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ABSTRAK 

Konfigurasi semula sistem kerusi roda dua dengan muatan bergerak telah dikaji bagi 
membolehkan perlaksanaan pelbagai tugas; boleh bergerak ke hadapan dan ke belakang 
pada permukaan yang rata, boleh mendaki dan menuruni bukit dengan penolakan 
gangguan yang tidak dikehendaki dan pada masa yang sama ketinggian tempat duduk 
boleh dilaraskan pada tahap yang maksimum. Kajian penyelidikan ini merangkumi tiga 
objektif iaitu  membina Interval Type-2 Fuzzy Logic Control (IT2FLC) sebagai sistem 
kawalan, mencipta Spiral Dynamic Algorithm (SDA) untuk IT2FLC dalam menstabilkan 
sistem kerusi roda beroda dua, dan mengoptimumkan nilai parameter input-output dan 
parameter kawalan. Sistem beroda dua memberikan banyak kelebihan kepada pengguna 
seperti memerlukan ruang ruang yang kecil untuk memutar kerusi roda, dapat bergerak 
di ruang yang sempit, boleh berinteraksi dengan orang normal secara bertentang mata dan 
dapat mencapai barangan di rak yang lebih tinggi. Walau bagaimanapun, kestabilan 
sistem beroda dua akan menghasilkan gegaran yang tinggi kerana ketidakpastian ketika 
menstabilkan sistem dalam kedudukan tegak. Secara tidak langsung, ia juga 
menyebabkan jarak pergerakan roda yang tinggi dan kedudukan sudut dan tork yang 
tinggi. Oleh itu, IT2FLC telah diusulkan sebagai strategi kawalan yang sesuai untuk 
menolak sebarang gangguan bagi mengatasi ketidakpastian agar sistem berada dalam 
keadaan tegak.  Pada dasarnya, IT2FLC menggunakan Set Fuzzy Jenis-2 (T2FS) dan 
fungsi keanggotaannya (MF) yang terdiri daripada MF rendah, MF atas, dan jejak 
ketidakpastian (FOU). Ini kerana IT2FLC memiliki kemampuan untuk menangani 
ketidakjelasan dan ketidakpastian yang berlaku dalam sistem. Oleh itu, sebarang 
gangguan yang telah diberikan dibelakang kerusi dapat diatasi dengan menggunakan 
strategi kawalan IT2FLC. SDA digunakan dalam strategi kawalan untuk menentukan 
nilai optimum bagi parameter kawalan keluar masuk dan parameter IT2FLC yang boleh 
mengurangkan gegaran pada sistem kerusi roda beroda dua; oleh itu, keselamatan dan 
keselesaan pengguna dapat dipastikan dengan jarak pergerakan roda yang sedikit, dan 
tork yang rendah selepas sistem diganggu. Model kerusi roda beroda dua dengan beban 
bergerak telah direka dalam perisian SimWise 4D (SW4D) untuk mengatasi isu 
persamaan matematik yang panjang yang telah dipermudahkan dengan membuat 
beberapa andaian, dan untuk mewakili sistem sebenar kerusi roda serta mengekalkan 
model dalam keadaan tidak linear dan kompleks. Model humanoid dengan anggaran berat 
sebanyak 70kg juga digunakan untuk mewakili anggaran purata pengguna dengan 
mekanisme mengangkat muatan dari 0.11m kepada 0.25m. Kemudian, model yang 
lengkap diintegrasikan bersama Matlab/Simulink untuk penilaian kawalan dan reka 
bentuk melalui simulasi visual. Perbandingan telah dibuat diantara pengawal yang 
dicadangkan dan pengawal sebelumnya, IT2FLC dan Fuzzy Logic Control Type-1 
(FLCT1), dalam menilai peningkatan prestasi. Kelebihan SDA-IT2FLC sebagai 
pengawal kestabilan dalam sistem yang dikaji telah dibuktikan melalui penilaian yang 
telah dibuat dalam kajian ini dan hasilnya ia mengatasi prestasi pengawal lain (IT2FLC 
dan FLCT1). Keputusannya menunjukkan pengurangan yang ketara dalam jarak 
pergerakan roda, kedudukan sudut dan kawalan tork, dengan peningkatan sebanyak 5.6% 
dan 33.3% bagi kestabilan pautan pertama dan kedua sistem berbanding penalaan 
heuristic IT2FLC, serta peningkatan sebanyak 60% dan 94% dalam kedudukan sudut 
pada pautan pertama dan kedua sistem berbanding dengan FLCT1. Selain itu, SDA-
IT2FLC juga menunjukkan pengurangan sebanyak 95.4% untuk setiap tork pada sistem 
berbanding dengan FLCT1. Pada akhirnya, SDA-IT2FLC telah menunjukkan prestasi 
yang bagus berbanding IT2FLC dan FLCT1 untuk mengekalkan kestabilan sistem dalam 
kedudukan tegak dari segi penumpuan yang lebih cepat dan pengurangan yang ketara 
dalam jarak pergerakan roda, kecondongan dan kawalan tork telah membuktikan dirinya 
sebagai pengawal teguh untuk kerusi roda beroda dua dengan sistem muatan bergerak. 
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ABSTRACT 

