

Modelling Real World Using Stochastic Processes and Filtration

Peter Jaeger Siegmund-Schacky-Str. 18a 80993 Munich, Germany

Summary. First we give an implementation in Mizar [2] basic important definitions of stochastic finance, i.e. filtration ([9], pp. 183 and 185), adapted stochastic process ([9], p. 185) and predictable stochastic process ([6], p. 224). Second we give some concrete formalization and verification to real world examples.

In article [8] we started to define random variables for a similar presentation to the book [6]. Here we continue this study. Next we define the stochastic process. For further definitions based on stochastic process we implement the definition of filtration.

To get a better understanding we give a real world example and connect the statements to the theorems. Other similar examples are given in [10], pp. 143–159 and in [12], pp. 110–124. First we introduce sets which give informations referring to today (Ω_{now} , Def.6), tomorrow (Ω_{fut_1} , Def.7) and the day after tomorrow (Ω_{fut_2} , Def.8). We give an overview for some events in the σ -algebras Ω_{now} , Ω_{fut_1} and Ω_{fut_2} , see theorems (22) and (23).

The given events are necessary for creating our next functions. The implementations take the form of: $\Omega_{now} \subset \Omega_{fut1} \subset \Omega_{fut2}$ see theorem (24). This tells us growing informations from now to the future 1=now, 2=tomorrow, 3=the day after tomorrow.

We install functions $f : \{1, 2, 3, 4\} \to \mathbb{R}$ as following:

 $f_1: x \to 100, \forall x \in \text{dom } f$, see theorem (36),

 $f_2: x \to 80$, for x = 1 or x = 2 and

 $f_2: x \to 120$, for x = 3 or x = 4, see theorem (37),

 $f_3: x \to 60$, for x = 1, $f_3: x \to 80$, for x = 2 and

 $f_3: x \to 100$, for x = 3, $f_3: x \to 120$, for x = 4 see theorem (38).

These functions are real random variable: f_1 over Ω_{now} , f_2 over Ω_{fut1} , f_3 over Ω_{fut2} , see theorems (46), (43) and (40). We can prove that these functions can be used for giving an example for an adapted stochastic process. See theorem (49).

C 2016 University of Białystok CC-BY-SA License ver. 3.0 or later ISSN 1426-2630(Print), 1898-9934(Online)

1

PETER JAEGER

We want to give an interpretation to these functions: suppose you have an equity A which has now $(=w_1)$ the value 100. Tomorrow A changes depending which scenario occurs - e.g. another marketing strategy. In scenario 1 $(=w_{11})$ it has the value 80, in scenario 2 $(=w_{12})$ it has the value 120. The day after tomorrow A changes again. In scenario 1 $(=w_{111})$ it has the value 60, in scenario 2 $(=w_{121})$ the value 80, in scenario 3 $(=w_{121})$ the value 100 and in scenario 4 $(=w_{122})$ it has the value 120. For a visualization refer to the tree:

$$\begin{array}{cccccc} Now & tomorrow & the \ day \ after \ tomorrow \\ & w_{111} = \{1\} \\ w_{11} = \{1,2\} & < \\ & w_{112} = \{2\} \\ w_{121} = \{2\} \\ & w_{121} = \{3\} \\ & w_{122} = \{3,4\} & < \\ & w_{122} = \{4\} \end{array}$$

The sets $w_1, w_{11}, w_{12}, w_{111}, w_{112}, w_{121}, w_{122}$ which are subsets of $\{1, 2, 3, 4\}$, see (22), tell us which market scenario occurs. The functions tell us the values to the relevant market scenario:

Now	tomorrow	the day after tomorrow
	$f_2(w_i) = 80 <$	$f_3(w_i) = 60, \ w_i \text{ in } w_{111}$
	w_i in w_{11}	$f_3(w_i) = 80, w_i \text{ in } w_{112}$
$f_1(w_i) = 100 < w_i \text{ in } w_1$		$f_3(w_i) = 100, w_i \text{ in } w_{121}$
	$f_2(w_i) = 120 <$	<i>JJJJJJJJJJJJJ</i>
	w_i in w_{12}	$f_3(w_i) = 120, w_i \text{ in } w_{122}$

For a better understanding of the definition of the random variable and the relation to the functions refer to [7], p. 20. For the proof of certain sets as σ -fields refer to [7], pp. 10–11 and [9], pp. 1–2.

This article is the next step to the *arbitrage opportunity*. If you use for example a simple probability measure, refer, for example to literature [3], pp. 28–34, [6], p. 6 and p. 232 you can calculate whether an *arbitrage* exists or not. Note, that the example given in literature [3] needs 8 instead of 4 informations as in our model. If we want to code the first 3 given time points into our model we would have the following graph, see theorems (47), (44) and (41):

Now		tomorrow		the day after tomorrow
				$f_3(w_i) = 180, w_i \text{ in } w_{111}$
		$f_2(w_i) = 150$	<	
		w_i in w_{11}		$f_3(w_i) = 120, \ w_i \ \text{in} \ w_{112}$
$f_1(w_i) = 125$	<			
w_i in w_1				$f_3(w_i) = 120, w_i \text{ in } w_{121}$
		$f_2(w_i) = 100$	<	
		w_i in w_{12}		$f_3(w_i) = 80, w_i \text{ in } w_{122}$

The function for the "Call-Option" is given in literature [3], p. 28. The function is realized in Def.5. As a background, more examples for using the definition of filtration are given in [9], pp. 185–188. MSC: 60G05 03B35

Keywords: stochastic process; random variable

MML identifier: FINANCE3, version: 8.1.04 5.36.1267

1. Preliminaries

Now we state the proposition:

(1) Let us consider objects a, b. If $a \neq b$, then $\{a\} \subset \{a, b\}$.

