [

𝑞𝑤 − 𝑣𝑟
−𝑝𝑤 + 𝑢𝑟
𝑝𝑣 − 𝑢𝑞

]

[

𝜏𝜙
𝜏𝜃
𝜏𝜓
] = [

𝐿𝑈2
𝐿𝑈3

𝐿
𝐶𝑑

𝐶𝑙
𝑈4

] + 𝛕𝑔𝑦𝑟𝑜 − [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞

]

 (3.2.10)

On eq. (3.2.10), 𝐶𝑙 is the lift coefficient, 𝐾𝑣 [𝑘𝑔. 𝑠−1] is any appropriate di-

mensioned variable associated with velocity and 𝑊𝑥, 𝑊𝑦 and 𝑊𝑧 concerns the air

flow on the three axes.

Now it is possible to characterize the model attending the body inertial

frame, so the gyroscopic effect momentum 𝛕𝑔𝑦𝑟𝑜 is given by eq. (3.2.11).

 𝛕𝑔𝑦𝑟𝑜 = 𝐽𝑟Ω𝑟 (𝛀 × [
0
0
1
]) = 𝐽𝑟Ω𝑟 [

𝑝
−𝑞
0
] (3.2.11)

Although eq. (3.2.10) works, it has a setback. This system has six outputs to

control. However, of all the six degrees of freedom possible for this system, the

horizontal motion along the X and Y axes are not directly controlled by any of

the four command inputs, leading to an underactuated system with only four

degrees of freedom. Thus, raising issues on stability level. The solution to this

problem is to combine the inertial, in this case the earth, reference frame with the

aircraft body axes. Therefore, and knowing that 𝑹𝛩 is an orthogonal matrix, the

translational motion regarding earth is shown by eq. (3.2.12).

 [

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = 𝑹𝛩
𝑇 [
0
0
𝑈1

] + [

0
0
𝐹𝑔

] − 𝐾𝑣 [

�̇� −𝑊𝑥
�̇� − 𝑊𝑦
�̇� − 𝑊𝑧

] (3.2.12)

Combining now the translational motion about the inertial reference frame

with the rotational motion about the body axes and applying Newton’s second

law and equivalent for the rotational motion we obtain eq. (3.2.13).

49

[
𝑀�̈�
𝑀�̈�
𝑀�̈�

] = 𝐑𝛩
𝑇 [
0
0
𝑈1

] + [
0
0

−𝑀𝑔
] − 𝐾𝑣 [

�̇� −𝑊𝑥
�̇� − 𝑊𝑦
�̇� − 𝑊𝑧

]

[
𝐈�̇�
𝐈�̇�
𝐈�̇�

] = [

𝐿𝑈2
𝐿𝑈3

𝐿
𝐶𝑑

𝐶𝑙
𝑈4

] + 𝐽𝑟Ω𝑟 [
𝑝
−𝑞
0
] − [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞

]

 (3.2.13)

Solving the system of equations concerning linear and angular accelerations

and as functions of input commands, results in the open-loop system fully actu-

ated expressed by eq. (3.2.14).

{

 �̈� = (cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓))

𝑈1

𝑀
− 𝐾𝑣(�̇� −𝑊𝑥)

�̈� = (cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓))
𝑈1

𝑀
− 𝐾𝑣(�̇� −𝑊𝑦)

�̈� = cos(𝜙) cos(𝜃)
𝑈1

𝑀
− 𝑔 − 𝐾𝑣(�̇� −𝑊𝑧)

�̇� = ((𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 − 𝐽𝑟𝑞𝜔 + 𝐿𝑈2)
1

𝐼𝑥𝑥

�̇� = ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟 − 𝐽𝑟𝑝𝜔 + 𝐿𝑈3)
1

𝐼𝑦𝑦

�̇� = ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 + 𝐿𝑈4)
1

𝐼𝑧𝑧

 (3.2.14)

According to the previous equation, the body angular acceleration is subject

to control. This control is performed directly over its attitude. Therefore, the body

attitude matrix is, in this work, represented by eq. (3.2.15).

 𝚯𝐴 = [𝛼 𝛽 𝛾]𝑇 (3.2.15)

The subscript 𝐴 denotes the aircraft frame.

3.2.4 Euler angle and body axis rates

The aircraft dynamics are now better controllable, although one issue arises.

In a real environment, the sensors are placed on the aircraft center body. There-

fore, the values read by the same are relative to the aircraft reference frame, thus

a relation between the aircraft and earth must exist.

50

 [
𝑝
𝑞
𝑟
] = 𝐈3𝑥3 [

�̇�
0
0

] + 𝐑𝜙 [
0
�̇�
0
] + 𝐑𝜙𝐑𝜃 [

0
0
�̇�
] (3.2.16)

 [
𝑝
𝑞
𝑟
] = [

1 0 sin(𝜃)

0 cos(𝜙) sin(𝜙) cos(𝜃)

0 − sin(𝜙) cos(𝜙) cos(𝜃)
] [

�̇�

�̇�
�̇�

] (3.2.17)

Eq. (3.2.16) establishes a mapping from the inertial to the body reference

frames through the Euler angles and body axes rates. This is the convention

adopted in this work and commonly adopted on aeronautics, where the yaw ro-

tation is performed first, then pitch and finally roll, after which the Euler angles

rate is converted to the body axes rate (Stengel 2016). 𝐈3𝑥3 denotes a 3𝑥3 identity

matrix.

This conversion matrix is non-orthogonal, meaning that if 𝐐 ∈ ℳ𝑛𝑛, ∀ 𝑛 ∈

ℕ∗, then 𝐐−1 ≠ 𝐐𝑇. If the inverse transformation is applied, we are now obtaining

the Euler angles rate from the body axes rate.

[

�̇�

�̇�

�̇�]

=

[

1 tan(𝜃) sin(𝜙) tan(𝜃) cos(𝜙)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃)]

[

𝑝

𝑞

𝑟]

 (3.2.18)

Solving eq. (3.2.16) it is obtained eq. (3.2.17). Transforming this into a body

to inertial frame relation, we obtain eq. (3.2.18). Analysing this last one, a singu-

larity at 𝜃 = 90° is detected. In this region, the aircraft is intrinsically unstable.

Nevertheless, as it is shown on Flight control section, this singularity is not of

concern on any flight step.

51

3.3 Motor dynamics and configuration

Two specific experiment were conducted in (Brito 2016). One to obtain a

mathematical representation of the E305 2312E BLDC motor behaviour. The

other, to understand the improvement of a two-rotor configuration on each arm

over a one-rotor configuration.

3.3.1 Motor dynamics

With the first experiment, the mathematical representation led to an output

as a function of only one input. Any constant coefficients are already considered.

Eq. (3.3.1) shows the TF, with unitary static gain, representative of the motors

dynamics. Both input and output are expressed in units of force, where the first

regards the desirable force and the second the one that is actually exerted by the

motors.

 𝐹𝑛(𝑠) =
47.6205

𝑠2+25.9384𝑠+47.6205
 (3.3.1)

3.3.2 One-motor vs two-motor configuration

Another experiment relates with the influence of the motors on each frame.

Specifically, to understand how the second motor on each arm improves the

thrust. Figure 3.2 and Figure 3.3 represent a static and nonlinear third order sys-

tem approximation for the one-rotor and two-rotor configuration, respectively.

The corresponding functions are given by eq. (3.3.2) and eq. (3.3.3).

52

Figure 3.2: One-rotor configuration.

Figure 3.3: Two-rotor configuration.

 𝑓1𝑅(𝑡) = −37.288994𝑇𝑃𝑊𝑀
3 + 172.286169𝑇𝑃𝑊𝑀

2 − (3.3.2)

 −249.117605𝑇𝑃𝑊𝑀 + 115.291879

 𝑓2𝑅(𝑡) = − 70.427872𝑇𝑃𝑊𝑀
3 + 319.248999𝑇𝑃𝑊𝑀

2 − (3.3.3)

 −461.320062𝑇𝑃𝑊𝑀 + 215.423951

On the two previous equations, 𝑓1𝑅 and 𝑓2𝑅 represent the force produced on

each quadrotor arm in one-rotor configuration and two-rotor configuration, re-

spectively, and 𝑇𝑃𝑊𝑀 represents the PWM period.

