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ABSTRACT
Fighting malware involves analyzing large numbers of sus-
picious binary files. In this context, disassembly is a crucial
task in malware analysis and reverse engineering. It involves
the recovery of assembly instructions from binary machine
code. Correct disassembly of binaries is necessary to pro-
duce a higher level representation of the code and thus al-
low the analysis to develop high-level understanding of its
behavior and purpose. Nonetheless, it can be problematic in
the case of malicious code, as malware writers often employ
techniques to thwart correct disassembly by standard tools.

In this paper, we focus on the disassembly of x86 self-
modifying binaries with overlapping instructions. Current
state-of-the-art disassemblers fail to interpret these two com-
mon forms of obfuscation, causing an incorrect disassembly
of large parts of the input. We introduce a novel disas-
sembly method, called concatic disassembly, that combines
CONCrete path execution with stATIC disassembly. We
have developed a standalone disassembler called CoDisasm
that implements this approach. Our approach substantially
improves the success of disassembly when confronted with
both self-modification and code overlap in analyzed bina-
ries. To our knowledge, no other disassembler thwarts both
of these obfuscations methods together.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security
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Disassembler; Malware; Dynamic Analysis; Overlapping In-
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1. INTRODUCTION
This paper focuses on malicious binary code, and more

specifically x86-binaries. Nowadays there are two opposite
core problems that we have to face in order to fight mali-
cious binary code. On the one hand, each day a high volume
of (executable) files are observed and processed. Google re-
ceives more than 300 000 files per day and has a collection
of 400 million malware samples. All these files must be an-
alyzed and classified in order to build defenses against mal-
ware threats. It is a necessity to devise tools that are able
to correctly handle very large collections of machine code.
On the other hand, malware is quite often well-crafted soft-
ware that is heavily protected against analysis. As a result,
accurate and automatic malware analysis represents a true
challenge. Moreover, current tools available are not neces-
sarily well adapted to process large amounts of code, because
most of them are designed for reverse engineering and often
involve complex computations. The main objective of this
paper is to develop methods to disassemble and to construct
control flow graphs of binary codes, that are robust and able
to process efficiently a quite large amount of binary code.
Disassembly and pitfalls. Disassembly is the first step
in the analysis of malware binaries and it is an essential
one as all subsequent steps crucially depend on the accu-
racy of the disassembly. Indeed, it is from the disassembly
of a binary that we can reconstruct the control flow graph
(CFG) in order to perform further reverse engineering anal-
ysis tasks. It is also from the disassembly that we develop
decompilers in order to extract relevant high-level semantic
information. However, there are several inherent difficulties
in devising a disassembly process. It has been reported [21]
that up to 65% of the code is typically incorrectly disas-
sembled. One difficulty is that it is almost impossible, to
separate machine code from data. Both are mixed in a long
sequence of bytes. Instructions such as jmp may skip data,
jumping from one piece of code to another one. Moreover,
these jumps are not statically predictable. An illustration
of this fact is an indirect jump like the instruction jmp eax.
To pursue static analysis, it is then necessary to determine
the range of values in the register eax, or at least a good
approximation of the eax values. It is worth noting that
determining the destination of an indirect jump is undecid-
able, which implies that separating code from data is also an
uncomputable task. Most previous work [31, 22, 33, 20, 19]
has tried to solve the problem of indirect jumps employing
static analysis methods. That said, there are other signif-



icant issues. In this paper, we focus on two of them: (i)
self-modifying code, and (ii) overlapping instructions. Both
obfuscation techniques are designed to protect code against
human and automated analysis, and are in fact widespread
in malware.

; data size
01006 e62 mov ecx , 0x1dc2
; ebx is the pointer on the block to decrypt
; ebx=0x1005090
01006 e67 inc ebx
01006 e6 f loop : rol byte ptr [ ebx+ecx ] , 0x5
01006 e73 add byte ptr [ ebx+ecx ] , cl
01006 e76 xor byte ptr [ ebx+ecx ] , 0x67
01006 e7a inc byte ptr [ ebx+ecx ]
01006 e7d dec ecx
01006 e80 jnle loop
; jump to the decrypted data
01006 e82 jmp 0x01005090

Figure 1: Decryption loop of tELock of data from
address 0x01005090 to 0x01006e52

Nowadays, malware is almost always self-modifying. Gen-
erally, this kind of code protection consists of a sequence of
complex and intertwined unpacking/decryption and protec-
tion routines. For example, the packer tELock 0.99 uses 18
layers to unpack and to protect the original code. In Fig-
ure 1, we present a simple —but commonly seen in malware—
example of a decryption loop based dynamic analysis on a
one-time pad cipher inside a layer of the packer tELock. The
encrypted code is run after decryption at address 0x01005090.
Packers and malware authors protect in a very effective man-
ner the original code by mostly avoiding potential dynamic
analysis that attempt to analyse malware behavior. Com-
monly found protection methods may be quickly classified in
two categories. The first category combines anti-debbuging,
anti-virtualization, and anti-disassembly mechanisms in var-
ious forms in order to evade system monitoring. For exam-
ple, the packer tELock contains several anti-debugging rou-
tines. The second category employs obfuscations and “code
slicing” methods in order to reveal the original code. A
packer has the ability to show just slices of the original code
and to hide the rest of the code. For example, the packer
ACProctect interleaves the original code with its code and
unpacks library calls only when it is required.

Generic unpackers were not designed to deal with all these
protections. Most of them [25, 17, 30, 13] perform dynamic
analysis and have heuristics to find the unpacking layer that
contains the original code. One exception is that of the static
analysis-based unpacker proposed by Coogan et al. [9]. Ac-
cording to Ugarte et al. [32], generic unpackers can be de-
ceived, and therefore fail, because (i) they rely on specific
packer families, (ii) malware authors use handmade packers,
and (iii) they are based on assumptions that are no longer
valid. Indeed, nowadays packers combine the original code
with their own code. As a result, the original code is often
not totally available in memory and we cannot take a sin-
gle memory snapshot to capture it. Moreover, packers may
use several processes or threads to run the original code.
For these reasons, we develop a dynamic analysis system to
trace processes and threads. Thanks to our model of self-
modifying code, we take a sequence of memory snapshots
containing at least all the instructions of the original code
that are executed.