Let I be a non empty subset of N. Observe that $I \in 2^{\mathbb{R}}$ is non empty.

Let us consider an element T of \mathbb{N} . Now we state the propositions:

- (2) {w, where w is an element of $\mathbb{N} : w > 0$ and $w \leq T$ } \subseteq {w, where w is an element of $\mathbb{N} : w \leq T$ }.
- (3) {w, where w is an element of $\mathbb{N} : w \leq T$ } is a non empty subset of \mathbb{N} .
- (4) If T > 0, then {w, where w is an element of N : w > 0 and w ≤ T} is a non empty subset of N.
 PROOF: {w, where w is an element of N : w > 0 and w ≤ T} is a subset of N. 1 > 0 and 1 ≤ T by [1, (24)]. □

Now we state the proposition:

(5) Let us consider a non empty set Ω . Then $\Omega \mapsto 1$ is a function from Ω into \mathbb{R} .

2. Special Random Variables

Now we state the proposition:

(6) Let us consider a natural number d, a sequence φ of real numbers, a non empty set Ω, a σ-field F of subsets of Ω, a non empty set X, a sequence G of X, and an element w of Ω. Then {the portfolio value for future extension of d, φ, F, G and w} is an event of the Borel sets.

Let d be a natural number, φ be a sequence of real numbers, Ω be a non empty set, F be a σ -field of subsets of Ω , X be a non empty set, G be a sequence of X, and w be an element of Ω . Note that the portfolio value for future extension of d, φ , F, G and w yields an element of \mathbb{R} . The \mathcal{RV} -portfolio value for future extension of φ , F, G and d yielding a function from Ω into \mathbb{R} is defined by

(Def. 1) for every element w of Ω , it(w) = the portfolio value for future extension of d, φ , F, G and w.

Let us observe that the \mathcal{RV} -portfolio value for future extension of φ , F, G and d yields a random variable of F and the Borel sets. Let w be an element of Ω . Let us note that the portfolio value for future of d, φ , F, G and w yields a real number and is defined by the term

(Def. 2) $(\sum_{\alpha=0}^{\kappa} ((\text{the elements of the random variables for the future elements of portfolio value of } (\varphi, F, G, w)) \uparrow 1)(\alpha))_{\kappa \in \mathbb{N}} (d-1).$

Let us note that the portfolio value for future of d, φ , F, G and w yields an element of \mathbb{R} . The \mathcal{RV} -portfolio value for future of φ , F, G and d yielding a function from Ω into \mathbb{R} is defined by

(Def. 3) for every element w of Ω , it(w) = the portfolio value for future of d+1, φ , F, G and w.

Let us note that the \mathcal{RV} -portfolio value for future of φ , F, G and d yields a random variable of F and the Borel sets. Now we state the propositions:

- (7) Let us consider a natural number d, a sequence φ of real numbers, a non empty set Ω , a σ -field F of subsets of Ω , a non empty set X, a sequence G of X, and an element w of Ω . Then
 - (i) the portfolio value for future of d + 1, φ , F, G and $w = (\text{the } \mathcal{RV}\text{-portfolio value for future of } \varphi, F, G \text{ and } d)(w)$, and
 - (ii) {the portfolio value for future of d + 1, φ , F, G and w} is an event of the Borel sets.
- (8) Let us consider a non empty set Ω, a σ-field F of subsets of Ω, a non empty set X, a sequence G of X, a sequence φ of real numbers, and a natural number d. Then the *RV*-portfolio value for future extension of φ, F, G and d + 1 = (the *RV*-portfolio value for future of φ, F, G and d) + (the random variables for the future elements of portfolio value of (φ,F,G,0)).
- (9) Let us consider non empty sets Ω, Ω₂, a σ-field Σ of subsets of Ω, a σ-field Σ₂ of subsets of Ω₂, and an element s of Ω₂. Then Ω → s is random variable on Σ and Σ₂.
- (10) Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , a random variable \mathcal{RV} of Σ and the Borel sets, and an element K of \mathbb{R} . Then $\mathcal{RV} (\Omega \longmapsto K)$ is a random variable of Σ and the Borel sets. The theorem is a consequence of (9).

Let Ω be a non empty set, \mathcal{RV} be a function from Ω into \mathbb{R} , and w be an element of Ω . The functor Set-Call-Option (\mathcal{RV}, w) yielding an element of \mathbb{R} is defined by the term

(Def. 4)
$$\begin{cases} \mathcal{RV}(w), & \text{if } \mathcal{RV}(w) \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let Σ be a σ -field of subsets of Ω , \mathcal{RV} be a random variable of Σ and the Borel sets, and K be an element of \mathbb{R} . The Call-Option on \mathcal{RV} and Kyielding a function from Ω into \mathbb{R} is defined by

(Def. 5) for every element
$$w$$
 of Ω , if $(\mathcal{RV} - (\Omega \longmapsto K))(w) \ge 0$, then $it(w) = (\mathcal{RV} - (\Omega \longmapsto K))(w)$ and if $(\mathcal{RV} - (\Omega \longmapsto K))(w) < 0$, then $it(w) = 0$.