These experiments were conducted by (Brito 2016) upon the mentioned mo-

tors model. The objective was that these second motors would act as redundant

motors to avoid system breakdown in case of failure of the primary motor.

53

From Fig. 3.3, we can see that the improvement in thrust about Fig 3.2 is

minimal. The way to surpass this physical threshold relies in different technical

characteristics of each motor components, such as, e.g., the propellers length or

pitch. By implementing a two-rotor configuration, the torque produced by each

arm end may be generated with a lower power supply when compared to the

one-rotor configuration. One reason is the influence of the top motor, which in-

creases the efficiency of the bottom one.

3.4 The landing Approach

Once the model of the quadrotor is completed and equipped with the re-

spective physical properties, the next step is to approach the aircraft landing with

a mathematical description of the physics involved and with certain assump-

tions. In this section, only the physics are considerate.

3.4.1 Ground Effect

Firstly, let’s assume the aircraft is hovering near the target and is able to

acquire its relative position. If it is sufficiently closer to the target, an aerody-

namic effect called Ground Effect happens to occur. This effect is previously de-

scribed and the original deduction is based on an aircraft of a single propeller,

specifically a helicopter, whose mathematical representation is expressed by eq.

(2.2.3) and eq. (2.2.4). In this work, these equations are assumed as a valid esti-

mate to the quadrotor case and so are tested considering the quadrotor geometry.

3.4.2 Touchdown

A focal point is the last step of the aircraft landing, where the leg meets the

target. At this moment, important physics assumptions are to be made. In reality,

54

the leg suffers deformation on impact moment. This deformation can be quanti-

fied by relying on Hooke’s Law.

 𝐹𝑠 = −𝐾𝑠𝑧 (3.4.1)

Of the mass-spring system expressed by eq. (3.4.1), 𝐹𝑠 represents the force

exerted on the spring, 𝐾𝑠 [𝐾𝑔. 𝑠
−2] the stiffness constant and z [m] the defor-

mation, or stretch, quantity of the spring. The negative sign intends to indicate

the opposite direction between the spring deformation and force exerted by the

spring. This is a second order system and it is marginally stable. This means that,

if this system suffers a disturbance, the spring will never cease its oscillating mo-

tion. The solution is to add a damping element, hence turning into a mass-spring-

damper system, as in the suspension system of an automobile.

 𝑚�̈� = −𝐾𝑠𝑧 − 𝐾𝑑�̇� (3.4.2)

Eq. (3.4.2) is a more complete version of the previous one, where a damping

factor, 𝐾𝑑 [𝐾𝑔. 𝑠−1], is added. It represents the friction against the spring stretch

direction, causing the spring to eventually return to its resting position.

This last equation is the one to apply to the existing model. Its quality in the

representation of the quadrotor legs dynamics is put to the test on the Simulation

and Results Chapter. Here, the behaviour of the quadrotor is studied assuming

𝐾𝑠 = 10000 𝐾𝑔. 𝑠
−2 and 𝐾𝑑 = 100 𝐾𝑔. 𝑠−1. With the first assumption, the quad-

rotor legs are expected to deform about two millimeters, given the overall body

mass.

In this thesis, only a flat surface is considered, on which is performed a pure

vertical landing by the quadrotor. For this, the four legs are mathematically char-

acterized by Hooke’s Law, previously mentioned.

3.4.3 Disturbances

The most resounding disturbance approached here is the air flow. It can

have a major contribution on aircraft final approach. As the aircraft is lowering

55

in altitude, the more critical becomes the information about its position and atti-

tude in relation to the target. The force applied by the air resistance to aircraft

motion is given by eq. (2.2.2), but approximated to 𝐅𝐷, as observed on eq. (3.2.6).

3.5 Flight control

In this section, are presented the control methodologies as well as the con-

trol architectures for each of the six degrees of freedom. It is important to refer

that some assumptions are made, which are described below.

All the physics quantities regarding the aircraft motion are read from ideals

sensors. Clearly, this kind of sensors do not exist, but for simplification purposes

they are considered. Because the rotor inertia is very small, is therefore consid-

ered zero for simulation purposes.

The motors dynamics obtained via experimentation conducted on Brito’s

work are considered. In his work, the control unit is an Arduino, which provides

PWM signals to control each motor. Thus, this time signal is converted to a force

quantity that is described by eq. (3.3.2) or eq. (3.3.3), depending on the topology

applied. In the simulation environment, the output of the control system in meas-

ured in Newtons, so a conversion from force to time is necessary to preserve the

characteristics of the real system. Fig. 3.4 illustrates this conversion under the

form of a blocks diagram.

Figure 3.4: PWM and Force signals conditioning.

56

In the following control schemes, the motors’ dynamics and time / force re-

lations are integrated.

3.5.1 PID controller

In the following subsections, the control schemes are composed by PID con-

trollers due to their simplicity of implementation. To find the parameters, the

Ziegler-Nichols tuning methods and the PSO algorithm are applied. These archi-

tectures are structured in two stages: the inner loop, where the angular / linear

speed is controlled; and the outer loop, where the position / attitude is locked at

a desired setpoint. In this cascading control loop, the inner loop must be obvi-

ously faster than the outer loop. The setpoint is applied to the outer loop, which

is not able to eliminate inner loop disturbances, like drag. Also, an obvious reason

lies with the fact that position is an integration of velocity, thus slowing down

the system response to a positional setpoint.

PSO algorithm can have better performance than Ziegler-Nichols method

on tuning the PID controllers as observed on (Yadav and BhuriaVijay 2015;

Edaris and Abdul-Rahman 2016) works. Nonetheless, it may be difficult to find

a local optimum that drives the system to a stable closed-loop or even to find a

local minimum in the first place (Clerc and Kennedy 2002). Each particle may be

driven away from a satisfactory solution depending on its location when initial-

ized or the location of the global best particle.

Infra are the procedures to take in order to acquire the controllers’ parame-

ters, along with tables showing the values obtained for the same parameters.

3.5.1.1 PSO method

The first algorithm put to the test is the PSO. Because this is a discrete-time

process, it is necessary to discretize both the continuous model and PID algo-

rithm. From the previous eq. (2.6.1), the PID equivalent in the Laplace domain is

given by eq. (3.5.1).

57

 𝑈(𝑠) = 𝐾𝐸(𝑠) ∙ (1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑) (3.5.1)

For any continuous-to-discrete transformation, a sampling of 10 𝑚𝑠 and the

bilinear – Tustin – transformation, eq. (3.5.2), are applied (K. J. Astrom and

Wittenmark 1996) in order to preserve the dynamics of the continuous model.

The resulting PID discrete controller is described by eq. (3.5.3).

 𝑠 =
2

𝑇𝑠

℥−1

℥+1
 (3.5.2)

 𝑈(℥) = 𝐾𝐸(℥) ∙ (1 + (
𝑇𝑠

2

℥+1

℥−1
)
1

𝑇𝑖
+ (

2

𝑇𝑠

℥−1

℥+1
)𝑇𝑑) (3.5.3)

Where ℥ represents the discrete domain, 𝑠 the Laplace domain and 𝑇𝑠 is the

sampling period. The continuous system model is also discretized, but for sim-

plicity are assumed null disturbances and the physical properties are preserved

as constants.

The PSO algorithm is configured with a sampling period of 10 𝑚𝑠, swarm

population of 20 particles where each particle is initialized with a random value

comprised between 0 and an arbitrary positive value, 1.49 for both adjustmemt

coefficients and a maximum of 1000 cycles if the stop condition has not yet been

met. The reference signal is a unit step function, changing from zero to one in ten

milliseconds at second two. The time horizon is set in the range [0; 10]𝑠 and sam-

pling frequency of 100 samples per second. Throughout the next experiments, no

restrictions were superimposed on the acquisition of the solutions.