The second issue concerns overlapping instructions, which
is a typical feature of x86 machine code and a common anti-
disassembling mechanism. Consider for instance the follow-
ing execution sequence of bytes extracted from the packer
tELock0.99

fe 04 0b eb ff c9 7f e6 8b c1

occurring in the code snippet in Figure 2. The correct con-
trol flow graph is given in Figure 3. The instruction at the

01006 e7a f e 04 0b inc byte [ ebx+ecx ]
01006 e7d eb f f jmp +1
01006 e7e f f c9 dec ecx
01006 e80 7 f e6 jg 01006 e68
01006 e82 8b c1 mov eax , ecx

Figure 2: Overlapping assembly in tELock0.99

address 01006e7d is jmp +1. This instruction is encoded by
two bytes and it jumps to the second byte of its opcode
at address 01006e7d+1, which corresponds to an instruction
dec ecx. The opcode of dec ecx is ff c9 which shares the
byte ff at address 01006e7d+1 with the jmp +1 opcode. As
a result, both instructions jmp +1 and dec ecx overlap each
other.

The overlap is just there to obfuscate the code. Figure 4
displays the disassembly result respectively output by IDA
Pro (v6.3) [11] which is incorrect. The reason is that off-the-
shelf disassemblers make the assumption that instructions
do not overlap and so misinterpret the execution sequence
above. There is one important exception: the Jakstab disas-
sembler proposed by Kinder [18], which handles overlapping
instructions but not self-modification.

It is worth mentioning that tELock combines self-modi-
fication and overlapping instruction obfuscation techniques.
For explanatory reasons, we choose to separate and display
them in two independent snippets in Figure 1 and 3.
Objectives. The first objective of our work is to devise
a disassembler of x86-malware code. Inputs are stripped
binary code, with no information of any kind, and that are
usually heavily obfuscated. In particular, we have focused
on (i) self-modifying binaries, and (ii) on binaries containing
overlapping instructions. An important point is that we
make the assumption that slices of the original code may
be executed in any wave (i.e. unpacking layer) when the

inc byte [ebx+ecx]

jmp+1
 dec exc

instruction !
overlapping

Layer 1

Layer 2

jg 01006e68

mov eax,ecx

fe 04 0b eb ff c9 7f e6 8b c1
inc jmp

dec jg mov

Figure 3: Control flow graph for the tELock sample



01006E7A inc byte ptr [ ebx+ecx ]
01006E7D jmp loc 1006E7D+1
01006E7D ; —————–
01006E7F db 0C9h ;
01006E80 db 7Fh ;
01006E81 db 0E6h ;
01006E82 db 8Bh ;
01006E83 db 0C1h ;

Figure 4: Disassembly of tELock example with IDA
Pro (v6.3)

analyzed code is packed. In other words, we do not assume
that the original code is entirely visible at some point of the
unpacking process. The second objective is to develop an
effective complete disassembly architecture that is able to
automatically process each binary code file in a reasonable
amount of time.
The concept of code waves. We consider that each in-
put binary is self-modifying code. That is, the execution of
a binary will usually deploy different waves of code. Thus,
an execution might be viewed as a sequence of waves, where
a wave is produced by previous waves. Most of the time, a
wave is produced by unpacking or by decrypting some data.
For example, tELock generates 18 waves and the misalign-
ment given in Figure 3 occurs at Wave 3. Each wave is
determined by an execution level. We begin with Wave 1
in which the starting code is run. Then, there is Wave 2
for which the executed code has been written by Wave 1.
Next, the process repeats itself and switches from Wave k
to k + 1 each time we run data written during Wave k. No-
tice that the code run at Wave k + 1 can be generated by
several previous waves (not only by Wave k).We found such
an example in the packer UPolyX, which we observed in a
Hupigon sample: hupigon.eyf. The execution of UPolyX
consists of a first wave that generates a second unpacking
routine and part of the payload. The second wave starts with
the execution of the second unpacking routine that calls the
first unpacking routine and generates the remainder of the
payload. Finally, the third wave is triggered and executes
the payload. In this example, we see that the payload is
written at Waves 1 and 2.

Our model is closely related to the one suggested by Guiza-
ni et al. [12], which is why we use the same terminology.
The main difference is that we simplify the wave computa-
tion and we use a monotonic numbering, which allows us to
take a memory snapshot at the right time to dump a wave.
Debray and Patel [10] define the notion of phase. The def-
inition of a phase is closely related to the notion of wave.
Dalla Preda et al. [28] define a fixed-point semantics of self-
modifying programs, which is also similar.

The method in a nutshell. The disassembly method
proceeds in two steps. In the first step, we perform dynamic
analysis. We instrument a binary (see Section 3.2), and run
it in a sandbox. The code instrumentation is able to bypass
some anti-analysis evasion mechanisms. We follow threads
and processes created by the binary by instrumenting them
on the fly. We collect execution traces of all threads and pro-
cesses. Then, we determine a sequence of waves as explained
in Section 3 and we take memory snapshots to disassemble
the code of each wave in the second step.

In the second step, described in Section 4, we disassem-
ble each wave. Each wave provides a memory snapshot and
a (sub-)trace. This step consists in identifying and in dis-
assembling the code in each wave with the executed trace
as a hint. For this, we implement a recursive disassembler
that follows the trace. The trace indicates a sequence of ex-
ecuted addresses but of course the memory snapshot of the
wave also contains “dormant” instructions, that have not
been executed but that will also be disassembled by CoDis-
asm Nonetheless, this trace will be our guide to perform
a recursive traversal disassembly. In fact, the instruction
addresses gathered in the trace are starting points for dis-
assembly. For example, the packer PE Spin has 58 indirect
jumps which are immediately solved by using the trace.

We now have to face the second issue: overlapping instruc-
tions. Our approach is to split the memory analyzed in lay-
ers. Each layer corresponds to an overlap. To illustrate this
idea, let us go back to the tELock example. The memory is
constituted of 10 bytes: fe 04 0b eb ff c9 7f e6 8b c1.
As shown in Figure 6, this defines two layers fe 04 0b eb ff

and ff c9 7f e6 8b c1. Our approach can also thwart
obfuscations such as those shown by Jämthagen et al. [16].

Other obfuscation techniques may be also resolved from
the trace. For example, a trace gives the return address of
a call even if the return address has been modified. Notice
that this information is easily available in dynamic analysis,
unlike in static analysis.

The results. We propose a simple model of self-modifying
program executions, dubbed wave semantics, that allows us
to reconstruct the original code. We also generalize the no-
tion of control flow graph to deal with self-modifying code
with overlapping instructions.