3. Special σ -Fields

Let us consider a sequence A_1 of subsets of $\{1, 2, 3, 4\}$ and a real number w. Now we state the propositions:

- (11) Suppose w = 1 or w = 3. Then suppose for every natural number n, $A_1(n) = \emptyset$ or $A_1(n) = \{1, 2\}$ or $A_1(n) = \{3, 4\}$ or $A_1(n) = \{1, 2, 3, 4\}$. Then $\{w\} \neq$ Intersection A_1 .
- (12) Suppose w = 2 or w = 4. Then suppose for every natural number n, $A_1(n) = \emptyset$ or $A_1(n) = \{1, 2\}$ or $A_1(n) = \{3, 4\}$ or $A_1(n) = \{1, 2, 3, 4\}$. Then $\{w\} \neq$ Intersection A_1 .

Now we state the propositions:

- (13) Let us consider sets M, A_1 , A_2 . Suppose $M = \{\emptyset, \{1, 2, 3, 4\}\}$ and A_1 , $A_2 \in M$. Then $A_1 \cap A_2 \in M$.
- (14) Let us consider a sequence A_1 of subsets of $\{1, 2, 3, 4\}$. Suppose for every natural number n and for every natural number $k, A_1(n) \cap A_1(k) \neq \emptyset$ and rng $A_1 \subseteq \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$. Then

(i) Intersection $A_1 = \emptyset$, or

- (ii) Intersection $A_1 = \{1, 2\}$, or
- (iii) Intersection $A_1 = \{3, 4\}$, or
- (iv) Intersection $A_1 = \{1, 2, 3, 4\}.$

PROOF: For every natural number $n, A_1(n) \in \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ by [1, (20)], [4, (3)]. For every natural number $n, A_1(n) = \emptyset$ or $A_1(n) = \{1, 2\}$ or $A_1(n) = \{3, 4\}$ or $A_1(n) = \{1, 2, 3, 4\}$. \Box

Let us consider a sequence A_1 of subsets of $\{1, 2, 3, 4\}$ and a set M. Now we state the propositions:

- (15) Suppose $M = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ and Intersection $A_1 = \{1, 2, 3, 4\}$. Then Intersection $A_1 \in M$.
- (16) Suppose $M = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ and Intersection $A_1 = \{3, 4\}$. Then Intersection $A_1 \in M$.
- (17) Suppose $M = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ and Intersection $A_1 = \{1, 2\}$. Then Intersection $A_1 \in M$.

(18) Suppose $M = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ and Intersection $A_1 = \emptyset$. Then Intersection $A_1 \in M$.

Now we state the propositions:

- (19) Let us consider a set M, and a sequence A_1 of subsets of $\{1, 2, 3, 4\}$. Suppose rng $A_1 \subseteq M$ and $M = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$. Then Intersection $A_1 \in M$. PROOF: Intersection $A_1 \in \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}$ by [11, (13)], (14). \Box
- (20) Let us consider sets M, M_1 , and a sequence A_1 of subsets of M_1 . Suppose $M_1 = \{1, 2, 3, 4\}$ and $\operatorname{rng} A_1 \subseteq M$ and $M = \{\emptyset, \{1, 2, 3, 4\}\}$. If Intersection $A_1 \neq \emptyset$, then Intersection $A_1 \in M$. PROOF: For every natural number n, $A_1(n) = \emptyset$ or $A_1(n) = \{1, 2, 3, 4\}$ by [1, (20)], [4, (3)]. If there exists a natural number n such that $A_1(n) = \emptyset$, then Intersection $A_1 = \emptyset$ by [11, (13)]. Intersection $A_1 = \{1, 2, 3, 4\}$ by [11, (13)].
- (21) Let us consider sets M, M_1 , and a sequence A_1 of subsets of M_1 . Suppose $M_1 = \{1, 2, 3, 4\}$ and $\operatorname{rng} A_1 \subseteq M$ and $M = \{\emptyset, \{1, 2, 3, 4\}\}$. Let us consider a natural number k_1 , and a natural number k_2 . Then $A_1(k_1) \cap A_1(k_2) \in M$. PROOF: $k_1 \in \operatorname{dom} A_1$ by [1, (20)]. $k_2 \in \operatorname{dom} A_1$ by [1, (20)]. $A_1(k_1) \cap A_1(k_2) \in M$. \Box

The functor Ω_{now} yielding a σ -field of subsets of $\{1, 2, 3, 4\}$ is defined by the term

(Def. 6) $\{\emptyset, \{1, 2, 3, 4\}\}$.

The functor Ω_{fut1} yielding a σ -field of subsets of $\{1, 2, 3, 4\}$ is defined by the term

(Def. 7) $\{\emptyset, \{1,2\}, \{3,4\}, \{1,2,3,4\}\}$.

