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Abstract 

In this thesis is studied the landing problem of a VTOL UAV and a 3D sim-

ulation environment is built to safely develop control for a quadrotor, resorting 

to 3D modelling and simulation software. 

In a time where the development of unmanned vehicles is a trend and it is 

technologically in growth, the emergent difficulties are challenging when it 

comes to aviation. In this field, it is useful a tool for researchers to have at their 

disposal to conduct experiments without putting their real systems to real threat. 

Also, the landing of UAV’s is currently one of the most serious cases of study 

with a lot of investigation going on to solve the problems associated with it. In 

this sense, some problematics are contemplated. 

Based on a quadrotor in a X8 configuration – 4 frames and 8 propellers –, 

are applied linear and nonlinear control design techniques with the intent to sta-

bilize and control the quadrotor and a 3D simulator is developed. 

Keywords: 3D simulation; landing considerations; quadrotor; unmanned 

aircraft vehicle; Unreal Engine.
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Resumo 

São abordados, nesta tese, alguns problemas associados com a aterragem 

de um veículo do tipo VTOL UAV. Em adição, um ambiente de simulação 3D é 

construído com o intento de, em segurança, desenvolver controlo a aplicar em 

quadrotores, recorrendo, assim, a ambientes de modelação e simulação 3D. 

Numa época em que o desenvolvimento de veículos não-tripulados é uma 

tendência e está tecnologicamente em crescimento, as dificuldades emergentes 

são desafiantes no que concerne à aviação. Nesta área, é como uma mais-valia 

uma ferramenta ao alcance de investigadores, de forma a que estes possam con-

duzir as suas experiências sem colocar em risco qualquer instalação física. Em 

adição, a aterragem de veículos aéreos não-tripulados apresenta-se como um sé-

rio caso de estudo, existindo, ainda, bastante investigação a ser conduzida de 

forma a resolver os problemas associados à mesma. Neste sentido, algumas pro-

blemáticas são contempladas. 

Baseado num quadrotor em configuração X8 – 4 braços e 8 hélices –, são 

aplicadas técnicas de controlo linear e não-linear com o intento de estabilizar e 

controlar o quadrotor. Em adição, um simulador 3D é desenvolvido. 

Palavras-chave: simulação 3D; aterragem; quadrotor; veículo aéreo não-tri-

pulado; Unreal Engine.





xi 

Nomenclature 

Acronyms 

2D – Plane representation 

3D – Space representation 

BLDC – Brushless Direct Current 

CPU – Central Processing Unit 

GE – Ground Effect 

IGE – In Ground Effect 

IMU – Inertial Measurement Unit 

OGE – Out of Ground Effect 

PD – Proportional-Derivative 

PI – Proportional-Integral 

PID – Proportional-Integral-Derivative 

PSO – Particle Swarm Optimization 

PWM – Pulse Width Modulation 

RC – Remote Control 



xii 

TF – Transfer Function 

UAV – Unmanned Aircraft Vehicle 

VTOL – Vertical Take-off and Landing 

Symbols 

Symbol Description Unit 

 Cd drag coefficient adimensional 

 Cl lift coefficient adimensional 

 F, f force N 

 g gravity m.s-2 

 h height m 

 I body inertia kg.m2 

 k discrete-time variable samples.s-1 

 L, l length m 

 M total body mass kg 

 r radius m 

 t continuous-time variable s 

 T thrust N 

 Tτ torque induced by thrust N.m 

 TPWM PWM period s 

𝑥, 𝑦, 𝑧 translational position m 

𝜙, 𝜃, 𝜓 Euler angles rad 

𝛼, 𝛽, 𝛾 body angles rad 



xiii 

𝑝, 𝑞, 𝑟 body axes rate rad.s-1 

 τ Torque N.m 

 v linear speed m.s-1 

 𝜔 angular speed rad.s-1 
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1 Introduction 

1.1 Motivation 

One of the main reasons why technology has accomplished many and great 

deeds has to do with wars. Every challenge that stepped in the way of science, 

were keenly overcame in order for groups of individuals to compete and surpass 

their foes. Or, in other words, to do harm. Nowadays, and fortunately, the 

thoughts are settled elsewhere. People are encouraged to thrive so others can 

benefit from the results and learn more about the planet and universe we live in. 

And even if the results are not that appealing, at least a piece of knowledge can 

be extracted and can motivate others to do better. 

Aircrafts are one of the wonders born of war. Manned, or even RC ones, can 

be rather difficult to manoeuvre, even though the CPU is our brain, the actuators 

our hands and the sensors our eyes. It takes an enormous amount of skill to fly 

one of these machines and that is why a pilot need so many hours of flight expe-

rience before heading to pilot a commercial one, for example. It is even heard, 

from time to time, that a plane, helicopter or the emergent RC quadrotors have 

crashed somewhere. But these difficulties are nothing compared to the challenges 

of letting one aircraft to take-off from a specific location and landing on another, 
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in complete autonomy. These are called UAV and are most likely the future of 

private and commercial flights. 

The UAV’s are currently used for scouting, mapping, leisure, professional 

photography and others, but can have a key role in the near future, as such in 

rescue missions, environmental monitoring, terrain analysis, infrastructures in-

spection, and much more. 

Despite some important achievements concerning attitude and trajectory 

control, the landing control is still an issue and is one of the most vital systems in 

an UAV. Also, to prevent any type of accidents, which can be disastrous, a 3D 

simulation environment for a quadrotor is developed, which is the main contri-

bution of this work. 

1.2 Research objective and main contributions 

This research purpose is to discuss the landing problems of UAV’s and de-

velop a 3D simulation environment where this and other flight problems may be 

tested in safety. 

The main goal of this thesis is to design a simulation environment with the 

intent to perform several tests concerning the landing of a UAV. For this purpose, 

a kinematics model of the aircraft has to be considered. As such, a specific quad-

rotor is studied and controllers are developed on Matlab software, with the re-

spective results presented at Chapter 4. The simulator will only include the quad-

rotor model, but it will be possible to manually control it, with the prospective to 

receive the input commands from an external controller or one to be built-in. 

The main contributions are the 3D simulation environment, which is ex-

pected to recreate a physical one, where the quadcopter 3d model and the sur-

rounded environment are furnished with a set of features as similar as possible 

to real physics. Furthermore, a quadrotor model is proposed and determined if 
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the designed controllers are able to provide the necessary stability and perfor-

mance to execute a successful flight. 

1.3 Thesis Structure 

This thesis is structured in 6 chapters, which are organized as follows: 

Introduction: In this chapter, are presented the motivation, the objectives 

and the main contributions to unmanned aviation. Also, the thesis structure is 

described. 

State of the Art: In this chapter, the most relevant background information 

that supports this thesis is provided. Are referred the landing problems, the 

quadrotor for which the control is to be developed, an analysis on computer 

graphics software, control design techniques and finally the related work. 

Quadrotor Dynamics and Control: Here is presented the quadrotor model 

used as starting point for this project, followed by improvements for a better nav-

igation. Additionally, each motor TF is considered, problems associated with 

landing are considered and, to complete this chapter, are designed the controllers 

to be implemented on the closed-loop system. 

Simulation and Results: This chapter intent is to validate the efficiency of 

the control architecture in the proposed model. Also, tests are conducted on cer-

tain physics aspects to understand their influence in a real landing manoeuvre. 

Virtual Environment: In this chapter, an explanation about the choice of the 

3D modelling and game development tools is given, along with a brief discussion 

of the steps to follow, so anyone can use these tools. 
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2 State of the Art 

2.1 Introduction 

In this chapter, it is presented the literature and scientific surveys of the 

areas of study used as milestones for this work. A briefly insight into some main 

problems in the aeronautics field is given, as well as their influence on landing 

phase of flight. 

Following the problems associated with landing, the quadrotor kinematics 

model in which this thesis is grounded is presented. This model is a simplified 

version and does not considers several physics phenomena that has impact on 

landing approach. 

The next subject consists of a 3D software assessment. The goal is to develop 

a simulation environment where tests can be conducted without damaging the 

physical structure and to be an interactive way to learn by playing. Firstly, are 

analysed software responsible for 3D modelling, so a 3D representation of the 

quadrotor can be constructed. Secondly, game engines to animate and describe 

the physics of the quadrotor, apply disturbances and create a scenery. 
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Afterwards, are specified the techniques to be applied, so a satisfactory con-

trol over the aircraft can be provided. The main steps to land a VTOL are to ac-

quire the target, stabilize the aircraft, analyse the target surface and execute the 

right control actions for a perfect landing. 

To end this chapter, it is presented the ground work for this thesis consti-

tuted by a few researches conducted in past recent years. 

2.2 The Landing Conundrum 

Many are the effects that can cause a quadrotor to experience some difficul-

ties. Since the first flight attempts that inventors and researchers are trying to 

nullify these. The most relevant ones are explained below. 

2.2.1 Weather effect 

Weather plays a significant role in every step of an aircraft navigation, from 

take-off to landing. For instance, changes in temperature lead to a variation of air 

density, which in turn leads to changes of air pressure. Ultimately, due to these 

events, air currents are formed. Altitude is also relevant, because the higher the 

aircraft, lesser the pressure and thinner the air, causing the aircraft to experience 

stability issues. These phenomena alters both the stall speed and minimum flying 

speed necessary for any aircraft to take-off or land, respectively (Federal Aviation 

Administration 2016). 

Air flows, also known as winds, can interfere greatly on flight control. It can 

be a major setback on the quadrotor normal operation mode, because not only 

the quadrotor tends to deviate in a randomly way, but without a sufficiently ro-

bust controller it might crash. 

Wind’s pattern and formation are primarily due to changes of pressures. 

These variations are driven by distinct types of events. Three of which are the 
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atmospheric pressure, the Coriolis effect and even the topography. As a result, it 

is of an utmost difficulty to write down a mathematical notation to characterize 

this phenomenon. However, the impact of it over an object can be measured. A 

way to represent this is through eq. (2.2.1) and eq. (2.2.2). 

 𝐹 = 𝑃 ∙ 𝐴 ∙ 𝐶𝑑  (2.2.1) 

 𝐹 =
1

2
∙ 𝜌 ∙ 𝑉2 ∙ 𝐴 ∙ 𝐶𝑑 (2.2.2) 

Where 𝐹 is the drag force, or wind load, 𝑃 [Pa] is the wind pressure,  𝐴 [m2] 

is the area section of the object where the force is being exerted, ρ [kg∙m-3] is the 

air density, 𝑉 [m∙s-1] is the speed of the body relative to the air flow and 𝐶𝑑 is the 

drag coefficient. 

2.2.2 Effect of Obstructions on Wind 

As denoted in the previous subsection, wind is very unpredictable in each 

time instant, if taking solely into account natural causes. This condition might be 

aggravated if structures are near and on wind’s side, wherein forms more turbu-

lence and the changes of wind direction become even more random. 

Manmade constructions, e.g., buildings, ships superstructure, bridges and 

amongst others, can create air pressures that burst in several directions and dif-

ferently from natural deformations. Buildings, for instance, cut the wind and on 

the opposite side turbulence appears with air currents flowing in many indistinct 

directions. In contrast, when the structure is a mountain, for example, and the 

wind is flowing up the windward side of the mountain, the currents tend to point 

downwards on the leeward side of the mountain (Federal Aviation 

Administration 2016). 
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2.2.3 Ground Effect 

When a VTOL aircraft is about to land, it experiences some undesirable phe-

nomena due to ground effect. This happens when the air mass generated by the 

rotor blades is reflected by the surface, thus creating an air cushion, which is an 

air pressure on the lower side of the aircraft. This airflow can provide more 

thrust, leading to an increase of efficiency of the rotors. The main consequences 

of this principle includes vibration, which can lead to irreversible instability of 

the aircraft, altitude fluctuations (Davis and Pounds 2016; Sharf et al. 2014; Aich 

et al. 2014), and possible bounce after touching a rigid surface (ArduPilot Dev 

Team 2016). 

