9,981 research outputs found

    Modelling Real World Using Stochastic Processes and Filtration

    Get PDF
    First we give an implementation in Mizar [2] basic important definitions of stochastic finance, i.e. filtration ([9], pp. 183 and 185), adapted stochastic process ([9], p. 185) and predictable stochastic process ([6], p. 224). Second we give some concrete formalization and verification to real world examples. In article [8] we started to define random variables for a similar presentation to the book [6]. Here we continue this study. Next we define the stochastic process. For further definitions based on stochastic process we implement the definition of filtration. To get a better understanding we give a real world example and connect the statements to the theorems. Other similar examples are given in [10], pp. 143-159 and in [12], pp. 110-124. First we introduce sets which give informations referring to today (Ωnow, Def.6), tomorrow (Ωfut1 , Def.7) and the day after tomorrow (Ωfut2 , Def.8). We give an overview for some events in the σ-algebras Ωnow, Ωfut1 and Ωfut2, see theorems (22) and (23). The given events are necessary for creating our next functions. The implementations take the form of: Ωnow ⊂ Ωfut1 ⊂ Ωfut2 see theorem (24). This tells us growing informations from now to the future 1=now, 2=tomorrow, 3=the day after tomorrow. We install functions f : {1, 2, 3, 4} → ℝ as following: f1 : x → 100, ∀x ∈ dom f, see theorem (36), f2 : x → 80, for x = 1 or x = 2 and f2 : x → 120, for x = 3 or x = 4, see theorem (37), f3 : x → 60, for x = 1, f3 : x → 80, for x = 2 and f3 : x → 100, for x = 3, f3 : x → 120, for x = 4 see theorem (38). These functions are real random variable: f1 over Ωnow, f2 over Ωfut1, f3 over Ωfut2, see theorems (46), (43) and (40). We can prove that these functions can be used for giving an example for an adapted stochastic process. See theorem (49). We want to give an interpretation to these functions: suppose you have an equity A which has now (= w1) the value 100. Tomorrow A changes depending which scenario occurs − e.g. another marketing strategy. In scenario 1 (= w11) it has the value 80, in scenario 2 (= w12) it has the value 120. The day after tomorrow A changes again. In scenario 1 (= w111) it has the value 60, in scenario 2 (= w112) the value 80, in scenario 3 (= w121) the value 100 and in scenario 4 (= w122) it has the value 120. For a visualization refer to the tree: The sets w1,w11,w12,w111,w112,w121,w122 which are subsets of {1, 2, 3, 4}, see (22), tell us which market scenario occurs. The functions tell us the values to the relevant market scenario: For a better understanding of the definition of the random variable and the relation to the functions refer to [7], p. 20. For the proof of certain sets as σ-fields refer to [7], pp. 10-11 and [9], pp. 1-2. This article is the next step to the arbitrage opportunity. If you use for example a simple probability measure, refer, for example to literature [3], pp. 28-34, [6], p. 6 and p. 232 you can calculate whether an arbitrage exists or not. Note, that the example given in literature [3] needs 8 instead of 4 informations as in our model. If we want to code the first 3 given time points into our model we would have the following graph, see theorems (47), (44) and (41): The function for the “Call-Option” is given in literature [3], p. 28. The function is realized in Def.5. As a background, more examples for using the definition of filtration are given in [9], pp. 185-188.Jaeger Peter - Siegmund-Schacky-Str. 18a 80993 Munich, GermanyGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek, CzesƂaw ByliƄski, Adam Grabowski, Artur KorniƂowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Francesca Biagini and Daniel Rost. Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik. MATHE-LMU.DE, LMU-MĂŒnchen(25):28-34, 2012.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.Hans-Otto Georgii. Stochastik, EinfĂŒhrung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2nd edition, 2004.Peter Jaeger. Events of Borel sets, construction of Borel sets and random variables for stochastic finance. Formalized Mathematics, 22(3):199-204, 2014. doi:10.2478/forma-2014-0022.Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.JĂŒrgen Kremer. EinfĂŒhrung in die diskrete Finanzmathematik. Springer-Verlag, Berlin, Heidelberg, New York, 2006.Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.Klaus Sandmann. EinfĂŒhrung in die Stochastik der FinanzmĂ€rkte. Springer-Verlag, Berlin, Heidelberg, New York, 2 edition, 2001.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990