The reconfiguration of the two-wheeled wheelchair system with movable payload has 

been investigated within the current study towards permitting multi-task operations; 

through enhanced maneuverability on a flat surface under the circumstances of 

disturbance rejections during forward and backward motions, as well as motions on the 

inclined surface for uphill and downhill motions; while having height extensions of the 

wheelchair’s seat. The research study embarks on three objectives includes developing 

Interval Type-2 Fuzzy Logic Control (IT2FLC) as the control system, design a Spiral 

Dynamic Algorithm (SDA) for IT2FLC in stabilizing the designed double-link two-

wheeled wheelchair system, and optimize the input-output gains and control parameters. 

The two-wheeled system gives lots of benefits to the user such as less space needed to 

turn the wheelchair, able to move in the narrow spaces, having eye-to-eye contact with 

normal people, and can reach stuff on the higher shelve. However, the stability of the two-

wheeled system will produce high fluctuations due to the uncertainties while stabilizing 

the system in the upright position. Indirectly, it also caused the long travelled distance 

and high magnitude of tilt angle and torque. Thus, IT2FLC has been proposed as the 

compatible control strategy for disturbance rejections to overcome uncertainties for 

enhanced system stability in the upright position. Basically, IT2FLC uses a Type-2 Fuzzy 

Set (T2FS) and its membership function (MFs) composed of the lower MFs, upper MFs, 

and footprint of uncertainty (FOU). This is the reason that IT2FLC possessing the ability 

to handle cases of nonlinearities and uncertainties that occur in the system. Therefore, any 

disturbances that give at the back of the seat can be eliminated using the proposed 

controller, IT2FLC. Additionally, SDA implemented within the control strategy to 

acquire optimal values of the IT2FLC input-output control gains and parameters of its 

MFs further accommodated extensive fluctuations of the two-wheeled system; thus, 

ensuring a safe and comfortable experience among users via shorter traveled distance and 

lower magnitude of torques following disruptions. The two-wheeled wheelchair is 

designed using SimWise 4D software to subduing shortcomings of a linearized 

mathematical model where lengthy equation with various assumptions is required to 

represent the proposed system; without forgoing its nonlinearity and complexity. 

Moreover, a 70kg payload was also included to embody an average user, in simulating 

vertical extensions of the system from 0.11m to 0.25m. The completed model is then 

integrated with Matlab/Simulink for control design and performance evaluation through 

visualized simulations. The research has been compared to the previous controllers, 

Fuzzy Logic Control Type-1 (FLCT1), in gauging improvements and performance 

superiority. The significance of SDA-IT2FLC as the stability controller within the 

investigated system has been confirmed through current findings, which outperformed 

that of its predecessors (IT2FLC and FLCT1). Such results are supported through a 

significant reduction in traveled distance, tilt, and control torques, following a recorded 

5.6% and 33.3% improvements on the stability of the system, to the performance of 

heuristically-tuned IT2FLC; as well as a 60% and 94% improvements in angular positions 

on the system, as compared to the FLCT1. Moreover, a 95.4% reduction in torques has 

been recorded for SDA-IT2FLC, as compared to that of FLCT1. Ultimately, SDA-

IT2FLC has demonstrated promising outcomes over its predecessors on maintaining the 

system’s stability in an upright position in terms of faster convergence and a significant 

reduction in traveled distance, tilt and control torques, proving itself as the robust 

controller for a double-link two-wheeled wheelchair with movable payload system. 
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