The cost function chosen is a ponderation between the mean-squared error

and a mean square variation of the control action and is represented by eq. (3.5.4).

 𝐽(.) = (𝛼 ∑ (𝑟𝑒𝑓(𝑘) − 𝑦(𝑘))
2𝑁

𝑘 + (3.5.4)

 +𝛽∑ (𝑢(𝑘) − 𝑢(𝑘 − 1))2𝑁
𝑘)

1

𝑁

Where 𝛼 and 𝛽 are wheights with arbitrary values, 𝑟𝑒𝑓 is the reference value

or setpoint and 𝑦 the system output. The stop condition is based on the change

of the cost function. If this change represents less than 10−6, then the sequence of

58

solutions converges, the process ends and the solution is a local minimum or is

very close to one.

Table 3.1 represents the PD and PID parameters obtained through PSO al-

gorithm to control the roll / pitch angular speed. This continuous model must be

also discretized.

Table 3.1: Roll / pitch controllers’ gains obtained via PSO method.

Roll / Pitch Kp Ki Kd

PD 1.7908 - 0.4907

PID 2.1672 5 0.4418

Where 𝐾𝑝 = 𝐾, 𝐾𝑖 =
𝐾

𝑇𝑖
 and 𝐾𝑑 = 𝐾𝑇𝑑. With these parameters, a step signal

is applied to the closed-loop system. The result is illustrated on Fig. 3.5.

Figure 3.5: Step response to pitch / roll speed closed-loop system. Controller’s

gains based on PSO method.

 It is possible to see that PD controller provides a reduced rising and settling

time compared to PID controller.

In this work, PSO is employed for attitude control. Due to factors mentioned

previously, the presumably bad PSO parameters chosen and the absent of re-

strictions, the solution did not converge for any local optimum that could place

the horizontal motion and altitude closed-loop systems in the stability regions.

59

Also, the sampling period used to discretize the continuous model affects the

analytical discrete model precision. Higher the sampling rate, more similar are

the continuous and discrete systems’ response to an input. However, as the coef-

ficients become smaller, the more precision may be required. In the case of hori-

zontal motion, where the respective control is placed on top of the attitude con-

trol block, this situation is more evidenced. Consequently, the controllers’ pa-

rameters for the horizontal motion and altitude are ruled by Ziegler-Nichols Ul-

timate Sensitivity method.

3.5.1.2 Ultimate Sensitivity method

The main idea behind this heuristic method lies in increasing progressively

a sensitivity gain until the system reaches the threshold of stability. At this point,

the sensitivity gain is given by 𝐾𝑢 and the oscillatory reaction of the system pos-

sesses a period given by 𝑇𝑢 (Ziegler and Nichols 1995). Table 3.2 represents each

controller’s gains obtained according predefined rules.

Table 3.2: Controllers’ gains obtained via Ultimate Sensitivity method.

Controller K Ti Td

P 0.5𝐾𝑢 - -

PI 0.45𝐾𝑢 𝑇𝑢/1.2 -

PD 0.8𝐾𝑢 - 𝑇𝑢/8

PID 0.6𝐾𝑢 𝑇𝑢/2 𝑇𝑢/8

This tuning method is achieved on a close-loop system. Another method is

applied on the open-loop system by analysing the system reaction to a stimula-

tion. The decision to not going with this last is due to a relative difficulty in ana-

lysing the curve and because the step response of the overall system in particular

is not so monotone as desired.

60

The process to determine the controllers’ gains is here presented with the

ascension speed control. The first step is to drive the closed-loop to the limit of

stability and find 𝐾𝑢 and 𝑇𝑢. The marginally stable system is illustrated on Fig.

3.6.

Figure 3.6: Marginally stable ascension speed closed-loop system.

With this test, it is obtained 𝐾𝑢 = 32.5 and 𝑇𝑢 = 0.82𝑠. Applying the rules of

Table 3.2, it is possible to design the controller. Fig. 3.7 illustrates the closed-loop

system with PD and PID control over the ascension speed to understand which

provides the fastest response.

Figure 3.7: Step response to ascension speed closed-loop system. Controller’s gains

based on Ultimate Sensitivity method.

Analysing the figure above, PD controller delivers a reduced rising and set-

tling time when compared to PID controller. However, this method provides

slowest controllers than the PSO method, as foreseen. Also as seen in (Gibiansky

2012), a manual tuning may not be the best approach, in the sense that may pro-

duce a poorest performance by comparison with other sophisticated methods.

61

3.5.2 Attitude control

The first control scheme presented regards the quadrotor attitude. The

closed-loop system assumes a cascading control loop with one inner loop and an

outer loop. The inner loop, as mentioned, must be faster than the outer loop, as

it will set the stall speed response of the system. The control loop is illustrated on

Fig. 3.8.

Figure 3.8: Attitude control scheme.

 In order to maintain stability, a range of [−30; 30] degrees is set as admissi-

ble for each angular position, thus restrained between these bounds. Under or

above this range, the quadrotor stability and lift could be at risk.

The attitude controllers’ gains are obtained through PSO method. On the

inner loop, an angular speed controller is placed to stabilize the attitude control,

benefiting from information about other state variable than angular position. The

gains obtained can be seen on Table 3.3.

62

Table 3.3: Attitude controllers’ gains obtained via PSO method.

Controller Kp Ki Kd

Roll speed 1.7908 - 0.4907

Pitch speed 1.7908 - 0.4907

Yaw speed 2.3375 - 0.6894

𝜶 1.5018 - -

𝜷 1.5018 - -

𝜸 0.988 - -

3.5.3 Position control

3.5.3.1 Altitude

The altitude is an important measure to control, as it is the core step to air-

craft stabilization and motion. The closed-loop architecture adopted is illustrated

by the following Fig. 3.9 and is similar to the one applied for attitude control.

Figure 3.9: Altitude control scheme.

For both speed and position control on Z axis, the controllers’ gains are ac-

quired based on Ziegler-Nichols tuning rules. As shown before, this method does

not give the best or the fastest controller, but only a good controller that can place

the closed-loop system on the stability region and with a fairly good tracking

63

control. Table 3.4 shows the gains obtained by applying the Ultimate Sensitivity

method to altitude control.

Table 3.4: Altitude controllers’ gains obtained via Ultimate Sensitivity method.

Controller Kp Ki Kd

Speed 26 - 2.665

Position 2.065 - -

3.5.3.2 X / Y control

The way to control longitudinal and lateral positions is naturally different

from the way to control the altitude. To move along X or Y axes, the quadrotor

must suffer an inclination, be it pitch or roll, respectively. Therefore, in these

cases, a control over attitude is needed. On Fig. 3.9 is represented the control ar-

chitecture for X and Y positions.

Figure 3.10: Position control scheme.

To control the motion on the horizontal plane, it is necessary to control the

aircraft attitude in the first place. Hence, the attitude control is placed on the in-

ner loop. As the block that feeds the output directly, it is more critical to the per-

formance of the system. This is the main reason why PSO method is applied. On

the middle loop, is placed the linear speed control. It provides a better stabilized

64

angle setpoint to the inner loop. Finally, the outer loop is composed by the posi-

tion control, where the position command, from a human controller or a high-

level architecture, is applied.

On Table 3.5 are specified the controllers’ parameters for speed and position

control, obtained through Ziegler-Nichols method.

Table 3.5: Position controllers’ gains obtained via Ultimate Sensitivity method.

Controller Kp Ki Kd

X speed 0.7 0.392 0.098

Y speed 0.7 0.392 0.098

X 0.31 - -

Y 0.31 - -

3.5.4 Thrust control

One real limitation is the maximum amount of thrust that each motor can

generate and provide to the body lifting. Obviously, the minimum thrust is zero,

assuming air flow through the rotors is always forced down when they are pow-

ered and the blades are rotating. From the simulation point of view, this is char-

acterized by a saturation block. However, even if the output is limited, the system

integrators keep accumulating the saturated value. This can lead to faulty actua-

tions, influencing the overall system response. To diminish this effect, an anti-

windup technique is applied.