    Abstractions of stochastic hybrid systems

    Get PDF
    Many control systems have large, infinite state space that can not be easily abstracted. One method to analyse and verify these systems is reachability analysis. It is frequently used for air traffic control and power plants. Because of lack of complete information about the environment or unpredicted changes, the stochastic approach is a viable alternative. In this paper, different ways of introducing rechability under uncertainty are presented. A new concept of stochastic bisimulation is introduced and its connection with the reachability analysis is established. The work is mainly motivated by safety critical situations in air traffic control (like collision detection and avoidance) and formal tools are based on stochastic analysis

    A white noise approach to insider trading

    Full text link
    We present a new approach to the optimal portfolio problem for an insider with logarithmic utility. Our method is based on white noise theory, stochastic forward integrals, Hida-Malliavin calculus and the Donsker delta function.Comment: arXiv admin note: text overlap with arXiv:1504.0258

    Stable-1/2 Bridges and Insurance

    Get PDF
    We develop a class of non-life reserving models using a stable-1/2 random bridge to simulate the accumulation of paid claims, allowing for an essentially arbitrary choice of a priori distribution for the ultimate loss. Taking an information-based approach to the reserving problem, we derive the process of the conditional distribution of the ultimate loss. The "best-estimate ultimate loss process" is given by the conditional expectation of the ultimate loss. We derive explicit expressions for the best-estimate ultimate loss process, and for expected recoveries arising from aggregate excess-of-loss reinsurance treaties. Use of a deterministic time change allows for the matching of any initial (increasing) development pattern for the paid claims. We show that these methods are well-suited to the modelling of claims where there is a non-trivial probability of catastrophic loss. The generalized inverse-Gaussian (GIG) distribution is shown to be a natural choice for the a priori ultimate loss distribution. For particular GIG parameter choices, the best-estimate ultimate loss process can be written as a rational function of the paid-claims process. We extend the model to include a second paid-claims process, and allow the two processes to be dependent. The results obtained can be applied to the modelling of multiple lines of business or multiple origin years. The multi-dimensional model has the property that the dimensionality of calculations remains low, regardless of the number of paid-claims processes. An algorithm is provided for the simulation of the paid-claims processes.Comment: To appear in: Advances in Mathematics of Finance (A. Palczewski and L. Stettner, editors.), Banach Center Publications, Polish Academy of Science, Institute of Mathematic

    Credit Valuation Adjustment

    Get PDF
    Credit risk has become a topical issue since the 2007 Credit Crisis, particularly for its impact on the valuation of OTC derivatives. This becomes critical when the credit risk of entities involved in a contract either as underlying or counterparty become highly correlated as is the case during macroeconomic shocks. It impacts the valuation of such contracts through an additional term, the credit valuation adjustment (CVA). This can become large with such correlation. This thesis outlines the main approaches to credit risk modelling, intensity and structural. It gives important examples of both and particular examples useful in the calculation of CVA, the intensity model of Brigo and the structural model of Hull and White. It details Brigo's market standard model independent framework for derivatives valuation with CVA. It does this for both its unilateral form where only one counterparty is credit risky and also for its bilateral form where both counterparties are credit risky. This thesis then shows how these frameworks can be applied to the valuation of a credit default swap contract (CDS). Finally, it shows how Brigo's and Hull and White's model for credit risk apply to the valuation of the CVA of CDS and draws comparisons, especially based on their ability to capture correlation effects

    HMM based scenario generation for an investment optimisation problem

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2012 Springer-Verlag.The Geometric Brownian motion (GBM) is a standard method for modelling financial time series. An important criticism of this method is that the parameters of the GBM are assumed to be constants; due to this fact, important features of the time series, like extreme behaviour or volatility clustering cannot be captured. We propose an approach by which the parameters of the GBM are able to switch between regimes, more precisely they are governed by a hidden Markov chain. Thus, we model the financial time series via a hidden Markov model (HMM) with a GBM in each state. Using this approach, we generate scenarios for a financial portfolio optimisation problem in which the portfolio CVaR is minimised. Numerical results are presented.This study was funded by NET ACE at OptiRisk Systems
    • 

    corecore