From this model, we have developed a two step disassem-
bler called CoDisasm. In the first step, CoDisasm collects an
execution trace of a stripped binary. This trace is analyzed
and split into code waves. At the end, CoDisasm outputs a
set of layers for each wave, where each layer contains a set of
non-overlapping instructions. From this set of layers, we re-
construct an enhanced control flow graph (see Section 4.3).
Next, we can apply other techniques to discover new pieces
of code thus obtaining a speculative disassembly of the code
(see Section 4.4).
CoDisasm overview The overall architecture of our dis-
assembler CoDisasm is shown in Figure 5. The CoDisasm
disassembler performs a static disassembly along with a con-
crete execution with the aim of maximizing coverage. It
includes two main components:

1. A dynamic analysis component that collects execution
traces of the threads and processes of a binary run.
For this, we developed Pin tracer to instrument code,
which is based on Pin [24]. We recover each code wave
by taking a memory snapshot at the beginning of the
wave, as explained in Section 3. A Portable Executable
(PE) file is then built for each snapshot.

2. From the execution traces, each memory snapshot is
disassembled following the algorithm described in Sec-
tion 4, taking care of overlapping instructions. At the
end, we have a sequence of disassembled code waves,
which corresponds to the code discovered thanks to the
set of collected traces.



The overall architecture

Binary!
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recovering

Memory!
snapshots

Execution !
traces

Disassembler
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Figure 5: CoDisasmdisassembler architecture

CoDisasm is available at http://www.lhs.loria.fr in the
research pane. In our lab, CoDisasm was deployed on 100
virtual machines and so 500 malware are analyzed in less
than 20 minutes.

We do think that the combination of dynamic and static
disassembly may be of particular use on malware. That is
why, we have called this approach Concatic which stands
for Concrete executions and static disassembly. To support
this claim we report on some tests and evaluations we have
made of CoDisasm in Section 5. We discuss limitations of
our approach 6 and then conclude in Section 7.

2. RELATED WORK
Most of the previous work on disassembly has focused on

static disassembly. A static disassembler extracts the as-
sembly code from a binary without running it. Tradition-
ally, two methods of static disassembly have been employed.
The first method is a linear sweep of the memory. It is used
by several link-time optimizers and by the GNU utility tool
objdump. This method consists in parsing the memory from
an entry-point, opcode by opcode. The main drawbacks
of this simple method are that (i) the data within the ana-
lyzed binary is interpreted as opcodes, potentially leading to
an incorrect result, and (ii) it does not handle overlapping
codes.

The second method is a recursive traversal of the code,
which consists in examining and following each instruction’s
successor. When a conditional jump is encountered, like a
jcc, both branches are parsed. Thus, a priori, data is not
misinterpreted. However, in certain cases, and in particu-
lar in malware analysis, the control flow can be obfuscated
and this might be done in several different ways. As a re-
sult, Moser, Kruegel and Kirda [26] showed that commercial
virus scanners do not detect many known viruses that are
obfuscated by these methods. Linn and Debray [23] sug-
gest the insertion of opaque predicates [8] so that only one
branch of a conditional jump is taken, since the other branch
may contain junk code which might be taken as valid by a
recursive disassembler. Indirect jumps [23] are another way
to thwart disassembly. As a consequence, most of the dis-
assemblers are hybrid, that is, they use both methods: lin-
ear sweep and recursive traversal. In the case of indirect
jump obfuscations, Schwartz, Debray and Andrews [31] pro-
pose a method to recover jump tables in order to identify
all possible jumps. However, symbol tables and relocation

information are not always easily obtainable. Lastly, the in-
sertion of junk code after a call, like explained in [23], can
fool disassemblers. Kruegel et al. [22] developed a disassem-
bly heuristic by parsing the memory byte by byte in order to
construct all possible CFG with their relationships. Then,
they state several principles in order to rule out certain CFG,
like the fact that the parsed code never contains overlapped
instructions.

Another direction is to identify the values of a register by
static analysis. As a result, we may expect to find the range
of an indirect jump or to identify the return address on the
stack in order to determine where a ret return instruction
will go. This kind of analysis is based on a combination of
methods like program slicing, constant propagation and ab-
stract interpretation, which are now quite mastered for high-
level programming languages. The adaptation of static anal-
ysis to binaries turns out to be difficult because most of the
assumptions on which formal methods lean, are violated in
machine code. For low-level programming languages, Reps
et al. [29] developed CodeSurfer, a tool that computes an
approximation of the register values by using the value-set-
analysis algorithm. Kinder and Veith [20] developed Jakstab
based on data flow analysis together with control flow recon-
struction. More recently, Bardin, Herrmann and Védrine [1]
combine advantages of both of these methods. An interest-
ing new direction has been proposed by Ogawa et al. [15],
who suggest a pushdown model of assembly language to de-
termine register values thanks to SMT solvers. In all cases,
static analysis tools build an over-approximation which is
often too imprecise and reports a lot of false positives. That
is why we have taken a more pragmatic path by combining
dynamic and static disassembly methods.

We are aware of a few other approaches that combine
static and dynamic disassembly. Kinder and Kravchenko [19]
propose to narrow the search space of static analysis by using
traces. Their goal is to improve Dynamic Symbolic Evalu-
ation (DSE). The dynamically collected information helps
the symbolic step, for example by suggesting relevant ap-
proximations by concretization. They do not address the
problem of self-modification. The platform BIRD of Nanda
et al. [27] apply speculative disassembly by mixing static and
dynamic techniques. The difference with our work is that
BIRD is designed for non-obfuscated binaries. Caballero
et al. [2] developed a similar disassembly process in order
to extract input/output interface to reuse binary functions.
Their approach uses a dynamic analysis that collects a trace
and a memory dump and then they disassemble the memory
dump using trace information. The difference with our work
is that their disassembly process is based on a single memory
snapshot and does not handle overlapping instruction.

3. SELF-MODIFYING CODE

3.1 Wave semantics
When analyzing binary code, we are faced with code that

is, most of the time, self-modifying. This is why, we propose
a model of execution of self-modifying code based on code
waves. The idea is to associate, at any time, and to each
memory address a write level and an execution level. At
the beginning, for every address the execution level is set
to 1 and the write level to 0. Every data written by an
instruction of execution level 1 increases its write level to 1.
This typical situation corresponds to an unpacker, which

http://www.lhs.loria.fr


Addresses 0x01006e 7a 7b 7c 7d 7e 7f 80 81
Bytes fe 04 0b eb ff c9 7f e6
Layer 1 @0x01006e7a inc [ebx+ecx] jmp +1
Layer 2 @0x01006e7e dec ecx jg 0x1006e68

Figure 6: Layers of a subset of the TELock code segment

decompresses some piece of data. In our model, data are
decompressed in a memory area and so each address of this
area gets write level 1. Then, the unpacker transfers on-
the-fly the control to the “decompressed” data. As a result,
data at write level 1 is executed, thus triggering the second
wave of execution, and we set the execution level to 2. In
turn, Wave 2 may generate a third wave and this process
may repeat.