The technique applied is based on the back-calculation of the integral ac-

tion. It reduces the rate at which the signal is stored. It is mainly composed by a

PID controller and a coefficient to settle the discharge ratio (Bemporad 2011). Fig.

3.11 represents the architecture described.

65

Figure 3.11: Back-calculation Anti-Windup with PID controller.

67

4 Simulations and Results

In this chapter are presented all the tests conducted on the overall system.

It is a way to validate all the work done on Chapter 3.

Througout the next sections and for testing purposes, a variable setpoint

and a time horizon in the range of [0; 90]𝑠 are considered when only one rotation

or translation is tested at a time. Also, each motors TF is contemplated and di-

rectly influence the results.

For a more direct analysis and easy reading of the graphs, the angular units

are expressed in degrees.

Fig. 4.1 represents this hovering and the respective control action. The

quadrotor remains at the origin of the reference frame regarding X and Y coordi-

nates.

68

Figure 4.1: Hovering. From left to right, position and altitude control action.

Because at the start of the simulation the motors are at rest, the spikes on

the right graph relate to the altitude control actuation over the motors, so the

quadrotor remains at 20m setpoint, as seen on the left upper graph on the figure.

The image from below refers to the speed at each time instant. In all figures where

attitude or position are displayed, the respective velocities are illustrated below.

The quadrotor must be hovering sufficiently away from the ground to ena-

ble its rotation. Thus, the simulations are conducted on the aircraft while hover-

ing at 20 m. The simulation starts with all motors off, hence the initial spikes cor-

responding to the transient state.

4.1 Zero drag effect

The set of graphs analysed during this sub-chapter, do not contemplate any

influence of any kind of disturbance. On the next one, some tests are then exe-

cuted considering the effect of air resistance to linear motion.

4.1.1 Attitude

In this section, the response of the quadrotor attitude is analysed. A separa-

tion between body and inertial frame is underlined.

69

4.1.1.1 Pitch rotation

The first step consisted in testing only one rotation at a time. Because the

controllers for both pitch and roll are the same, are here presented only the pitch

curves, as well as the control action.

Fig. 4.2 illustrates the evolution of the angular displacement and rate of

change over time. Because the specified limit to pitch and roll rotations are 30

degrees, the maximum setpoint applied is 25 degrees. The respective control ac-

tion and the influence on altitude control actuation are presented on Fig. 4.3.

Figure 4.2: Rotation response to a variable pitch setpoint. From left to right, body and Eu-

ler angles.

We can see in the previous figures, the body and inertial curves are the same

concerning both angular displacement and rate of change. The response is fairly

swift, with a rising time of about four seconds on the most expressive setpoint

variation. This is the simplest case where only one rotation occurs. The next fig-

ure concerns the altitude and pitch control actions.

70

Figure 4.3: Control actions in response to pitch error. From left to right, altitude and pitch

control actions.

The left image represents the fluctuations in the altitude control action 𝑈1

due to the inclination of the quadrotor. The more emphasized this inclination,

the greater must be the thrust supplied to the overall system. The right image is

the control action 𝑈3 and the spikes denounce a change of the angle setpoint. The

actuation of the roll rotation is the same as pitch, only inverted. From the right-

hand rule, when roll rotation is positive, the respective angle is negative. Fig. 4.4

intent is to provide further detail on the 𝑈3 signal.

Figure 4.4: Control actions in response to pitch error. From left to right, force to be ap-

plied by each rotor and pitch control action.

A 20 degrees pitch step signal was applied to the system, resulting in the

control action seen on the previous figure.

71

On the left side of the image, is presented the influence of each motor, with

its dynamics not considered here. A saturation is set so each motor can only con-

tribute with a thrust force in the range of [0; 1] N. When the control error is below

zero, the motors 1 and 5 provide more thrust than the antagonistic motors 3 and

7. When the control error is above zero, the opposite happens.

On the right side of the image, the control action 𝑈3 is presented. It has a

smooth variation and small values are enough to cause the quadrotor to rotate.

4.1.1.2 Yaw rotation

The yaw rotation is similar to both pitch and roll rotations, but some partic-

ularities caused different controllers’ gains. Fig. 4.5 describes the yaw response

to a variable setpoint, with the respective control action found on Fig. 4.6.

Figure 4.5: Rotation response to a variable yaw setpoint. From left to right, body and Eu-

ler angles.

The image above describes the response to a variable setpoint from the

point of view of the body and the inertial frames, respectively. Similarly to the

pitch / roll case, both curves are the same as only one rotation occurs and the

other angular positions remains zero. The response time provided by yaw con-

trollers is also similar to the ones applied in pitch / roll control.

72

Figure 4.6: Control actions in response to yaw error. From left to right, altitude and yaw

control actions.

In opposition to pitch or roll, the yaw rotation has meaningless significance

on the overall system stability, still considering only one rotation applied. This

assertion can be verified by superficially analyse control action 𝑈1 on the left side

of the figure above.

On the right side of the image, a graph representing the control action 𝑈4 is

shown. The spikes represent each change of the reference value, which develops

a control error and the subsequent control action observed.

4.1.1.3 Pitch and Roll rotations

Another situation is now simulated. Roll and pitch rotations are now sim-

ultaneously occurring. The point of this test is to understand the difference of

perception between an inertial and a rotating reference frames. The body and

Euler angles and angular speeds curves are illustrated on Fig. 4.7.

73

Figure 4.7: Rotation response to a step input signal applied to roll and pitch. From left to

right, body and Euler angles.

For this test, step signals with static value of (20, 25) degrees are applied to

(𝛼, 𝛽) angles, respectively.

In the previous graphs, the ones from the left are clearly different from the

ones on the right. From the inertial reference frame perspective, the body per-

forms a yaw rotation. By analysing the curves on the body frame and the actua-

tion signals presented on Fig. 4.8, this fact does not happen. This effect happens

when two or more rotations are executed and its confirmation comes from the

following tests.

Figure 4.8: Control actions in response to roll and pitch error. From left to right, altitude

and attitude control actions.

74

On the graph on the left, the actuation for the altitude is shown. No signifi-

cant variations are noted on the curve comparing with the situation observed on

Fig. 4.1.

The three graphs on the left translate the control actions 𝑈2, 𝑈3 and 𝑈4, re-

spectively. Roll and pitch actuations resemble each other as supposed, given the

similarity in terms of model description and controller design.

4.1.1.4 Pitch and Yaw rotations

In close relation to the previous test, now the pitch and yaw rotations are

performed at the same time. It is expected, from the inertial observer point of

view, to be performed a roll rotation due to yaw. The results are present on Fig.

4.9.

Figure 4.9: Rotation response to a step input signal applied to pitch and yaw. From left to

right, body and Euler angles.

Step signals with static value of (20, 60) degrees are applied to (𝛽, 𝛾) angles,

respectively, for the time being test.

From the body frame curves, the result is closely connected to the setpoints

defined. On the opposite, the inertial observer detects a third rotation. This is the

same effect mentioned on the previous test.

On Fig. 4.10 are specified the control actuation graphs.

75

Figure 4.10: Control actions in response to pitch and yaw error. From left to right, altitude

and attitude control actions.

The above figure may seem somewhat inconsistent with the previous one,

at first glance. Due to the execution of pitch and yaw positive rotations, given the

right-hand rule, the quadrotor will lean to its left. This means that it tends to do

a negative roll. At the same time, the control action responsible for this rotation

is triggered. When the pitch and yaw angular speeds decrease, the opposite effect

is slightly noticed.

4.1.1.5 Pitch, Roll and Yaw rotations

For the last test involving directly the attitude control, the pitch, roll and

yaw are simultaneously actuated. The results can be seen ahead on Fig. 4.11 and

4.12.

76

Figure 4.11: Rotation response to a step input signal applied to roll, pitch and yaw. From

left to right, body and Euler angles.

Figure 4.12: Control actions in response to roll, pitch and yaw error. From left to right, al-

titude and attitude control actions.

Three step signals are applied in this simulation. For pitch a reference of 10

degrees, for roll 20 degrees and for yaw rotation 60 degrees.

