INTERVAL TYPE-2 FUZZY LOGIC CONTROL OPTIMIZE BY SPIRAL DYNAMIC ALGORITHM FOR TWO-WHEELED WHEELCHAIR

NURUL FADZLINA BINTI JAMIN

DOCTOR OF PHILOSOPHY

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR'S DECLARATION

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Doctor of Philosophy.

(Supervisor's Signature) Full Name : DR. NOR MANIHA BINTI ABDUL GHANI Position : SENIOR LECTURER Date : 14/12/2020

(Co-supervisor's Signature)Full Name: ASSOC. PROF. DR. ZUWAIRIE BIN IBRAHIMPosition: ASSOCIATE PROFESSORDate: 14/12/2020

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

ladalina (Student's Signature)

Full Name : NURUL FADZLINA BINTI JAMIN ID Number : PEE15011 Date :13/12/2020

STABILIZATION CONTROL OF TWO-WHEELED WHEELCHAIR USING SPIRAL DYNAMIC-BASED INTERVAL TYPE-2 FUZZY LOGIC FOR DISABLED/ELDERLY

NURUL FADZLINA BINTI JAMIN

Thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy

College of Engineering

UNIVERSITI MALAYSIA PAHANG

DECEMBER 2020

DEDICATIONS

Special dedication to my beloved husband Jaswari Ismail

Special dedication to my beloved mother Asmah Muhammad

Special dedication to my beloved father Jamin Razali

Special dedication to my beloved siblings Norul Huda, Nurul Hanisah, Mohd Ridzuan Firdaus, Nurul Fadhillah, Mohd Hiqquan Haqmel, Nurul Syakira, Muhammad Zaquan Naim, Mohd Khairul, Nurul Saliha, Mohd Hidayat and Mahfuz

> Special dedication to my beloved supervisor Dr. Nor Maniha Abdul Ghani

Special dedication to my beloved co-supervisor Associate Professor Dr. Zuwairie Ibrahim

Special dedication to my beloved lab mates Nurnajmin, Noraishah and Firdaus

For your infinite and unfading love, sacrifice, patience, encouragement, best wishes, for all your care, support, and belief in me.

ACKNOWLEDGEMENTS

Alhamdulillah, Ya Rabb. All praises belong to Allah s.w.t. The merciful, the beneficent, and the lord of the whole universe along with His mercy that has been awarded to the author.

In the name of Allah s.w.t., with His permission, Alhamdulillah this research study has been completed. Praise to Prophet Muhammad s.a.w., His companions, and to those on the path as what He preached upon, might Allah Almighty keep us His blessing and tenders.

My hearty gratitude and appreciation to my Ph.D. supervisor, Dr. Nor Maniha Abdul Ghani, and my co-supervisor, Associate Professor Dr. Zuwairie Ibrahim for the priceless supervision, guidance, support, and enthusiasm given throughout my study and doing research in their group. Their knowledge, idea, and brainstorming session in guiding me to solve problems and any issues throughout my research study are highly valued.

I would like to thanks Mybrain15, Ministry of Education Malaysia for sponsoring my study. My greatest dedication and special thanks to my entire lab mate Nurnajmin, Aisyah, and Firdaus who have been involved directly and indirectly in my research. Thank you to all staff of the Faculty of Electrical & Electronic Engineering Technology especially Salmiah for being kind and helpful.

Special appreciation and special thanks to my beloved husband, mak, abah, and siblings who have been understanding and sacrificing a lot throughout my study. Thank you for the encouragement, tolerance, love, and emotional supports that had given to me for all these years. I really appreciate that.

Thank you so much and may Allah s.w.t. the Almighty be with us all the time.

ABSTRAK

Konfigurasi semula sistem kerusi roda dua dengan muatan bergerak telah dikaji bagi membolehkan perlaksanaan pelbagai tugas; boleh bergerak ke hadapan dan ke belakang pada permukaan yang rata, boleh mendaki dan menuruni bukit dengan penolakan gangguan yang tidak dikehendaki dan pada masa yang sama ketinggian tempat duduk boleh dilaraskan pada tahap yang maksimum. Kajian penyelidikan ini merangkumi tiga objektif iaitu membina Interval Type-2 Fuzzy Logic Control (IT2FLC) sebagai sistem kawalan, mencipta Spiral Dynamic Algorithm (SDA) untuk IT2FLC dalam menstabilkan sistem kerusi roda beroda dua, dan mengoptimumkan nilai parameter input-output dan parameter kawalan. Sistem beroda dua memberikan banyak kelebihan kepada pengguna seperti memerlukan ruang ruang yang kecil untuk memutar kerusi roda, dapat bergerak di ruang yang sempit, boleh berinteraksi dengan orang normal secara bertentang mata dan dapat mencapai barangan di rak yang lebih tinggi. Walau bagaimanapun, kestabilan sistem beroda dua akan menghasilkan gegaran yang tinggi kerana ketidakpastian ketika menstabilkan sistem dalam kedudukan tegak. Secara tidak langsung, ia juga menyebabkan jarak pergerakan roda yang tinggi dan kedudukan sudut dan tork yang tinggi. Oleh itu, IT2FLC telah diusulkan sebagai strategi kawalan yang sesuai untuk menolak sebarang gangguan bagi mengatasi ketidakpastian agar sistem berada dalam keadaan tegak. Pada dasarnya, IT2FLC menggunakan Set Fuzzy Jenis-2 (T2FS) dan fungsi keanggotaannya (MF) yang terdiri daripada MF rendah, MF atas, dan jejak ketidakpastian (FOU). Ini kerana IT2FLC memiliki kemampuan untuk menangani ketidakjelasan dan ketidakpastian yang berlaku dalam sistem. Oleh itu, sebarang gangguan yang telah diberikan dibelakang kerusi dapat diatasi dengan menggunakan strategi kawalan IT2FLC. SDA digunakan dalam strategi kawalan untuk menentukan nilai optimum bagi parameter kawalan keluar masuk dan parameter IT2FLC yang boleh mengurangkan gegaran pada sistem kerusi roda beroda dua; oleh itu, keselamatan dan keselesaan pengguna dapat dipastikan dengan jarak pergerakan roda yang sedikit, dan tork yang rendah selepas sistem diganggu. Model kerusi roda beroda dua dengan beban bergerak telah direka dalam perisian SimWise 4D (SW4D) untuk mengatasi isu persamaan matematik yang panjang yang telah dipermudahkan dengan membuat beberapa andaian, dan untuk mewakili sistem sebenar kerusi roda serta mengekalkan model dalam keadaan tidak linear dan kompleks. Model humanoid dengan anggaran berat sebanyak 70kg juga digunakan untuk mewakili anggaran purata pengguna dengan mekanisme mengangkat muatan dari 0.11m kepada 0.25m. Kemudian, model yang lengkap diintegrasikan bersama Matlab/Simulink untuk penilaian kawalan dan reka bentuk melalui simulasi visual. Perbandingan telah dibuat diantara pengawal yang dicadangkan dan pengawal sebelumnya, IT2FLC dan Fuzzy Logic Control Type-1 (FLCT1), dalam menilai peningkatan prestasi. Kelebihan SDA-IT2FLC sebagai pengawal kestabilan dalam sistem yang dikaji telah dibuktikan melalui penilaian yang telah dibuat dalam kajian ini dan hasilnya ia mengatasi prestasi pengawal lain (IT2FLC dan FLCT1). Keputusannya menunjukkan pengurangan yang ketara dalam jarak pergerakan roda, kedudukan sudut dan kawalan tork, dengan peningkatan sebanyak 5.6% dan 33.3% bagi kestabilan pautan pertama dan kedua sistem berbanding penalaan heuristic IT2FLC, serta peningkatan sebanyak 60% dan 94% dalam kedudukan sudut pada pautan pertama dan kedua sistem berbanding dengan FLCT1. Selain itu, SDA-IT2FLC juga menunjukkan pengurangan sebanyak 95.4% untuk setiap tork pada sistem berbanding dengan FLCT1. Pada akhirnya, SDA-IT2FLC telah menunjukkan prestasi yang bagus berbanding IT2FLC dan FLCT1 untuk mengekalkan kestabilan sistem dalam kedudukan tegak dari segi penumpuan yang lebih cepat dan pengurangan yang ketara dalam jarak pergerakan roda, kecondongan dan kawalan tork telah membuktikan dirinya sebagai pengawal teguh untuk kerusi roda beroda dua dengan sistem muatan bergerak.