The functor Ω_{fut2} yielding a σ -field of subsets of $\{1, 2, 3, 4\}$ is defined by the term

(Def. 8) $2^{\{1,2,3,4\}}$.

Let us consider a set Ω .

Let us assume that $\Omega = \{1, 2, 3, 4\}$. Now we state the propositions:

- (22) (i) $\{1\} \subseteq \Omega$, and
 - (ii) $\{2\} \subseteq \Omega$, and
 - (iii) $\{3\} \subseteq \Omega$, and
 - (iv) $\{4\} \subseteq \Omega$, and
 - (v) $\{1,2\} \subseteq \Omega$, and
 - (vi) $\{3,4\} \subseteq \Omega$, and

(vii) $\emptyset \subseteq \Omega \subseteq \Omega$.

- (23) (i) $\Omega, \emptyset \in \Omega_{now}$, and
 - (ii) $\{1, 2\}, \{3, 4\}, \Omega, \emptyset \in \Omega_{fut1}, \text{ and }$
 - (iii) $\Omega, \emptyset, \{1\}, \{2\}, \{3\}, \{4\} \in \Omega_{fut2}$.

Now we state the proposition:

(24) $\Omega_{now} \subset \Omega_{fut1} \subset \Omega_{fut2}.$

4. Construction of Filtration and Examples

Now we state the propositions:

- (25) There exists a non empty set Ω and there exist σ -fields F_1 , F_2 , F_3 of subsets of Ω such that $F_1 \subset F_2 \subset F_3$.
- (26) There exist non empty sets Ω_1 , Ω_2 , Ω_3 , Ω_4 such that
 - (i) $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \Omega_4$, and
 - (ii) there exists a σ -field F_1 of subsets of Ω_1 and there exists a σ -field F_2 of subsets of Ω_2 and there exists a σ -field F_3 of subsets of Ω_3 and there exists a σ -field F_4 of subsets of Ω_4 such that $F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4$.

Let I, Ω be non empty sets, Σ be a σ -field of subsets of Ω , M be a many sorted σ -field over I and Σ , and i be an element of I. The functor $\mathcal{M}_{\sigma\text{-field}}(M, i)$ yielding a σ -field of subsets of Ω is defined by the term

(Def. 9)
$$M(i)$$
.

Let Ω be a non empty set and I be a non empty subset of \mathbb{R} .

A filtration of I and Σ is a many sorted σ -field over I and Σ and is defined by

(Def. 10) for every elements s, t of I such that $s \leq t$ holds it(s) is a subset of it(t)and for every element t of I, $it(t) \subseteq \Sigma$.

Let F be a filtration of I and Σ and i be an element of I. The $i-\mathcal{EF}$ of F yielding a σ -field of subsets of Ω is defined by the term

(Def. 11) F(i).

Let k be an element of $\{1, 2, 3\}$. The functor Select12- σ -field(k) yielding a subset of $2^{\{1,2,3,4\}}$ is defined by the term

(Def. 12) $\begin{cases} \Omega_{now}, & \text{if } k = 1, \\ \Omega_{fut1}, & \text{otherwise.} \end{cases}$

The functor Select123- σ -field(k) yielding a subset of $2^{\{1,2,3,4\}}$ is defined by the term

(Def. 13) $\begin{cases} \text{Select12-}\sigma\text{-field}(k), & \text{if } k \leq 2, \\ \Omega_{fut2}, & \text{otherwise.} \end{cases}$

Now we state the propositions:

- (27) Let us consider a σ -field Σ of subsets of $\{1, 2, 3, 4\}$, and a set I. Suppose $I = \{1, 2, 3\}$ and $\Sigma = 2^{\{1, 2, 3, 4\}}$. Then there exists a many sorted σ -field M over I and Σ such that
 - (i) $M(1) = \Omega_{now}$, and
 - (ii) $M(2) = \Omega_{fut1}$, and
 - (iii) $M(3) = \Omega_{fut2}$.

PROOF: Define $\mathcal{U}(\text{element of } \{1, 2, 3\}) = \text{Select123-}\sigma\text{-field}(\$_1)$. Consider f_4 being a function from $\{1, 2, 3\}$ into $2^{2^{\{1, 2, 3, 4\}}}$ such that for every element d of $\{1, 2, 3\}, f_4(d) = \mathcal{U}(d)$ from [5, Sch. 4]. For every set i such that $i \in I$ holds $f_4(i)$ is a σ -field of subsets of $\{1, 2, 3, 4\}$. \Box

- (28) Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , and a non empty subset I of \mathbb{R} . Suppose $I = \{1, 2, 3\}$ and $\Sigma = 2^{\{1, 2, 3, 4\}}$ and $\Omega = \{1, 2, 3, 4\}$. Then there exists a many sorted σ -field M over I and Σ such that
 - (i) $M(1) = \Omega_{now}$, and
 - (ii) $M(2) = \Omega_{fut1}$, and
 - (iii) $M(3) = \Omega_{fut2}$, and
 - (iv) M is a filtration of I and Σ .

The theorem is a consequence of (27).