The information extracted of this simulation is, in all aspects, the same men-

tioned on the previous test conducted.

To conclude this section, the controllers designed through PSO algorithm

provide general good response of the system. No evidence of overshoot and good

rising time and settling time are good indicators and can provide a solid base for

the position controllers, whose results obtained are described in the next section.

77

4.1.2 Position

In this section, are now presented the results for the position control.

4.1.2.1 Altitude displacement

The altitude control is, as declared before, the core block for the quadrotor

hovering. Thus, the performance of the controllers are then analysed.

Figure 4.13: Translational response to a variable altitude setpoint.

Figure 4.14: Control action in response to altitude error.

78

On Fig.4.13, are represented the trajectory control for the quadrotor altitude

and the respective speed at each time instant. We can see that occurs overshoot

at each setpoint change and both rising and settling time are slower than the ones

analysed from the attitude controllers. Even though this may be considered ac-

ceptable away from the ground, when the quadrotor is too close to the target, a

crash might happen. On seconds 64 and 78, roughly, this situation is noticed.

Ahead, this problematic is approached.

From the Fig. 4.14, we can verify the wide set of values that 𝑈1 assumes at

each setpoint variation, which is not desirable. Particularly, because physical sys-

tems may not be able to support this actuation over prolonged periods of time.

4.1.2.2 X displacement

The control over X position is the same as the Y, so only the results, indicat-

ing the controllers’ performance, for the first one are presented. On Fig. 4.15 are

illustrated the system response to a variable setpoint command applied to hori-

zontal motion. On Fig. 4.16, the altitude and pitch control actuations are denoted.

Figure 4.15: Translational response to a variable setpoint applied to X axis.

79

Figure 4.16: Control actions in response to X error. From left to right, altitude and pitch

control actions.

On the first image, are represents the displacement and speed over the X

axis. In order for the quadrotor to move along the X axis, an actuation for the

motors to apply the pitch rotation must be sent. Because this is a complex system

and the control techniques used have their characteristic setbacks, the results

show a somewhat slow response. Nonetheless, as we can inspect from the figure

below, the actuation over the altitude and pitch rotation can be considered

smooth. From the graph on the right, the 𝑈3 actuation oscillates around a narrow

range of values.

4.1.2.3 X and Y displacement

On the next simulation, the horizontal motion control is reviewed. Only

now, motion on the hole horizontal plane is considered. On Fig. 4.17 are shown

the position and velocity response, and on Fig. 4.18, the control actuations signals

are exposed.

80

Figure 4.17: Translational response to a step input signal applied to X and Y axes.

Figure 4.18: Control actions in response to X and Y error. From left to right, altitude and

attitude control actions.

The setpoints chosen for this test were step signals with a static value of

(30, 10) meters applied to (𝑋, 𝑌) controllers, respectively. One can conclude that

further the setpoint, the more expressive becomes the overshoot and the settling

time. Notwithstanding, the quadrotor moves towards the desired setpoints and

the control actuations are not too expressive.

81

4.1.2.4 X, Y and Z displacement

The three translational motions control are now combined altogether. This

simulation enables to conclude if the displacement of the quadrotor over the

three Cartesian axes simultaneously is possible. Fig. 4.19 shows the graphs rela-

tive to trajectory control.

Figure 4.19: Translational response to a step input signal applied to X, Y and Z

axes.

In this simulation step signals with static value of (10, 25,30) meters are ap-

plied to (𝑋, 𝑌, 𝑍) controllers, respectively.

The results are similar to what was expected, since the temporal evolution

of the curves presents the same dynamics as in the previous tests.

Fig. 4.20 illustrates the four model inputs actuation.

82

Figure 4.20: Control actions in response to X, Y and Z error. From left to right, altitude

and attitude control actions.

On the figure above, the graph on the left, the result is similar to the first

test conducted on this section. In what concerns to the graphs on the right, the

actuation signals are similar to the ones observed on the two last tests, with a

small correction at the same time. This is due to the similarity between the two

kinematics models and controllers.

4.1.3 Landing

To understand the influence of the landing considerations approached on

the last chapter, results are presented given the specified inertial parameters and

geometry of the quadrotor. The first demonstration regards the GE.

4.1.3.1 Ground Effect

In this subsection, the relation between the thrust induced on the rotors IGE

and OGE can be analysed through the following Fig. 4.21 and Fig. 4.22. The first

demonstrates this relation at zero air speed, whilst in the second the aircraft is

provided with forward speed. On both, the rotors are supplied with constant

power.

83

Figure 4.21: Thrust ratio at zero air speed and constant power.

Figure 4.22: Thrust ratio at forward speed and constant power.

By inspecting the two curves above, one can assume that this effect can be

neglected, as its impact on the quadrotor thrust IGE is less than 3.5% than OGE.

This statement is only true given this specific quadrotor and knowing the used

equations are inherently derived from a helicopter’s rotor dynamics.

4.1.3.2 Touchdown

In this particular situation, the simulation consists on transport the quad-

rotor from a height of 20 meters to ground level and analyse its impact on the

surface. Fig. 4.23 shows this effect on the quadrotor altitude, the reaction from

the ground and the altitude actuation.

84

Figure 4.23: Fall, touchdown and rebound: Altitude variation, reaction to impact and con-

trol action 𝑈1.

The control action is expected to oscillate, given the previous results ac-

quired. As for the altitude – top left – and the reaction graphs – bottom left – the

rebounds and spikes amplitudes coincide between each other.

On a further detail, the moment when the quadrotor settles on top of the

target is illustrated on Fig. 4.24.

85

Figure 4.24: Fall, touchdown and rebound: rest.

A prolonged damping is noticed on the figure above due to the motors dy-

namics. After the moment they are turned off, the rotor blades have kinetic en-

ergy stored, causing them to keep rotating, thus generating thrust. When this en-

ergy dissipates, the rotors no longer generate thrust, and so the gravity force and

reaction remains in the system. Because of the quadrotor’s legs and the stiffness

and damping coefficients chosen on Chapter 3, the quadrotor base will settle at

0.07 meters height. However, because the legs are not perfectly rigid, they will

deform roughly 0.002 meters.

4.2 Disturbances – zero air speed

In this section, the air drag that opposes to linear motion is considered. For

no specific reason, the coefficient 𝐾𝑣, that establishes a relation between the quad-

rotor and air velocities, is set to one. For simplicity, it is assumed null wind ve-

locity. For a better comparison between results, the setpoints applied in this sec-

tion are the same as the setpoints applied in the previous one.

86

4.2.1 Position

4.2.1.1 Altitude displacement

The first simulation results with disturbance regard is focused on altitude.

Fig. 4.25 the position and velocity graphs are presented, followed by Fig. 4.26,

where the altitude control actuation is shown.

Figure 4.25: Translational response to a variable altitude setpoint. Air drag is con-

sidered.

87

Figure 4.26: Control action in response to altitude error. Air drag is considered.

With the air resistance influence, the altitude variation is smoother than the

case with disturbance rejection. This air drag helps the quadrotor to slow down,

improving the trajectory control. In addition, the control action 𝑈1 is less expres-

sive considering both cases.

4.2.1.2 X displacement

The horizontal motion with air resistance effect is now considered. Trajec-

tory control and actuation results are shown on Fig. 4.27 and Fig. 4.28, respec-

tively.

88

Figure 4.27: Translational response to a variable setpoint applied to X axis. Air

drag is considered.

Figure 4.28: Control actions in response to X error. From left to right, altitude and pitch

control actions. Air drag is considered.

Comparing the results from the previous section with graphs confronted

supra, no significant changes are noticed. The implemented controllers are capa-

ble of rejecting small disturbances.

4.2.1.3 X, Y and Z displacement

For the final simulation performed on translational tracking control, a step

signal is applied to each of the Cartesian axes. The results are implicit on the sub-

sequent Fig. 4.29 and Fig. 4.30.

89

Figure 4.29: Translational response to a step input signal applied to X, Y and Z

axes. Air drag is considered.