ABSTRACT

The reconfiguration of the two-wheeled wheelchair system with movable payload has been investigated within the current study towards permitting multi-task operations; through enhanced maneuverability on a flat surface under the circumstances of disturbance rejections during forward and backward motions, as well as motions on the inclined surface for uphill and downhill motions; while having height extensions of the wheelchair's seat. The research study embarks on three objectives includes developing Interval Type-2 Fuzzy Logic Control (IT2FLC) as the control system, design a Spiral Dynamic Algorithm (SDA) for IT2FLC in stabilizing the designed double-link twowheeled wheelchair system, and optimize the input-output gains and control parameters. The two-wheeled system gives lots of benefits to the user such as less space needed to turn the wheelchair, able to move in the narrow spaces, having eye-to-eye contact with normal people, and can reach stuff on the higher shelve. However, the stability of the twowheeled system will produce high fluctuations due to the uncertainties while stabilizing the system in the upright position. Indirectly, it also caused the long travelled distance and high magnitude of tilt angle and torque. Thus, IT2FLC has been proposed as the compatible control strategy for disturbance rejections to overcome uncertainties for enhanced system stability in the upright position. Basically, IT2FLC uses a Type-2 Fuzzy Set (T2FS) and its membership function (MFs) composed of the lower MFs, upper MFs, and footprint of uncertainty (FOU). This is the reason that IT2FLC possessing the ability to handle cases of nonlinearities and uncertainties that occur in the system. Therefore, any disturbances that give at the back of the seat can be eliminated using the proposed controller, IT2FLC. Additionally, SDA implemented within the control strategy to acquire optimal values of the IT2FLC input-output control gains and parameters of its MFs further accommodated extensive fluctuations of the two-wheeled system; thus, ensuring a safe and comfortable experience among users via shorter traveled distance and lower magnitude of torques following disruptions. The two-wheeled wheelchair is designed using SimWise 4D software to subduing shortcomings of a linearized mathematical model where lengthy equation with various assumptions is required to represent the proposed system; without forgoing its nonlinearity and complexity. Moreover, a 70kg payload was also included to embody an average user, in simulating vertical extensions of the system from 0.11m to 0.25m. The completed model is then integrated with Matlab/Simulink for control design and performance evaluation through visualized simulations. The research has been compared to the previous controllers, Fuzzy Logic Control Type-1 (FLCT1), in gauging improvements and performance superiority. The significance of SDA-IT2FLC as the stability controller within the investigated system has been confirmed through current findings, which outperformed that of its predecessors (IT2FLC and FLCT1). Such results are supported through a significant reduction in traveled distance, tilt, and control torques, following a recorded 5.6% and 33.3% improvements on the stability of the system, to the performance of heuristically-tuned IT2FLC; as well as a 60% and 94% improvements in angular positions on the system, as compared to the FLCT1. Moreover, a 95.4% reduction in torques has been recorded for SDA-IT2FLC, as compared to that of FLCT1. Ultimately, SDA-IT2FLC has demonstrated promising outcomes over its predecessors on maintaining the system's stability in an upright position in terms of faster convergence and a significant reduction in traveled distance, tilt and control torques, proving itself as the robust controller for a double-link two-wheeled wheelchair with movable payload system.

TABLE OF CONTENT

DEC	LARATION	
TITI	LE PAGE	
DED	DICATIONS	
ACK	KNOWLEDGEMENTS	ii
ABS	TRAK	iii
ABS	TRACT	iv
TAB	LE OF CONTENT	v
LIST	Γ OF TABLES	X
LIST	Γ OF FIGURES	xii
LIST	Γ OF SYMBOLS	xxii
LIST	Γ OF ABBREVIATIONS	xxiii
СНА	PTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Contribution	5
1.5	Scope of Work	6
1.6	Thesis Outline	7
CHA	APTER 2 LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Inverted Pendulum System	9
	2.2.1 System Based on Double Inverted Pendulum on Cart	10
	2.2.2 Rotational System Based on Double Inverted Pendulum	14

	2.2.3	The Transformation from Four-Wheeled to Two-Wheeled	
		System Based on Double Inverted Pendulum	16
	2.2.4	Two-Wheeled System Based on Double Inverted Pendulum	26
2.3	The S	ystem using Interval Type-2 Fuzzy Logic	30
2.4	Optim	ization of Interval Type-2 Fuzzy Logic Control and Spiral Dynamic	
	Algor	ithm	32
2.5	Syster	n Modelling using SimeWise 4D Environment	34
2.6	Summ	hary	37
СНА	PTER 3	3 METHODOLOGY	43
3.1	Introd	uction	43
3.2	Projec	et Flowchart	43
3.3	Development of Two-Wheeled Wheelchair with Movable Payload Using		
	SimW	vise 4D Environment	46
	3.3.1	SimWise 4D Software	47
	3.3.2	Modelling of Two-Wheeled Wheelchair with Movable Payload	51
	3.3.3	Body and Joint Specifications of Two-Wheeled Wheelchair with	
		Movable Payload	53
	3.3.4	Height Extension Mechanism of Two-Wheeled Wheelchair with Movable Payload	54
	3.3.5	External Disturbance Force of Two-Wheeled Wheelchair with	
		Movable Payload	55
	3.3.6	Ramp Dimension of Two-Wheeled Wheelchair with Movable	
		Payload	56
	3.3.7	Integration of Model in SimWise 4D and Matlab/Simulink	57
3.4	Devel	opment of Fuzzy Logic Controller	58
	3.4.1	Fuzzy Logic System	60
	3.4.2	Membership Function	64

	3.4.3	Fuzzification and Defuzzification	66
	3.4.4	Rule base	67
	3.4.5	Inference	68
	3.4.6	Type Reduction	70
	3.4.7	Stabilizing Control of Link1 and Link2	70
3.5	Bio-In	spired Optimization using Spiral Dynamic Algorithm	73
	3.5.1	SDA Optimization of Type-2 Fuzzy Input-Output Scaling Parameters	74
3.6	Exper	imental Setup	78
	3.6.1	Experimental Setup for Spiral Dynamic Algorithm	78
	3.6.2	Experimental Setup for Two-Wheeled Wheelchair in Static Position	79
	3.6.3	Experimental Setup for Two-Wheeled Wheelchair while Moving Forward and Backward	82
	3.6.4	Experimental Setup for Two-Wheeled Wheelchair while Moving Uphill and Downhill	83
3.7	Summ	ary	86
CHA	PTER 4	RESULTS AND DISCUSSION	88
4.1	Introd	uction	88
4.2	Descri	ption of the Experiment	89
4.3	Perfor	mance of Spiral Dynamic Algorithm	90
4.4	Two-V	Wheeled Wheelchair in Static Condition	93
	4.4.1	Comparative System Performance for Static Condition of Wheelchair	93
	4.4.2	Undisturbed System Performance for Static Condition of Wheelchair	97

	4.4.3	Performance of System in Static Condition with Various Forces Disturbance Rejection	102
	4.4.4	Performance of System in Static Condition with Various Positive Forces +100N~+600N Disturbance Rejection	108
	4.4.5	Performance of System in Static Condition with Negative Forces -100N~-600N Disturbance Rejection	114
	4.4.6	Performance of System in Static Condition with Positive Forces +1kN, +1.5kN, +2kN Disturbance Rejection	118
	4.4.7	System Performance in Static Condition with Negative Disturbance Rejection at -1kN, -1.5kN and -2kN	131
4.5	Two-V	Wheeled Wheelchair with Moving Forward Motion Control	143
	4.5.1	Undisturbed System for Moving Forward Motion Control	143
	4.5.2	Performance of System for Moving Forward Motion Control with Positive Forces Disturbance Rejection	146
	4.5.3	Performance of System for Moving Forward Motion Control with Negative Forces Disturbance Rejection	150
	4.5.4	Performance of System for Moving Forward Motion Control with Positive and Negative Forces Disturbance Rejection	154
4.6	Two-V	Wheeled Wheelchair with Moving Backward Motion Control	159
	4.6.1	Undisturbed System for Moving Backward Motion Control	159
	4.6.2	Performance of System for Moving Backward Motion Control with Positive Forces Disturbance Rejection	162
	4.6.3	Performance of System for Moving Backward Motion Control with Negative Forces Disturbance Rejection	166
	4.6.4	Performance of System for Moving Backward Motion Control with Positive and Negative Forces Disturbance Rejection	171
4.7	Two-V	Wheeled Wheelchair with Moving Uphill Motion Control	176
	4.7.1	Undisturbed System for Moving Uphill Motion Control	176

APPE	APPENDIX A : LIST OF PUBLICATIONS		227
REFE	RENC	ES	220
			-
5.3	Future	Recommendation	218
5.2	Signifi	cant Contribution of the Research	217
5.1	Summ	ary and Conclusion	215
СНАР	PTER 5	CONCLUSION AND RECOMMENDATIONS	215
4.9	Summ	ary	213
		with Positive and Negative Forces Disturbance Rejection	208
	4.8.4	Performance of System for Moving Downhill Motion Control	
		with Negative Forces Disturbance Rejection	203
	4.8.3	Performance of System for Moving Downhill Motion Control	
	4.8.2	Performance of System for Moving Downhill Motion Control with Positive Forces Disturbance Rejection	198
			175
1.0	4.8.1	Undisturbed System for Moving Downhill Motion Control	195
4.8	Two-V	Vheeled Wheelchair with Moving Downhill Motion Control	195
	4.7.4	Performance of System for Moving Uphill Motion Control with Positive and Negative Forces Disturbance Rejection	190
		Negative Forces Disturbance Rejection	184
	4.7.3	Performance of System for Moving Uphill Motion Control with	
		Positive Forces Disturbance Rejection	179
	4.7.2	Performance of System for Moving Uphill Motion Control with	