- (29) Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , and a σ -field Σ_2 of subsets of {1}. Suppose $\Omega = \{1, 2, 3, 4\}$. Then there exists a function X_1 from Ω into {1} such that X_1 is random variable of Ω_{now} and Σ_2 , random variable of Ω_{fut1} and Σ_2 , and random variable of Ω_{fut2} and Σ_2 .
- (30) Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , and a non empty subset I of \mathbb{R} . Suppose $I = \{1, 2, 3\}$ and $\Sigma = 2^{\{1, 2, 3, 4\}}$ and $\Omega = \{1, 2, 3, 4\}$. Then there exists a many sorted σ -field M over I and Σ such that
 - (i) $M(1) = \Omega_{now}$, and
 - (ii) $M(2) = \Omega_{fut1}$, and
 - (iii) $M(3) = \Omega_{fut2}$, and
 - (iv) M is a filtration of I and Σ .

The theorem is a consequence of (27).

- (31) There exist non empty sets Ω , Ω_2 and there exists a σ -field Σ of subsets of Ω and there exists a σ -field Σ_2 of subsets of Ω_2 and there exists a non empty subset I of \mathbb{R} and there exists a many sorted σ -field Q over I and Σ such that Q is a filtration of I and Σ and there exists a function \mathcal{RV} from Ω into Ω_2 such that for every element i of I, \mathcal{RV} is a random variable of $\mathcal{M}_{\sigma\text{-field}}(Q, i)$ and Σ_2 . The theorem is a consequence of (30) and (29).
- (32) Let us consider non empty sets Ω , Ω_2 , a σ -field Σ of subsets of Ω , a σ -field Σ_2 of subsets of Ω_2 , a non empty subset I of \mathbb{R} , and a filtration Q of I and Σ . Then there exists a function \mathcal{RV} from Ω into Ω_2 such that for every element i of I, \mathcal{RV} is a random variable of $\mathcal{M}_{\sigma\text{-field}}(Q, i)$ and Σ_2 . PROOF: Consider w being an object such that $w \in \Omega_2$. Set $m_1 = w$. Consider m being a function from Ω into Ω_2 such that $m = \Omega \longmapsto m_1$. For every element i of I, m is a random variable of $\mathcal{M}_{\sigma\text{-field}}(Q, i)$ and Σ_2 by [13, (7)], [11, (5), (4)]. \Box

5. Stochastic Process: Adapted and Predictable

Now we state the proposition:

(33) Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , and a σ -field Σ_2 of subsets of Ω . If $\Sigma_2 \subseteq \Sigma$, then every event of Σ_2 is an event of Σ .

Let Ω , Ω_2 be non empty sets, Σ be a σ -field of subsets of Ω , Σ_2 be a σ -field of subsets of Ω_2 , I be a non empty subset of \mathbb{R} , and P be a probability on Σ .

A stochastic process of I, Σ , Σ_2 and P is a function from I into the set of random variables on Σ and Σ_2 and is defined by

(Def. 14) for every element k of I, there exists a function \mathcal{RV} from Ω into Ω_2 such that $it(k) = \mathcal{RV}$ and \mathcal{RV} is random variable on Σ and Σ_2 .

Let S be a stochastic process of I, Σ , Σ_2 and P and k be an element of I. The k- \mathcal{RV} of S yielding a random variable of Σ and Σ_2 is defined by the term (Def. 15) S(k).

An adapted stochastic process of I, Σ, Σ_2, P and S is a function from I into the set of random variables on Σ and Σ_2 and is defined by

(Def. 16) there exists a filtration k of I and Σ such that for every element i of I, the $i-\mathcal{RV}$ of S is random variable on the $i-\mathcal{EF}$ of k and Σ_2 .

Let I be a non empty subset of \mathbb{N} , J be a non empty subset of \mathbb{N} , and S be a stochastic process of $J \in 2^{\mathbb{R}}$, Σ , Σ_2 and P.

A predictable stochastic process of I, J, Σ , Σ_2 , P and S is a function from J into the set of random variables on Σ and Σ_2 and is defined by

(Def. 17) there exists a filtration k of $I(\in 2^{\mathbb{R}})$ and Σ such that for every element j of $J(\in 2^{\mathbb{R}})$ for every element i of $I(\in 2^{\mathbb{R}})$ such that j - 1 = i holds the $j - \mathcal{RV}$ of S is random variable on the $i - \mathcal{EF}$ of k and Σ_2 .

Let I be a non empty subset of \mathbb{R} , M be a filtration of I and Σ , and S be a stochastic process of I, Σ , Σ_2 and P. We say that S is M-stochastic process w.r.t. filtration if and only if

(Def. 18) for every element *i* of *I*, the *i*- \mathcal{RV} of *S* is random variable on the *i*- \mathcal{EF} of *M* and Σ_2 .

Now we state the proposition:

(34) Let us consider non empty sets Ω, Ω₂, a σ-field Σ of subsets of Ω, a σ-field Σ₂ of subsets of Ω₂, a non empty subset I of ℝ, a probability P on Σ, a filtration M of I and Σ, and a stochastic process S of I, Σ, Σ₂ and P. Suppose S is M-stochastic process w.r.t. filtration. Then S is an adapted stochastic process of I, Σ, Σ₂, P and S.