We define Wave k as the whole set of instructions, ex-
ecuted or not, which are present when the execution level
reaches k (See discussion in Section 6). As a result, we can
see a run of a program as a sequence of waves. Notice that
in this model, non-self-modifying code will only have one
wave.

The rationale behind the model of a self-modifying code
run as a sequence of waves is that we can extract a snapshot
of the memory at the beginning of each wave from the execu-
tion of a binary. This snapshot contains all the instructions
deployed by the binary to run this wave and possibly some
silent code. Our objective is then to disassemble this mem-
ory snapshot in order to recover the assembly code contained
in a wave.

The wave semantics that we propose is defined at the low-
est possible level of abstraction in the sense that we see all
computations inside the system through the eyes of the sin-
gle core processor. Consequently, this model takes into con-
sideration threads and processes.

3.2 Collecting execution traces
In practice, we focus exclusively on Windows/x86 bina-

ries. To this end, we use Pin which is a dynamic instrumen-
tation framework supported by Intel [24]. We developed and
used a Pin tool, that we refer to as Pin tracer, to collect ex-
ecution traces of x86-code. Pin tracer is able to trace newly
created threads and processes. It also tries to detect code
injection in a running process. If such an event occurs, it
instruments the injected process. For example, the driver
of Duqu illustrates this mechanisms by injected in memory
within service.exe. In this case, Pin tracer traces ser-

vice.exe. Code injections are detected by monitoring calls
to the CreateRemoteThread and CreateRemoteThreadEx func-
tions from the Windows API. When Pin tracer detects a
new process, then a new pin tool is attached to this process.
Thus, a new trace is generated. Finally, we collect all traces
of the threads and processes detected.

Given the fact that many malware use anti-emulation,
anti-debugging and anti-virtualization techniques, includ-
ing on Pin, we built some anti-evasion functionality into
Pin tracer. In particular, we attempt to cover the following
evasion techniques:

• Time check, to verify whether or not the malware code
is monitored.

• EIP (instruction pointer) check, to verify whether or
not the malware code has been instrumented.

• Checksum checks (CRC) on parts of the code, to check
whether or not it has been altered.

• Use of interrupt table manipulating instructions such
as SIDT, SLDT, etc., in order to check whether or not
the code runs in a virtual machine.

In each of these cases, the counter-measure implemented is
to return the expected value, which is not always possible
to determine.

Regardless of the method of collection, execution traces
are important tools in reverse engineering that we use as an
enabler to thwart code protections. We therefore need to
formalize the notion of execution traces as a basis for rea-
soning on self-modification behaviors. An execution trace is
a sequence of operations performed by a program, where at
each step, we gather a sequence of information such as pro-
cess IDs, register values and read/write memory addresses
that we collectively refer to as as dynamic instruction. A
dynamic instruction D is a tuple composed of:

• a memory address A[D],

• the machine instruction I[D] run at address A[D],

• the set W[D] of memory addresses written by the in-
struction I[D].

An execution trace is a finite sequence D1,D2, . . . ,Dn of
dynamic instructions. Figure 7 shows the dynamic trace of
the program in Figure 1 after two iterations.

Algorithm 1: Computation of execution and write lev-
els

Update(X,W,D)

X← max(X,W(A[D]) + 1) ;

foreach m ∈ W[D] do
W(m)← X ;

end

return (X,W)
W(A[D]) is a shortcut for max(W(A[D]), . . . ,W(A[D] + k))

where k is the number of bytes encoding the instruction.

3.3 Execution and write levels
The goal of this section is to delineate waves inside an

execution trace. A wave is determined from both (i) the
execution level, and (ii) the write level of each memory ad-
dress. The write level of each memory address is stored into
a finite mapping W that we call the write level table.
Given an execution trace D1,D2, . . . ,Dn, we define a se-
quence of pairs composed of the execution level and the write
level table (X0,W0), (X1,W1), . . . , (Xn,Wn) for each dy-
namic instruction that satisfies the following properties: (i)



Figure 7: Trace execution of the tELock snippet shown in Figure 1
A[D] I[D] W[D] A[D] I[D] W[D]
01006e62 mov ecx, 0x1dc2 01006e7d dec ecx
01006e67 inc ebx 01006e80 jnle loop
01006e6f loop: rol byte ptr [ebx+ecx], 0x5 0x01006e52 01006e6f loop: rol byte ptr [ebx+ecx], 0x5 0x01006e51
01006e73 add byte ptr [ebx+ecx], cl 0x01006e52 01006e73 add byte ptr [ebx+ecx], cl 0x01006e51
01006e76 xor byte ptr [ebx+ecx], 0x67 0x01006e52 01006e76 xor byte ptr [ebx+ecx], 0x67 0x01006e51
01006e7a inc byte ptr [ebx+ecx] 0x01006e52 . . . . . .

Before executing the dynamic instruction Di+1, the the ex-
ecution level is Xi and the write level table is Wi and (ii)
after executing Di+1, the execution level is Xi+1 and the
write level table is Wi+1 . We shall say that the execution
level of the dynamic instruction Di+1 is given by Xi+1. The
sequence of execution levels and the write level tables are ob-
tained by iteratively applying the function Update shown in
Algorithm 1.

We have defined the list of pairs (execution level, write
level table) for explanatory reasons, but in fact, the exe-
cution level is shared by the entire memory. In fact, the
execution level is shared by any memory address executed
in a wave. Thus, it is sufficient to keep track of the current
execution level and the write level table. Consequently, we
begin by setting all write levels to 0 and the execution level
to 1. That is, W(m) = 0 for each memory address m and
X = 1. Then, we apply the function Update on arguments
(X,W) and D in order to determine the next execution level
and the next write level table: (X,W) = Update(X,W,D).