LIST OF TABLES

Table 2.1	System based on double inverted pendulum on a cart	14
Table 2.2	Rotational system based on the double inverted pendulum	16
Table 2.3	Transformation from four-wheeled to a two-wheeled system based on a double inverted pendulum	25
Table 2.4	Two-wheeled system based on a double inverted pendulum	29
Table 2.5	Optimization of Interval Type-2 Fuzzy Logic Control	34
Table 2.6	System modeling using SW4D	37
Table 3.1	Parameters of the two-wheeled wheelchair	46
Table 3.2	Basic dimension of the two-wheeled wheelchair with the movable payload	53
Table 3.3	Joint specification in SimWise 4D	54
Table 3.4	Rules of Fuzzy Logic Control	67
Table 3.5	Formed of the rule-base of the system	67
Table 3.6	Parameters of dynamic mathematical of SDA	77
Table 3.7	Pseudo code of SDA	77
Table 3.8	Parameters for lower and upper boundaries range for gains	79
Table 3.9	Parameters for SDA optimization	79
Table 3.10	Parameters of the two-wheeled wheelchair in a static position	80
Table 3.11	Parameters while two-wheeled wheelchair moving forward and backward	82
Table 3.12	Parameters while two-wheeled wheelchair moving uphill	84
Table 3.13	Parameters while two-wheeled wheelchair moving downhill	84
Table 4.1	Description of the experiments	89
Table 4.2	Value of the best fitness function	92
Table 4.3	Parameters of the control system	92
Table 4.4	Comparative results between FLCT1 and IT2FLC for static condition	97
Table 4.5	Performance comparison between IT2FLC and SDA-IT2FLC of undisturbed system control for static condition	100
Table 4.6	Performance comparison to the previous design for undisturbed system control of a static condition	101
Table 4.7	Performance comparison between IT2FLC and SDA-IT2FLC of various forces system control with for static condition with $\pm 100N$ to $\pm 300N$ to $\pm 350N$	108

Table 4.8	Performance comparison to the previous design for various forces system control of static condition with $\pm 100N$ to $\pm 300N$ and $+350N$	108
Table 4.9	Performance comparison between IT2FLC and SDA-IT2FLC of positive forces system control for a static condition with +100N to +600N	113
Table 4.10	Performance comparison to the previous design for positive forces system control of static condition with +100N to +600N	113
Table 4.11	Performance comparison between IT2FLC and SDA-IT2FLC of negative forces system control for a static condition with -100N to -600N	118
Table 4.12	Performance comparison between IT2FLC and SDA-IT2FLC of positive force system control for a static condition with +1kN	123
Table 4.13	Performance comparison to the previous design for positive force system control for a static condition with +1kN	123
Table 4.14	Performance comparison between IT2FLC and SDA-IT2FLC of positive force system control for a static condition with $+1.5$ kN	126
Table 4.15	Performance comparison between IT2FLC and SDA-IT2FLC of positive force system control for a static condition with +2kN	129
Table 4.16	Performance comparison to the previous design for positive force system control for a static condition with $+2kN$	130
Table 4.17	Performance comparison between IT2FLC and SDA-IT2FLC of negative force system control for a static condition with -1kN	135
Table 4.18	Performance comparison between IT2FLC and SDA-IT2FLC of negative force system control for a static condition with -1.5kN	138
Table 4.19	Performance comparison between IT2FLC and SDA-IT2FLC of negative force system control for a static condition with -2kN	142
Table 4.20	Performance comparison to the previous design for negative force system control for a static condition with -2kN	142

LIST OF FIGURES

Figure 2.1	Four-wheeled to the two-wheeled transformation of wheelchair	17
Figure 2.2	Prototype of the balancing wheelchair	20
Figure 2.3	Balancing of the SCD prototype	23
Figure 2.4	Sit-to-stand, stand-to-sit, and standard mode wheelchair	24
Figure 2.5	Two-wheeled wheelchair hardware design	28
Figure 2.6	Mobile robot navigation for indoor and outdoor	31
Figure 2.7	Modeling of bipedal humanoid in SW4D and the prototype	35
Figure 2.8	Modeling in SW4D and the real model of the pinion and the gear	36
Figure 2.9	Seat height and the variables of vertical assistive force	36
Figure 2.10	K-Chart for inverted pendulum robot	40
Figure 2.11	K-Chart for robot using IT2FLC	41
Figure 2.12	K-Chart for optimization of IT2FLC	42
Figure 3.1	Project research flowchart	44
Figure 3.2	Schematic diagram of the two-wheeled wheelchair	45
Figure 3.3	Material type in SimWise 4D	48
Figure 3.4	Dialog box to customize the material	49
Figure 3.5	Dialog box to select a meter	49
Figure 3.6	SimWise 4D icon in the Simulink Toolbox	50
Figure 3.7	First draft of two-wheeled wheelchair model without a human load in SimWise 4D	51
Figure 3.8	Dialog box to select a constraint	51
Figure 3.9	Complete two-wheeled wheelchair with human load model in SW4D	52
Figure 3.10	Rigid joint and linear actuator on slot fixed between Link2 and the seat	55
Figure 3.11	Height extension transformation of two-wheeled wheelchair	55
Figure 3.12	Direction of the external disturbance force	56
Figure 3.13	Structure and inclined surface for the system	57
Figure 3.14	Integrated between SimWise 4D and Matlab/Simulink	58
Figure 3.15	Control and meters between SimWise 4D and Matlab/Simulink	58
Figure 3.16	Architecture of Fuzzy Logic Control Type-1	59
Figure 3.17	Architecture of Interval Type-2 Fuzzy Logic Control	60
Figure 3.18	Type-1 Fuzzy Set of Gaussian MFs	61
Figure 3.19	Type-2 Fuzzy Set of Gaussian MFs	63

Figure 3.20	Mamdani interface for the FLCT1	65
Figure 3.21	Membership of input and output with Gaussian shape for the FLCT1	
Eiguro 2 22	Mambarship function of the input	65 65
Figure 3.22	Membership function of the input Center of area defuzzification	65 66
Figure 3.23		00 71
Figure 3.24	Switching mechanism for the stabilization of the system	
Figure 3.25	Overall tasks for the system of a two-wheeled wheelchair	72
Figure 3.26	Optimization of the input and output of control parameters	74
Figure 3.27	Flowchart of SDA operation	75
Figure 3.28	Spiral model for SDA	76
Figure 3.29	Direction of positive and negative disturbance force	81
Figure 3.30	Height extension transformation of two-wheeled wheelchair	81
Figure 3.31	Two-wheeled wheelchair moving forward	83
Figure 3.32	Two-wheeled wheelchair moving backward	83
Figure 3.33	Two-wheeled wheelchair moving uphill	85
Figure 3.34	Two-wheeled wheelchair moving downhill	85
Figure 3.35	Range of inclined surface	86
Figure 4.1	Fitness function graph for SDA optimization	91
Figure 4.2	Height input of seat applied to the system (comparative performance)	94
Figure 4.3	External disturbance forces applied to the back of the seat (comparative performance)	94
Figure 4.4	Angular position of Link1 without disturbances (comparative performance)	95
Figure 4.5	Angular position of Link2 without disturbances (comparative performance)	95
Figure 4.6	Angular position of Link1 with disturbances (comparative performance)	95
Figure 4.7	Angular position of Link2 with disturbances (comparative performance)	96
Figure 4.8	Illustration of no disturbance for static condition	98
Figure 4.9	Traveled distance for static condition (undisturbed)	98
Figure 4.10	Torque on the right wheel for static condition (undisturbed)	99
Figure 4.11	Torque on the left wheel for static condition (undisturbed)	99
Figure 4.12	Torque between Link1 & Link2 for static condition (undisturbed)	99
Figure 4.13	Angular position of Link1 for static condition (undisturbed)	100
Figure 4.14	Angular position of Link2 for static condition (undisturbed)	100