Figure 4.30: Control actions in response to X, Y and Z error. From left to right, alti-

tude and attitude control actions. Air drag is considered.

The previous graphs denotes discrepancy, in comparison with the results

from the previous section, regarding altitude response and control actions 𝑈2 and

𝑈3. The controllers’ actuation is smoother in the presence of air drag, which is a

good indicator considering that it is a situation closest to a real environment.

4.2.2 Touchdown

To conclude this sequence of simulation events and to close this chapter,

the touchdown event is tested with the influence of air resistance. Fig. 4.31 de-

scribes the altitude variation, the reaction to the rebound and the control action.

90

Figure 4.31: Fall, touchdown and rebound: Altitude variation, reaction to impact and con-

trol action 𝑈1. Air drag is considered.

The graphs above simply describe a smoother rebound and altitude control

actuation in the presence of air drag.

In conclusion, in any of the tests conducted on this section, the system loses

its stability. In fact, in some cases, it benefits from this air resistance, providing a

better tracking control and more stabilized actuation over the system.

91

5 Virtual environment

The next step of this work consists in the development of a virtual world,

so tests can be conducted on the equations that define the quadrotor dynamics

before a real experiment takes place. This environment is composed by basic fea-

tures such as the quadrotor 3D model, the surface and few obstacles.

First, it is presented the comparison tables between different 3D modelling

and simulation software to aid in the decision-making of each software to use.

Lastly, the 3D model and the virtual environment project are exposed, respec-

tively.

5.1 Software synthesis

To decide which software is suitable for this work, both professional and

subjective opinions were considered. Tables 5.1 and 5.2 enhance the features of

each software. Here, the more filled is the bar, more positive is the respective

feature for this work purposes.

92

Table 5.1: Characteristics table of different 3D modelling tools.

MAYA 3DS MAX BLENDER

Learning Curve

Design

Materials Creation and Edition

Modelling

Simulation

Licence Free for students Free for students Free

Table 5.2: Characteristics table of different Game Engines.

UNITY UNREAL

Learning Curve

Graphics 2D / 3D 2D / 3D

Programming Lan-

guages
C# / Javascript C++ / Blueprint Visual Scripting

Add-ins

Supported Formats .fbx only

Licence Paid / free with less features
Free for non-commercial pur-

poses

Based on the previous tables, showing off the software key features accord-

ing to what is necessary for this work, decisions were made. Blender is the mod-

elling tool chosen due to its general good features and it is free for any applica-

tions. Regarding game engines, the chosen one is the Unreal Engine because it

offers two different programming methods and it is free, considering the purpose

of this research is to provide knowledge rather than benefit monetarily from it.

93

5.2 Blender

In this section, the quadrotor 3D model assembled on Blender software, ver-

sion 2.78, is presented. For this model, are used the 3D pieces created by Brito.

5.2.1 Skeletal Mesh

The skeletal mesh is an object with several attributes and which can be ruled

by physics laws. These attributes are polygons and bones. The first ones repre-

sent the object visuals. The second allows deformations of the objects parts, ena-

bling animations. A static mesh is only composed by the first set of attributes and

cannot be deformed in any way.

5.2.2 Quadrotor Mesh

The quadrotor 3D model is, in its hole, a skeletal mesh due to its propellers

rotations, which are assembled to meet this specificity.

Figure 5.1: Quadrotor 3D model assembled in Blender.

The quadrotor illustrated on Figure 5.1, is visually the same as the one as-

sembled by Brito’s on Autodesk 123D. The main differences reside on the dy-

namics properties. This skeletal mesh contains bones: one on its center body and

one on each propeller, to enable the respective rotation. It also has built-in rigid

94

body dynamics, empowering the ability to rotate and move linearly with respect

to its inertial parameters and geometry, and constraints, keeping each leg at-

tached to the body. Because it is a skeletal mesh, it can also be used as a static

mesh on a game engine, if simplicity is required.

Figure 5.2: Example of Blender v2.78 workspace.

Fig. 5.2 illustrates a possible Blender workspace set. On the middle, is the

scene, or viewport. On the top, is the information bar and, on the bottom, are

shown the 3D view editor and the timeline and playback controls. On the right,

the objects editor, the overview of scene graph and all available data-blocks are

represented. Finally, on the left side, a general scene and object editor is shown.

5.3 Unreal

Once the 3D model assembly is complete, it is essential to integrate it on a

simulation platform. The Unreal Engine is the software chosen to develop the

virtual environment responsible for testing and simulate the quadrotor kinemat-

ics model.

Blueprints visual scripting is an object-oriented language, such as C++, and

is the language used the most in this project. But for specific functionalities, C++

code is integrated.

95

5.3.1 Project development

To develop a simulator, or a game as it is named in this field, in any game

engine, a natural sequence of events must happen: choose the main scripting lan-

guage; create the scene; import the object and specify its role in the scene; supply

the object with attributes and place it on the game viewport; design the event

graph; and, lastly, simulate the project on the game viewport. This sequence is

the one adopted throughout the development of this project, helped by an exist-

ing template granted by the Epic Games.

Firstly, a new project is created. Templates are available to help on the initial

stage of projects and so, as referred before, one is applied to this project. With

this template, the scenery with the ground and the obstacles is already created.

Secondly, the quadrotor 3D model is imported. It is defined as a pawn class,

meaning that the object, hereby called actor, can be controlled and receive input

commands from a controller, be it an intelligent controller or a user. For this work

purposes, the actor is controlled exclusively by the user. After the definition of

the class, some preparation is needed. Fig. 5.3 illustrates the environment where

the collision boundaries are set, constraints and gravity applied, inertial quanti-

ties manually set and other physics properties, which are not considered, can be

adjusted.

Figure 5.3: Quadrotor physics assembly. Collision detection and other physics con-

siderations are embodied for simulation.

96

The third step regards input commands and actor dynamics. Inputs are

events that are triggered if a change in state occurs or simply at every frame step,

if desired. Any input event must be previously defined, but other types of events

are available, e.g., events triggered only at the beginning of the simulation, when

actor hits an obstacle, amongst others. Another advantage, is the possibility to

manipulate files. One can read the input values from a file and write the outputs

to another, opening doors interoperability with other software. With these

events, a dynamic system can be built where the outputs are functions of the in-

puts events. On Fig. 5.4, the window where the interaction with the user is set is

presented. In the project, four input commands are defined: roll, pitch, yaw and

thrust. These are recognized as hardware events. The hardware used to control

the action is the keyboard, as it is the most accessible.

Figure 5.4: Project inputs. Definition of the input commands and the hardware

from which they are sent.

Any animation that happens in the game viewport, is preceded by a blue-

prints graph developed in event graph space. In this space, the system dynamics

is placed and corresponds to the one represented by eq. (3.2.14). Functions and

macros can be defined on the constructor graph, shown on Fig. 5.5, and be used

on the event graph to simplify the blocks diagram. Additionally, values can be

converted to strings and then printed on the game viewport. This way, it is easier

to track minor dynamics issues, which may not be perceptible by analysing the

97

quadrotor behaviour alone, and to monitor simple parameters, e.g., position, ve-

locity, accelerations, and others.

Figure 5.5: Set linear speed function on the constructor graph. Event graph has

similar representation.

To conclude, the testing step is composed by a compilation of all the code

designed on the graph event, followed by the test itself. All the steps aforemen-

tioned, explained in a simplified way, are part of the game development process.

In the game viewport, these processes can be visualized in the form of 3D draws.

An example set for the game viewport is illustrated on Figure 5.6.

Figure 5.6: Game viewport. The quadrotor 3D model and the scene are repre-

sented.

98

Intrinsically, the control is produced through the hardware inputs and the

rotation is simply a visual detail. Therefore, from the control point of view, only

one propeller is considered. For simplicity, in this version, it is not conceived the

the propellers rotation, individually. Notwithstanding, this is possible by associ-

ating to each propeller a scene component class, allowing its own rotation.