Algorithm 2: Wave recovery for self-modifying codes

input : PE File
output: The number of waves X and for each wave, a

snapshot and a trace in the lists traceList and
waveList

Wave_ recovery()

foreach address m do
W(m)← 0

end
X← 0 ;
trace← ∅ ; list of dynamic instructions
traceList← ∅ ; list of traces
waveList← ∅ ; list of memory snapshots
wave← Snapshot() ;
Add (waveList,wave) ;

Computation of subtraces and memory snapshots
while not at end do

D← Pin Tracer() ;
Add(trace,D) ;
(X,W)← Update(X,W,D) ;

ip← Pin Next Instruction() ;
if W(ip) ≥ X then

New wave
Add (traceList,trace) ;
trace← ∅ ;
wave← Snapshot() ;
Add (waveList,wave) ;

end

end

return (X,waveList, traceList)

3.4 Reconstructing waves from a trace
We are now ready to split an execution trace into sub-

traces depending on their execution levels. From an execu-
tion trace D1,D2, . . . ,Dn, we have previously described how
to compute the sequence of execution levels X1,X2, . . . ,Xn.
It is not difficult to see that this sequence is weakly mono-
tonic, that is Xi ≤ Xi+1 for all i = 1, n. The number of
waves observed in this execution trace is K = maxi(Xi) =
Xn. In other words, in our model of self-modification, there
are K − 1 successive code self-modification in this execu-
tion. As a result, we can extract K sub-traces of dynamic
instructions, which are defined as follows:

trace(1) = D1, . . . ,D`1−1

where Xj = 1 for j = 1, `1−1

trace(i) = D`i , . . . ,D`i+1−1

where Xj = i for j = `i, `i+1 − 1

trace(K) = D`K , . . . ,Dn

where Xj = K for j = `K , n

At the same time, we can also take a memory snapshot at
the beginning of each wave. Thus, we have K memory snap-
shots. Let us call wave(i) the memory snapshot at the be-
ginning of the i-th wave, that is before executing instruc-
tion D`i . Notice that the memory snapshot wave(1) is the
snapshot of the starting code. As a result, our model of
self-modification ensures that the memory snapshot wave(i)
contains any instruction in the trace trace(i) and probably
also other dormant instructions that we have to identify.

3.5 Overview of the wave recovery algorithm
The wave recovery algorithm is presented in Algorithm 2.

The input is a PE file that is loaded into memory. The first
step of the algorithm initializes the write level table and
takes an initial snapshot of the memory wave(1). The first
memory snapshot contains all the code and data that are
inside the PE file sections.

In a second step, the Pin Tracer executes code one state-
ment at a time as explained in Section 3.2. Pin Tracer runs
one instruction and, at each step, gathers the corresponding
dynamic instruction. Then, Pin Tracer computes the write
level table as described in Section 3.3. The index of the
current wave is given by X. We also gather all instructions
executed during the current wave in the list trace(X).

Finally, we determine the address of the next instruction
to be executed thanks to a Pin tool called Pin Next Instruction.
If the execution level of the next instruction increases, then
we know that Wave X ends there and that Wave X + 1
will start as soon as the next instruction will be executed.
Therefore, we take a memory snapshot wave(X + 1) of the
memory before the beginning of Wave X+1. Otherwise, we
stay in the same wave and binary execution is resumed.



A memory snapshot combines (i) the code and data in
a PE file, and (ii) all data stored in dynamically allocated
memory areas (e.g. malloc). It is necessary to consider dy-
namic memory allocations because it is possible to jump into
data that, for example, comes from a decryption loop.

3.6 Example
The introductory example (Figure 1) presents a decryp-

tion loop that generates two waves. The first wave mainly
consists of the loop and trace(1) is composed of the nine
dynamic instructions in the interval [01006e62, 01006e82].
The second wave is triggered when the condition at address
01006e80 is false and the control is transferred to the address
01005090. trace(2) is composed of the dynamic instruction
in the interval [01005090, 01006e52]. Figure 8 illustrates the
execution of this example and provides the execution level X
and the write level table W. For example, take instruction
xor byte ptr [ebx+ecx], 0x67. The execution level is 1.
This instruction performs a memory write at the address
pointed by the value of ebx+ecx. Since the value of ebx+ecx
for that execution is 01006e82, we set W(01006e82) = 1.

3.7 Disassembly completeness
A discussion on disassembly completeness may seem quite

theoretical at first glance. Nevertheless, it is a necessary di-
gression in order to be able to discuss disassembler evalua-
tion criteria in Section 5. We now put forth a definition of a
semantics for self-modifying programs. In Section 3.4, an ex-
ecution trace D = D1, . . . ,Dn defines trace(i) correspond-
ing to the instructions run in the i-th wave. We call each sub-
trace a code wave. The set of all code waves of a trace D is
trace(D) = {trace(i) | i = 1..K where K is the last wave}.

We define the wave semantics of a given binary as a graph
G = (V,E) defined as follows. The set of vertices V is the
set of all code waves for any execution trace, that is

V =
⋃

for all traces D

trace(D)

Two vertices W and W ′ are connected, that is (W,W ′) ∈ E
if W and W ′ are two consecutive subtraces of a trace. In
other words, there is an execution where the successor of the
last instruction of W is the first instruction of W ′, or yet if
the wave denoted by W jumps to the wave denoted by W ′

in some execution.
As a result, the wave semantics is a graph G that repre-

sents all possible self-modifications of a binary and encodes
all possible execution paths. The wave semantics of a bi-
nary provides the partially ordered list of all instructions
that can be run. For that reason, the wave semantics G
could be used to mesure the correctness of a disassembler
(of self-modifying programs), because a perfect disassembly
of a binary should be able to reconstruct the graph G. Of
course, a perfect disassembler does not exist because the
problem of disassembling is undecidable; and from this fact,
the wave semantics is uncomputable. Any disassembler pro-
vides an approximation of the wave semantics. So at least
from a theoretical point of view, the distance with the wave
semantics may provide a metric to evaluate disassemblers.

4. OVERLAPPING INSTRUCTIONS
We now have all the necessary information to start the

second phase, which consists in disassembling the code of a
wave from a snapshot of the memory together with the trace

of the wave. Recall that inside a wave, there is no code
self-modification. However, other obfuscations may occur,
in particular x86 overlapping instructions. In this section,
we address this issue. We present a recursive algorithm that
statically disassembles and correctly handles overlapping in-
structions.

Algorithm 3: Recursive disassembler, recovering over-
lapping instructions

input : The memory snapshot of a wave, its execution
trace and an empty set of layers

output: A set of layers resulting from the disassembled
wave

disassembler(wave,trace)
 L← New();
Set layers ← {L};
foreach addr ∈ trace do

if addr 6∈ Set layers then
if the addr has not been processed ;
Set layers ← recursive traversal(wave, addr,
Set layers,L);

end

end
return Set layers

recursive_traversal(wave, addr, Set layers,L)
opcode ← disasm(wave, addr);
if ( addr,opcode) is aligned with L then

Add the instruction to an aligned layer ;
Add( L,addr,opcode);

else
Create a new layer with the instruction;
Lnew = New() ;
Add(Lnew,addr,opcode);
SetUnion(Set layers,Lnew);

end
foreach successor of ( addr,opcode) do

Set layers ← recursive traversal(wave,successor,
Set layers,L)

end
return Set layers

4.1 Layers
Two dynamic instructions overlap when they share at

least one byte in memory. We will say that a set of dy-
namic instructions is mis-aligned if at least two instructions
overlap. Otherwise, we will say that the instructions of this
set are aligned. Take again the teLock snippet in Figure 2
and look at Figure 6. The instructions jmp +1 and dec ecx

have the byte at address 0x01006e7e in common. So, they
are overlapping instructions. Both overlapping instructions
create two sequences of aligned dynamic instructions. Each
sequence forms what we will call a layer.