Figure 4.15	Illustration of positive and negative disturbance ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	102
Figure 4.16	Height input of seat applied to the system ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	103
Figure 4.17	Various external disturbance forces applied to the back of the seat ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	103
Figure 4.18	Traveled distance ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	104
Figure 4.19	Height of seat condition ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	104
Figure 4.20	Velocity of the seat (± 100 N to ± 300 N to ± 350 N)	104
Figure 4.21	Torque on the right wheel (± 100 N to ± 300 N to $+350$ N)	105
Figure 4.22	Torque on the left wheel ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	105
Figure 4.23	Torque between Link1 & Link2 ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	106
Figure 4.24	Angular position of Link1 ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	106
Figure 4.25	Angular position of Link2 ($\pm 100N$ to $\pm 300N$ to $\pm 350N$)	106
Figure 4.26	Illustration of positive disturbance (+100N~+600N)	109
Figure 4.27	Height input of seat applied to the system (+100N~+600N)	110
Figure 4.28	External disturbance forces applied to the back of the seat $(+100N \sim +600N)$	110
Figure 4.29	Traveled distance (+100N~+600N)	110
Figure 4.30	Height of seat condition (+100N~+600N)	110
Figure 4.31	Velocity of the seat (+100N~+600N)	111
Figure 4.32	Torque on the right wheel (+100N~+600N)	111
Figure 4.33	Torque on the left wheel (+100N~+600N)	111
Figure 4.34	Torque between Link1 & Link2 (+100N~+600N)	111
Figure 4.35	Angular position of Link1 (+100N~+600N)	112
Figure 4.36	Angular position of Link2 (+100N~+600N)	112
Figure 4.37	Illustration of negative disturbance (-100N~-600N)	114
Figure 4.38	External disturbance forces applied to the back of the seat (-100N~-600N)	115
Figure 4.39	Height input of seat applied to the system (-100N~-600N)	115
Figure 4.40	Traveled distance (-100N~-600N)	115
Figure 4.41	Height of seat condition (-100N~-600N)	115
Figure 4.42	Velocity of the seat (-100N~-600N)	116
Figure 4.43	Torque on the right wheel (-100N~-600N)	117
Figure 4.44	Torque on the left wheel (-100N~-600N)	117
Figure 4.45	Torque between Link1 & Link2 (-100N~-600N)	117
Figure 4.46	Angular position of Link1 (-100N~-600N)	117

Figure 4.47	Angular position of Link2 (-100N~-600N)	118
Figure 4.48	Illustration of positive disturbance (+1kN, +1.5kN, +2kN)	119
Figure 4.49	External disturbance forces applied to the back of the seat (+1kN, +1.5kN, +2kN)	119
Figure 4.50	Height input of seat applied to the system (+1kN, +1.5kN, +2kN)	119
Figure 4.51	Traveled distance (+1kN)	121
Figure 4.52	Height of seat condition (+1kN)	121
Figure 4.53	Velocity of the seat (+1kN)	121
Figure 4.54	Torque on the right wheel (+1kN)	121
Figure 4.55	Torque on the left wheel (+1kN)	122
Figure 4.56	Torque between Link1 & Link2 (+1kN)	122
Figure 4.57	Angular position of Link1 (+1kN)	122
Figure 4.58	Angular position of Link2 (+1kN)	122
Figure 4.59	Traveled distance (+1.5kN)	124
Figure 4.60	Height of seat condition (+1.5kN)	124
Figure 4.61	Velocity of the seat (+1.5kN)	124
Figure 4.62	Torque on the right wheel (+1.5kN)	124
Figure 4.63	Torque on the left wheel (+1.5kN)	125
Figure 4.64	Torque between Link1 & Link2 (+1.5kN)	125
Figure 4.65	Angular position of Link1 (+1.5kN)	125
Figure 4.66	Angular position of Link2 (+1.5kN)	125
Figure 4.67	Traveled distance (+2kN)	127
Figure 4.68	Height of seat condition (+2kN)	127
Figure 4.69	Velocity of the seat (+2kN)	128
Figure 4.70	Torque on the right wheel (+2kN)	128
Figure 4.71	Torque on the left wheel (+2kN)	128
Figure 4.72	Torque between Link1 & Link2 (+2kN)	128
Figure 4.73	Angular position of Link1 (+2kN)	129
Figure 4.74	Angular position of Link2 (+2kN)	129
Figure 4.75	Illustration of negative disturbance (-1kN, -1.5kN, -2kN)	131
Figure 4.76	External disturbance forces applied to the back of the seat (-1kN, -1.5kN, -2kN)	131
Figure 4.77	Height input of seat applied to the system (-1kN, -1.5kN, -2kN)	132
Figure 4.78	Traveled distance (-1kN)	133
Figure 4.79	Height of seat condition (-1kN)	133
Figure 4.80	Velocity of the seat (-1kN)	133

Figure 4.81	Torque on the right wheel (-1kN)	133
Figure 4.82	Torque on the left wheel (-1kN)	134
Figure 4.83	Torque between Link1 & Link2 (-1kN)	134
Figure 4.84	Angular position of Link1 (-1kN)	134
Figure 4.85	Angular position of Link2 (-1kN)	134
Figure 4.86	Traveled distance (-1.5kN)	136
Figure 4.87	Height of seat condition (-1.5kN)	136
Figure 4.88	Velocity of the seat (-1.5kN)	136
Figure 4.89	Torque on the right wheel (-1.5kN)	136
Figure 4.90	Torque on the left wheel (-1.5kN)	137
Figure 4.91	Torque between Link1 & Link2 (-1.5kN)	137
Figure 4.92	Angular position of Link1 (-1.5kN)	137
Figure 4.93	Angular position of Link2 (-1.5kN)	137
Figure 4.94	Traveled distance (-2kN)	139
Figure 4.95	Height of seat condition (-2kN)	139
Figure 4.96	Velocity of the seat (-2kN)	139
Figure 4.97	Torque on the right wheel (-2kN)	140
Figure 4.98	Torque on the left wheel (-2kN)	140
Figure 4.99	Torque between Link1 & Link2 (-2kN)	140
Figure 4.100	Angular position of Link1 (-2kN)	140
Figure 4.101	Angular position of Link2 (-2kN)	141
Figure 4.102	Illustration of no disturbance for forward motion control	144
Figure 4.103	Position of a wheelchair (forward motion with undisturbed)	144
Figure 4.104	Velocity of wheels (forward motion with undisturbed)	144
Figure 4.105	Torque on the wheels (forward motion with undisturbed)	145
Figure 4.106	Torque between Link1 & Link2 (forward motion with undisturbed)	145
Figure 4.107	Angular position of Link1 (forward motion with undisturbed)	145
Figure 4.108	Angular position of Link2 (forward motion with undisturbed)	145
Figure 4.109	Illustration of positive disturbance for forward motion control	146
Figure 4.110	Height input of seat applied to the system (forward motion with $+1kN$)	147
Figure 4.111	External disturbance forces applied to the back of the seat (forward motion with $+1kN$)	147
Figure 4.112	Position of a wheelchair (forward motion with +1kN)	148
Figure 4.113	Velocity of wheels (forward motion with +1kN)	148
Figure 4.114	Height of seat condition (forward motion with +1kN)	148

Figure 4.115	Velocity of the seat (forward motion with +1kN)	148
Figure 4.116	Torque on the wheels (forward motion with +1kN)	149
Figure 4.117	Torque between Link1 & Link2 (forward motion with +1kN)	149
Figure 4.118	Angular position of Link1 (forward motion with +1kN)	149
Figure 4.119	Angular position of Link2 (forward motion with +1kN)	149
Figure 4.120	Illustration of negative disturbance for forward motion control	150
Figure 4.121	Height input of seat applied to the system (forward motion with - 1kN)	151
Figure 4.122	External disturbance forces applied to the back of the seat (forward motion with $\mbox{-}1\mbox{kN})$	151
Figure 4.123	Position of a wheelchair (forward motion with -1kN)	152
Figure 4.124	Velocity of wheels (forward motion with -1kN)	152
Figure 4.125	Height of seat condition (forward motion with -1kN)	152
Figure 4.126	Velocity of the seat (forward motion with -1kN)	152
Figure 4.127	Torque on the wheels (forward motion with -1kN)	153
Figure 4.128	Torque between Link1 & Link2 (forward motion with -1kN)	153
Figure 4.129	Angular position of Link1 (forward motion with -1kN)	154
Figure 4.130	Angular position of Link2 (forward motion with -1kN)	154
Figure 4.131	Illustration of positive and negative disturbance for forward motion control	155
Figure 4.132	Height input of seat applied to the system (forward motion with $\pm 1 k N)$	155
Figure 4.133	External disturbance forces applied to the back of the seat (forward motion with $\pm 1 k N)$	155
Figure 4.134	Position of a wheelchair (forward motion with ± 1 kN)	156
Figure 4.135	Velocity of wheels (forward motion with ± 1 kN)	156
Figure 4.136	Height of seat condition (forward motion with $\pm 1kN$)	156
Figure 4.137	Velocity of the seat (forward motion with $\pm 1kN$)	156
Figure 4.138	Torque on wheels (forward motion with $\pm 1kN$)	158
Figure 4.139	Torque between Link1 & Link2 (forward motion with $\pm 1kN$)	158
Figure 4.140	Angular position of Link1 (forward motion with $\pm 1kN$)	158
Figure 4.141	Angular position of Link2 (forward motion with $\pm 1kN$)	158
Figure 4.142	Illustration of no disturbance for backward motion control	160
Figure 4.143	Position of a wheelchair (backward motion with undisturbed)	160
Figure 4.144	Velocity of wheels (backward motion with undisturbed)	160
Figure 4.145	Torque on the wheels (backward motion with undisturbed)	161

