6,413 research outputs found

    The effect of eclogitization of crustal rocks on the seismic properties on variable scales: Implications for geophysical imaging of eclogitization at depth

    Get PDF
    Plate tectonics shapes the face of the earth and subduction and collision zones are among the most important features on Earth. Here, crustal material is recycled into the mantle or integrated into growing orogens. However, the processes active at depth cannot be studied directly and we thus rely on geophysical imaging methods to visualize the geometries that result from the ongoing processes. Additionally, these processes can be studied in fossil subduction and collision zones. However, the scales at which observations from geophysical imaging are made are orders of magnitude larger than those made in field-based studies of fossil subduction and collision zones. This thesis provides insight into how eclogitization modifies the physical properties of deeply buried rocks and what influence the resulting lithologies and their geometrical configuration have on geophysical imaging. In an interdisciplinary approach, I show how structures that are likely representative for those present at depth in subduction and collision zones develop and what their geometries at depth will be. I then derive their petrophysical properties and show how these are modified on various scales, and how this influences the detectability of such associations using geophysical imaging techniques. To do so, the island of Holsnøy in western Norway serves as a natural laboratory that is ideal to study eclogitization of crustal material. Geological mapping on Holsnøy constrains the geometric framework of the constituting lithologies and the scales at which such structures could be expected to establish. Previously, several authors have shown that many of the eclogite occurrences on Holsnøy are produced contemporaneously with ductile deformation forming shear zones at various scales. Our geological mapping aided by photogrammetry using drone images reveals that large parts of this exposed continental sliver were eclogitized statically without associated ductile deformation. This shows that even in domains with ongoing regional deformation, low-strain domains develop within the descending crustal material. Nevertheless, even the major shear zones that are exposed are only a few hundred meters thick, and thus far below the scale that is detectable by geophysical imaging techniques. However, geological mapping of the area suggests that the exposed structures are, at least in a qualitative sense, scale independent, suggesting that the same structural framework could be present at a larger scale in active subduction and collision zones. Measurements of P and S wave velocities of the exposed granulitic protolith and eclogites suggest that eclogitization of the lower crust causes three major changes of the petrophysical properties: (1) increased P and S wave velocities, (2) an increase of the seismic anisotropy, and (3) a decrease of the VP/VS ratio, suggesting distinct variations in the geophysical signal when the descending material is partially eclogitized. Additionally, testing the signal that the exposed shear zones would give in reflection seismic and receiver function studies reveals that the variations in shear zone structure indeed produces variations in the retrieved waveforms. Nevertheless, as the exposed structures are too small for geophysical imaging, the finite element method is used to calculate the effective properties of representative structures acting as an effective medium. The results show that the geometrical configuration of the constituting lithologies only has a minor impact on the P wave velocities and anisotropies of the resulting effective medium. Furthermore, our effective medium calculations on the kilometer scale show that eclogitization of crustal material can indeed produce significant seismic anisotropy. In this case, the calculated anisotropy reaches ~5%, which would produce a dependence of the retrieved signal in, for example, receiver function studies on the backazimuth of the sampled rays. Such backazimuthal dependence is indeed observed in active collision zones such as the Himalaya-Tibet collision system and the results presented here can thus be used to constrain the lithologies at depth, suggesting that the lower crust of India below the Himalaya is partially eclogitized along shear zones similar to those exposed on Holsnøy

    Integration of natural data within a numerical model of ablative subduction: A possible interpretation for the Alpine dynamics of the Austroalpine crust