6. Example for a Stochastic Process

Let k_1 , k_2 be elements of \mathbb{R} , Ω be a non empty set, and k be an element of Ω . The functors: Set1- $\mathcal{RV}(k_1, k_2, k)$ and Set4- $\mathcal{RV}(k_1, k_2, k)$ yielding elements of \mathbb{R} are defined by terms

(Def. 19)
$$\begin{cases} k_1, & \text{if } k = 1 \text{ or } k = 2, \\ k_2, & \text{otherwise,} \end{cases}$$

(Def. 20) $\begin{cases} k_1, & \text{if } k = 3, \\ k_2, & \text{otherwise,} \end{cases}$

respectively. Let k_2 , k_3 , k_4 be elements of \mathbb{R} . The functor Set3- $\mathcal{RV}(k_2, k_3, k_4, k)$ yielding an element of \mathbb{R} is defined by the term

(Def. 21) $\begin{cases} k_2, & \text{if } k = 2, \\ \text{Set4-}\mathcal{RV}(k_3, k_4, k), & \text{otherwise.} \end{cases}$

Let k_1, k_2, k_3, k_4 be elements of \mathbb{R} . The functor Set2- $\mathcal{RV}(k_1, k_2, k_3, k_4, k)$ yielding an element of \mathbb{R} is defined by the term

- (Def. 22) $\begin{cases} k_1, & \text{if } k = 1, \\ \text{Set3-}\mathcal{RV}(k_2, k_3, k_4, k), & \text{otherwise.} \end{cases}$ Now we state the proposition:
 - (35) Let us consider elements k_1 , k_2 , k_3 , k_4 of \mathbb{R} , and a set Ω . Suppose $\Omega = \{1, 2, 3, 4\}$. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) $f(1) = k_1$, and
 - (ii) $f(2) = k_2$, and

- (iii) $f(3) = k_3$, and
- (iv) $f(4) = k_4$.

PROOF: Define $\mathcal{U}(\text{element of }\Omega) = \text{Set2-}\mathcal{RV}(k_1, k_2, k_3, k_4, \$_1)$. Consider f being a function from Ω into \mathbb{R} such that for every element d of Ω , $f(d) = \mathcal{U}(d)$ from [5, Sch. 4]. $f(1) = k_1$. $f(2) = k_2$. $f(3) = k_3$. $f(4) = k_4$. \Box

Let us consider a set Ω .

Let us assume that $\Omega = \{1, 2, 3, 4\}$. Now we state the propositions:

(36) There exists a function f from Ω into \mathbb{R} such that

- (i) f(1) = 100, and
- (ii) f(2) = 100, and
- (iii) f(3) = 100, and
- (iv) f(4) = 100.

The theorem is a consequence of (35).

(37) There exists a function f from Ω into \mathbb{R} such that

- (i) f(1) = 80, and
- (ii) f(2) = 80, and
- (iii) f(3) = 120, and
- (iv) f(4) = 120.

The theorem is a consequence of (35).

(38) There exists a function f from Ω into \mathbb{R} such that

- (i) f(1) = 60, and
- (ii) f(2) = 80, and
- (iii) f(3) = 100, and
- (iv) f(4) = 120.

The theorem is a consequence of (35).

- (39) Let us consider elements k_1 , k_2 , k_3 , k_4 of \mathbb{R} , and a non empty set Ω . Suppose $\Omega = \{1, 2, 3, 4\}$. Let us consider a σ -field Σ of subsets of Ω , a non empty subset I of \mathbb{R} , and a filtration M of I and Σ . Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Let us consider an element k of I. Suppose k = 3. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) $f(1) = k_1$, and
 - (ii) $f(2) = k_2$, and
 - (iii) $f(3) = k_3$, and

(iv) $f(4) = k_4$, and

(v) f is random variable on the k- \mathcal{EF} of M and the Borel sets.

PROOF: Consider f being a function from Ω into \mathbb{R} such that $f(1) = k_1$ and $f(2) = k_2$ and $f(3) = k_3$ and $f(4) = k_4$. 1, 2, 3, $4 \in \text{dom } f$. f is random variable on the k- \mathcal{EF} of M and the Borel sets by [4, (1)], [11, (4)]. \Box

Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , a non empty subset I of \mathbb{R} , a filtration M of I and Σ , and an element k of I.

Let us assume that $\Omega = \{1, 2, 3, 4\}$. Now we state the propositions:

- (40) Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then suppose k = 3. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) f(1) = 60, and
 - (ii) f(2) = 80, and
 - (iii) f(3) = 100, and
 - (iv) f(4) = 120, and
 - (v) f is random variable on the k- \mathcal{EF} of M and the Borel sets.

The theorem is a consequence of (39).

- (41) Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then suppose k = 3. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) f(1) = 180, and
 - (ii) f(2) = 120, and
 - (iii) f(3) = 120, and
 - (iv) f(4) = 80, and
 - (v) f is random variable on the $k \mathcal{EF}$ of M and the Borel sets.

The theorem is a consequence of (39).

- (42) Let us consider elements k_1 , k_2 of \mathbb{R} , and a non empty set Ω . Suppose $\Omega = \{1, 2, 3, 4\}$. Let us consider a σ -field Σ of subsets of Ω , a non empty subset I of \mathbb{R} , and a filtration M of I and Σ . Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Let us consider an element k of I. Suppose k = 2. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) $f(1) = k_1$, and
 - (ii) $f(2) = k_1$, and
 - (iii) $f(3) = k_2$, and
 - (iv) $f(4) = k_2$, and
 - (v) f is random variable on the k- \mathcal{EF} of M and the Borel sets.