Figure 4.146	Torque between Link1 & Link2 (backward motion with undisturbed)	161
Figure 4.147	Angular position of Link1 (backward motion with undisturbed)	161
Figure 4.148	Angular position of Link2 (backward motion with undisturbed)	161
Figure 4.149	Illustration of positive disturbance for backward motion control	162
Figure 4.150	External disturbance forces applied to the back of the seat (backward motion with $+1kN$)	163
Figure 4.151	Height input of seat applied to the system (backward motion with $+1kN$)	163
Figure 4.152	Position of a wheelchair (backward motion with +1kN)	164
Figure 4.153	Velocity of wheels (backward motion with +1kN)	164
Figure 4.154	Height of seat condition (backward motion with +1kN)	164
Figure 4.155	Velocity of seat (backward motion with +1kN)	164
Figure 4.156	Torque on the wheels (backward motion with +1kN)	165
Figure 4.157	Torque between Link1 & Link2 (backward motion with +1kN)	165
Figure 4.158	Angular position of Link1 (backward motion with +1kN)	166
Figure 4.159	Angular position of Link2 (backward motion with +1kN)	166
Figure 4.160	Illustration of negative disturbance for backward motion control	167
Figure 4.161	External disturbance forces applied to the back of the seat (backward motion with $-1kN$)	167
Figure 4.162	Height input of seat applied to the system (backward motion with - 1kN)	167
Figure 4.163	Position of a wheelchair (backward motion with -1kN)	168
Figure 4.164	Velocity of wheels (backward motion with -1kN)	168
Figure 4.165	Height of seat condition (backward motion with -1kN)	169
Figure 4.166	Velocity of the seat (backward motion with -1kN)	169
Figure 4.167	Torque on the wheels (backward motion with -1kN)	170
Figure 4.168	Torque between Link1 & Link2 (backward motion with -1kN)	170
Figure 4.169	Angular position of Link1 (backward motion with -1kN)	170
Figure 4.170	Angular position of Link2 (backward motion with -1kN)	170
Figure 4.171	Illustration of positive and negative disturbance for backward motion control	171
Figure 4.172	Height input of seat applied to the system (backward motion with $\pm 1 \mathrm{kN}$)	171
Figure 4.173	External disturbance forces applied to the back of the seat (backward motion with $\pm 1 kN)$	172
Figure 4.174	Position of a wheelchair (backward motion with $\pm 1kN$)	173
Figure 4.175	Velocity of wheels (backward motion with $\pm 1kN$)	173

Figure 4.176	Height of seat condition (backward motion with $\pm 1kN$)	173
Figure 4.177	Velocity of the seat (backward motion with ± 1 kN)	173
Figure 4.178	Torque on the wheels (backward motion with ± 1 kN)	174
Figure 4.179	Torque between Link1 & Link2 (backward motion with $\pm 1kN$)	175
Figure 4.180	Angular position of Link1 (backward motion with $\pm 1kN$)	175
Figure 4.181	Angular position of Link2 (backward motion with $\pm 1kN$)	175
Figure 4.182	Illustration of no disturbance for uphill motion control	177
Figure 4.183	Position of a wheelchair (uphill motion with undisturbed)	177
Figure 4.184	Velocity of wheels (uphill motion with undisturbed)	178
Figure 4.185	Torque on the wheels (uphill motion with undisturbed)	178
Figure 4.186	Torque between Link1 & Link2 (uphill motion with undisturbed)	178
Figure 4.187	Angular position of Link1 (uphill motion with undisturbed)	178
Figure 4.188	Angular position of Link2 (uphill motion with undisturbed)	179
Figure 4.189	Illustration of positive disturbance for uphill motion control	180
Figure 4.190	External disturbance forces applied to the back of the seat	180
Figure 4.191	Height input of seat applied to the system (uphill motion with +1kN)	
		180
Figure 4.192	Position of a wheelchair (uphill motion with +1kN)	181
Figure 4.193	Velocity of wheels (uphill motion with +1kN)	182
Figure 4.194	Height of seat condition (uphill motion with +1kN)	182
Figure 4.195	Velocity of the seat (uphill motion with +1kN)	182
Figure 4.196	Torque on wheels (uphill motion with +1kN)	183
Figure 4.197	Torque between Link1 & Link2 (uphill motion with +1kN)	183
Figure 4.198	Angular position of Link1 (uphill motion with +1kN)	184
Figure 4.199	Angular position of Link2 (uphill motion with +1kN)	184
Figure 4.200	Illustration of negative disturbance for uphill motion control	185
Figure 4.201	Height input of seat applied to the system (uphill motion with -1kN)	185
Figure 4.202	External disturbance forces applied to the back of the seat (uphill motion with $-1kN$)	185
Figure 4.203	Position of a wheelchair (uphill motion with -1kN)	187
Figure 4.204	Velocity of wheels (uphill motion with -1kN)	187
Figure 4.205	Height of seat condition (uphill motion with -1kN)	187
Figure 4.206	Velocity of the seat (uphill motion with -1kN)	187
Figure 4.207	Torque on wheels (uphill motion with -1kN)	189
Figure 4.208	Torque between Link1 & Link2 (uphill motion with -1kN)	189

Figure 4.209	Angular position of Link1 (uphill motion with -1kN)	189
Figure 4.210	Angular position of Link2 (uphill motion with -1kN)	189
Figure 4.211	Illustration of positive and negative disturbance for uphill motion control	190
Figure 4.212	External disturbance forces applied to the back of the seat (uphill motion with $\pm 1 k N)$	191
Figure 4.213	Height input of seat applied to the system (uphill motion with $\pm 1kN$)	191
Figure 4.214	Position of a wheelchair (uphill motion with $\pm 1kN$)	192
Figure 4.215	Velocity of wheels (uphill motion with $\pm 1kN$)	192
Figure 4.216	Height of seat condition (uphill motion with $\pm 1kN$)	192
Figure 4.217	Velocity of the seat (uphill motion with $\pm 1kN$)	192
Figure 4.218	Torque on wheels (uphill motion with ± 1 kN)	194
Figure 4.219	Torque between Link1 & Link2 (uphill motion with ± 1 kN)	194
Figure 4.220	Angular position of Link1 (uphill motion with ± 1 kN)	194
Figure 4.221	Angular position of Link2 (uphill motion with ± 1 kN)	194
Figure 4.222	Illustration of no disturbance for downhill motion control	196
Figure 4.223	Position of a wheelchair (downhill motion with undisturbed)	197
Figure 4.224	Velocity of wheels (downhill motion with undisturbed)	197
Figure 4.225	Torque on wheels (downhill motion with undisturbed)	197
Figure 4.226	Torque between Link1 & Link2 (downhill motion with undisturbed)	197
Figure 4.227	Angular position of Link1 (downhill motion with undisturbed)	198
Figure 4.228	Angular position of Link2 (downhill motion with undisturbed)	198
Figure 4.229	Illustration of positive disturbance for downhill motion control	199
Figure 4.230	Height input of seat applied to the system (downhill motion with $+1kN$)	199
Figure 4.231	External disturbance forces applied to the back of the seat (downhill motion with $+1kN$)	200
Figure 4.232	Position of a wheelchair (downhill motion with +1kN)	200
Figure 4.233	Velocity of wheels (downhill motion with +1kN)	201
Figure 4.234	Height of seat condition (downhill motion with +1kN)	201
Figure 4.235	Velocity of seat (downhill motion with +1kN)	201
Figure 4.236	Torque on the wheels (downhill motion with +1kN)	202
Figure 4.237	Torque between Link1 & Link2 (downhill motion with +1kN)	202
Figure 4.238	Angular position of Link1 (downhill motion with +1kN)	203
Figure 4.239	Angular position of Link2 (downhill motion with +1kN)	203