Before we define layers, we have to introduce the notion
of connected instruction set. A set L of instructions is con-
nected if given two instructions D and D′, there is a path
between D and D′ composed of instructions in L. That is,
there is a sequence D = D1, . . . ,Dn = D′ of instructions in
L such that the instruction Di+1 is a successor of Di. The
successors of the instruction D are all the reachable instruc-
tions from D that we can predict. For example, a sequential



After several iterations of the loop
A[D] I[D] W X
01006e62 mov ecx, 0x1dc2 0 1
01006e67 inc ebx 0 1
01006e6f loop: rol byte ptr [ebx+ecx], 0x5 0 1
01006e73 add byte ptr [ebx+ecx], cl 0 1
01006e76 xor byte ptr [ebx+ecx], 0x67 0 1
01006e7a inc byte ptr [ebx+ecx] 0 1
01006e7d dec ecx 0 1
01006e80 jnle loop 0 1
01006e82 jmp 0x01005090 0 1
0x01005090 decrypted byte 1
0x01005091 decrypted byte 1
Wave 1: trace(1) instruction in [01006e62, 01006e82]

After transferring the control to 01005090
A[D] I[D] W X
01006e62 mov ecx, 0x1dc2 0
01006e67 inc ebx 0
01006e6f loop: rol byte ptr [ebx+ecx], 0x5 0
01006e73 add byte ptr [ebx+ecx], cl 0
01006e76 xor byte ptr [ebx+ecx], 0x67 0
01006e7a inc byte ptr [ebx+ecx] 0
01006e7d dec ecx 0
01006e80 jnle loop 0
01006e82 jmp 0x01005090 0
0x01005090 decrypted byte 1 2
0x01005091 decrypted byte 1 2
Wave 2: trace(2) instructions in [01005090, 01006e52]

Figure 8: The two waves generated by the example in Figure 1

instruction like mov eax,ebx has one successor which is the
next instruction, while jnz 100 has two successors: the in-
struction at address 100 and the next one. On the other
hand, we may not be able to determine the successor of an
instruction like jmp eax if we have no certain value for the
register eax.

We now come to the second key notion. A layer L is a
set of dynamic instructions that satisfies the following two
properties: (i) two instructions in L never overlap, and (ii)
the set L is connected. Our objective is to construct a set
of layers that approximates the code inside a wave.

4.2 Disassembling algorithms
Algorithm 3 defines the disassembly procedure. Its inputs

are a memory snapshot wave of a given wave and its corre-
sponding sub-trace trace. Both inputs come from the first
phase that we have presented in the previous section. The
algorithm inspects recursively the memory snapshot wave

from each address in the trace. For this, we begin with a
new empty layer. We disassemble recursively and we add
instructions to a layer in a consistent way. That is, we guar-
antee that layers are always a sequence of aligned instruc-
tions. When an instruction cannot be added to a layer in
a consistent way, that is, if the instruction overlaps at least
one other instruction in one of the already computed layers,
we create a new layer. We add the misaligned instruction to
the new layer. The new layer is added to the current set of
layers. As a result, we maintain during the disassembly a set
of coherent layers, such that: (i) no instruction inside the
layer overlaps another instruction in the same layer, and (ii)
if we take two layers in this set, then there are at least two
instructions from each layer which are mis-aligned. The out-
put is a set of coherent layers that together form an under-
approximation of the complete disassembled code inside a
wave.

Notice that this algorithm follows all found execution paths.
For example, when a conditional instruction like jcc is en-
countered, we follow both successors. Moreover, the trace
gives us some valuable additional information. For example,
Linn and Debray [23] propose to modify the return value on
the stack of a call as an obfuscation technique. In this case,
the trace immediately gives the correct return address and
thus provides a correct answer to this common technique.

4.3 Recovering an enhanced CFG
From each layer, we reconstruct a control flow graph (CFG)

that we call pre-CFG. Since each layer is a connected set of

instructions, each pre-CFG is a connected graph. All pre-
CFG are connected together. Indeed, there is at least one
edge between a node of a pre-CFG and the root of another
pre-CFG, which comes from the instruction that creates the
overlap. Finally, a node can have multiple incoming edges
which corresponds to a resynchronization of the code.

We illustrate and sum-up the construction by an exam-
ple coming from the packer UPX. In Figure 9, we show the
two layers created by the conditional jump jnz +9. There-
fore, there are two pre-CFG that correspond to both layers
generated by UPX. The dashed edge corresponds to the in-
struction overlap due to the jnz +9 instruction. The code
resynchronizes at the push ebp instruction.

4.4 Speculative disassembly
At the end, we perform a speculative disassembly by run-

ning a linear sweep on unexplored pieces of memory, byte
by byte as Vigna [33] proposes. In order to identify valid
layers, that is to separate code from data, we apply well-
known heuristics employing pre-determined scoring [22] and
statistical methods [21]. Finally, the trace is taken into
account to evaluate the probability of correctness of each
reconstructed disassembly.

5. EVALUATION

5.1 Methodology
In order to evaluate a disassembler, it is necessary to de-

fine what we expect to be a correct output of a disassembler.
In the case of a regular binary code produced by a compiler,
it is sufficient to compare the disassembler output with the
compiler assembly output. But in the case of a heavily ob-
fuscated binary code like a malware, the evaluation of a
disassembler is a non-trivial problem that presents complex
challenges.

Before going further, we need to discuss what we mean by
a “correct disassembler”. A correct disassembler should only
output instructions which are in a possible execution path,
that is an approximation of the wave semantics as already
defined and discussed in Section 3.7. Recall that the wave
semantics of a binary code provides the set of all instruc-
tions that can be run. Thus, it is important to measure the
approximation obtained with respect to the wave semantics
in order to determine the code coverage.