5.3.2 External actuation

The input commands are a gateway to allow an interoperability relation-

ship between both engine and outside world, i.e., human. Is, then, important to

understand how to set this relation. Fig. 5.7 illustrates the command flow from

the moment the player triggers an input event through the selected hardware, to

the moment when this action is perceived by the pawn component in the game.

99

Figure 5.7: Input process flow. From the player actuation to the resultant game ac-

tion. Retrieved from (Epic Games 2017).

As mentioned before, the software enables a communication to the exterior

through the input settings. A panoply of hardware is compatible with the soft-

ware, of which are included the keyboard, the gamepad, an Android device,

amongst others. For this work, only the keyboard hardware is used to manipulate

the pawn.

Inside the blueprints editor, another simple method is available. It is possi-

ble to load data from files and to store it as well. This can be done by importing

a plugin, supported by Epic Games and at a cost for the user, or by integrating a

C++ code, which is free for the user. In this work, a C++ project is integrated and

pawn data is stored in text files, although it is possible to store it in several other

file formats.

Another method to actuate the pawn and all the components in the game is

through TCP/IP communication. Although it allows a wireless communication,

accentuated delays may occur, which compromise the control over the scene.

101

6 Conclusions and Future work

In this chapter, are presented the limitations found on the control system

proposed and on Unreal game engine. A conclusion of the work developed is

also given, with the description of what needs to or can be improved in future

developments.

6.1 Control system limitations

Two major limitations are found on the overall system. The first relates to

the PWM / force conversion. The conversion has some flaws concerning the out-

put of each conversion. On some occasions, this conversion would cause the out-

put force quantity to exceed the by far the upper and lower limits defined. Be-

cause of this, it was not applied in this work. This problem is possibly related to

precision. A better description of the functions involved is needed.

The same issue occurred with the function description of the one-rotor and

two-rotors configuration functions. The solution is possibly the same as the for-

mer one mentioned.

The PSO algorithm was found difficult to implement when the system com-

plexity increased. The solutions did not converge, or the local minimum would

102

not guarantee the stability of the closed-loop systems. However, when a solution

would converge and place the closed-loop on the region of stability, the results

were satisfactory, as the simulations prove for the attitude controllers. For better

selection of the PSO algorithm parameters it may be useful to see (Clerc and

Kennedy 2002).

6.2 Unreal Engine blueprints limitations

One limitation found stands at monetary level. The files manipulation is

possible in C++, but in blueprints scripting language this feature is paid. Alt-

hough, a simple C++ code integration is possible.

A second limitation concerns the partition between world and actor rota-

tions. Attempts were made to include the “Euler angles rate” -to- “body axes

rate” conversion matrix, but to no avail. The Epic Games provides documenta-

tion about these relations, but the integration was not possible.

6.3 Work synthesis

The main purpose and contribution of this thesis was the development of a

3D virtual environment. With this tool, experiments can be conducted on the

quadrotor model instead of the real structure, decreasing the chances of disabling

it. A second goal was a description of some of the problems noticed when a quad-

rotor approaches the target. Three of them are described in this work.

Additionally, a major improvement to the simplified model is the introduc-

tion of the body axes. With this upgrade, the three fundamental rotations can be

performed simultaneously without driving the system to instability. This

achievement is crucial while performing landing manoeuvres, so the quadrotor

may be able to tolerate any form of disturbances.

103

It was found, through simulations, that ground effect is not a major threat

to the quadrotor stability while landing, Hooke’s law proved to be a useful tool

in the description of the quadrotor impact with a surface and it was found that

the air resistance can lighten the controllers’ actuation, which ultimately reduces

energy consumption.

To conclude, the Unreal Engine has proved to be an interactive and enjoya-

ble way to learn and to develop work experiments. It is, with no doubt, a useful

tool to continue to invest in the future.

6.4 Future work

Although some work has been conducted in this thesis, some subjects were

left to complete and others were not included in the project objectives, but can

also be studied. The main ones are described below.

The control design was accomplished by removing the nonlinearities of the

system. In future works, the nonlinear system may be described as a sum of lin-

earities, without the need to simplify the model.

The controllers’ gains could be obtained through different control tech-

niques which could produce better controllers.

Deeper study about the influence of air resistance on the quadrotor flight.

Develop a ground effect model for the quadrotor case.

Develop control to enable the quadrotor landing over moving surfaces.

Continue the work conducted on Unreal Engine.

105

References

Aich, Sanjukta, Chahat Ahuja, Tushar Gupta, and P Arulmozhivarman. 2014.

“Analysis of Ground Effect on Multi-Rotors.” Icecce, 236–41.

doi:10.1109/ICECCE.2014.7086619.

ArduPilot Dev Team. 2016. “Ground Effect Compensation — Copter

Documentation.” Ardupilot. http://ardupilot.org/copter/docs/ground-effect-

compensation.html.

Astrom, Karl Johan;, and Bjorn Wittenmark. 1996. “Computer Control System

Theory and Design.” Prentice Hall, 555. doi:10.1002/1521-

3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C.

Astrom, KJ. 1995. “PID Controllers: Theory, Design and Tuning.” Instrument

Society of America. doi:1556175167.

Autodesk. 2016. “Comparison of 3ds Max and Maya | 3ds Max | Autodesk

Knowledge Network.” https://knowledge.autodesk.com/support/3ds-

max/troubleshooting/caas/sfdcarticles/sfdcarticles/Comparison-of-3ds-

Max-and-Maya.html.

Bemporad, Alberto. 2011. “Automatic Control 2.” University of Trento.

Bennett, S. 1996. “A Brief History of Automatic Control.” Control Systems, IEEE

16 (3): 17–25. doi:10.1109/37.506394.

blender.org. 2015. “Blender.org - Home of the Blender Project - Free and Open

3D Creation Software.” Blender.org. https://www.blender.org/.

Brito, Vasco. 2016. “Fault Tolerant Control of a X8-VB Quadcopter.”

Universidade Nova de Lisboa.

Buyukkabasakal, Kemal, Baris Fidan, Aydogan Savran, and Nasrettin Koksal.

106

2015. “Real-Time Implementation of Mixing Adaptive Control on Quadrotor

UAVs.” 2015 European Control Conference, ECC 2015, 3597–3602.

doi:10.1109/ECC.2015.7331089.

Carrasquinho, Filipe. 2015. “Ferramenta de Simulação Para Robot Industrial.”

Universidade Nova de Lisboa.

Cheeseman, I. C., and W. E. Bennett. 1957. “The Effect of the Ground on a

Helicopter Rotor in Forward Flight,” no. 3021: 2.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.6371.

Clerc, Maurice, and James Kennedy. 2002. “The Particle Swarm-Explosion,

Stability, and Convergence in a Multidimensional Complex Space.” IEEE

Transactions on Evolutionary Computation 6 (1): 58–73.

doi:10.1109/4235.985692.

Davis, Edwin, and Paul Pounds. 2016. “Passive Position Control of a Quadrotor

with Ground Effect Interaction.” IEEE Robotics and Automation Letters 3766

(c): 1–1. doi:10.1109/LRA.2016.2514351.

Eberhart, R., and J. Kennedy. 1995. “A New Optimizer Using Particle Swarm

Theory.” In MHS’95. Proceedings of the Sixth International Symposium on Micro

Machine and Human Science, 39–43. Nagoya, Japan: IEEE.

doi:10.1109/MHS.1995.494215.

Edaris, Z.L., and S. Abdul-Rahman. 2016. “Performance Comparison of PID

Tuning by Using Ziegler-Nichols and Particle Swarm Optimization

Approaches in a Water Control System.” Journal of Information and

Communication Technology 15 (1).

Epic Games. 2017. “Unreal Engine 4 Documentation.” Unreal Engine 4

Documentation. https://docs.unrealengine.com/latest/INT/.

Federal Aviation Administration. 2016. Pilot ’ S Handbook of Aeronautical

Knowledge. Pilot’s Handbook of Aeronautical Knowledge. Oklahoma.

Gibiansky, Andrew. 2012. “Quadcopter Dynamics , Simulation , and Control,”

1–18. http://andrew.gibiansky.com/blog/physics/quadcopter-dynamics/.