A work conducted by Cheeseman and Beckett produced a first mathemati-

cal description of this effect on the lift of a helicopter rotor at different forward 

speeds. The simplest situation, and the most important one to consider in this 

thesis, occurs when the rotor is rotating at constant power, zero air speed and 

zero forward speed. Thus, the thrust ratio between the thrust IGE and OGE is 

dependent of the rotor radius and the propellers distance away from the ground. 

The mathematical expression is given by eq. (2.2.3) (Cheeseman and Bennett 

1957). 

 
𝑇𝐼𝐺𝐸

𝑇𝑂𝐺𝐸
=

1

1−
𝑟2

16𝑧2

 (2.2.3) 

𝑇𝐼𝐺𝐸 [N] is the rotor thrust under the influence of the air cushion, 𝑇𝑂𝐺𝐸 [N] 

is the rotor thrust away from the ground, 𝑟 is the rotor radius and 𝑧 [m] is the 

distance of the propeller from the ground. 

Another situation occurs when the aircraft is moving parallel to a surface 

and at constant power. In this case, both aircraft speed 𝑣𝐴 and induced speed 𝑣𝑖 

at the rotor appears in the eq. (2.2.4). 
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𝑇𝐼𝐺𝐸

𝑇𝑂𝐺𝐸
=

1

1−
𝑟2

16𝑧2(1+(
𝑣𝐴
𝑣𝑖
)
2
)

 (2.2.4) 

2.3 Quadrotor 

Back in 2016, Vasco Silva developed a quadrotor with 4 frames and 8 thrust-

ers, 2 in each frame, whose mathematical model contemplates several physical 

properties like gravity, gyroscopic effect and the overall force produced by the 

motors. In addition, it has a control scheme for failure detection. (Brito 2016). 

The real structure is based on the DJI Flamewheel 450 and some compo-

nents were especially made in a 3D printer in order to accommodate the eight 

motors. The control unit comprises an Arduino Due, wherein lies all the pro-

grammable logic to control the quadrotor (Brito 2016). Amongst other features, it 

is equipped with GPS, absolute orientation and altiMU sensors, allowing a good 

data acquisition for reliable information about the quadrotor positioning, atti-

tude, and others. 

For these reasons and since it is in a very early stage, it is an interesting 

challenge to continue the legacy of a former colleague. Figure 2.1 represents the 

quadrotor assembled by Brito. 

 

Figure 2.1: Vasco Brito’s quadrotor. Retrieved from (Brito 2016). 
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2.4 3D Modelling Software 

In this section, are presented three 3D modelling software, 3ds Max, Maya 

and Blender, and the respective attributes for further review. 

2.4.1 3ds Max 

This software property of Autodesk is commonly used in the industry for 

3D computer graphics development. It provides the necessary tools for model-

ling, animation, simulation and rendering, supporting the creation of films and 

games. 

Autodesk has several programs prone to similar purposes, like Maya, 

which is the next program approached, with little differences between these and 

3ds Max (Autodesk 2016). In a more intrinsic view, 3ds Max is considered not 

very user friendly as the user interface is not quite intuitive, with a learning curve 

a bit steep, especially for new developers in the field (Tay 2014). The simulation 

tools are slightly complex even for people with experience and its own scripting 

language, MAXScript, is not straightforward. Despite these not positive features, 

it offers an ease of use Material Editor and a rich set of tools essential for model-

ling. It is possible to import or export FBX files, which are widely used and there-

fore is compatible with many other 3D software (Yang 2016). It also has many 

plugins at disposal and, as well as other software from Autodesk, the full version 

is paid. Nevertheless, a student version is available and is free for three years 

with almost the same features as the paid one (Yang 2016). 

2.4.2 Maya 

Here is another program from Autodesk with similar features as the previ-

ous 3ds Max. Maya stands out for its animation and effects tools, but lacks in 

what concerns to modelling, contrasting with 3ds Max. It is not very intuitive and 
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the creation and handling of materials along with professional computer anima-

tion and simulation is generally complex to develop, in part due to the need to 

use some programming (Carrasquinho 2015). In this matter, Maya scripts can be 

written in Python or in its own programming language, MEL. Like 3ds Max, 

there are many plugins and add-ins to support the 3D development. The soft-

ware is paid but it can be acquired, with less features, with a student licence, free 

for three years. 

2.4.3 Blender 

Blender is a 3D computer graphics software from Blender Foundation, 

mostly used by artists and small companies in this area (blender.org 2015). It sup-

ports the tools for modelling, animation, simulation and rendering, as so does 

the previous software mentioned, but can also be used as a game engine, alt-

hough this is not its best feature. The major advantage of using Blender lies in 

being an open source software, therefore it is free. There are also several tutorials 

and documentation and occasionally it is updated with the help of contributions 

provided by the community. The most significant setback using this software are 

software faults (commonly referred as “bugs”) that appear each time an update 

happens to fix other bugs. Additionally, the tutorials, documentation and other 

types of support are not up-to-date, even though the software is (Carrasquinho 

2015; Supernat 2012). 

Regarding the technical aspects, it has all features available and the only 

weak element is the user interface, which is little intuitive with a relatively harsh 

learning curve (Carrasquinho 2015). 
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2.5 Game Engines 

After a 3D model is complete, it must be imported to a simulation software 

in order to conduct tests or simply to play and enjoy. Ahead, is available the de-

scription of two game engines commonly used in the game industry. 

2.5.1 Unity 

Unity, also known as Unity 3D, is a software property of Unity Technolo-

gies and is one of the most popular game engines, commonly known for being 

intuitive and proper for beginners. It has a vast set of tools and a very complete 

asset store to help in the projects development. It is compatible with many 3D 

simulation and modelling software as it can read several file formats. The pro-

jects can be developed in a node editor written mainly in C-sharp or Javascript 

and exported into several file formats as well. Unity is a paid software but a free 

version is available for the common user. However, the free version has a lot less 

features in comparison with the paid one. 

2.5.2 Unreal 

Unreal Engine is a software developed by Epic Games and is considered 

one of the best game engines in the market due to its remarkable graphical capa-

bilities (Mayden 2014). In comparison with Unity engine, it has also a lot of pow-

erful features and tools but perhaps the most differentiation aspect is the Blue-

print visual scripting. This feature is a node-based scripting editor, providing the 

ability to create equations using blocks diagram. Notwithstanding, one can also 

write code in C++ (Epic Games 2017).  

Unity has a larger store asset than Unreal, with the Unreal one to be reason-

able regardless. In Unity, is also possible to import / export projects within a vast 

range of file formats, whilst Unreal supports only FBX format. A major factor is 

the pricing issue and Unreal Engine 4 leads in this subject as it is free with all its 
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features accessible by anyone, if not used for commercial activities. Otherwise, 

royalties must be paid to Epic Games. 

2.6 Control Design Techniques 

In this chapter are presented the control techniques used in this thesis with 

the purpose to incorporate them in a quadrotor model. The first method de-

scribed is the classical PID controller. 

2.6.1 PID control 

One of the most commonly used control techniques is the classical Propor-

tional-Integrative-Derivative algorithm. This method appeared in the 1920’s by 

Minorsky while observing the way a helmsman steered a ship. It was then im-

proved and applied during the following decade in pneumatic industry and in 

1942 John G. Ziegler and Nathaniel B. Nichols developed the well-known tuning 

rules to find the optimum parameters of a PID controller, given certain con-

straints (Bennett 1996). Presently, this type of controller is commonly used in in-

dustry, offering reliable results for most industrial processes.  

The generic PID control algorithm assumes the following form: 

 𝑢(𝑡) = 𝐾 ∙ (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑 ∙

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
) (2.6.1) 

In the previous eq. (2.6.1), 𝑢 is the control action, 𝑒 the error between the 

reference and output signals of the process, 𝐾 the proportional gain, 𝑇𝑖 [s] the 

integral time and 𝑇𝑑 [s] the derivative time. 

2.6.1.1 Proportional Action 

The simplest form of a PID controller occurs when the integral and deriva-

tive actions of eq. (2.6.1) are cancelled, thus leaving a pure proportional controller 

given by eq. (2.6.2). 
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 𝑢𝑝(𝑡) = 𝐾 ∙ 𝑒(𝑡) + 𝑏 (2.6.2) 

Here appears a new variable 𝑏, which stands for the reset or bias. When 

control error equals zero, 𝑢𝑝 = 𝑏. This factor acts like a disturbance and can be 

manually adjusted so that the stationary control error equals zero at a specific 

condition of operation (K. Astrom 1995). 

A high value of the proportional gain can lead to accentuated oscillations 

of the process output without cancelling the stationary control error. Therefore, 

the integral action is introduced (K. Astrom 1995). 

2.6.1.2 Integral Action 

The integral action main purpose is to nullify the control error in stationary 

state, when a variation of the proportional gain by itself is not enough. This inte-

gral effect is represented by eq. (2.6.3). 

 𝑢𝑖(𝑡) = 𝐾 ∙
1

𝑇𝑖
∙ ∫ 𝑒(𝜏)𝑑𝜏

𝑡

0
 (2.6.3) 

When the control error is positive, the control action increases to compen-

sate the low value of the process output. When it is negative, the control action 

decreases so the process output decreases as well and follows the reference value. 

A PI controller type is able to effectively nullify the control error in steady 

state, but it might need more time than the desirable to do so due to present and 

long-lasting oscillations (K. Astrom 1995). 

2.6.1.3 Derivative Action 

An integral effect provides a prior knowledge of the system past states, but 

it can’t predict how it is going to behave, leading to possible underdamping. A 

derivative action is able to predict the next process outputs through the tangent 

to the error curve, decreasing the oscillations and thus increase the stability of 

the closed-loop system (K. Astrom 1995). The eq. (2.6.4) represents this action. 

 𝑢𝑑(𝑡) = 𝐾 ∙ 𝑇𝑑 ∙
𝑑𝑒(𝑡)

𝑑𝑡
 (2.6.4) 
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The combination of the three aforementioned actions constitutes a classical 

PID controller. 

2.6.2 Adaptive Control 

The PID algorithm proves to be a good and practical method to solve many 

cases of industrial processes. However, some processes parameters are unknown 

or vary unpredictably in time, which can pose a threat to system stability. To 

counter that, the controller parameters should be adjusted dynamically, which is 

the main focus behind adaptive control theory (Landau et al. 2011).  

An adaptive control consists in the capture of a system’s dynamics and 

specification of the control-design algorithm, along with a fit controller design 

method for an estimation on-line of the controller’s parameters. This type of con-

trol is therefore inherently nonlinear and has several applications regarding both 

linear and nonlinear systems (Landau et al. 2011; K. J. Astrom and Wittenmark 

1996). 

Applications for this control technique are found on multirotors for attitude 

stabilization (Zairi and Hazry 2011), trajectory control (Santos et al. 2017) or gen-

eral control (Buyukkabasakal et al. 2015). On the first two works, artificial neural 

networks are included to improve precision and minimize control errors. 