This response is not completely satisfactory. For example,
a malware may be packed and in this case one might be in-



Addresses 0xf2 0xf3 ... 0xf9 0xfa 0xfb 0xfc 0xfd 0xfe 0xff
Bytes 79 07 ... 47 b9 57 48 f2 ae 55
Layer 1 @0xf2 jns +9 (0xfb) ... inc edi mov ecx, aef24857 push ebp
Layer 2 @0xfb push edi dec eax repne scasb

010059f0! ! 89! f9! ! ! ! mov ecx,edi!
010059f2! ! 79! 07! ! ! ! jnz +9!
010059f4! ! 0f! b7! 07! ! ! movzx eax, word [edi]!
010059f7! ! 47! ! ! ! ! inc edi!
010059f8! ! 50! ! ! ! ! push eax!
010059fa! ! b9! 57! 48! f2! ae! mov ecx, aef24857!
! 010059fb! ! 57! ! ! ! push edi!
! 010059fc! ! ! 48! ! ! dec eax!
! 010059fd! ! ! ! f2! ae! repne scasb!
010059ff! ! 55! ! ! ! ! push ebp re-synchronization

overlapped !
instructions

mov ecx,edi

jnz +9

movzx eax, [edi]

inc edi

push eax

inc edi

mov ecx, aef24857

push edi 
dec eax 
repne scasb 
push ebp

push ebp

instruction !
overlapping

Layer 1 Layer 2

Figure 9: Overlapping : UPX case

terested in reconstructing the assembly code of the malware.
The assembly code reconstruction of a packed malware is a
different issue than the one studied in this work. Indeed
we may for example develop a packer in which the malware
functionalities and the protection functionalities are fully in-
tertwined. In this case, malware functionality identification
and reconstruction is a research subject per se. For example,
the work of Yadegari et al. [34] developed a de-obfuscation
method to extract a simplified code. For this, they com-
bined a dynamic analysis with concolic executions in order
to collect several traces, which are simplified in order to re-
construct a control flow graph.

Another approach is to compare disassemblers. The com-
parison between disassemblers is currently difficult because
there is no benchmark based on obfuscated binary codes. In
particular, it makes no sense to compare CoDisasm with off-
the-shelf disassemblers because none deal with self-modifying
code and overlapping instructions.

As such, it is difficult to assess a disassembler and we rec-
ognize that we have not been able to define a metric that
allows us to adequately determine code coverage for CoDis-
asm, or for any other disassembly tool, for that matter. That
is why, we propose a fourfold evaluation of CoDisasm focus-
ing on testing functionality and usefulness of the tool and
showing that there is no major operational problems with
the tool or its approach. First in Section 5.2, we check that
CoDisasm correctly retrieves the code of a regular binary
produced by a compiler. Second in Section 5.3, while we
cannot verify its correctness on malware for which source
code is normally not available, we verified the relevance of
our approach by running the tool on 500 malware families,
and observing the number of waves and layers; more pre-
cisely, we were able to deduct that tools not handling self-
modification and code overlap simultaneously would have
failed to correctly disassemble the majority of those sam-
ples. Third, in Section 5.4, we successfully benchmarked
CoDisasm by packing known applications with 28 different
readily available packers and retrieving these known appli-
cations. Finally in Section 5.5, we illustrated CoDisasm’s
capacity with malware analysis by packing a known mal-
ware and showing that our approach may considerably help
malware analysis.

Program #Inst. #Inst.CoDisasm Time (ms)
adpcm.exe 1191 1191 120

compress.exe 506 506 34
ns.exe 99 99 6

nsichneu.exe 5550 5550 1700
statemate.exe 1375 1375 155

#Inst. = number of instructions
#Inst.CoDisasm= number of instructions disassembled

Table 1: Precision of disassembly

5.2 Experimental validation of correctness
We consider regular binaries coming from a compiler. We

show the correctness of CoDisasm on regular programs in
Table 1. These samples are taken from the Mälardalen
WCET benchmark programs [14]. This correctness is simply
established by comparing assembly outputs.

5.3 Relevance of our approach on malware
We demonstrate that our approach is relevant by taking

500 malicious software from the public repository malware.

lu. All these malware are detected by at least three well-
known anti-virus software. We verify our assumptions that
(i) malware are self-modifying code by computing the num-
ber of waves, and that (ii) malware use overlapping instruc-
tions by computing the number of layers per sample.

Table 2 shows the number of waves generated by the sam-
ples. It can be seen that 93% are self-modifying code. Half
of them have only 2 waves. In this case, most of them could
be disassembled by using first a generic unpacker and then
by running a disassembler on the unpacked code. However,
the remaining 40% of samples are more difficult to analyze.
Generic unpackers fail, while our approach works, thus con-
firming its usefulness with respect to discovery and analysis
of waves.

Table 3 shows the number of layers obtained on the same
samples. As can be seen, 70% of the samples use at least
one instruction overlapping technique.

5.4 Relevance of our approach on packers
In this section, the goal is to show that we are able to

retrieve the original code of a packed binary. For this, we
take hostname.exe, which plays the role of a probe that we
can easily detect. Notice that the same experiment with

malware.lu
malware.lu


# Waves 1 2 3 4 5–10 > 10

8% 53% 12% 6% 13% 9%

Table 2: Number of waves from 500 malware

# Layers 1 2 3 4 ≥ 5

32% 35% 17% 11% 5%

Table 3: Number of layers from 500 malware

an unknown binary like a malware will not be conclusive
because we do not know a priori its assembly code (probably
generated at runtime). Therefore, we packed hostname.exe
with 28 different packers. The results are shown in Table 4.

We display the number of processes, threads and waves of
the 28 packers. The last column indicates whether instruc-
tions are run in dynamically allocated memory or not. What
we immediately see is that packers massively use waves,
some of them being dynamically allocated. The cascade
of waves may be as deep as 635. We were dumbfounded to
see that up to 20% of some of these waves were composed
of overlapped instructions. The case of armadillo is as-
tounding. We observed 132 overlapping instructions and the
packer creates 11 threads and has 2 processes. (The father
process creates a new process which contains the original
code. Then the father process attaches to the son process
like a debugger.)

For all packers but Setisoft, we observed that the packed
code behaves like hostname.exe. In fact, Setisoft detects
the presence of Pin tracer and does not run hostname.exe.
Thus, in all but one case, we can state that we escape anti-
debugging techniques and that we correctly reach the “pay-
load”. In all but three cases (PE Lock, PE Spin and VM
Protect), we have been able to manually find the original
code of hostname.exe within the waves disassembly, some-
times sliced into small pieces. The packer VM Protect is a
code virtualizer, and thus it is expected that we cannot see
that original code, only its intermediate representation. PE
Spin and PE Lock are based on code transformations, and
again it is not surprising that the original code cannot be
recovered. This sequence of test shows that Pin tracer is
able to correctly instrument many significant packers.

For completeness, we also repeated the experiment replac-
ing hostname.exe with other software. No significant differ-
ences in results were observed.

Finally, we determine for each packer the number of in-
structions by wave and also the number of layers. To con-
duct these experiments, we packed again hostname.exe ,which
has 335 instructions. Due to a lack of space, we just present
the results for Aspack in Table 5.4 and TELock in Table 6.