PROOF: Consider f being a function from Ω into \mathbb{R} such that $f(1) = k_1$ and $f(2) = k_1$ and $f(3) = k_2$ and $f(4) = k_2$. Set i = k. For every set x, $f^{-1}(x) \in \text{the } i - \mathcal{EF}$ of M by [4, (1)]. \Box

Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , a non empty subset I of \mathbb{R} , a filtration M of I and Σ , and an element k of I.

Let us assume that $\Omega = \{1, 2, 3, 4\}$. Now we state the propositions:

- (43) Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then suppose k = 2. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) f(1) = 80, and
 - (ii) f(2) = 80, and
 - (iii) f(3) = 120, and
 - (iv) f(4) = 120, and
 - (v) f is random variable on the $k \mathcal{EF}$ of M and the Borel sets.

The theorem is a consequence of (42).

- (44) Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then suppose k = 2. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) f(1) = 150, and
 - (ii) f(2) = 150, and
 - (iii) f(3) = 100, and
 - (iv) f(4) = 100, and
 - (v) f is random variable on the $k \mathcal{EF}$ of M and the Borel sets.

The theorem is a consequence of (42).

- (45) Let us consider an element k_1 of \mathbb{R} , and a non empty set Ω . Suppose $\Omega = \{1, 2, 3, 4\}$. Let us consider a σ -field Σ of subsets of Ω , a non empty subset I of \mathbb{R} , and a filtration M of I and Σ . Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Let us consider an element k of I. Suppose k = 1. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) $f(1) = k_1$, and
 - (ii) $f(2) = k_1$, and
 - (iii) $f(3) = k_1$, and
 - (iv) $f(4) = k_1$, and
 - (v) f is random variable on the $k-\mathcal{EF}$ of M and the Borel sets.

PROOF: Consider f being a function from Ω into \mathbb{R} such that $f(1) = k_1$ and $f(2) = k_1$ and $f(3) = k_1$ and $f(4) = k_1$. Set i = k. For every set xsuch that $x \in$ the Borel sets holds $f^{-1}(x) \in$ the *i*- \mathcal{EF} of M by [4, (1)]. \Box Let us consider a non empty set Ω , a σ -field Σ of subsets of Ω , a non empty subset I of \mathbb{R} , a filtration M of I and Σ , and an element k of I.

Let us assume that $\Omega = \{1, 2, 3, 4\}$. Now we state the propositions:

- (46) Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then suppose k = 1. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) f(1) = 100, and
 - (ii) f(2) = 100, and
 - (iii) f(3) = 100, and
 - (iv) f(4) = 100, and
 - (v) f is random variable on the $k \mathcal{EF}$ of M and the Borel sets.

The theorem is a consequence of (45).

- (47) Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then suppose k = 1. Then there exists a function f from Ω into \mathbb{R} such that
 - (i) f(1) = 125, and
 - (ii) f(2) = 125, and
 - (iii) f(3) = 125, and
 - (iv) f(4) = 125, and
 - (v) f is random variable on the k- \mathcal{EF} of M and the Borel sets.

The theorem is a consequence of (45).

Now we state the proposition:

(48) Let us consider a non empty set Ω . Suppose $\Omega = \{1, 2, 3, 4\}$. Let us consider a σ -field Σ of subsets of Ω , and a non empty subset I of \mathbb{R} . Suppose $I = \{1, 2, 3\}$ and $\Sigma = 2^{\{1, 2, 3, 4\}}$. Let us consider a filtration M of I and Σ . Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Let us consider a probability P on Σ , and an element i of I. Then there exists a function \mathcal{RV} from Ω into \mathbb{R} such that \mathcal{RV} is random variable on the i- \mathcal{EF} of M and the Borel sets. The theorem is a consequence of (46), (43), and (40).

Let I be a non empty subset of \mathbb{R} . Assume $I = \{1, 2, 3\}$. Let i be an element of I. Assume i = 2 or i = 3. Let Ω be a non empty set. Assume $\Omega = \{1, 2, 3, 4\}$. Let Σ be a σ -field of subsets of Ω . Assume $\Sigma = 2^{\Omega}$. Let f_1 be a function from Ω into \mathbb{R} . Assume $f_1(1) = 60$ and $f_1(2) = 80$ and $f_1(3) = 100$ and $f_1(4) = 120$. Let f_2 be a function from Ω into \mathbb{R} . Assume $f_2(1) = 80$ and $f_2(2) = 80$ and $f_2(3) = 120$ and $f_2(4) = 120$. Let f_3 be a function from Ω into \mathbb{R} . The functor Select12- $\mathcal{RV}(i, \Sigma, f_1, f_2, f_3)$ yielding an element of the set of random variables on Σ and the Borel sets is defined by the term

(Def. 23) $\begin{cases} f_2, & \text{if } i = 2, \\ f_1, & \text{otherwise.} \end{cases}$