2.6.3 Optimal Control 

Another control method with particular interest is the optimal control. The 

Optimal Control Theory is an extension of the calculus of variations which in-

tends to minimize or maximize a given functional subject to constraints. In con-

trol problems, the functional is usually a cost function, or minimization function, 

subject to constraints, which is intended to be minimized. The founders of this 

theory are Bellman and Pontryagin, providing solutions to stochastic and deter-

ministic problems, respectively (Todorov 2006). 
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When the goal is to achieve optimal solutions, optimal estimation is com-

monly used due to sensor noises and delays and because the two problems are 

dual, meaning that one is closely related to another via control and filtering equa-

tions, respectively (Todorov 2006). 

2.6.3.1 PSO 

The Particle Swarm Optimization is a method based on the collective intel-

ligence and first proposed by Russel Eberhart and James Kennedy in 1995. This 

method intent is to optimize continuous nonlinear functions (Kennedy and 

Eberhart 1995). It has several applications, one of which to obtain a controller’s 

parameters for a given nonlinear system. 

One version of the PSO method consists in the achievement of the best value 

considering all the particles in the swarm, where each particle is a solution of the 

system and can be represented in a Cartesian system with any dimensions. The 

respective algorithm for one-dimension solution is hence described. 

The first step is to create particles in random positions and with random 

velocities. Secondly, with these particles, apply the desired minimization func-

tion and calculate its value. This value is thus compared with the current parti-

cle’s best value (𝑝𝑏𝑒𝑠𝑡). If the result is positive, this value is now considered the 

particle’s best value and is compared with the group’s best value (𝑔𝑏𝑒𝑠𝑡). Again, 

if it is true, this pbest is now equal to gbest. The change of speed and position of 

each particle on each axis is given by eq. (2.6.5) and eq. (2.6.6), calculated in this 

specific order. This process restarts on the particle evaluation and the loop is re-

peated. (Eberhart and Kennedy 1995). 

 𝑠𝑖 = 𝑠𝑖 + 𝑐1 ∙ 𝑟𝑎𝑛𝑑 ∙ (𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑖) + (2.6.5) 

 + 𝑐2 ∙ 𝑟𝑎𝑛𝑑 ∙ (𝑔𝑏𝑒𝑠𝑡 − 𝑝𝑖)  

 𝑝𝑖 = 𝑝𝑖 + 𝑠𝑖 (2.6.6) 
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On the previous equations, 𝑠𝑖 and 𝑝𝑖 stands for speed and position of the i-

-th particle, respectively, 𝑐1 and 𝑐2 are the adjustment coefficients and 𝑟𝑎𝑛𝑑 is a 

random value in the range [0;1]. 

2.7 Related Work 

To understand in what way this thesis could contribute to science, a survey 

was conducted and some researches related to autonomous landing of multi-

rotors were found. Some of the most significant are referred below. 

There are several studies conducted in this field and most uses image pro-

cessing or optical flow to determine the relative position of a target. A work de-

veloped by Lee, Ryan and Kim in 2012 consisted in using image-based visual 

servoing (IBVS) algorithm to locate the target and get its velocity relatively to the 

quadrotor. Their main contributions are image processing in a 2D instead of a 3D 

representation, thus decreasing computational calculations and complexity, and 

an adaptive SMC – Sliding Mode Control – control regarding landing step for 

precision control as well for GE compensation. An IMU is also used to provide 

information about the quadrotor attitude and Lyapunov Stability Theory to sta-

bilize the quadrotor during landing procedure (Lee, Ryan, and Kim 2012). The 

Figure 2.2 shows the quadrotor and target used for the experiments. 

 

Figure 2.2: Quadrotor and moving target (Lee, Ryan, and Kim 2012). 
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In the same year, Hérissé, Hamel, Mahony, and Russotto improved their 

earlier work from 2010 on the use of optical flow as hovering and landing control 

on a moving platform. This system is composed by a camera, to capture the vis-

ual motion, or optical flow, and by a IMU, to determine the attitude and linear 

position of the UAV (Herissé et al. 2012). 

The control schemes used in this project includes nonlinear PI control, op-

tical-flow based control, time-to-contact based control, Lyapunov Stability The-

ory and a guidance and control approach (Herissé et al. 2012). The quadrotor 

used for testing is shown in Figure 2.3. 

 

Figure 2.3: Quadrotor used for experimental results (Herissé et al. 2012). 

A more recent project dates from 2016 and it was written by Serra, Cunha, 

Hamel, Cabecinhas and Silvestre. Their main contribution to the landing prob-

lematics over a moving surface is the use of a dynamic IBVS control to detect the 

target amongst noise and an optical flow measurement to detect surface move-

ment (Serra et al. 2016). 

In their paper, an innovative IBVS control is proposed, and other control 

techniques are approached like optical flow control, Lyapunov Stability Theory 

and a cascade control architecture. An IMU is also used. The setup is shown in 

Figure 2.4. 
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Figure 2.4: Quadrotor used in experimental setup (Serra et al. 2016) 
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3 Quadrotor Dynamics and Control 

In this chapter are presented both the kinematics model used by Brito’s 

work and an extended version, respectively. Some experiments conducted on 

Brito’s work are considered and physics intrinsically related to landing are char-

acterized. At the end, control architectures are presented along with techniques 

for the estimation of the controllers’ parameters. 

3.1 Simplified Model 

The core of Vasco Brito work was the development of a system tolerant 

against motor failures, thus some considerations being wittingly neglected in the 

model proposed. From Brito’s work, the focus is entirely on the model and air-

craft dimensions, improving the first and assuming values for unknown param-

eters to face several physics properties regarding the aircraft landing.  
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3.1.1 Model Parameters 

In this subsection, the model parameters are described, with a similar nota-

tion from the one adopted by Brito in his thesis.  

 

Figure 3.1: Representation of the quadrotor steady hovering. XYZ axes are repre-

sented by RGB arrows, respectively. Retrieved from (Brito 2016). 

On the Figure 3.1 illustrated above, are identified the angular speed 𝜔𝑛 and 

the respective force 𝑓𝑛 produced by each rotor 𝑛. Particularly, this image illus-

trates a hovering flight, since all forces have equal magnitude. In addition, con-

trolling each rotor independently enables the control of each of the three funda-

mental rotations: roll, pitch and yaw. The altitude and angular position control 

actuations are, therefore, mathematically represented by eq. (3.1.1). 

 [

𝑈1
𝑈2
𝑈3
𝑈4

] =

[
 
 
 

∑ 𝑓𝑛
8
𝑛=1

𝑓4 + 𝑓8 − 𝑓2 − 𝑓6
𝑓3 + 𝑓7 − 𝑓1 − 𝑓5

𝑓1 + 𝑓3 + 𝑓6 + 𝑓8 − 𝑓2 − 𝑓4 − 𝑓5 − 𝑓7]
 
 
 

 (3.1.1) 

The roll, pitch and yaw are rotations about the longitudinal, transverse and 

vertical axes, respectively. Each rotation represents a rate of change of angular 

position. The combined three-dimensional angular positions are henceforth 
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named attitude. The attitude and the translational position matrices are repre-

sented by eq. (3.1.2) and (3.1.3), correspondingly. 

 𝚯𝑬 = [𝜙 𝜃 𝜓]𝑇 (3.1.2) 

 𝐏 = [𝑥 𝑦 𝑧]𝑇 (3.1.3) 

The first matrix refers to Euler angles and the second to the position seen 

from an inertial observer. 

On Brito’s work, some of the aircraft parameters are explicitly referred, but 

others must be assumed to develop the control system. For detailed documenta-

tion on the quadrotor inertial and geometric parameters see Attachment A. 

3.1.2 Open-Loop system 

Finally, it is presented the kinematics model represented by eq. (3.1.4), 

whose mathematical deduction and the model itself are found on Brito’s thesis 

(Brito 2016). 

 

{
 
 
 
 

 
 
 
 �̈� = (sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜃))

𝑈1

𝑀

�̈� = (cos(𝜓) sin(𝜙) − cos(𝜙) sin(𝜓) sin(𝜃))
𝑈1

𝑀

�̈� = −𝑔 + cos(𝜙) cos(𝜃)
𝑈1

𝑀

�̈� = ((𝐼𝑦𝑦 − 𝐼𝑧𝑧)�̇��̇� − 𝐽𝑟�̇�Ω𝑟 + 𝐿𝑈2)
1

𝐼𝑥𝑥

�̈� = ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)�̇��̇� − 𝐽𝑟�̇�Ω𝑟 + 𝐿𝑈3)
1

𝐼𝑦𝑦

�̈� = ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)�̇��̇� + 𝐿𝑈4)
1

𝐼𝑧𝑧

 (3.1.4) 

In the previous system of equations, 𝑔 represents the gravity action, 𝐽𝑟 

[𝐾𝑔.𝑚2] each rotor inertia – eq. (3.1.5) – and Ω𝑟 [𝑟𝑎𝑑. 𝑠
−1] the sum of angular 

velocities produced by each rotor – eq. (3.1.6). These last two parameters influ-

ence the gyroscopic effect on the aircraft, occurring due to an unbalance of the 

sum of the angular velocities. 
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 𝐽𝑟 =
𝑀 .  𝑟𝑟𝑜𝑡𝑜𝑟

2

2
 (3.1.5) 

 Ω𝑟 = 𝜔1 −𝜔2 + 𝜔3 −𝜔4 −𝜔5 +𝜔6 −𝜔7 + 𝜔8 (3.1.6) 

The established relation between body axes rate and Euler angles rate im-

plies two important limitations. First, it is only precise for one rotation at a time. 

If a second rotation is desired, the aircraft attitude must be carried to the origin 

state, assuming this state as (0,0,0). Second, and although an inequality is formed 

between the two reference frames, the model can be considered valid for narrow 

changes in attitude.  

3.2 Extended Model 

The issue with the simplified version is that the hovering fluctuations must 

not be neglectable, as they are relevant when the aircraft needs to perform rota-

tions, e.g., on take-off and landing approach or in the presence of crosswinds. 

Another consideration is the presence of drag, associated to air resistance. There-

fore, a distinction must be made between the body axes rate and the Euler angles 

rate. The deduction for the extended model version is presented throughout the 

following subsections. 

3.2.1 Rotation Matrix 

The root step of a rotating body modelling is to formulate, through mathe-

matics, its own rotational dynamics. To accomplish this mathematical relation, 

the right-hand rule is applied to each axis of the Euclidean space system.  

The rotation vectors defined by eq. (3.2.1), (3.2.2) and (3.2.3) respect the 

right-hand rule and describe the angular displacement of the rotating object in 

relation to the inertial reference frame. 
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 𝐑𝜙 = [

1 0 0
0 cos(𝜙) sin(𝜙)

0 −sin(𝜙) cos(𝜙)
] (3.2.1) 

 𝐑𝜃 = [
cos(𝜃) 0 − sin(𝜃)
0 1 0

sin(𝜃) 0 cos(𝜃)
] (3.2.2) 

 𝐑𝜓 = [
cos(𝜓) sin(𝜓) 0

− sin(𝜓) cos(𝜓) 0
0 0 1

] (3.2.3) 

𝑹𝜙 identifies roll rotation, 𝑹𝜃 pitch rotation and 𝑹𝜓 yaw rotation. With these 

three vectors and applying the three elemental rotations in a given order, it is 

obtained a specific rotation matrix. For this work, it is chosen a XYZ intrinsic 

rotation convention. Multiplying the three elemental rotations, as 𝐑𝛩 = 𝐑𝜙𝐑𝜃𝐑𝜓, 

results in the rotation matrix described by eq. (3.2.4). 