Herissé, Bruno, Tarek Hamel, Robert Mahony, and Francois-Xavier Russotto.

2012. “Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform

Using Optical Flow.” IEEE Transactions on Robotics 28 (1): 77–89.

doi:10.1109/TRO.2011.2163435.

Kennedy, J, and R Eberhart. 1995. “Particle Swarm Optimization.” IEEE

International Conference on Particle Swarm Optimization 4: 1942–48.

doi:10.1109/ICNN.1995.488968.

Landau, Ioan Doré, Rogelio Lozano, Mohammed M’Saad, and Alireza Karimi.

107

2011. Adaptive Control. Analysis and Applications. doi:10.1007/978-0-85729-

664-1.

Lee, Daewon, Tyler Ryan, and H. Jin Kim. 2012. “Autonomous Landing of a

VTOL UAV on a Moving Platform Using Image-Based Visual Servoing.”

Proceedings - IEEE International Conference on Robotics and Automation, 971–76.

doi:10.1109/ICRA.2012.6224828.

Mayden, Austin. 2014. “Unreal Engine 4 vs. Unity: Which Game Engine Is Best

for You?” Digital Tutors. http://blog.digitaltutors.com/unreal-engine-4-vs-

unity-game-engine-best/.

Santos, Milton, Claudio Rosales, Jorge Sarapura, and Ricardo Carelli. 2017.

“Adaptive Dynamic Control for Trajectory Tracking with a Quadrotor,”

547–53.

Serra, P., R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre. 2016. “Landing of

a Quadrotor on a Moving Target Using Dynamic Image-Based Visual Servo

Control.” IEEE Transactions on Robotics 32 (6): 1524–35.

doi:10.1109/TRO.2016.2604495.

Sharf, I., M. Nahon, A. Harmat, W. Khan, M. Michini, N. Speal, M. Trentini, T.

Tsadok, and T. Wang. 2014. “Ground Effect Experiments and Model

Validation with Draganflyer X8 Rotorcraft.” 2014 International Conference on

Unmanned Aircraft Systems, ICUAS 2014 - Conference Proceedings, 1158–66.

doi:10.1109/ICUAS.2014.6842370.

Stengel, Robert. 2016. “Aircraft Equations of Motion : Translation and Rotation !”

Aircraft Flight Dynamics, ! MAE 331, 48.

https://www.princeton.edu/~stengel/MAE331Lecture8.pdf%5Cnhttp://ww

w.princeton.edu/~stengel/FlightDynamics.htm.

Supernat. 2012. “What Is the Difference between 3ds Max and Blender?” unity3d

Forum. https://forum.unity3d.com/threads/what-is-the-difference-between-

3ds-max-and-blender.133112/.

Tay, Tiffany. 2014. “3DS Max vs Maya: A Friendly Comparison.”

https://blog.udemy.com/3ds-max-vs-maya/.

Todorov, Emanuel. 2006. “Optimal Control Theory.” Environment and Planning C

Government and Policy 4 (2): 1–28. doi:10.1068/c040121.

Yadav, Smriti, and BhuriaVijay. 2015. “Tuning of PID Controller Using Zeigler

Nichols and Particle Swarm Optimization in AVR System” 4 (10): 1984–88.

Yang, Patrick Woo Ker. 2016. “What’s the Difference between AutoDesk’s Maya

and 3DS MAX? - Quora.” https://www.quora.com/Whats-the-difference-

between-AutoDesks-Maya-and-3DS-MAX.

108

Zairi, Shaiful, and D. Hazry. 2011. “Adaptive Neural Controller Implementation

in Autonomous Mini Aircraft Quadrotor (AMAC-Q) for Attitude Control

Stabilization.” Proceedings - 2011 IEEE 7th International Colloquium on Signal

Processing and Its Applications, CSPA 2011, 84–89.

doi:10.1109/CSPA.2011.5759848.

Ziegler, J. G., and N. B. Nichols. 1995. “Optimum Settings for Automatic

Controllers.” InTech 42 (6): 94–100. doi:10.1115/1.2899060.

109

Attachments

cxi

Attachment A – Quadrotor Parameters

Parameter Value Unit

Ixx, Iyy 0.0060 kg.m2

Izz 0.0166 kg.m2

Jr 4.104x0-6 kg.m2

Mbody 1.5 kg

Mmotor 0.057 kg

Mpropeller 0.015 kg

Mleg 0.015 kg

hbody 0.07 m

hleg 0.07 m

larm 0.225 m

Pitchpropeller 4.5x10-3 m

rpropeller 0.1 m

cxiii

Attachment B – Simulink Project

cxv

Attachment C – Unreal Engine Project

cxvii

Attachment D – Unreal Engine Gameplay

	Acknowledgments
	Abstract
	Resumo
	Nomenclature
	Acronyms
	Symbols

	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Research objective and main contributions
	1.3 Thesis Structure

	2 State of the Art
	2.1 Introduction
	2.2 The Landing Conundrum
	2.2.1 Weather effect
	2.2.2 Effect of Obstructions on Wind
	2.2.3 Ground Effect

	2.3 Quadrotor
	2.4 3D Modelling Software
	2.4.1 3ds Max
	2.4.2 Maya
	2.4.3 Blender

	2.5 Game Engines
	2.5.1 Unity
	2.5.2 Unreal

	2.6 Control Design Techniques
	2.6.1 PID control
	2.6.1.1 Proportional Action
	2.6.1.2 Integral Action
	2.6.1.3 Derivative Action

	2.6.2 Adaptive Control
	2.6.3 Optimal Control
	2.6.3.1 PSO

	2.7 Related Work

	3 Quadrotor Dynamics and Control
	3.1 Simplified Model
	3.1.1 Model Parameters
	3.1.2 Open-Loop system

	3.2 Extended Model
	3.2.1 Rotation Matrix
	3.2.2 Newton-Euler equations of motion
	3.2.3 Open-Loop System
	3.2.4 Euler angle and body axis rates

	3.3 Motor dynamics and configuration
	3.3.1 Motor dynamics
	3.3.2 One-motor vs two-motor configuration

	3.4 The landing Approach
	3.4.1 Ground Effect
	3.4.2 Touchdown
	3.4.3 Disturbances

	3.5 Flight control
	3.5.1 PID controller
	3.5.1.1 PSO method
	3.5.1.2 Ultimate Sensitivity method

	3.5.2 Attitude control
	3.5.3 Position control
	3.5.3.1 Altitude
	3.5.3.2 X / Y control

	3.5.4 Thrust control

	4 Simulations and Results
	4.1 Zero drag effect
	4.1.1 Attitude
	4.1.1.1 Pitch rotation
	4.1.1.2 Yaw rotation
	4.1.1.3 Pitch and Roll rotations
	4.1.1.4 Pitch and Yaw rotations
	4.1.1.5 Pitch, Roll and Yaw rotations

	4.1.2 Position
	4.1.2.1 Altitude displacement
	4.1.2.2 X displacement
	4.1.2.3 X and Y displacement
	4.1.2.4 X, Y and Z displacement

	4.1.3 Landing
	4.1.3.1 Ground Effect
	4.1.3.2 Touchdown

	4.2 Disturbances – zero air speed
	4.2.1 Position
	4.2.1.1 Altitude displacement
	4.2.1.2 X displacement
	4.2.1.3 X, Y and Z displacement

	4.2.2 Touchdown

	5 Virtual environment
	5.1 Software synthesis
	5.2 Blender
	5.2.1 Skeletal Mesh
	5.2.2 Quadrotor Mesh

	5.3 Unreal
	5.3.1 Project development
	5.3.2 External actuation

	6 Conclusions and Future work
	6.1 Control system limitations
	6.2 Unreal Engine blueprints limitations
	6.3 Work synthesis
	6.4 Future work

	References
	Attachments
	Attachment A – Quadrotor Parameters
	Attachment B – Simulink Project
	Attachment C – Unreal Engine Project
	Attachment D – Unreal Engine Gameplay