5.5 A malware writer scenario
In this last experiment, we sent the backdoor hupigon.eyf

to the Virus Total Web service. From a total of 57 antivirus
products, 45 detected hupigon.eyf and correctly identified
it. We then packed hupigon.eyf with the Mystic packer
and sent it back to Virus Total. This time, only 22 antivirus
products detected that the file was malicious, but none were
able to identify it.

We analyzed the same Mystic-packed file with CoDisasm.
The Mystic packer generates 4 waves. The last wave cre-
ates a new process, which in turn creates two new processes.

Packer name #proc. #thr. #Wave DM
ACProtect v2.0 1 1 635 N
Armadillo v9.64 2 11 165 Y
Aspack v2.12 1 1 3 N
BoxedApp v3.2 1 15 6 Y
EP Protector v0.3 1 1 2 N
Expressor 1 1 2 N
FSG v2.0 1 1 2 N
JD Pack v2.0 1 1 3 N
MoleBox 1 1 3 N
Mystic 1 1 4 Y
Neolite v2.0 1 1 2 N
nPack v1.1.300 1 1 2 N
Packman v1.0 1 1 2 N
PE Compact v2.20 1 1 4 Y
PECrypt V1.02 1 4 99 Y
PE Lock 1 1 15 Y
PE Spin v1.1 1 1 80 Y
Petite v2.2 1 1 3 N
RLPack 1 1 2 N
Setisoft v2.7.1 1 5 32 Y
TELock v0.99 1 1 18 Y
Themida v2.0.3.0 1 28 106 Y
Upack v0.39 1 1 3 N
Upx v2.90 1 1 2 N
VM Protect v1.50 1 1 1 N
WinUPack 1 1 3 N
Yoda’s Crypter v1.3 1 1 4 Y
Yoda’s Protector v1.02 1 1 6 N

#proc. = number of processes ; #thr. = number of threads

#Wave = number of waves ; DM = Code run in allocated

memory

Table 4: Packer analysis

Wave Time (ms) #Instructions #Layers
1 62 1189 3
2 47 1115 3
3 20 357 1

Table 5: Aspack v2.12

Wave Time (ms) #Instructions #Layers
1 1 85 4
2 1 67 1
3 1 20 2
4 1 43 2
5 13 693 4
6 1 18 1
7 1 28 1
8 1 16 1
9 1 51 1
10 1 36 1
11 1 23 1
12 1 49 1
13 2 134 3
14 9 496 3
15 5 333 3
16 17 799 2
17 3 172 1
18 8 431 1

Table 6: TELock v0.99



We traced the 4 waves and the 3 processes of the last wave.
We verified from the disassembly output of CoDisasm that
Wave 4 contains the payload hupigon.eyf. Then, we sent
to Virus Total the PE file reconstructed from the last wave.
This time, 20 antivirus products correctly detected it as
hupigon.eyf. We think that this relatively low rate of detec-
tion is due to the fact that the antivirus products available
on Virus Total are not made to scan the sent PE file, which
is just a memory dump at the last wave.

This experiment illustrates a typical scenario where a mal-
ware writer builds a new malware by concealing a malicious
code with a packer. The key point here is that the dynamic
analysis of CoDisasm correctly reconstructs the disassem-
bly code generated by the packer, and so successfully found
hupigon.eyf. This has lead us to think of the potential use-
fulness of a Virus Total extension where each suspect binary
is first disassembled by CoDisasm, which then produces a set
of waves that can then be parsed by each anti-virus. Explor-
ing this idea will likely be the object of future research.

6. DISCUSSION
In this work, we have just considered a single execution

trace. We may wonder whether or not a single trace is
enough. From our experience, the sequence of waves gen-
erated by packers rarely depends on inputs to the program
and is almost blind to its execution environment. Our as-
sumption is comforted by some of our previous experimental
studies described [4, 7]. To conduct this work, we used 600
malware divided in six well-known families. We showed that
less than 2% of malware interact with the system environ-
ment in the middle waves. We found that, (i) most of the
time payloads are in the low last waves, and (ii) the wave
structure is relatively simple. That is why, we were able to
extract payloads in our experiments. But, and as we have
already observed it, we should quickly develop the ability
to automatically generate a set of traces to cope with code
slices of the payloads triggered only when they are used.
It is even possible to think of an attack, where the malware
writer generates a massive number of waves in order to block
and frustrate analysis with CoDisasm.

The situation is quite different when we deal with binary
code in general. Take for example a botnet. A botnet will
try to connect in order to receive commands, but it may fail
if it is run in an isolated testbed [5]. As a result the trace
obtained will not be relevant. A solution is to extract mes-
sage formats and then to forge messages to generate traces
in order to cover the botnet code [3, 6]. In other cases, an
interesting direction would be to determine values to run
unexplored paths in a wave to see whether or not it will
produce new waves. Take this toy example:
i f ( date ( ) = ”Friday the 13 th ”) {
unpack ( ) ; executePayload ( ) ;
}

else pr i n t ”He l lo world ” ;

If this code is found in a wave and if it is analyzed in any
other day than Friday the 13th, it will not produce the un-
packed code.

7. CONCLUSION
We have developed a disassembler, called CoDisasm, that

targets obfuscated malware x86 binary files running on Win-
dows. It comes with an IDA plug-in, called BinViz, to vi-
sualize code unpacking waves, which was not described in

this paper, but is available at www.lhs.loria.fr. CoDis-
asm disassembles binaries that are both self-modifying and
that employ overlapping instructions as obfuscation tech-
niques, something that is increasingly common in modern
malware.

To accomplish this, the disassembler combines dynamic
analysis of the binary and a static recursive disassembly
procedure. We have devised and implemented an array of
novel techniques, that we have dubbed concatic disassem-
bly, to address challenges like the discovery of code waves
and code layers. From a technical point a view, the dy-
namic analysis of binaries relies on a robust tracer taking
into account anti-analysis mechanisms and tracing threads
and processes. From a theoretical and fundamental point of
view, we provide an effective model of self-modifying pro-
grams with overlapping instructions. CoDisasm is probably
one of the first tools to achieve these results.

CoDisasm was mainly designed as an automatic disas-
sembler tool which outputs sequence of disassembled code
waves. In turn, each wave may be analyzed by other tools.
We illustrate this approach with the example of the Hupigon
malware in Section 5.5. Nonetheless, while it is able to au-
tomatically and seamlessly process a moderate amount of
binary code (i.e. 30 binaries per minute in our lab), it would
be necessary to speed-up disassembly in order to face the
large amount of binaries received and processed each day by
anti-virus companies.
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PhD thesis, École Polytechnique de Montréal and
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