 𝐑𝛩 = (3.2.4) 

[

cos(𝜃) cos(𝜓) cos(𝜃) sin(𝜓) − sin(𝜃)

sin(𝜙) sin(𝜃) cos(𝜓) − cos(𝜙) sin(𝜓) sin(𝜙) sin(𝜃) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜙) cos(𝜃)

cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓) cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓) cos(𝜙) cos(𝜃)
] 

Important is to notice that 𝐑𝛩 is an orthogonal matrix, meaning that 𝐑𝛩
−1 =

𝐑𝛩
𝑇. This relation is relevant for applications seen ahead. 

3.2.2 Newton-Euler equations of motion 

A quadrotor is a specific type of aircraft. Assuming zero drag force of any 

nature, it only acquires linear motion if its attitude vector is non-null. For this 

case, a mathematical relationship between translational and rotational dynamics 

is needed and it is obtained through Newton-Euler equations. 
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 {
𝐅 = 𝑀𝐚 + 𝛀 × (𝑀𝐕)

𝛕 = 𝐈𝛂𝒓 +𝛀× (𝐈𝛀)
 (3.2.5) 

 {
𝐅 = 𝐓 − 𝐅𝑔 − 𝐅𝐷 +𝛀× (𝑀𝐕)

𝛕 = 𝐓𝝉 + 𝛕𝐺𝑦𝑟𝑜 +𝛀 × (𝐈𝛀)
 (3.2.6) 

The eq. (3.2.6) is an extended expression of eq. (3.2.5). In these equations, 

𝐅 = [𝐹𝑥 𝐹𝑦 𝐹𝑧]𝑇 represents the force, 𝛕 = [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 the momentum, a 

[𝑚. 𝑠−2] the acceleration, 𝜶𝒓 [𝑟𝑎𝑑. 𝑠
−2] the angular acceleration, v the velocity, 𝛀 

[𝑟𝑎𝑑. 𝑠−1] the angular velocity, T is the thrust, Fg the gravitational force, FD the 

drag force caused by air resistance and τGyro the momentum generated due to the 

gyroscopic effect. The external products that appears in the equations are relative 

to the centrifugal and centripetal forces, respectively. Because this type of aircraft 

is assumed to be symmetric, the inertial moment matrix 𝐈 is defined as shown in 

eq. (3.2.7). 

 𝐈 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

] (3.2.7) 

3.2.3 Open-Loop System 

First, we take in consideration only the aircraft reference frame. By this 

light, both linear and angular velocity vectors are given by eq. (3.2.8) and (3.2.9), 

respectively. 

 𝐕 = [𝑢 𝑣 𝑤]𝑇 (3.2.8) 

 𝛀 = [𝑝 𝑞 𝑟]𝑇 (3.2.9) 

These vectors are decomposed in three axes each, fulfilling the six degrees 

of freedom of the overall open-loop system, represented by eq. (3.2.10). 
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[

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = [
0
0
𝑈1

] − 𝐑𝛩 [

0
0
𝐹𝑔

] − 𝐾𝑣 [

𝑢 −𝑊𝑥
𝑣 −𝑊𝑦
𝑤 −𝑊𝑧

] − 𝑀 [

𝑞𝑤 − 𝑣𝑟
−𝑝𝑤 + 𝑢𝑟
𝑝𝑣 − 𝑢𝑞

]

[

𝜏𝜙
𝜏𝜃
𝜏𝜓
] = [

𝐿𝑈2
𝐿𝑈3

𝐿
𝐶𝑑

𝐶𝑙
𝑈4

] + 𝛕𝑔𝑦𝑟𝑜 − [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞

]

 (3.2.10) 

On eq. (3.2.10), 𝐶𝑙 is the lift coefficient, 𝐾𝑣 [𝑘𝑔. 𝑠−1]  is any appropriate di-

mensioned variable associated with velocity and 𝑊𝑥, 𝑊𝑦 and 𝑊𝑧 concerns the air 

flow on the three axes. 

Now it is possible to characterize the model attending the body inertial 

frame, so the gyroscopic effect momentum 𝛕𝑔𝑦𝑟𝑜 is given by eq. (3.2.11). 

 𝛕𝑔𝑦𝑟𝑜 = 𝐽𝑟Ω𝑟 (𝛀 × [
0
0
1
]) = 𝐽𝑟Ω𝑟 [

𝑝
−𝑞
0
] (3.2.11) 

Although eq. (3.2.10) works, it has a setback. This system has six outputs to 

control. However, of all the six degrees of freedom possible for this system, the 

horizontal motion along the X and Y axes are not directly controlled by any of 

the four command inputs, leading to an underactuated system with only four 

degrees of freedom. Thus, raising issues on stability level. The solution to this 

problem is to combine the inertial, in this case the earth, reference frame with the 

aircraft body axes. Therefore, and knowing that 𝑹𝛩 is an orthogonal matrix, the 

translational motion regarding earth is shown by eq. (3.2.12). 

 [

𝐹𝑥
𝐹𝑦
𝐹𝑧

] = 𝑹𝛩
𝑇 [
0
0
𝑈1

] + [

0
0
𝐹𝑔

] − 𝐾𝑣 [

�̇� −𝑊𝑥
�̇� − 𝑊𝑦
�̇� − 𝑊𝑧

] (3.2.12) 

Combining now the translational motion about the inertial reference frame 

with the rotational motion about the body axes and applying Newton’s second 

law and equivalent for the rotational motion we obtain eq. (3.2.13). 
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[
𝑀�̈�
𝑀�̈�
𝑀�̈�

] = 𝐑𝛩   
𝑇 [
0
0
𝑈1

] + [
0
0

−𝑀𝑔
] − 𝐾𝑣 [

�̇� −𝑊𝑥
�̇� − 𝑊𝑦
�̇� − 𝑊𝑧

]

[
𝐈�̇�
𝐈�̇�
𝐈�̇�

] = [

𝐿𝑈2
𝐿𝑈3

𝐿
𝐶𝑑

𝐶𝑙
𝑈4

] + 𝐽𝑟Ω𝑟 [
𝑝
−𝑞
0
] − [

(𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟

(𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑝𝑟

(𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞

]

 (3.2.13) 

Solving the system of equations concerning linear and angular accelerations 

and as functions of input commands, results in the open-loop system fully actu-

ated expressed by eq. (3.2.14). 

 

{
 
 
 
 

 
 
 
 �̈� = (cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓))

𝑈1

𝑀
− 𝐾𝑣(�̇� −𝑊𝑥)

�̈� = (cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓))
𝑈1

𝑀
− 𝐾𝑣(�̇� −𝑊𝑦)

�̈� = cos(𝜙) cos(𝜃)
𝑈1

𝑀
− 𝑔 − 𝐾𝑣(�̇� −𝑊𝑧)

�̇� = ((𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟 − 𝐽𝑟𝑞𝜔 + 𝐿𝑈2)
1

𝐼𝑥𝑥

�̇� = ((𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟 − 𝐽𝑟𝑝𝜔 + 𝐿𝑈3)
1

𝐼𝑦𝑦

�̇� = ((𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞 + 𝐿𝑈4)
1

𝐼𝑧𝑧

 (3.2.14) 

According to the previous equation, the body angular acceleration is subject 

to control. This control is performed directly over its attitude. Therefore, the body 

attitude matrix is, in this work, represented by eq. (3.2.15). 

 𝚯𝐴 = [𝛼 𝛽 𝛾]𝑇 (3.2.15) 

The subscript 𝐴 denotes the aircraft frame. 

3.2.4 Euler angle and body axis rates 

The aircraft dynamics are now better controllable, although one issue arises. 

In a real environment, the sensors are placed on the aircraft center body. There-

fore, the values read by the same are relative to the aircraft reference frame, thus 

a relation between the aircraft and earth must exist. 
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 [
𝑝
𝑞
𝑟
] = 𝐈3𝑥3 [

�̇�
0
0

] + 𝐑𝜙 [
0
�̇�
0
] + 𝐑𝜙𝐑𝜃 [

0
0
�̇�
] (3.2.16) 

 [
𝑝
𝑞
𝑟
] = [

1 0 sin(𝜃)

0 cos(𝜙) sin(𝜙) cos(𝜃)

0 − sin(𝜙) cos(𝜙) cos(𝜃)
] [

�̇�

�̇�
�̇�

] (3.2.17) 

Eq. (3.2.16) establishes a mapping from the inertial to the body reference 

frames through the Euler angles and body axes rates. This is the convention 

adopted in this work and commonly adopted on aeronautics, where the yaw ro-

tation is performed first, then pitch and finally roll, after which the Euler angles 

rate is converted to the body axes rate (Stengel 2016). 𝐈3𝑥3 denotes a 3𝑥3 identity 

matrix. 

This conversion matrix is non-orthogonal, meaning that if 𝐐 ∈ ℳ𝑛𝑛, ∀ 𝑛 ∈

ℕ∗, then 𝐐−1 ≠ 𝐐𝑇. If the inverse transformation is applied, we are now obtaining 

the Euler angles rate from the body axes rate. 

 

[
 
 
 
 
�̇�

�̇�

�̇�]
 
 
 
 

=

[
 
 
 
1 tan(𝜃) sin(𝜙) tan(𝜃) cos(𝜙)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃) ]
 
 
 

[
 
 
 
 
𝑝

𝑞

𝑟]
 
 
 
 

 (3.2.18) 

Solving eq. (3.2.16) it is obtained eq. (3.2.17). Transforming this into a body 

to inertial frame relation, we obtain eq. (3.2.18). Analysing this last one, a singu-

larity at 𝜃 = 90° is detected. In this region, the aircraft is intrinsically unstable. 

Nevertheless, as it is shown on Flight control section, this singularity is not of 

concern on any flight step. 
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3.3 Motor dynamics and configuration 

Two specific experiment were conducted in (Brito 2016). One to obtain a 

mathematical representation of the E305 2312E BLDC motor behaviour. The 

other, to understand the improvement of a two-rotor configuration on each arm 

over a one-rotor configuration. 

3.3.1 Motor dynamics 

With the first experiment, the mathematical representation led to an output 

as a function of only one input. Any constant coefficients are already considered. 

Eq. (3.3.1) shows the TF, with unitary static gain, representative of the motors 

dynamics. Both input and output are expressed in units of force, where the first 

regards the desirable force and the second the one that is actually exerted by the 

motors. 

 𝐹𝑛(𝑠) = 
47.6205

𝑠2+25.9384𝑠+47.6205
 (3.3.1) 

3.3.2 One-motor vs two-motor configuration 

Another experiment relates with the influence of the motors on each frame. 

Specifically, to understand how the second motor on each arm improves the 

thrust. Figure 3.2 and Figure 3.3 represent a static and nonlinear third order sys-

tem approximation for the one-rotor and two-rotor configuration, respectively. 

The corresponding functions are given by eq. (3.3.2) and eq. (3.3.3). 



52 

 

Figure 3.2: One-rotor configuration. 

 

Figure 3.3: Two-rotor configuration. 

 𝑓1𝑅(𝑡) = −37.288994𝑇𝑃𝑊𝑀
3 + 172.286169𝑇𝑃𝑊𝑀

2 − (3.3.2) 

 −249.117605𝑇𝑃𝑊𝑀 + 115.291879  

 𝑓2𝑅(𝑡) = − 70.427872𝑇𝑃𝑊𝑀
3 + 319.248999𝑇𝑃𝑊𝑀

2 − (3.3.3) 

 −461.320062𝑇𝑃𝑊𝑀 + 215.423951  

On the two previous equations, 𝑓1𝑅 and 𝑓2𝑅 represent the force produced on 

each quadrotor arm in one-rotor configuration and two-rotor configuration, re-

spectively, and 𝑇𝑃𝑊𝑀  represents the PWM period. 

