4 research outputs found

    Modelling and control of a wheelchair on two wheels

    Get PDF
    Wheelchairs on two wheels are needed for disabled persons to perform some of the essential tasks in their living and work environments. In fact it offers great advantages and efficiency for the user. Besides allowing a disabled to lead independent life, it is expected not to take much space during mobility as compared to when it is on four wheels and thus a wheelchair on two wheels has associated design and development challenges. These include modelling and controller design for the system to perform comparably similar to normal four-wheeled wheelchair. In this paper physical model of a wheelchair on two wheels that mimics double inverted pendulum is designed and a novel fuzzy logic control mechanism is developed and tested with control of the two-wheeled wheelchair

    Rejection of yaw disturbance in a two-wheeled wheelchair system

    Get PDF
    In this paper, a virtual wheelchair (WC) model is developed within Visual Nastran (VN) software environment where the model is further linked with Matlab/Simulink for control purposes. The goal is to have stable two-wheeled WC by transforming the two front wheels (caster) to the upright position. Theoretically, when the two big wheels are fed by the same torque, the WC system will only move in one (x-) direction (with a small forward and backward movement before settlement is achieved). On the other hand, WC in VN produces action-reaction forces in terms of friction between the wheels and the defined ground that lead to small degree of rotation with respect to vertical z- axis, (yaw disturbance). Fuzzy logic control is designed in order to eliminate this unwanted rotation of the wheels during lifting and stabilizing phase. Results show that the unwanted rotation of the wheels is successfully reduced

    Hybrid spiral-dynamic bacteria-chemotaxis algorithm with application to control two-wheeled machines

    Get PDF
    This paper presents the implementation of the hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) approach to control two different configurations of a two-wheeled vehicle. The HSDBC is a combination of bacterial chemotaxis used in bacterial forging algorithm (BFA) and the spiral-dynamic algorithm (SDA). BFA provides a good exploration strategy due to the chemotaxis approach. However, it endures an oscillation problem near the end of the search process when using a large step size. Conversely; for a small step size, it affords better exploitation and accuracy with slower convergence. SDA provides better stability when approaching an optimum point and has faster convergence speed. This may cause the search agents to get trapped into local optima which results in low accurate solution. HSDBC exploits the chemotactic strategy of BFA and fitness accuracy and convergence speed of SDA so as to overcome the problems associated with both the SDA and BFA algorithms alone. The HSDBC thus developed is evaluated in optimizing the performance and energy consumption of two highly nonlinear platforms, namely single and double inverted pendulum-like vehicles with an extended rod. Comparative results with BFA and SDA show that the proposed algorithm is able to result in better performance of the highly nonlinear systems

    Interval type-2 fuzzy logic control optimize by spiral dynamic algorithm for two-wheeled wheelchair

    Get PDF
    The reconfiguration of the two-wheeled wheelchair system with movable payload has been investigated within the current study towards permitting multi-task operations; through enhanced maneuverability on a flat surface under the circumstances of disturbance rejections during forward and backward motions, as well as motions on the inclined surface for uphill and downhill motions; while having height extensions of the wheelchairโ€™s seat. The research study embarks on three objectives includes developing Interval Type-2 Fuzzy Logic Control (IT2FLC) as the control system, design a Spiral Dynamic Algorithm (SDA) for IT2FLC in stabilizing the designed double-link twowheeled wheelchair system, and optimize the input-output gains and control parameters. The two-wheeled system gives lots of benefits to the user such as less space needed to turn the wheelchair, able to move in the narrow spaces, having eye-to-eye contact with normal people, and can reach stuff on the higher shelve. However, the stability of the twowheeled system will produce high fluctuations due to the uncertainties while stabilizing the system in the upright position. Indirectly, it also caused the long travelled distance and high magnitude of tilt angle and torque. Thus, IT2FLC has been proposed as the compatible control strategy for disturbance rejections to overcome uncertainties for enhanced system stability in the upright position. Basically, IT2FLC uses a Type-2 Fuzzy Set (T2FS) and its membership function (MFs) composed of the lower MFs, upper MFs, and footprint of uncertainty (FOU). This is the reason that IT2FLC possessing the ability to handle cases of nonlinearities and uncertainties that occur in the system. Therefore, any disturbances that give at the back of the seat can be eliminated using the proposed controller, IT2FLC. Additionally, SDA implemented within the control strategy to acquire optimal values of the IT2FLC input-output control gains and parameters of its MFs further accommodated extensive fluctuations of the two-wheeled system; thus, ensuring a safe and comfortable experience among users via shorter traveled distance and lower magnitude of torques following disruptions. The two-wheeled wheelchair is designed using SimWise 4D software to subduing shortcomings of a linearized mathematical model where lengthy equation with various assumptions is required to represent the proposed system; without forgoing its nonlinearity and complexity. Moreover, a 70kg payload was also included to embody an average user, in simulating vertical extensions of the system from 0.11m to 0.25m. The completed model is then integrated with Matlab/Simulink for control design and performance evaluation through visualized simulations. The research has been compared to the previous controllers, Fuzzy Logic Control Type-1 (FLCT1), in gauging improvements and performance superiority. The significance of SDA-IT2FLC as the stability controller within the investigated system has been confirmed through current findings, which outperformed that of its predecessors (IT2FLC and FLCT1). Such results are supported through a significant reduction in traveled distance, tilt, and control torques, following a recorded 5.6% and 33.3% improvements on the stability of the system, to the performance of heuristically-tuned IT2FLC; as well as a 60% and 94% improvements in angular positions on the system, as compared to the FLCT1. Moreover, a 95.4% reduction in torques has been recorded for SDA-IT2FLC, as compared to that of FLCT1. Ultimately, SDAIT2FLC has demonstrated promising outcomes over its predecessors on maintaining the systemโ€™s stability in an upright position in terms of faster convergence and a significant reduction in traveled distance, tilt and control torques, proving itself as the robust controller for a double-link two-wheeled wheelchair with movable payload system
    corecore