Assume $I = \{1, 2, 3\}$. Assume $\Omega = \{1, 2, 3, 4\}$. Assume $\Sigma = 2^{\Omega}$. Let f_1, f_2 be functions from Ω into \mathbb{R} . Assume $f_3(1) = 100$ and $f_3(2) = 100$ and $f_3(3) = 100$ and $f_3(4) = 100$. The functor Select123- $\mathcal{RV}(i, \Sigma, f_1, f_2, f_3)$ yielding an element of the set of random variables on Σ and the Borel sets is defined by the term

(Def. 24)
$$\begin{cases} \text{Select12-}\mathcal{RV}(i,\Sigma,f_1,f_2,f_3), & \text{if } i=2 \text{ or } i=3, \\ f_3, & \text{otherwise.} \end{cases}$$

Now we state the proposition:

- (49) Let us consider non empty sets Ω , Ω_2 . Suppose $\Omega = \{1, 2, 3, 4\}$. Let us consider a σ -field Σ of subsets of Ω , and a non empty subset I of \mathbb{R} . Suppose $I = \{1, 2, 3\}$ and $\Sigma = 2^{\{1, 2, 3, 4\}}$. Let us consider a probability P on Σ , and a filtration M of I and Σ . Suppose $M(1) = \Omega_{now}$ and $M(2) = \Omega_{fut1}$ and $M(3) = \Omega_{fut2}$. Then there exists a stochastic process S of I, Σ , the Borel sets and P such that
 - (i) for every element k of I, there exists a function *RV* from Ω into *R* such that S(k) = *RV* and *RV* is random variable on Σ and the Borel sets and random variable on the k-*EF* of M and the Borel sets and there exists a function f from Ω into *R* such that if k = 1, then f(1) = 100 and f(2) = 100 and f(3) = 100 and f(4) = 100 and S(k) = f and there exists a function f from Ω into *R* such that if k = 2, then f(1) = 80 and f(2) = 80 and f(3) = 120 and f(4) = 120 and S(k) = f and there exists a function f from Ω into *R* such that if k = 3, then f(1) = 60 and f(2) = 80 and f(3) = 100 and f(4) = 120 and S(k) = f and S is M-stochastic process w.r.t. filtration, and

(ii) S is an adapted stochastic process of I, Σ , the Borel sets, P and S. PROOF: Consider f_3 being a function from Ω into \mathbb{R} such that $f_3(1) = 100$ and $f_3(2) = 100$ and $f_3(3) = 100$ and $f_3(4) = 100$. Consider f_2 being a function from Ω into \mathbb{R} such that $f_2(1) = 80$ and $f_2(2) = 80$ and $f_2(3) = 120$ and $f_2(4) = 120$. Consider f_1 being a function from Ω into \mathbb{R} such that $f_1(1) = 60$ and $f_1(2) = 80$ and $f_1(3) = 100$ and $f_1(4) = 120$. Define \mathcal{U} (element of I) = Select123- $\mathcal{RV}(\$_1, \Sigma, f_1, f_2, f_3)$. Consider f_4 being a function from I into the set of random variables on Σ and the Borel sets such that for every element d of I, $f_4(d) = \mathcal{U}(d)$ from [5, Sch. 4]. For every element k of I, there exists a function \mathcal{RV} from Ω into \mathbb{R} such that $f_4(k) = \mathcal{RV}$ and \mathcal{RV} is random variable on Σ and the Borel sets. For every element k of I, there exists a function \mathcal{RV} from Ω into \mathbb{R} such that $f_4(k) = \mathcal{RV}$ and \mathcal{RV} is random variable on Σ and the Borel sets. For every element k of I, there exists a function \mathcal{RV} from Ω into \mathbb{R} such that $f_4(k) = \mathcal{RV}$ and \mathcal{RV} is random variable on Σ and the Borel sets and random variable on the k- \mathcal{EF} of M and the Borel sets and there exists a function f from Ω into \mathbb{R} such that if k = 1, then f(1) = 100 and f(2) = 100 and f(3) = 100 and f(4) = 100 and $f_4(k) = f$ and there exists a function f from Ω into \mathbb{R} such that if k = 2, then f(1) = 80 and f(2) = 80 and f(3) = 120 and f(4) = 120 and $f_4(k) = f$ and there exists a function f from Ω into \mathbb{R} such that if k = 3, then f(1) = 60 and f(2) = 80 and f(3) = 100 and f(4) = 120 and $f_4(k) = f$ and f_4 is M-stochastic process w.r.t. filtration and adapted stochastic process of I, Σ , the Borel sets, P and f_4 . \Box

References

- Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
- [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [3] Francesca Biagini and Daniel Rost. Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik. MATHE-LMU.DE, LMU-München(25):28–34, 2012.
- [4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.
- [5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.
- [6] Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.
- [7] Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2nd edition, 2004.
- [8] Peter Jaeger. Events of Borel sets, construction of Borel sets and random variables for stochastic finance. *Formalized Mathematics*, 22(3):199–204, 2014. doi:10.2478/forma-2014-0022.
- [9] Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.
- [10] Jürgen Kremer. Einführung in die diskrete Finanzmathematik. Springer-Verlag, Berlin, Heidelberg, New York, 2006.
- [11] Andrzej Nędzusiak. σ -fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
- [12] Klaus Sandmann. Einführung in die Stochastik der Finanzmärkte. Springer-Verlag, Berlin, Heidelberg, New York, 2 edition, 2001.
- [13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329–334, 1990.

Received December 30, 2015