These experiments were conducted by (Brito 2016) upon the mentioned mo-

tors model. The objective was that these second motors would act as redundant 

motors to avoid system breakdown in case of failure of the primary motor. 
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From Fig. 3.3, we can see that the improvement in thrust about Fig 3.2 is 

minimal. The way to surpass this physical threshold relies in different technical 

characteristics of each motor components, such as, e.g., the propellers length or 

pitch. By implementing a two-rotor configuration, the torque produced by each 

arm end may be generated with a lower power supply when compared to the 

one-rotor configuration. One reason is the influence of the top motor, which in-

creases the efficiency of the bottom one. 

3.4 The landing Approach 

Once the model of the quadrotor is completed and equipped with the re-

spective physical properties, the next step is to approach the aircraft landing with 

a mathematical description of the physics involved and with certain assump-

tions. In this section, only the physics are considerate. 

3.4.1 Ground Effect 

Firstly, let’s assume the aircraft is hovering near the target and is able to 

acquire its relative position. If it is sufficiently closer to the target, an aerody-

namic effect called Ground Effect happens to occur. This effect is previously de-

scribed and the original deduction is based on an aircraft of a single propeller, 

specifically a helicopter, whose mathematical representation is expressed by eq. 

(2.2.3) and eq. (2.2.4). In this work, these equations are assumed as a valid esti-

mate to the quadrotor case and so are tested considering the quadrotor geometry. 

3.4.2 Touchdown 

A focal point is the last step of the aircraft landing, where the leg meets the 

target. At this moment, important physics assumptions are to be made. In reality, 
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the leg suffers deformation on impact moment. This deformation can be quanti-

fied by relying on Hooke’s Law. 

 𝐹𝑠 = −𝐾𝑠𝑧 (3.4.1) 

Of the mass-spring system expressed by eq. (3.4.1), 𝐹𝑠 represents the force 

exerted on the spring, 𝐾𝑠 [𝐾𝑔. 𝑠
−2] the stiffness constant and z [m] the defor-

mation, or stretch, quantity of the spring. The negative sign intends to indicate 

the opposite direction between the spring deformation and force exerted by the 

spring. This is a second order system and it is marginally stable. This means that, 

if this system suffers a disturbance, the spring will never cease its oscillating mo-

tion. The solution is to add a damping element, hence turning into a mass-spring-

damper system, as in the suspension system of an automobile. 

 𝑚�̈� =  −𝐾𝑠𝑧 − 𝐾𝑑�̇� (3.4.2) 

Eq. (3.4.2) is a more complete version of the previous one, where a damping 

factor, 𝐾𝑑 [𝐾𝑔. 𝑠−1], is added. It represents the friction against the spring stretch 

direction, causing the spring to eventually return to its resting position. 

This last equation is the one to apply to the existing model. Its quality in the 

representation of the quadrotor legs dynamics is put to the test on the Simulation 

and Results Chapter. Here, the behaviour of the quadrotor is studied assuming 

𝐾𝑠 = 10000 𝐾𝑔. 𝑠
−2 and 𝐾𝑑 = 100 𝐾𝑔. 𝑠−1. With the first assumption, the quad-

rotor legs are expected to deform about two millimeters, given the overall body 

mass. 

In this thesis, only a flat surface is considered, on which is performed a pure 

vertical landing by the quadrotor. For this, the four legs are mathematically char-

acterized by Hooke’s Law, previously mentioned. 

3.4.3 Disturbances 

The most resounding disturbance approached here is the air flow. It can 

have a major contribution on aircraft final approach. As the aircraft is lowering 
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in altitude, the more critical becomes the information about its position and atti-

tude in relation to the target. The force applied by the air resistance to aircraft 

motion is given by eq. (2.2.2), but approximated to 𝐅𝐷, as observed on eq. (3.2.6). 

3.5 Flight control 

In this section, are presented the control methodologies as well as the con-

trol architectures for each of the six degrees of freedom. It is important to refer 

that some assumptions are made, which are described below. 

All the physics quantities regarding the aircraft motion are read from ideals 

sensors. Clearly, this kind of sensors do not exist, but for simplification purposes 

they are considered. Because the rotor inertia is very small, is therefore consid-

ered zero for simulation purposes. 

The motors dynamics obtained via experimentation conducted on Brito’s 

work are considered. In his work, the control unit is an Arduino, which provides 

PWM signals to control each motor. Thus, this time signal is converted to a force 

quantity that is described by eq. (3.3.2) or eq. (3.3.3), depending on the topology 

applied. In the simulation environment, the output of the control system in meas-

ured in Newtons, so a conversion from force to time is necessary to preserve the 

characteristics of the real system. Fig. 3.4 illustrates this conversion under the 

form of a blocks diagram. 

 

Figure 3.4: PWM and Force signals conditioning. 
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In the following control schemes, the motors’ dynamics and time / force re-

lations are integrated. 

3.5.1 PID controller 

In the following subsections, the control schemes are composed by PID con-

trollers due to their simplicity of implementation. To find the parameters, the 

Ziegler-Nichols tuning methods and the PSO algorithm are applied. These archi-

tectures are structured in two stages: the inner loop, where the angular / linear 

speed is controlled; and the outer loop, where the position / attitude is locked at 

a desired setpoint. In this cascading control loop, the inner loop must be obvi-

ously faster than the outer loop. The setpoint is applied to the outer loop, which 

is not able to eliminate inner loop disturbances, like drag. Also, an obvious reason 

lies with the fact that position is an integration of velocity, thus slowing down 

the system response to a positional setpoint. 

PSO algorithm can have better performance than Ziegler-Nichols method 

on tuning the PID controllers as observed on (Yadav and BhuriaVijay 2015; 

Edaris and Abdul-Rahman 2016) works. Nonetheless, it may be difficult to find 

a local optimum that drives the system to a stable closed-loop or even to find a 

local minimum in the first place (Clerc and Kennedy 2002). Each particle may be 

driven away from a satisfactory solution depending on its location when initial-

ized or the location of the global best particle. 

Infra are the procedures to take in order to acquire the controllers’ parame-

ters, along with tables showing the values obtained for the same parameters. 

3.5.1.1 PSO method 

The first algorithm put to the test is the PSO. Because this is a discrete-time 

process, it is necessary to discretize both the continuous model and PID algo-

rithm. From the previous eq. (2.6.1), the PID equivalent in the Laplace domain is 

given by eq. (3.5.1). 
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 𝑈(𝑠) = 𝐾𝐸(𝑠) ∙ (1 +
1

𝑠𝑇𝑖
+ 𝑠𝑇𝑑) (3.5.1) 

For any continuous-to-discrete transformation, a sampling of 10 𝑚𝑠 and the 

bilinear – Tustin – transformation, eq. (3.5.2), are applied (K. J. Astrom and 

Wittenmark 1996) in order to preserve the dynamics of the continuous model. 

The resulting PID discrete controller is described by eq. (3.5.3). 

 𝑠 =
2

𝑇𝑠

℥−1

℥+1
 (3.5.2) 

 𝑈(℥) = 𝐾𝐸(℥) ∙ (1 + (
𝑇𝑠

2

℥+1

℥−1
)
1

𝑇𝑖
+ (

2

𝑇𝑠

℥−1

℥+1
)𝑇𝑑) (3.5.3) 

Where ℥ represents the discrete domain, 𝑠 the Laplace domain and 𝑇𝑠 is the 

sampling period. The continuous system model is also discretized, but for sim-

plicity are assumed null disturbances and the physical properties are preserved 

as constants. 

The PSO algorithm is configured with a sampling period of 10 𝑚𝑠, swarm 

population of 20 particles where each particle is initialized with a random value 

comprised between 0 and an arbitrary positive value, 1.49 for both adjustmemt 

coefficients and a maximum of 1000 cycles if the stop condition has not yet been 

met. The reference signal is a unit step function, changing from zero to one in ten 

milliseconds at second two. The time horizon is set in the range [0; 10]𝑠 and sam-

pling frequency of 100 samples per second. Throughout the next experiments, no 

restrictions were superimposed on the acquisition of the solutions. 

The cost function chosen is a ponderation between the mean-squared error 

and a mean square variation of the control action and is represented by eq. (3.5.4). 

 𝐽(. ) = (𝛼 ∑ (𝑟𝑒𝑓(𝑘) − 𝑦(𝑘))
2𝑁

𝑘 + (3.5.4) 

 +𝛽∑ (𝑢(𝑘) − 𝑢(𝑘 − 1))2𝑁
𝑘 )

1

𝑁
 

Where 𝛼 and 𝛽 are wheights with arbitrary values, 𝑟𝑒𝑓 is the reference value 

or setpoint and 𝑦 the system output. The stop condition is based on the change 

of the cost function. If this change represents less than 10−6, then the sequence of 
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solutions converges, the process ends and the solution is a local minimum or is 

very close to one. 

Table 3.1 represents the PD and PID parameters obtained through PSO al-

gorithm to control the roll / pitch angular speed. This continuous model must be 

also discretized. 

Table 3.1: Roll / pitch controllers’ gains obtained via PSO method. 

Roll / Pitch Kp Ki Kd 

PD 1.7908 - 0.4907 

PID 2.1672 5 0.4418 

 

Where 𝐾𝑝 = 𝐾, 𝐾𝑖 =
𝐾

𝑇𝑖
 and 𝐾𝑑 = 𝐾𝑇𝑑. With these parameters, a step signal 

is applied to the closed-loop system. The result is illustrated on Fig. 3.5. 

 

Figure 3.5: Step response to pitch / roll speed closed-loop system. Controller’s 

gains based on PSO method. 

 It is possible to see that PD controller provides a reduced rising and settling 

time compared to PID controller. 

In this work, PSO is employed for attitude control. Due to factors mentioned 

previously, the presumably bad PSO parameters chosen and the absent of re-

strictions, the solution did not converge for any local optimum that could place 

the horizontal motion and altitude closed-loop systems in the stability regions. 
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Also, the sampling period used to discretize the continuous model affects the 

analytical discrete model precision. Higher the sampling rate, more similar are 

the continuous and discrete systems’ response to an input. However, as the coef-

ficients become smaller, the more precision may be required. In the case of hori-

zontal motion, where the respective control is placed on top of the attitude con-

trol block, this situation is more evidenced. Consequently, the controllers’ pa-

rameters for the horizontal motion and altitude are ruled by Ziegler-Nichols Ul-

timate Sensitivity method.  

3.5.1.2 Ultimate Sensitivity method 

The main idea behind this heuristic method lies in increasing progressively 

a sensitivity gain until the system reaches the threshold of stability. At this point, 

the sensitivity gain is given by 𝐾𝑢 and the oscillatory reaction of the system pos-

sesses a period given by 𝑇𝑢 (Ziegler and Nichols 1995). Table 3.2 represents each 

controller’s gains obtained according predefined rules. 

Table 3.2: Controllers’ gains obtained via Ultimate Sensitivity method. 

Controller K  Ti Td 

P 0.5𝐾𝑢 - - 

PI 0.45𝐾𝑢 𝑇𝑢/1.2 - 

PD 0.8𝐾𝑢 - 𝑇𝑢/8 

PID 0.6𝐾𝑢 𝑇𝑢/2 𝑇𝑢/8 

 

This tuning method is achieved on a close-loop system. Another method is 

applied on the open-loop system by analysing the system reaction to a stimula-

tion. The decision to not going with this last is due to a relative difficulty in ana-

lysing the curve and because the step response of the overall system in particular 

is not so monotone as desired.  
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The process to determine the controllers’ gains is here presented with the 

ascension speed control. The first step is to drive the closed-loop to the limit of 

stability and find 𝐾𝑢 and 𝑇𝑢. The marginally stable system is illustrated on Fig. 