Figure 4.240	Illustration of negative disturbance for downhill motion control	204
Figure 4.241	Height input of seat applied to the system (downhill motion with - 1kN)	204
Figure 4.242	External disturbance forces applied to the back of the seat (downhill motion with -1kN)	204
Figure 4.243	Position of a wheelchair (downhill motion with -1kN)	205
Figure 4.244	Velocity of wheels (downhill motion with -1kN)	205
Figure 4.245	Height of seat condition (downhill motion with -1kN)	206
Figure 4.246	Velocity of the seat (downhill motion with -1kN)	206
Figure 4.247	Torque on wheels (downhill motion with -1kN)	207
Figure 4.248	Torque between Link1 & Link2 (downhill motion with -1kN)	207
Figure 4.249	Angular position of Link1 (downhill motion with -1kN)	207
Figure 4.250	Angular position of Link2 (downhill motion with -1kN)	207
Figure 4.251	Illustration of positive and negative disturbance for downhill motion control	209
Figure 4.252	Height input of seat applied to the system (downhill motion with $\pm 1 k N)$	209
Figure 4.253	External disturbance forces applied to the back of the seat (downhill motion with $\pm 1kN$)	209
Figure 4.254	Position of a wheelchair (downhill motion with ± 1 kN)	210
Figure 4.255	Velocity of wheels (downhill motion with $\pm 1kN$)	210
Figure 4.256	Height of seat condition (downhill motion with $\pm 1kN$)	210
Figure 4.257	Velocity of the seat (downhill motion with $\pm 1kN$)	210
Figure 4.258	Torque on the wheels (downhill motion with ± 1 kN)	212
Figure 4.259	Torque between Link1 & Link2 (downhill motion with ± 1 kN)	212
Figure 4.260	Angular position of Link1 (downhill motion with ± 1 kN)	212
Figure 4.261	Angular position of Link2 (downhill motion with ± 1 kN)	212

LIST OF SYMBOLS

Nm	Newton meter
Ν	Newton
0	Degree
S	Second
m	Meter
cm	Centimeter
kg	Kilogram
%	Percentage
r	Spiral radius
θ	Spiral steps
L_1	Length of 1 st pendulum
L_2	Length of 2 nd pendulum
θ_0	Cart position
θ_1	Angle amplitude of L ₁
θ_2	Angle amplitude of L ₂
m_0	Mass of cart
m_1	Mass of L ₁
m ₂	Mass of L ₂
u	Force applied to the cart
X(t)	Displacement of cart
F _(t)	Force applied to the cart
g	Gravitational constant
1	Length of 1 st pendulum
Μ	Mass of the cart
m	Mass of l
θ	Angle of l
Z	Position of cart
e	Effort
f	Flow

LIST OF ABBREVIATIONS

LQR	Linear Quadratic Regular
PID	Proportional Integral Derivative
FLCT1	Fuzzy Logic Control Type-1
4D	Four-Dimensional
GA	Genetic Algorithm
COG	Centre of Gravity
PD	Proportional Derivative
SMC	Sliding Mode Control
FLC	Fuzzy Logic Control
IT2FLC	Interval Type-2 Fuzzy Logic Control
MFs	Membership Function
LMF	Lower Membership Function
UMF	Upper Membership Function
FOU	Footprint of Uncertainties
DOF	Degree of Freedom
SW4D	SimWise 4D
SDA	Spiral Dynamic Algorithm
MJLS	Markovian Jump Linear System
GFC	Tuned Fuzzy Controller
NFC	Adaptive Neuro-Fuzzy Controller
MNFC	Modified Neuro-Fuzzy Control
IAE	Integral Absolute Error
LPV	Linear Parameter Varying Controller
LTI	Linear Time-Invariant
RMSE	Root Mean Square Error
RDIP	Rotary Double Inverted Pendulum
FNN	Feed-Forward Neural Network
LM	Levenverg-Marquardt
MSE	Mean Square Error
VN4D	Visual Nastran 4D
PCH	Port-Controlled Hamiltonian

MISO	Multi-Input Single Output
SCD	Stair-Climbing Device
PSO	Particle Swarm Optimization
FTCIT2SM	Finite-Time Convergent Interval Type-2 Fuzzy Logic Sliding
ODMR	Tri-Wheel Omnidirectional Mobile Robot
KM	Karnik-Mendel
HIT2FLC	Hierarchical Interval Type-2 Fuzzy Logic Control
QGA	Quantum Genetic Algorithms
ABC	Artificial Bee Colony Algorithms
CAD	Computer-Aided Design

REFERENCES

- Abuelenin, S. M., & Abdel-Kader, R. F. (2018). Closed-form mathematical representations of interval type-2 fuzzy logic systems. *Computer Science Systems and Control.*
- Ahmad, S., Siddique, N. H., & Tokhi, M. O. (2011). A modular fuzzy control approach for two-wheeled wheelchair. *Journal of Intelligent and Robotic Systems: Theory and Applications*, 64(3–4), 401–426. https://doi.org/10.1007/s10846-011-9541-0
- Ahmad, S., Siddique, N. H., & Tokhi, M. O. (2012). Modular fuzzy logic controller for motion control of two-wheeled wheelchair. In *Fuzzy Logic – Controls, Concepts, Theories and Applications* (Issue May 2017, pp. 37–58). https://doi.org/10.5772/37584
- Ahmad, S., Siddique, N. H., & Tokhi, M. O. (2014). Modelling and simulation of doublelink scenario in a two-wheeled wheelchair. *Integrated Computer-Aided Engineering*, 21(2), 119–132. https://doi.org/10.3233/ICA-130449
- Ahmad, S., & Tokhi, M. O. (2008a). Forward and backward motion control of wheelchair on two wheels. 3rd IEEE Conference on Industrial Electronics and Applications, 461–466. https://doi.org/10.1109/ICIEA.2008.4582558
- Ahmad, S., & Tokhi, M. O. (2008b). Modelling and control of a wheelchair on two wheels. 2nd Asia International Conference on Modelling and Simulation, 579–584. https://doi.org/10.1109/AMS.2008.60
- Ahmad, S., & Tokhi, M. O. (2010). Height extension of chair on two-wheeled wheelchair. 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 258–265. https://doi.org/10.1142/9789814291279_0034
- Ahmad, S., & Tokhi, M. O. (2011). Linear quadratic regulator (LQR) approach for lifting and stabilizing of two-wheeled wheelchair. 4th International Conference on Mechatronics. https://doi.org/10.1109/ICOM.2011.5937119
- Ahmad, S., & Tokhi, M. O. (2013). Steering motion control enhancement scheme of two wheeled wheelchair in confined spaces. *International Journal of Automation and Control Engineering*, 2(4), 179–189.
- Ahmad, S., Tokhi, M. O., & Hussein, Z. (2009). Rejection of yaw disturbance in a twowheeled wheelchair system. 3rd Asia International Conference on Modelling and Simulation, 454–459. https://doi.org/10.1109/AMS.2009.65
- Ahmad, S., Tokhi, M. O., & Siddique, N. H. (2010). Modular fuzzy control with input shaping technique for transformation of two-wheeled wheelchair to four-wheeled mode. 2010 IEEE Symposium on Industrial Electronics and Applications, 562–566. https://doi.org/10.1109/ISIEA.2010.5679402

- Ahmad, S., Tokhi, M. O., & Toha, S. F. (2009). Genetic algorithm optimisation for fuzzy control of wheelchair lifting and balancing. *3rd UKSim European Modelling Symposium on Computer Modelling and Simulation*, 97–101. https://doi.org/10.1109/EMS.2009.115
- Allawi, Z. T., & Abdalla, T. Y. (2015). An optimal defuzzification method for interval type-2 fuzzy logic control scheme. *Science and Information Conference*, 619–627. https://doi.org/10.1109/SAI.2015.7237207
- Almeshal, A. M., Goher, K. M., Nasir, A. N. K., & Tokhi, M. O. (2013). Steering and dynamic performance of a New configuration of a wheelchair on two wheels in various indoor and outdoor environments. *18th International Conference on Methods & Models in Automation & Robotics*, 223–228. https://doi.org/10.1109/MMAR.2013.6669910
- Almeshal, A. M., Goher, K. M., & Tokhi, M. O. (2013). Dynamic modelling and stabilization of a new configuration of two-wheeled machines. *Robotics and Autonomous Systems*, 61(5), 443–472. https://doi.org/10.1016/j.robot.2013.01.006
- Altalmas, T., Aula, A., Ahmad, S., Tokhi, M. O., & Akmeliawati, R. (2016). Integrated modeling and design for realizing a two-wheeled wheelchair for disabled. *Assistive Technology Journal of RESNA*, 28(3), 159–174. https://doi.org/10.1080/10400435.2016.1140688
- Altalmas, T. M., Ahmad, S., Aula, A., Akmeliawati, R., & Sidek, S. N. (2013). Mechanical design and simulation of two-wheeled wheelchair using solidworks. *International Conference on Mechatronics*, 53(1). https://doi.org/10.1088/1757-899X/53/1/012042
- Anupam, K., & Vijay, K. (2017). Artificial bee colony based design of the interval type-2 fuzzy PID controller for robot manipulator. *IEEE Region 10 Annual International Conference*, 602–607. https://doi.org/10.1109/TENCON.2017.8227933
- Aribowo, A. G., Nazaruddin, Y. Y., Joelianto, E., & Sutarto, H. Y. (2007). Stabilization of rotary double inverted pendulum using robust gain-scheduling control. *SICE Annual Conference*, 2, 507–514. https://doi.org/10.1109/SICE.2007.4421037
- Aula, A., Ahmad, S., & Akmeliawati, R. (2015). PSO-based state feedback regulator for stabilizing a two-wheeled wheelchair in balancing mode. *10th Asian Control Conference: Emerging Control Techniques for a Sustainable World*, 1–5. https://doi.org/10.1109/ASCC.2015.7244680
- Aula, A., Akmeliawati, R., Ahmad, S., Altalmas, T. M., & Sidek, S. N. (2013). Towards port-Hamiltonian approach for modeling and control of two-wheeled wheelchair. *5th International Conference on Mechatronics*, 53(1). https://doi.org/10.1088/1757-899X/53/1/012074