    Full text link
    A numerical modelling approach is used to validate the physical and ge- ological reliability of the ablative subduction mechanism during Alpine con- vergence in order to interpret the tectonic and metamorphic evolution of an inner portion of the Alpine belt: the Austroalpine Domain. The model pre- dictions and the natural data for the Austroalpine of the Western Alps agree very well in terms of P-T peak conditions, relative chronology of peak and exhumation events, P-T-t paths, thermal gradients and the tectonic evolu- tion of the continental rocks. These findings suggest that a pre-collisional evolution of this domain, with the burial of the continental rocks (induced by ablative subduction of the overriding Adria plate) and their exhumation (driven by an upwelling flow generated in a hydrated mantle wedge) could be a valid mechanism that reproduces the actual tectono-metamorphic config- uration of this part of the Alps. There is less agreement between the model predictions and the natural data for the Austroalpine of the Central-Eastern Alps. Based on the natural data available in the literature, a critical discus- sion of the other proposed mechanisms is presented, and additional geological factors that should be considered within the numerical model are suggested to improve the fitting to the numerical results; these factors include varia- tions in the continental and/or oceanic thickness, variation of the subduction rate and/or slab dip, the initial thermal state of the passive margin, the oc- currence of continental collision and an oblique convergence.Comment: 11 Figures and 3 Tabe

    Theoretical petrology

    Get PDF
    The central issues in petrology have remained remarkably unchanged in the last 50 years. In igneous petrology, the focus is on understanding the nature and cause of diversity in igneous rocks: on identifying primary magma types and constraints on the compositional and mineralogical characteristics, the physical conditions, and the evolutions of their source regions and on establishing the processes by which derivative magmas evolve from primary magmas. In metamorphic petrology, the major concern is with understanding the conditions and processes experienced by a rock in reaching its present state. In both igneous and metamorphic petrology, the ultimate goal is the integration of petrological constraints with those from other branches of earth science into regional and global theories of earth history. What has changed over the years, however, is the framework within which these issues are addressed: the backdrop provided by plate tectonics and geophysical constraints, the growing sophistication of chemical and physical models of rock systems, the ever increasing inputs from trace element and isotopic geochemistry, the sophistication and complexity of experimental approaches to petrological problems, and the growing body of detailed petrological studies of specific rock suites and associations from all over the world. What I will attempt in this report is to pinpoint and briefly review those areas of growing interest and emphasis in American efforts in petrology during the 1975–1978 quadrennium and the ways in which they were shaped by this framework

    Exhumation history of eastern Ladakh revealed by Ar-40/Ar-39 and fission-track ages: the Indus River-Tso Morari transect, NW Himalaya

    Get PDF
    Fission-track and Ar-40/Ar-39 ages place time constraints on the exhumation of the North Himalayan nappe stack, the Indus Suture Zone and Molasse, and the Transhimalayan Batholith in eastern Ladakh (NW India). Results from this and previous studies on a north-south transect passing near Tso Morari Lake suggest that the SW-directed North Himalayan nappe stack (comprising the Mata, Tetraogal and Tso Morari nappes) was emplaced and metamorphosed by c. 50-45 Ma, and exhumed to moderately shallow depths (c. 10 km) by c. 45-40 Ma. From the mid-Eocene to the present, exhumation continued at a steady and slow rate except for the root zone of the Tso Morari nappe, which cooled faster than the rest of the nappe stack. Rapid cooling occurred at c. 20 Ma and is linked to brittle deformation along the normal Ribil-Zildat Fault concomitant with extrusion of the Crystalline nappe in the south. Data from the Indus Molasse suggest that sediments were still being deposited during the Miocene

    U-Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina) : correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane

    Get PDF
    The Sierras Pampeanas of Argentina, the largest outcrop of pre-Andean crystalline basement in southern South America, resulted from plate interactions along the proto-Andean margin of Gondwana, from as early as Mesoproterozoic to Late Paleozoic times (e.g., Ramos, 2004, and references therein). Two discrete Paleozoic orogenic belts have been recognized: the Early Cambrian Pampean belt in the eastern sierras, and the Ordovician Famatinian belt, which partially overprints it to the west (e.g., Rapela et al., 1998). In the Western Sierras Pampeanas, Mesoproterozoic igneous rocks (ca. 1.0–1.2 Ga) have been recognized in the Sierra de Pie de Palo (Fig. 1) (McDonough et al., 1993 M.R. McDonough, V.A. Ramos, C.E. Isachsen, S.A. Bowring and G.I. Vujovich, Edades preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras Pampeanas occidentales de San Juán: sus implicancias para el supercontinente proterozoico de Rodinia, 12° Cong. Geol. Argentino, Actas vol. 3 (1993), pp. 340–342.McDonough et al., 1993, Pankhurst and Rapela, 1998 and Vujovich et al., 2004) that are time-coincident with the Grenvillian orogeny of eastern and northeastern North America (e.g., Rivers, 1997 and Corrievau and van Breemen, 2000). These Grenvillian-age rocks have been considered to be the easternmost exposure of basement to the Precordillera Terrane, a supposed Laurentian continental block accreted to Gondwana during the Famatinian orogeny (Thomas and Astini, 2003, and references therein). However, the boundaries of this Grenvillian belt are still poorly defined, and its alleged allochthoneity has been challenged (Galindo et al., 2004). Moreover, most of the Grenvillian ages so far determined relate to igneous protoliths, and there is no conclusive evidence for a Grenvillian orogenic belt, other than inferred from petrographic evidence alone (Casquet et al., 2001). We provide here the first evidence, based on U–Pb SHRIMP zircon dating at Sierra de Maz, for a Grenville-age granulite facies metamorphism, leading to the conclusion that a continuous mobile belt existed throughout the proto-Andean margin of Gondwana in Grenvillian times

    Thermal history of the early Miocene Waitemata Basin and adjacent Waipapa Group, North Island, New Zealand

    Get PDF
    Apatite fission track (AFT) and vitrinite reflectance (VR) data for early Miocene outcrops from the Waitemata Basin reveal that the basin sequence was subjected to shallow burial before denudation. AFT results suggest that the total sediment thickness within the basin was <=1 km and maximum paleotemperatures during burial never exceeded c. 60deg.C. Statistical analyses of the detrital AFT ages distinguish four dominant sources of sediment supply: contemporaneous volcanism; metagreywacke rocks of the Waipapa Group; the Northland Allochthon; and an unidentified source south of the basin. The apatite and zircon fission track results from the Waipapa Group rocks (Gondwana Terrane) adjacent to the basin suggest two discrete phases of accelerated cooling: the first during the early Cretaceous (c. 117 Ma) and the second during the mid Cretaceous (c. 84 Ma). These events probably reflect key stages in the tectonic development of the New Zealand microcontinent during the Cretaceous period, the earlier event being related to the climax of compressional deformation (Rangitata Orogeny) and the latter to extensional tectonism associated with the opening of the Tasman Sea. Waipapa Group rocks now exposed at the surface cooled from maximum paleotemperatures of c. 250deg.C at an estimated rate of c. 180-36deg.C/m.y., involving substantial denudation

    Greenstone belt tectonics: Thermal constraints

    Get PDF
    Archaean rocks provide a record of the early stages of planetary evolution. The interpretation is frustrated by the probable unrepresentative nature of the preserved crust and by the well known ambiguities of tectonic geological synthesis. Broad constraints can be placed on the tectonic processes in the early Earth from global scale modeling of thermal and chemical evolution of the Earth and its hydrosphere and atmosphere. The Archean record is the main test of such models. Available general model constraints are outlined based on the global tectonic setting within which Archaean crust evolved and on the direct evidence the Archaean record provides, particularly the thermal state of the early Earth

    Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, using thermochronology

    Get PDF
    The brittle/ductile transition is a major rheologic boundary in the crust yet little is known about how or if rates of tectonic processes are influenced by this boundary. In this study we examine the slip history of the large-scale Naxos/Paros extensional fault system (NPEFS), Cyclades, Greece, by comparing published slip rates for the ductile crust with new thermochronological constraints on slip rates in the brittle regime. Based on apatite and zircon fission-track (AFT and ZFT) and (U–Th)/He dating we observe variable slip rates across the brittle/ductile transition on Naxos. ZFT and AFT ages range from 11.8 ± 0.8 to 9.7 ± 0.8 Ma and 11.2 ± 1.6 to 8.2 ± 1.2 Ma and (U–Th)/He zircon and apatite ages are between 10.4 ± 0.4 to 9.2 ± 0.3 Ma and 10.7 ± 1.0 to 8.9 ± 0.6 Ma, respectively. On Paros, ZFT and AFT ages range from 13.1 ± 1.4 Ma to 11.1 ± 1.0 Ma and 12.7 ± 2.8 Ma to 10.5 ± 2.0 Ma while the (U–Th)/He zircon ages are slightly younger between 8.3 ± 0.4 Ma and 9.8 ± 0.3 Ma. All ages consistently decrease northwards in the direction of hanging wall transport. Most of our new thermochronological results and associated thermal modeling more strongly support the scenario of an identical fault dip and a constant or slightly accelerating slip rate of 6–8 km Myr− 1 on the NPEFS across the brittle/ductile transition. Even the intrusion of a large granodiorite body into the narrowing fault zone at 12 Ma on Naxos does not seem to have affected the thermal structure of the area in a way that would significantly disturb the slip rate. The data also show that the NPEFS accomplished a minimum total offset of 50 km between 16 and 8 Ma

    Trace element and isotope constraints on crustal anatexis by upwelling mantle melts in the North Atlantic Igneous Province: an example form the Isle of Rum, NW Scotland

    Get PDF
    Sr and Nd isotope ratios, together with lithophile trace elements, have been measured in a representative set of igneous rocks and Lewisian gneisses from the Isle of Rum in order to unravel the petrogenesis of the felsic rocks that erupted in the early stages of Palaeogene magmatism in the North Atlantic Igneous Province (NAIP). The Rum rhyodacites appear to be the products of large amounts of melting of Lewisian amphibolite gneiss. The Sr and Nd isotopic composition of the magmas can be explained without invoking an additional granulitic crustal component. Concentrations of the trace element Cs in the rhyodacites strongly suggests that the gneiss parent rock had experienced Cs and Rb loss prior to Palaeogene times, possibly during a Caledonian event. This depletion caused heterogeneity with respect to 87Sr/86Sr in the crustal source of silicic melts. Other igneous rock types on Rum (dacites, early gabbros) are mixtures of crustalmelts and and primarymantle melts. Forward Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to Mid-Oceanic Ridge Basalts (MORB), whose trace element content varies from slightly depleted to slightly enriched. Crustal anatexis is a common process in the rift-to-drift evolution during continental break-up and the formation of Volcanic Rifted Margins systems. The ‘early felsic–later mafic’ volcanic rock associations from Rum are compared to similar associations recovered from the now-drowned seaward-dipping wedges on the shelf of SE Greenland and on the Vøring Plateau (Norwegian Sea). These three regions show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place

    Exhumation of the Sierra de Cameros (Iberian Range, Spain): constraints from low-temperature thermochronology

    Get PDF
    We present new fission-track and (U–Th)/He data from apatite and zircon in order to reconstruct the exhumation of the Sierra de Cameros, in the northwestern part of Iberian Range, Spain. Zircon fission-track ages from samples from the depocentre of the basin were reset during the metamorphic peak at approximately 100 Ma. Detrital apatites from the uppermost sediments retain fission-track age information that is older than the sediment deposition age, indicating that these rocks have not exceeded 110 8C. Apatites from deeper in the stratigraphic sequence of the central part of the basin have fission-track ages of around 40 Ma, significantly younger than the stratigraphic age, recording the time of cooling after peak metamorphic conditions. Apatite (U–Th)/He ages in samples from these sediments are 31–40 Ma and record the last period of cooling during Alpine compression. The modelled thermal history derived from the uppermost sediments indicates that the thermal pulse associated with peak metamorphism was rapid, and that the region has cooled continuously to the present. The estimated palaeogeothermal gradient is around 86 8C km21 and supports a tectonic model with a thick sedimentary fill (c. 8 km) and explains the origin of the low-grade metamorphism observed in the oldest sediments
    corecore