3.6. 

 

Figure 3.6: Marginally stable ascension speed closed-loop system. 

With this test, it is obtained 𝐾𝑢 = 32.5 and 𝑇𝑢 = 0.82𝑠. Applying the rules of 

Table 3.2, it is possible to design the controller. Fig. 3.7 illustrates the closed-loop 

system with PD and PID control over the ascension speed to understand which 

provides the fastest response. 

 

Figure 3.7: Step response to ascension speed closed-loop system. Controller’s gains 

based on Ultimate Sensitivity method. 

Analysing the figure above, PD controller delivers a reduced rising and set-

tling time when compared to PID controller. However, this method provides 

slowest controllers than the PSO method, as foreseen. Also as seen in (Gibiansky 

2012), a manual tuning may not be the best approach, in the sense that may pro-

duce a poorest performance by comparison with other sophisticated methods. 
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3.5.2 Attitude control 

The first control scheme presented regards the quadrotor attitude. The 

closed-loop system assumes a cascading control loop with one inner loop and an 

outer loop. The inner loop, as mentioned, must be faster than the outer loop, as 

it will set the stall speed response of the system. The control loop is illustrated on 

Fig. 3.8. 

 

Figure 3.8: Attitude control scheme. 

 In order to maintain stability, a range of [−30; 30] degrees is set as admissi-

ble for each angular position, thus restrained between these bounds. Under or 

above this range, the quadrotor stability and lift could be at risk. 

The attitude controllers’ gains are obtained through PSO method. On the 

inner loop, an angular speed controller is placed to stabilize the attitude control, 

benefiting from information about other state variable than angular position. The 

gains obtained can be seen on Table 3.3. 
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Table 3.3: Attitude controllers’ gains obtained via PSO method. 

Controller Kp Ki Kd 

Roll speed 1.7908 - 0.4907 

Pitch speed 1.7908 - 0.4907 

Yaw speed 2.3375 - 0.6894 

𝜶 1.5018 - - 

𝜷 1.5018 - - 

𝜸 0.988 - - 

 

3.5.3 Position control 

3.5.3.1 Altitude 

The altitude is an important measure to control, as it is the core step to air-

craft stabilization and motion. The closed-loop architecture adopted is illustrated 

by the following Fig. 3.9 and is similar to the one applied for attitude control. 

 

Figure 3.9: Altitude control scheme. 

For both speed and position control on Z axis, the controllers’ gains are ac-

quired based on Ziegler-Nichols tuning rules. As shown before, this method does 

not give the best or the fastest controller, but only a good controller that can place 

the closed-loop system on the stability region and with a fairly good tracking 
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control. Table 3.4 shows the gains obtained by applying the Ultimate Sensitivity 

method to altitude control. 

Table 3.4: Altitude controllers’ gains obtained via Ultimate Sensitivity method. 

Controller Kp Ki Kd 

Speed 26 - 2.665 

Position 2.065 - - 

 

3.5.3.2 X / Y control 

The way to control longitudinal and lateral positions is naturally different 

from the way to control the altitude. To move along X or Y axes, the quadrotor 

must suffer an inclination, be it pitch or roll, respectively. Therefore, in these 

cases, a control over attitude is needed. On Fig. 3.9 is represented the control ar-

chitecture for X and Y positions. 

 

Figure 3.10: Position control scheme. 

To control the motion on the horizontal plane, it is necessary to control the 

aircraft attitude in the first place. Hence, the attitude control is placed on the in-

ner loop. As the block that feeds the output directly, it is more critical to the per-

formance of the system. This is the main reason why PSO method is applied. On 

the middle loop, is placed the linear speed control. It provides a better stabilized 
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angle setpoint to the inner loop. Finally, the outer loop is composed by the posi-

tion control, where the position command, from a human controller or a high-

level architecture, is applied. 

On Table 3.5 are specified the controllers’ parameters for speed and position 

control, obtained through Ziegler-Nichols method. 

Table 3.5: Position controllers’ gains obtained via Ultimate Sensitivity method. 

Controller Kp Ki Kd 

X speed 0.7 0.392 0.098 

Y speed 0.7 0.392 0.098 

X 0.31 - - 

Y 0.31 - - 

 

3.5.4 Thrust control 

One real limitation is the maximum amount of thrust that each motor can 

generate and provide to the body lifting. Obviously, the minimum thrust is zero, 

assuming air flow through the rotors is always forced down when they are pow-

ered and the blades are rotating. From the simulation point of view, this is char-

acterized by a saturation block. However, even if the output is limited, the system 

integrators keep accumulating the saturated value. This can lead to faulty actua-

tions, influencing the overall system response. To diminish this effect, an anti-

windup technique is applied.  

The technique applied is based on the back-calculation of the integral ac-

tion. It reduces the rate at which the signal is stored. It is mainly composed by a 

PID controller and a coefficient to settle the discharge ratio (Bemporad 2011). Fig. 

3.11 represents the architecture described. 
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Figure 3.11: Back-calculation Anti-Windup with PID controller. 
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4 Simulations and Results 

In this chapter are presented all the tests conducted on the overall system. 

It is a way to validate all the work done on Chapter 3. 

Througout the next sections and for testing purposes, a variable setpoint 

and a time horizon in the range of [0; 90]𝑠 are considered when only one rotation 

or translation is tested at a time. Also, each motors TF is contemplated and di-

rectly influence the results.  

For a more direct analysis and easy reading of the graphs, the angular units 

are expressed in degrees. 

Fig. 4.1 represents this hovering and the respective control action. The 

quadrotor remains at the origin of the reference frame regarding X and Y coordi-

nates. 
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Figure 4.1: Hovering. From left to right, position and altitude control action. 

Because at the start of the simulation the motors are at rest, the spikes on 

the right graph relate to the altitude control actuation over the motors, so the 

quadrotor remains at 20m setpoint, as seen on the left upper graph on the figure. 

The image from below refers to the speed at each time instant. In all figures where 

attitude or position are displayed, the respective velocities are illustrated below. 

The quadrotor must be hovering sufficiently away from the ground to ena-

ble its rotation. Thus, the simulations are conducted on the aircraft while hover-

ing at 20 m. The simulation starts with all motors off, hence the initial spikes cor-

responding to the transient state. 

4.1 Zero drag effect 

The set of graphs analysed during this sub-chapter, do not contemplate any 

influence of any kind of disturbance. On the next one, some tests are then exe-

cuted considering the effect of air resistance to linear motion. 

4.1.1 Attitude 

In this section, the response of the quadrotor attitude is analysed. A separa-

tion between body and inertial frame is underlined. 
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4.1.1.1 Pitch rotation 

The first step consisted in testing only one rotation at a time. Because the 

controllers for both pitch and roll are the same, are here presented only the pitch 

curves, as well as the control action.  

Fig. 4.2 illustrates the evolution of the angular displacement and rate of 

change over time. Because the specified limit to pitch and roll rotations are 30 

degrees, the maximum setpoint applied is 25 degrees. The respective control ac-

tion and the influence on altitude control actuation are presented on Fig. 4.3. 

 

Figure 4.2: Rotation response to a variable pitch setpoint. From left to right, body and Eu-

ler angles. 

We can see in the previous figures, the body and inertial curves are the same 

concerning both angular displacement and rate of change. The response is fairly 

swift, with a rising time of about four seconds on the most expressive setpoint 

variation. This is the simplest case where only one rotation occurs. The next fig-

ure concerns the altitude and pitch control actions. 
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Figure 4.3: Control actions in response to pitch error. From left to right, altitude and pitch 

control actions. 

The left image represents the fluctuations in the altitude control action 𝑈1 

due to the inclination of the quadrotor. The more emphasized this inclination, 

the greater must be the thrust supplied to the overall system. The right image is 

the control action 𝑈3 and the spikes denounce a change of the angle setpoint. The 

actuation of the roll rotation is the same as pitch, only inverted. From the right-

hand rule, when roll rotation is positive, the respective angle is negative. Fig. 4.4 

intent is to provide further detail on the 𝑈3 signal. 

 

Figure 4.4: Control actions in response to pitch error. From left to right, force to be ap-

plied by each rotor and pitch control action. 

A 20 degrees pitch step signal was applied to the system, resulting in the 

control action seen on the previous figure.  
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On the left side of the image, is presented the influence of each motor, with 

its dynamics not considered here. A saturation is set so each motor can only con-

tribute with a thrust force in the range of [0; 1] N. When the control error is below 

zero, the motors 1 and 5 provide more thrust than the antagonistic motors 3 and 

7. When the control error is above zero, the opposite happens.  

On the right side of the image, the control action 𝑈3 is presented. It has a 

smooth variation and small values are enough to cause the quadrotor to rotate. 

4.1.1.2 Yaw rotation 

The yaw rotation is similar to both pitch and roll rotations, but some partic-

ularities caused different controllers’ gains. Fig. 4.5 describes the yaw response 

to a variable setpoint, with the respective control action found on Fig. 4.6. 

 

Figure 4.5: Rotation response to a variable yaw setpoint. From left to right, body and Eu-

ler angles. 

The image above describes the response to a variable setpoint from the 

point of view of the body and the inertial frames, respectively. Similarly to the 

pitch / roll case, both curves are the same as only one rotation occurs and the 

other angular positions remains zero. The response time provided by yaw con-

trollers is also similar to the ones applied in pitch / roll control. 
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Figure 4.6: Control actions in response to yaw error. From left to right, altitude and yaw 

control actions. 

In opposition to pitch or roll, the yaw rotation has meaningless significance 

on the overall system stability, still considering only one rotation applied. This 

assertion can be verified by superficially analyse control action 𝑈1 on the left side 

of the figure above. 

On the right side of the image, a graph representing the control action 𝑈4 is 

shown. The spikes represent each change of the reference value, which develops 

a control error and the subsequent control action observed. 

4.1.1.3 Pitch and Roll rotations 

Another situation is now simulated. Roll and pitch rotations are now sim-

ultaneously occurring. The point of this test is to understand the difference of 

perception between an inertial and a rotating reference frames. The body and 

Euler angles and angular speeds curves are illustrated on Fig. 4.7. 
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Figure 4.7: Rotation response to a step input signal applied to roll and pitch. From left to 

right, body and Euler angles. 

For this test, step signals with static value of (20, 25) degrees are applied to 

(𝛼, 𝛽) angles, respectively. 

In the previous graphs, the ones from the left are clearly different from the 

ones on the right. From the inertial reference frame perspective, the body per-

forms a yaw rotation. By analysing the curves on the body frame and the actua-

tion signals presented on Fig. 4.8, this fact does not happen. This effect happens 

when two or more rotations are executed and its confirmation comes from the 

following tests. 

 

Figure 4.8: Control actions in response to roll and pitch error. From left to right, altitude 

and attitude control actions. 
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On the graph on the left, the actuation for the altitude is shown. No signifi-

cant variations are noted on the curve comparing with the situation observed on 

Fig. 4.1. 

The three graphs on the left translate the control actions 𝑈2, 𝑈3 and 𝑈4, re-

spectively. Roll and pitch actuations resemble each other as supposed, given the 

similarity in terms of model description and controller design. 

4.1.1.4 Pitch and Yaw rotations 

In close relation to the previous test, now the pitch and yaw rotations are 

performed at the same time. It is expected, from the inertial observer point of 

view, to be performed a roll rotation due to yaw. The results are present on Fig. 

4.9. 