- Aula, A., Altalmas, T. M., Ahmad, S., Akmeliawati, R., Sidek, S. N., & Tokhi, M. O. (2013). Integrated design, modelling and analysis of two-wheeled wheelchair for disabled. 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 141–152. https://doi.org/10.1142/9789814525534_0021
- Begian, M. B., Melek, W. W., & Mendel, J. M. (2008). Stability analysis of type-2 fuzzy systems. *IEEE International Conference on Fuzzy Systems*, 947–953. https://doi.org/10.1109/FUZZY.2008.4630483
- Castillo, O., Amador-Angulo, L., Castro, J. R., & Garcia-Valdez, M. (2016). A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. *Information Sciences*, 354, 257–274. https://doi.org/10.1016/j.ins.2016.03.026
- Castillo, O., Melin, P., Alanis, A., Montiel, O., & Sepulveda, R. (2011). Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. *Soft Computing*, 15(6), 1145–1160. https://doi.org/10.1007/s00500-010-0588-9
- Chandran, D., Krishna, B., George, V. I., & Thirunavukkarasu, I. (2015). Model identification of rotary inverted pendulum using artificial neural networks. *International Conference on Recent Developments in Control, Automation and Power Engineering*, 146–150. https://doi.org/10.1109/RDCAPE.2015.7281385
- Chotikunnan, P., & Panomruttanarug, B. (2016). The application of fuzzy logic control to balance a wheelchair. *Jornal of Control Engineering and Applied Informatics*, 18(3), 41–51.
- Choura, S., & Yigit, A. S. (2001). Control of a two-link rigid-flexible manipulator with a moving payload mass. *Journal of Sound and Vibration*, 243(5), 883–897. https://doi.org/10.1006/jsvi.2000.3449
- Cosenza, B., & Galluzzo, M. (2011). Experimental comparison of type-1 and type-2 fuzzy logic controllers for the control of level and temperature in a vessel. In 21st European Symposium on Computer Aided Process Engineering (Vol. 29). Elsevier B.V. https://doi.org/10.1016/B978-0-444-53711-9.50161-9
- Duran, K., Bernal, H., & Melgarejo, M. (2008). Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set. Annual Conference of the North American Fuzzy Information Processing Society. https://doi.org/10.1109/NAFIPS.2008.4531244
- El-Bardini, M., & El-Nagar, A. M. (2014). Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. *ISA Transactions*, 53(3), 732–743. https://doi.org/10.1016/j.isatra.2014.02.007
- El-Nagar, A. M., El-Bardini, M., & El-Rabaie, N. M. (2014). Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller. *Alexandria Engineering Journal*, 53(1), 23–32. https://doi.org/10.1016/j.aej.2013.11.006

- Farooq, U., Gu, J., & Luo, J. (2013). An interval type-2 fuzzy LQR positioning controller for wheeled mobile robot. *EEE International Conference on Robotics and Biomimetics*, 2, 2403–2407. https://doi.org/10.1109/ROBIO.2013.6739830
- Fry, C. (2017). Under-actuated humanoid model with elastomeric springs. Dynamic Systems and Control Conference, 1–8. https://doi.org/http://proceedings.asmedigitalcollection.asme.org
- Gaines, B. R. (1976). Foundation of fuzzy reasoning. International Journal of Man-Machine Studies, 8(6), 623–668. https://doi.org/10.1016/S0020-7373(76)80027-2
- Ghani, N. M. A., Nasir, A. N. K., & Tokhi, M. O. (2014a). Integrated phases modular fuzzy logic control with spiral dynamic optimization for stair descending in a wheelchair. 19th International Conference on Methods and Models in Automation and Robotics, 46–51. https://doi.org/10.1109/MMAR.2014.6957323
- Ghani, N. M. A., Nasir, A. N. K., & Tokhi, M. O. (2014b). Optimization of fuzzy logic scaling parameters with spiral dynamic algorithm in controlling a stair climbing wheelchair: Ascending task. 19th International Conference on Methods and Models in Automation and Robotics, 776–781. https://doi.org/10.1109/MMAR.2014.6957454
- Ghani, N. M. A., & Tokhi, M. O. (2013). A dwi-phase fuzzy control structure for an automode stair climbing wheelchair. *IEEE International Conference on Systems, Man,* and Cybernetics, 4694–4699. https://doi.org/10.1109/SMC.2013.799
- Ghani, N. M. A., & Tokhi, M. O. (2016). Simulation and control of multipurpose wheelchair for disabled/elderly mobility. *Integrated Computer-Aided Engineering*, 23(4), 331–347. https://doi.org/10.3233/ICA-160526
- Goher, K. M. K., & Tokhi, M. O. (2010). Genetic algorithm based modeling and control of a two wheeled vehicle with an extended rod, a lagrangian based dynamic approach. *IEEE 9th International Conference on Cybernetic Intelligent Systems*. https://doi.org/10.1109/UKRICIS.2010.5898100
- Goher, K. M., & Tokhi, M. O. (2010). A new configuration of two-wheeled inverted pendulum : a Lagrangian-based mathematical approach. *Journal of Selected Areas in Robotics and Control*, 1–5.
- Hagras, H. A. (2004). A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. *IEEE Transactions on Fuzzy Systems*, 12(4), 524–539. https://doi.org/10.1109/TFUZZ.2004.832538
- Hamza, M. F., Yap, H. J., & Choudhury, I. A. (2015). Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent control. *Neural Computing and Applications*, 28, 979–999. https://doi.org/10.1007/s00521-015-2111-9
- Hassan, M. Y. (2018). Intelligent tracking control using PSO-based interval type-2 fuzzy logic for a MIMO maneuvering system. *Al-Qadisiyah Journal for Engineering Sciences*, 11(1), 22–39. https://doi.org/10.30772/qjes.v11i1.518

- Henmi, T., Deng, M., Inoue, A., Ueki, N., & Hirashima, Y. (2004). Swing-up control of a serial double inverted pendulum. *Proceedings of the American Control Conference*, 5, 3992–3997. https://doi.org/10.23919/acc.2004.1383932
- Hsiao, M. Y., Chen, C. Y., & Li, T. H. S. (2008). Interval type2 adaptive fuzzy slidingmode dynamic control design for wheeled mobile robots. *International Journal of Fuzzy Systems*, 10(4), 268–275. https://doi.org/https://www.researchgate.net/publication/241418754
- Hsiao, M. Y., & Wang, C. T. (2013). A finite-time convergent interval type-2 fuzzy sliding-mode controller design for omnidirectional mobile robots. *International Conference on Advanced Robotics and Intelligent Systems*, 80–85. https://doi.org/10.1109/ARIS.2013.6573539
- Hsu, P. E., Hsu, Y. L., Lu, J. M., & Chang, C. H. (2013). Seat adjustment design of an intelligent robotic wheelchair based on the stewart platform. *International Journal* of Advanced Robotic Systems, 10(168). https://doi.org/10.5772/55880
- Kulkarni, A. G., Qureshi, M. F., & Jha, M. (2014). Genetically tuned interval type-2 fuzzy logic for fault diagnosis of induction motor. *International Journal of Innovative Research in Science, Engineering and Technology*, 3(7), 14890–14899. https://doi.org/http://www.ijirset.com/upload/2014/july/87_Genetically.pdf
- Martínez, R., Castillo, O., & Aguilar, L. T. (2009). Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. *Information Sciences*, 179(13), 2158–2174. https://doi.org/10.1016/j.ins.2008.12.028
- Melgarejo, M. (2007). A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set. Annual Conference of the North American Fuzzy Information Processing Society, 190–194. https://doi.org/10.1109/NAFIPS.2007.383835
- Mendel, J. M., & Liang, Q. (2000). Interval type-2 fuzzy logic systems: Theory and design. *IEEE Transactions on Fuzzy Systems*, 8(5), 535–550. https://doi.org/10.1109/91.873577
- Mendel, J. M., & Liu, F. (2007). Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. *IEEE Transactions on Fuzzy Systems*, 15(2), 309–320. https://doi.org/10.1109/TFUZZ.2006.882463
- Mitschka, C. M., Terra, M. H., & Siqueira, A. A. G. (2015). Derivation of a markovian controller for an exo-skeleton by overcome the benchmarks of a single and double inverted pendulum. *IEEE Conference on Decision and Control*, 5061–5066. https://doi.org/10.1109/CDC.2015.7403011
- Mohan, V., Rani, A., & Singh, V. (2017). Robust adaptive fuzzy controller applied to double inverted pendulum. *Journal of Intelligent and Fuzzy Systems*, 32(5), 3669– 3687. https://doi.org/10.3233/JIFS-169301