 

Figure 4.9: Rotation response to a step input signal applied to pitch and yaw. From left to 

right, body and Euler angles. 

Step signals with static value of (20, 60) degrees are applied to (𝛽, 𝛾) angles, 

respectively, for the time being test. 

From the body frame curves, the result is closely connected to the setpoints 

defined. On the opposite, the inertial observer detects a third rotation. This is the 

same effect mentioned on the previous test. 

On Fig. 4.10 are specified the control actuation graphs. 
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Figure 4.10: Control actions in response to pitch and yaw error. From left to right, altitude 

and attitude control actions. 

The above figure may seem somewhat inconsistent with the previous one, 

at first glance. Due to the execution of pitch and yaw positive rotations, given the 

right-hand rule, the quadrotor will lean to its left. This means that it tends to do 

a negative roll. At the same time, the control action responsible for this rotation 

is triggered. When the pitch and yaw angular speeds decrease, the opposite effect 

is slightly noticed.  

4.1.1.5 Pitch, Roll and Yaw rotations 

For the last test involving directly the attitude control, the pitch, roll and 

yaw are simultaneously actuated. The results can be seen ahead on Fig. 4.11 and 

4.12. 
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Figure 4.11: Rotation response to a step input signal applied to roll, pitch and yaw. From 

left to right, body and Euler angles. 

 

Figure 4.12: Control actions in response to roll, pitch and yaw error. From left to right, al-

titude and attitude control actions. 

 

Three step signals are applied in this simulation. For pitch a reference of 10 

degrees, for roll 20 degrees and for yaw rotation 60 degrees. 

The information extracted of this simulation is, in all aspects, the same men-

tioned on the previous test conducted. 

To conclude this section, the controllers designed through PSO algorithm 

provide general good response of the system. No evidence of overshoot and good 

rising time and settling time are good indicators and can provide a solid base for 

the position controllers, whose results obtained are described in the next section. 
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4.1.2 Position 

In this section, are now presented the results for the position control. 

4.1.2.1 Altitude displacement 

The altitude control is, as declared before, the core block for the quadrotor 

hovering. Thus, the performance of the controllers are then analysed.  

 

Figure 4.13: Translational response to a variable altitude setpoint. 

 

Figure 4.14: Control action in response to altitude error. 
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On Fig.4.13, are represented the trajectory control for the quadrotor altitude 

and the respective speed at each time instant. We can see that occurs overshoot 

at each setpoint change and both rising and settling time are slower than the ones 

analysed from the attitude controllers. Even though this may be considered ac-

ceptable away from the ground, when the quadrotor is too close to the target, a 

crash might happen. On seconds 64 and 78, roughly, this situation is noticed. 

Ahead, this problematic is approached. 

From the Fig. 4.14, we can verify the wide set of values that 𝑈1 assumes at 

each setpoint variation, which is not desirable. Particularly, because physical sys-

tems may not be able to support this actuation over prolonged periods of time. 

4.1.2.2 X displacement 

The control over X position is the same as the Y, so only the results, indicat-

ing the controllers’ performance, for the first one are presented. On Fig. 4.15 are 

illustrated the system response to a variable setpoint command applied to hori-

zontal motion. On Fig. 4.16, the altitude and pitch control actuations are denoted. 

 

Figure 4.15: Translational response to a variable setpoint applied to X axis. 

 



79 

 

Figure 4.16: Control actions in response to X error. From left to right, altitude and pitch 

control actions. 

On the first image, are represents the displacement and speed over the X 

axis. In order for the quadrotor to move along the X axis, an actuation for the 

motors to apply the pitch rotation must be sent. Because this is a complex system 

and the control techniques used have their characteristic setbacks, the results 

show a somewhat slow response. Nonetheless, as we can inspect from the figure 

below, the actuation over the altitude and pitch rotation can be considered 

smooth. From the graph on the right, the 𝑈3 actuation oscillates around a narrow 

range of values. 

4.1.2.3 X and Y displacement 

On the next simulation, the horizontal motion control is reviewed. Only 

now, motion on the hole horizontal plane is considered. On Fig. 4.17 are shown 

the position and velocity response, and on Fig. 4.18, the control actuations signals 

are exposed. 
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Figure 4.17: Translational response to a step input signal applied to X and Y axes. 

 

Figure 4.18: Control actions in response to X and Y error. From left to right, altitude and 

attitude control actions. 

The setpoints chosen for this test were step signals with a static value of 

(30, 10) meters applied to (𝑋, 𝑌) controllers, respectively. One can conclude that 

further the setpoint, the more expressive becomes the overshoot and the settling 

time. Notwithstanding, the quadrotor moves towards the desired setpoints and 

the control actuations are not too expressive. 
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4.1.2.4 X, Y and Z displacement 

The three translational motions control are now combined altogether. This 

simulation enables to conclude if the displacement of the quadrotor over the 

three Cartesian axes simultaneously is possible. Fig. 4.19 shows the graphs rela-

tive to trajectory control. 

 

Figure 4.19: Translational response to a step input signal applied to X, Y and Z 

axes. 

In this simulation step signals with static value of (10, 25,30) meters are ap-

plied to (𝑋, 𝑌, 𝑍) controllers, respectively. 

The results are similar to what was expected, since the temporal evolution 

of the curves presents the same dynamics as in the previous tests. 

Fig. 4.20 illustrates the four model inputs actuation. 
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Figure 4.20: Control actions in response to X, Y and Z error. From left to right, altitude 

and attitude control actions. 

On the figure above, the graph on the left, the result is similar to the first 

test conducted on this section. In what concerns to the graphs on the right, the 

actuation signals are similar to the ones observed on the two last tests, with a 

small correction at the same time. This is due to the similarity between the two 

kinematics models and controllers. 

4.1.3 Landing 

To understand the influence of the landing considerations approached on 

the last chapter, results are presented given the specified inertial parameters and 

geometry of the quadrotor. The first demonstration regards the GE. 

4.1.3.1 Ground Effect 

In this subsection, the relation between the thrust induced on the rotors IGE 

and OGE can be analysed through the following Fig. 4.21 and Fig. 4.22. The first 

demonstrates this relation at zero air speed, whilst in the second the aircraft is 

provided with forward speed. On both, the rotors are supplied with constant 

power. 
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Figure 4.21: Thrust ratio at zero air speed and constant power. 

 

 

Figure 4.22: Thrust ratio at forward speed and constant power. 

By inspecting the two curves above, one can assume that this effect can be 

neglected, as its impact on the quadrotor thrust IGE is less than 3.5% than OGE. 

This statement is only true  given this specific quadrotor and knowing the used 

equations are inherently derived from a helicopter’s rotor dynamics. 

4.1.3.2 Touchdown 

In this particular situation, the simulation consists on transport the quad-

rotor from a height of 20 meters to ground level and analyse its impact on the 

surface. Fig. 4.23 shows this effect on the quadrotor altitude, the reaction from 

the ground and the altitude actuation. 
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Figure 4.23: Fall, touchdown and rebound: Altitude variation, reaction to impact and con-

trol action 𝑈1. 

The control action is expected to oscillate, given the previous results ac-

quired. As for the altitude – top left – and the reaction graphs – bottom left – the 

rebounds and spikes amplitudes coincide between each other. 

On a further detail, the moment when the quadrotor settles on top of the 

target is illustrated on Fig. 4.24. 
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Figure 4.24: Fall, touchdown and rebound: rest. 

A prolonged damping is noticed on the figure above due to the motors dy-

namics. After the moment they are turned off, the rotor blades have kinetic en-

ergy stored, causing them to keep rotating, thus generating thrust. When this en-

ergy dissipates, the rotors no longer generate thrust, and so the gravity force and 

reaction remains in the system. Because of the quadrotor’s legs and the stiffness 

and damping coefficients chosen on Chapter 3, the quadrotor base will settle at 

0.07 meters height. However, because the legs are not perfectly rigid, they will 

deform roughly 0.002 meters. 

4.2 Disturbances – zero air speed 

In this section, the air drag that opposes to linear motion is considered. For 

no specific reason, the coefficient 𝐾𝑣, that establishes a relation between the quad-

rotor and air velocities, is set to one. For simplicity, it is assumed null wind ve-

locity. For a better comparison between results, the setpoints applied in this sec-

tion are the same as the setpoints applied in the previous one. 
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4.2.1 Position 

4.2.1.1 Altitude displacement 

The first simulation results with disturbance regard is focused on altitude. 

Fig. 4.25 the position and velocity graphs are presented, followed by Fig. 4.26, 

where the altitude control actuation is shown. 

 

Figure 4.25: Translational response to a variable altitude setpoint. Air drag is con-

sidered. 
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Figure 4.26: Control action in response to altitude error. Air drag is considered. 

 

With the air resistance influence, the altitude variation is smoother than the 

case with disturbance rejection. This air drag helps the quadrotor to slow down, 

improving the trajectory control. In addition, the control action 𝑈1 is less expres-

sive considering both cases. 

4.2.1.2 X displacement 

The horizontal motion with air resistance effect is now considered. Trajec-

tory control and actuation results are shown on Fig. 4.27 and Fig. 4.28, respec-

tively. 
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Figure 4.27: Translational response to a variable setpoint applied to X axis. Air 

drag is considered. 

 

Figure 4.28: Control actions in response to X error. From left to right, altitude and pitch 

control actions. Air drag is considered. 

Comparing the results from the previous section with graphs confronted 

supra, no significant changes are noticed. The implemented controllers are capa-

ble of rejecting small disturbances. 

4.2.1.3 X, Y and Z displacement 

For the final simulation performed on translational tracking control, a step 

signal is applied to each of the Cartesian axes. The results are implicit on the sub-

sequent Fig. 4.29 and Fig. 4.30. 
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Figure 4.29: Translational response to a step input signal applied to X, Y and Z 

axes. Air drag is considered. 

 

Figure 4.30: Control actions in response to X, Y and Z error. From left to right, alti-

tude and attitude control actions. Air drag is considered. 

The previous graphs denotes discrepancy, in comparison with the results 

from the previous section, regarding altitude response and control actions 𝑈2 and 

𝑈3. The controllers’ actuation is smoother in the presence of air drag, which is a 

good indicator considering that it is a situation closest to a real environment. 

4.2.2 Touchdown 

To conclude this sequence of simulation events and to close this chapter, 

the touchdown event is tested with the influence of air resistance. Fig. 4.31 de-

scribes the altitude variation, the reaction to the rebound and the control action. 
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Figure 4.31: Fall, touchdown and rebound: Altitude variation, reaction to impact and con-

trol action 𝑈1. Air drag is considered. 

The graphs above simply describe a smoother rebound and altitude control 

actuation in the presence of air drag.  

In conclusion, in any of the tests conducted on this section, the system loses 

its stability. In fact, in some cases, it benefits from this air resistance, providing a 

better tracking control and more stabilized actuation over the system. 
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5 Virtual environment 

The next step of this work consists in the development of a virtual world, 

so tests can be conducted on the equations that define the quadrotor dynamics 

before a real experiment takes place. This environment is composed by basic fea-

tures such as the quadrotor 3D model, the surface and few obstacles. 

First, it is presented the comparison tables between different 3D modelling 

and simulation software to aid in the decision-making of each software to use. 

Lastly, the 3D model and the virtual environment project are exposed, respec-

tively. 

5.1 Software synthesis 

To decide which software is suitable for this work, both professional and 

subjective opinions were considered. Tables 5.1 and 5.2 enhance the features of 

each software. Here, the more filled is the bar, more positive is the respective 

feature for this work purposes. 
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Table 5.1: Characteristics table of different 3D modelling tools. 

 

MAYA 3DS MAX BLENDER 

Learning Curve    

Design    

Materials Creation and Edition    

Modelling    

Simulation    

Licence Free for students Free for students Free 

 

Table 5.2: Characteristics table of different Game Engines. 

 

UNITY UNREAL 

Learning Curve   

Graphics 2D / 3D 2D / 3D 

Programming    Lan-

guages 
C# / Javascript C++ / Blueprint Visual Scripting 

Add-ins   

Supported Formats  .fbx only 

Licence Paid / free with less features 
Free for non-commercial pur-

poses 

 

Based on the previous tables, showing off the software key features accord-

ing to what is necessary for this work, decisions were made. Blender is the mod-

elling tool chosen due to its general good features and it is free for any applica-

tions. Regarding game engines, the chosen one is the Unreal Engine because it 

offers two different programming methods and it is free, considering the purpose 

of this research is to provide knowledge rather than benefit monetarily from it. 
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5.2 Blender 

In this section, the quadrotor 3D model assembled on Blender software, ver-

sion 2.78, is presented. For this model, are used the 3D pieces created by Brito. 

5.2.1 Skeletal Mesh 

The skeletal mesh is an object with several attributes and which can be ruled 

by physics laws. These attributes are polygons and bones. The first ones repre-

sent the object visuals. The second allows deformations of the objects parts, ena-

bling animations. A static mesh is only composed by the first set of attributes and 

cannot be deformed in any way. 

5.2.2 Quadrotor Mesh 

The quadrotor 3D model is, in its hole, a skeletal mesh due to its propellers 

rotations, which are assembled to meet this specificity. 

 

Figure 5.1: Quadrotor 3D model assembled in Blender. 

The quadrotor illustrated on Figure 5.1, is visually the same as the one as-

sembled by Brito’s on Autodesk 123D. The main differences reside on the dy-

namics properties. This skeletal mesh contains bones: one on its center body and 

one on each propeller, to enable the respective rotation. It also has built-in rigid 
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body dynamics, empowering the ability to rotate and move linearly with respect 

to its inertial parameters and geometry, and constraints, keeping each leg at-

tached to the body. Because it is a skeletal mesh, it can also be used as a static 

mesh on a game engine, if simplicity is required. 

 

Figure 5.2: Example of Blender v2.78 workspace. 

Fig. 5.2 illustrates a possible Blender workspace set. On the middle, is the 

scene, or viewport. On the top, is the information bar and, on the bottom, are 

shown the 3D view editor and the timeline and playback controls. On the right, 

the objects editor, the overview of scene graph and all available data-blocks are 

represented. Finally, on the left side, a general scene and object editor is shown. 

5.3 Unreal 

Once the 3D model assembly is complete, it is essential to integrate it on a 

simulation platform. The Unreal Engine is the software chosen to develop the 

virtual environment responsible for testing and simulate the quadrotor kinemat-

ics model. 

Blueprints visual scripting is an object-oriented language, such as C++, and 

is the language used the most in this project. But for specific functionalities, C++ 

code is integrated. 
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5.3.1 Project development 

To develop a simulator, or a game as it is named in this field, in any game 

engine, a natural sequence of events must happen: choose the main scripting lan-

guage; create the scene; import the object and specify its role in the scene; supply 

the object with attributes and place it on the game viewport; design the event 

graph; and, lastly, simulate the project on the game viewport. This sequence is 

the one adopted throughout the development of this project, helped by an exist-

ing template granted by the Epic Games. 

Firstly, a new project is created. Templates are available to help on the initial 

stage of projects and so, as referred before, one is applied to this project. With 

this template, the scenery with the ground and the obstacles is already created. 

Secondly, the quadrotor 3D model is imported. It is defined as a pawn class, 

meaning that the object, hereby called actor, can be controlled and receive input 

commands from a controller, be it an intelligent controller or a user. For this work 

purposes, the actor is controlled exclusively by the user. After the definition of 

the class, some preparation is needed. Fig. 5.3 illustrates the environment where 

the collision boundaries are set, constraints and gravity applied, inertial quanti-

ties manually set and other physics properties, which are not considered, can be 

adjusted. 

 

Figure 5.3: Quadrotor physics assembly. Collision detection and other physics con-

siderations are embodied for simulation. 
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The third step regards input commands and actor dynamics. Inputs are 

events that are triggered if a change in state occurs or simply at every frame step, 

if desired. Any input event must be previously defined, but other types of events 

are available, e.g., events triggered only at the beginning of the simulation, when 

actor hits an obstacle, amongst others. Another advantage, is the possibility to 

manipulate files. One can read the input values from a file and write the outputs 

to another, opening doors interoperability with other software. With these 

events, a dynamic system can be built where the outputs are functions of the in-

puts events. On Fig. 5.4, the window where the interaction with the user is set is 

presented. In the project, four input commands are defined: roll, pitch, yaw and 

thrust. These are recognized as hardware events. The hardware used to control 

the action is the keyboard, as it is the most accessible. 

 

 

Figure 5.4: Project inputs. Definition of the input commands and the hardware 

from which they are sent. 

Any animation that happens in the game viewport, is preceded by a blue-

prints graph developed in event graph space. In this space, the system dynamics 

is placed and corresponds to the one represented by eq. (3.2.14). Functions and 

macros can be defined on the constructor graph, shown on Fig. 5.5, and be used 

on the event graph to simplify the blocks diagram. Additionally, values can be 

converted to strings and then printed on the game viewport. This way, it is easier 

to track minor dynamics issues, which may not be perceptible by analysing the 
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quadrotor behaviour alone, and to monitor simple parameters, e.g., position, ve-

locity, accelerations, and others.  

 

Figure 5.5: Set linear speed function on the constructor graph. Event graph has 

similar representation. 

To conclude, the testing step is composed by a compilation of all the code 

designed on the graph event, followed by the test itself. All the steps aforemen-

tioned, explained in a simplified way, are part of the game development process. 

In the game viewport, these processes can be visualized in the form of 3D draws. 

An example set for the game viewport is illustrated on Figure 5.6. 

 

Figure 5.6: Game viewport. The quadrotor 3D model and the scene are repre-

sented. 
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Intrinsically, the control is produced through the hardware inputs and the 

rotation is simply a visual detail. Therefore, from the control point of view, only 

one propeller is considered. For simplicity, in this version, it is not conceived the 

the propellers rotation, individually. Notwithstanding, this is possible by associ-

ating to each propeller a scene component class, allowing its own rotation. 

5.3.2 External actuation 

The input commands are a gateway to allow an interoperability relation-

ship between both engine and outside world, i.e., human. Is, then, important to 

understand how to set this relation. Fig. 5.7 illustrates the command flow from 

the moment the player triggers an input event through the selected hardware, to 

the moment when this action is perceived by the pawn component in the game. 
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Figure 5.7:  Input process flow. From the player actuation to the resultant game ac-

tion. Retrieved from (Epic Games 2017). 

As mentioned before, the software enables a communication to the exterior 

through the input settings. A panoply of hardware is compatible with the soft-

ware, of which are included the keyboard, the gamepad, an Android device, 

amongst others. For this work, only the keyboard hardware is used to manipulate 

the pawn. 

Inside the blueprints editor, another simple method is available. It is possi-

ble to load data from files and to store it as well. This can be done by importing 

a plugin, supported by Epic Games and at a cost for the user, or by integrating a 

C++ code, which is free for the user. In this work, a C++ project is integrated and 

pawn data is stored in text files, although it is possible to store it in several other 

file formats. 

Another method to actuate the pawn and all the components in the game is 

through TCP/IP communication. Although it allows a wireless communication, 

accentuated delays may occur, which compromise the control over the scene.  
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6 Conclusions and Future work 

In this chapter, are presented the limitations found on the control system 

proposed and on Unreal game engine. A conclusion of the work developed is 

also given, with the description of what needs to or can be improved in future 

developments. 

6.1 Control system limitations 

Two major limitations are found on the overall system. The first relates to 

the PWM / force conversion. The conversion has some flaws concerning the out-

put of each conversion. On some occasions, this conversion would cause the out-

put force quantity to exceed the by far the upper and lower limits defined. Be-

cause of this, it was not applied in this work. This problem is possibly related to 

precision. A better description of the functions involved is needed. 

The same issue occurred with the function description of the one-rotor and 

two-rotors configuration functions. The solution is possibly the same as the for-

mer one mentioned. 

The PSO algorithm was found difficult to implement when the system com-

plexity increased. The solutions did not converge, or the local minimum would 



102 

not guarantee the stability of the closed-loop systems. However, when a solution 

would converge and place the closed-loop on the region of stability, the results 

were satisfactory, as the simulations prove for the attitude controllers. For better 

selection of the PSO algorithm parameters it may be useful to see (Clerc and 

Kennedy 2002). 

6.2 Unreal Engine blueprints limitations 

One limitation found stands at monetary level. The files manipulation is 

possible in C++, but in blueprints scripting language this feature is paid. Alt-

hough, a simple C++ code integration is possible. 

A second limitation concerns the partition between world and actor rota-

tions. Attempts were made to include the “Euler angles rate” -to- “body axes 

rate” conversion matrix, but to no avail. The Epic Games provides documenta-

tion about these relations, but the integration was not possible. 

6.3 Work synthesis 

The main purpose and contribution of this thesis was the development of a 

3D virtual environment. With this tool, experiments can be conducted on the 

quadrotor model instead of the real structure, decreasing the chances of disabling 

it. A second goal was a description of some of the problems noticed when a quad-

rotor approaches the target. Three of them are described in this work. 

Additionally, a major improvement to the simplified model is the introduc-

tion of the body axes. With this upgrade, the three fundamental rotations can be 

performed simultaneously without driving the system to instability. This 

achievement is crucial while performing landing manoeuvres, so the quadrotor 

may be able to tolerate any form of disturbances. 
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It was found, through simulations, that ground effect is not a major threat 

to the quadrotor stability while landing, Hooke’s law proved to be a useful tool 

in the description of the quadrotor impact with a surface and it was found that 

the air resistance can lighten the controllers’ actuation, which ultimately reduces 

energy consumption. 

To conclude, the Unreal Engine has proved to be an interactive and enjoya-

ble way to learn and to develop work experiments. It is, with no doubt, a useful 

tool to continue to invest in the future. 

6.4 Future work 

Although some work has been conducted in this thesis, some subjects were 

left to complete and others were not included in the project objectives, but can 

also be studied. The main ones are described below. 

The control design was accomplished by removing the nonlinearities of the 

system. In future works, the nonlinear system may be described as a sum of lin-

earities, without the need to simplify the model.  

The controllers’ gains could be obtained through different control tech-

niques which could produce better controllers. 

Deeper study about the influence of air resistance on the quadrotor flight. 

Develop a ground effect model for the quadrotor case. 

Develop control to enable the quadrotor landing over moving surfaces. 

Continue the work conducted on Unreal Engine. 
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Attachment A – Quadrotor Parameters 

 

Parameter Value Unit 

Ixx, Iyy 0.0060 kg.m2 

Izz 0.0166 kg.m2 

Jr 4.104x0-6 kg.m2 

Mbody 1.5 kg 

Mmotor 0.057 kg 

Mpropeller 0.015 kg 

Mleg 0.015 kg 

hbody 0.07 m 

hleg 0.07 m 

larm 0.225 m 

Pitchpropeller 4.5x10-3 m 

rpropeller 0.1 m 
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Attachment B – Simulink Project 
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Attachment C – Unreal Engine Project 
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Attachment D – Unreal Engine Gameplay 
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