- Moysis, L. (2016). Balancing a double inverted pendulum using optimal control and Laguerre functions. *Technical Report Research Gate*. https://doi.org/10.13140/RG.2.1.2948.6486
- Naik, K. A., & Gupta, C. P. (2017). Performance comparison of type-1 and type-2 fuzzy logic systems. 4th IEEE International Conference on Signal Processing, Computing and Control, 72–76. https://doi.org/10.1109/ISPCC.2017.8269652
- Nie, M., & Tan, W. W. (2008). Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. *IEEE International Conference on Fuzzy Systems*, 2, 1425–1432. https://doi.org/10.1109/FUZZY.2008.4630559
- Piovesan, D., Yagiela, M., Johnson, R., & Schmitz, A. (2016). Combining gait trainers and partial weight bearing lifters : A dynamic analysis of seat-to-stand transition. *Dynamic Systems and Control Conference*. https://doi.org/10.1115/dscc2016-9731
- Qian, Q., Wu, J., & Wang, Z. (2017). A novel configuration of two-wheeled selfbalancing robot. *Technical Gazette*, 24(2), 459–464. https://doi.org/10.17559/TV-20160608105436
- Reilly, T., O'Rourke, J. K., Steudler, D., Piovesan, D., & Bortoletto, R. (2016). Locomotive Underactuated Implement Guided via Elastic Elements (L.U.I.G.E.E): A Preliminary Design. August, V003T03A067. https://doi.org/10.1115/imece2015-50567
- Ri, M., Huang, J., Ri, S., Yun, H., & Kim, C. (2016). Design of interval type-2 fuzzy logic controller for mobile wheeled inverted pendulum. *Proceedings of the World Congress on Intelligent Control and Automation*, 535–540. https://doi.org/10.1109/WCICA.2016.7578403
- Robert, J., & Coupland, S. (2007). Type-2 fuzzy logic: A historical view. *IEEE Computational Intelligence Magazine*, 2(1), 57–62. https://doi.org/10.1109/MCI.2007.357194
- Shill, P. C., Amin, M. F., Akhand, M. A. H., & Murase, K. (2012). Optimization of interval type-2 fuzzy logic controller using quantum genetic algorithms. *IEEE International Conference on Fuzzy Systems*, 10–15. https://doi.org/10.1109/FUZZ-IEEE.2012.6251207
- Siddique, N., & Adeli, H. (2017). Spiral Dynamics Algorithms. *Nature-Inspired Computing*, 23(6), 329–362. https://doi.org/10.1201/9781315118628-7
- Simpson, R. C. (2005). Smart wheelchairs : A literature review. Journal of Rehabilitation Research and Development, 42(4), 423–435. https://doi.org/10.1682/JRRD.2004.08.0101
- Singh, N., & Yadav, S. K. (2012). Comparison of LQR and PD controller for stabilizing double inverted pendulum system. *International Journal of Engineering Research and Development*, 1(12), 69–74. https://doi.org/10.1.1.300.1993

- Strah, B., & Rinderknecht, S. (2014). Hybrid dynamic model of a wheeled double inverted pendulum. 22nd Mediterranean Conference on Control and Automation, 1305–1310. https://doi.org/10.1109/MED.2014.6961556
- Tamura, K., & Yasuda, K. (2011). Spiral dynamics inspired optimization. Journal of Advanced Computational Intelligence and Intelligent Informatics, 15(8), 1116– 1122. https://doi.org/10.20965/jaciii.2011.p1116
- Tamura, Kenichi, & Yasuda, K. (2011). Primary study of spiral dynamics inspired optimization. *IEEJ Transactions on Electrical and Electronic Engineering*, 6(1), 2010–2012. https://doi.org/10.1002/tee.20628
- Wu, D. (2013). Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: Overview and comparisons. *IEEE Transactions on Fuzzy Systems*, 21(1), 80–99. https://doi.org/10.1109/TFUZZ.2012.2201728
- Wu, D., & Mendel, J. M. (2009). Enhanced Karnik Mendel algorithms. *IEEE Transactions on Fuzzy Systems*, 17(4), 923–934. https://doi.org/Enhanced Karnik – Mendel algorithms
- Wu, D., & Nie, M. (2011). Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems. *IEEE International Conference on Fuzzy Systems*,2131–2138. https://doi.org/10.1109/fuzzy.2011.6007317
- Wu, H., & Mendel, J. M. (2002). Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. *IEEE Transactions on Fuzzy Systems*, 10(5), 622–639. https://doi.org/10.1109/TFUZZ.2002.803496
- Yadav, S. K., & Singh, M. N. (2012). Optimal control of double inverted pendulum using LQR controller. *International Journal of Advanced Research in Computer Science* and Software Engineering, 2(2), 189–192.
- Yang, H. C. (2017). Using an imaginary planar rack cutter to create a spherical gear pair with continue involute teeth. *Arabian Journal for Science and Engineering*, 42(11), 4725–4735. https://doi.org/10.1007/s13369-017-2630-z

APPENDIX A : LIST OF PUBLICATIONS

Journals:

- Jamin, N. F., Ghani, N. M. A., Ibrahim, Z., Nasir, A. N. K., Rashid, M. & Tokhi, M. O. (2020). Stabilizing control of two-wheeled wheelchair with movable payload using optimized interval type-2 fuzzy logic. Journal of Low Frequency Noise, Vibration & Active Control (ISI Journal Q1, I.F 4.59).
- Jamin, N. F., Ghani, N. M. A. & Ibrahim, Z. (2020). Movable payload on various conditions of two-wheeled double links wheelchair stability control using enhanced interval type-2 fuzzy logic. IEEE Access 8, 87676-87694 (ISI Journal Q1, I.F 4.098).
- Jamin, N. F., Ghani, N. M. A., Ibrahim, Z., Almeshal, M. A., Masrom, M. F. & Razali, N. A. A. (2018). Two-wheeled wheelchair stabilization using interval type-2 fuzzy logic controller. International Journal of Simulation Systems, Science & Technology, 19, 31-37.
- Maharuddin, M. F., Ghani, N. M. A. & Jamin, N. F. (2017). Two-wheeled LEGO EV3 robot stabilization control using fuzzy logic based PSO algorithm. Journal of Telecommunication, Electronic and Computer Engineering, 10(2-5), 149-153.

Lecture notes:

- Jamin, N. F., Ghani, N. M. A., Ibrahim, Z., Masrom, M. F. & Razali, N. A. A. (2019). Stabilization of two-wheeled wheelchair with movable payload based interval type-2 fuzzy logic controller. Proceedings of the 10th National Technical Seminar on Underwater System Technology, Lecture Notes in Electrical Engineering, 538, 137-149.
- Masrom, M. F., Ghani, N. M. A., Jamin, N. F. & Razali, N. A. A. (2019) Stabilization control of a two-wheeled triple link inverted pendulum system with disturbance rejection. Proceedings of the 10th National Technical Seminar on Underwater System Technology, Lecture Notes in Electrical Engineering, 538, 151-159.

Conference:

- Jamin, N. F. & Ghani, N. M. A. (2016). Two-wheeled wheelchair stabilization control using fuzzy logic controller based particle swarm optimization. IEEE International Conference on Automatic Control and Intelligent Systems, 180-185.
- Akmal, M. A., Jamin, N. F. & Ghani, N. M. A. (2017). Fuzzy logic controller for two wheeled EV3 LEGO robot. IEEE Conference on Systems, Process and Control, 134-139.

- Masrom, M. F., Ghani, N. M. A., Jamin, N. F. & Razali, N. A. A. (2018). Control of triple link inverted pendulum on two-wheeled system using IT2FLC. IEEE International Conference on Automatic Control and Intelligent Systems, 29-34.
- Razali, N. A. A., Ghani, N. M. A., Jamin, N. F. & Masrom, M. F. (2018). Stability control of wheelchair system using interval type-2 fuzzy logic control (IT2FLC). 9th IEEE Control and System Graduate Research Colloquium, 162-167.
- Kii, M. S. C., Masrom, M. F., Jamin, N. F., Razali, N. A. A. & Ghani N. M. A. (2019). Interval type-2 fuzzy logic with particle swarm optimization for DC motor position control. 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines.
- Kin, W. S., Masrom, M. F., Jamin, N. F., Razali, N. A. A. & Ghani, N. M. A. (2019). Control of a two-wheeled LEGO EV3 robot using interval type-2 fuzzy logic with particle swarm optimization. 22nd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines.