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Abstract

verify distributed, adaptive software systems. The cornerstone of our framework is the use of choreography languages,

which allow us to obtain correctness by construction. abstract tools to design real systems, while techniques based

on abstract interpretation and on dynamic verification are integrated in our framework to reduce the complexity of

verification.

1. Introduction

Adaptive, distributed software has applications in many domains and systems, exhibiting deeply different charac-

teristics. Long running (often distributed) systems live for long periods of time and therefore should adapt to varying

contextual conditions, user requirements and execution environments. More importantly, the details of the adaptation

needs, and the solutions to be used to answer them, may not be known when the system is designed, deployed or

even started. Such systems thus need to dynamically adapt their behaviour (this can be autonomic, or may require

an external intervention). Particularly important in this context are mission critical Adaptive Control Systems used in

Cyber-Physical systems to respond to changes in the physical environment.

Development and verification of distributed, adaptive systems pose several formidable challenges. First, the cur-

rent development technology is not well suited to develop and verify large-scale adaptive distributed systems due to

the lack of high-level structuring abstractions for complex communication behaviour or for context-aware adaptation.

In recent years, session types [10, 23, 11, 12], choreography languages [29, 1], behavioural contracts [6], and ad-hoc

scripting languages [2] have been advocated as possible abstractions for providing high-level specifications describing

the expected behaviour of a distributed system. These concepts usually consider static techniques, which alone are

not sufficient to model dynamically adaptable software. Indeed, the assumption on either the ability to type-check the

component source code, or the availability of its complete behavioural interface, may not be realistic in presence of

adaptation. Particularly relevant in this context are Interaction-Oriented Choreographies (IOCs) [29] which allow to

abstractly describe the participants to a distributed protocol, the interactions among them, and their order. From an

IOC one can automatically generate a detailed description of the behaviour of each participant, expressed in terms of a

Process-Oriented Choreography (POC), which, in many cases, provides an executable code. A main result in this set-

ting is that the POC automatically derived from a given IOC correctly implements the behaviour specified by the given

IOC, inheriting relevant correctness properties such as deadlock freedom [29]. IOCs and their projection onto POCs

have been studied in different contexts [29, 10, 23, 12], and integrated into different kinds of languages [33, 11]. A

relevant limitation affecting all the IOC-based approaches is that they can be applied only to systems whose structure

is static and fully known since the very beginning.

Concerning more specifically adaptive systems, several middleware and architectures enabling run-time adaptation

have been proposed in the literature, such as [7, 13, 28, 36, 18] (an interesting survey can be found in [30]). Other

approaches instead rely on traits [22], role-based modelling [21], and aspect-oriented programming [35]. While these

approaches provide tools for programming adaptive systems, the challenge of ensuring that those systems behave as

expected after the execution of some adaptation steps is still open. One cannot know a priori the structure of the

adapted system, and this seems to make the use of static analysis techniques impossible. For this reason, most of the

approaches in the literature offer no guarantee on the behaviour of the adaptive system after adaptation [28, 7, 13], or

they assume to know all the possible adaptations in advance [36].

Verification of adaptive systems is very difficult also because of the combinatorial effect due to the composition of

different variants of the individual modules and to the run-time nature of system configuration. Many aspects of such

composition and configuration can only be partially foreseen at design and compile time, hence performing static

checks would require to consider a very large number of possibilities, including many which will never happen at

Preprint submitted to Elsevier November 11, 2015



run-time. A possible solution here could be to move a part of the static analysis to execution time, along the lines of

what happens, for example, with the analysis of bytecode that the JVM performs at class loading time.

1.1. Our approach

In order to attack the challenges mentioned above we intend to develop effective methodologies and tools for

proving correctness of adaptive software systems. Our approach is based on the integration of different techniques,

including abstract interpretation, choreography languages, and design patterns. More precisely, we aim to reach the

following objectives:

1. To define a framework which allows us to statically prove correctness properties of adaptive distributed systems,

such as deadlock freedom and termination, by using choreography languages.

2. To devise suitable design patterns which, exploiting the correctness results of our framework, allow us to con-

struct correct, distributed, adaptive software.

3. To include in such a framework suitable abstract interpretation techniques to reduce the complexity of verifica-

tion of real systems.

4. To develop a formal theory based on choreography languages and abstract interpretation for statically proving

security properties of adaptive systems (e.g., non interference).

5. To integrate the static techniques with run-time monitoring and, more generally, dynamic verification tech-

niques.

The rest of this paper is devoted to illustrate in more detail these objectives. For some of them, notably the first

and the second, we have already several results [15, 17], while for others our research is at an early stage and we

expect to have results in the medium-long term.

2. Correctness by construction: choreography languages

Correctness properties of adaptive systems can be imposed by design, by using choreography languages. Correct-

ness by design is obtained by automatically deriving executable code for adaptive distributed systems from high level,

IOC-like specifications. Our technique [15] is based on a careful split of the system specification into a description of

the initial system, to be checked before deployment, and a description of the adaptation steps, each of which can be

defined and checked in isolation, even while the system is running.

We use a rule-based approach to adaptation which relies on the following architectural model: the adaptive system

is composed by interacting participants deployed on different locations, each executing its own code and accessing

its own local state. Adaptation is performed by an adaptation middleware. The middleware includes one or more,

possibly distributed, adaptation servers, which are repositories of adaptation rules. Adaptation rules can be added or

removed at any moment, while the system is running. The running system may interact with the adaptation middleware

to look for applicable adaptation rules. Among the different mechanisms proposed for adaptation, we concentrated on

a simple yet powerful one: the possibility of replacing a predefined code region (possibly distributed among different

participants) with new code tackling the new requirements. Applicability depends on conditions on the execution

environment (possibly including user desires) and on properties of the code region to be replaced.

The syntax of Adaptive IOC (AIOC) processes, ranged over by I,I′, . . ., is defined as follows:

I,I′ ::= o : r1(e)→ r2(x) | I;I′ | I|I′ | x@r = e

if b@r {I} else {I′} | while b@r {I}

scope l@r {I}

Interaction o : r1(e) → r2(x) means that the participant r1 sends a message on operation o to participant r2. The

sent value is obtained by evaluating expression e in the local state of r1. As a result of the communication, the value

is stored in local variable x in r2. Processes I;I′ and I|I′ denote sequential and parallel composition of I and I′,

respectively. Assignment x@r = e assigns the result of the evaluation of expression e in the local state of participant

r to its local variable x. Choice if b@r {I} else {I′} executes process I if the evaluation of boolean expression b is

true in the local state of r, process I′ otherwise. Cycles are defined using while b@r {I}, which executes process I
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while the boolean expression b is true in the local state of r. The last construct is scope l@r {I}, that delimits a region

I of the IOC process that may be adapted in the future. In scope l@r {I}, participant r coordinates the adaptation

procedure by interacting with the adaptation middleware to check whether adaptation is needed. Also, l is the label of

the scope, to be matched by a corresponding label in the adaptation rule.

As an example, consider the scenario where two buyers want to buy a book sharing half of the price of the book.

1 book_title buyer1 = ( "Insert book")

2 proposal buyer1( book_title ) -> buyer2( book_title )
3 answer buyer2 = ( "Are you interested in buying " + book_title + "?")

4 agreement buyer2 ( answer ) -> buyer1 ( answer )
5 ( answer == ) buyer1{
6 pay seller {

7 quote buyer1 ( book_title ) -> seller( book_title )
8 price seller = getPrice ( book_title )

9 price seller ( price ) -> buyer1( price )
10 price buyer1 ( price ) -> buyer2( price )
11 ... / / payment p r o c e d u r e

12 }
13 }

Listing 1: AIOC for Two Buyers Scenario

Here, buyer1 reads (using function ()) from the user the name of a book she is interested in into local

variable book_title. Then she sends the name of the book to buyer2 via operation proposal. Then buyer2 reads if the user is

interested in the book and communicates the answer to buyer1 via operation answer. In case of a positive answer, buyer1

asks to the seller the price of the book that, upon computation via getPrice function, is sent back to buyer1. To start

the payment procedure (here skipped for the sake of presentation) buyer1 notifies the price of the book to buyer2. The

code between Lines 7 and 11 is inserted in a scope with label pay which specifies that these instructions may, at some

point during execution, be adapted to take into account new requirements. In this case, the seller is the participant

responsible to interact with the adaptation middleware.

An adaptation step is described by rules having the following syntax

rule l where C specifies I

where l is the label of the scopes to which the rule applies, C is a boolean predicate that specifies the applicability

condition to be satisfied, and I is the AIOC process that will replace the scope in case the adaptation is performed. If

a rule is applied, it replaces the code region of the distributed participants with a newer version, able to better meet

the requirements. Adaptation of different participants is coordinated ensuring coherent behaviour.

For instance let us suppose that instead of splitting the price in half the administrator of the system always allows

buyer2 to agree on the share she is willing to spend. The rule implementing this adaptation can be specified as follows.

1 pay {
2 { }
3 {

4 quote buyer1 ( book_title ) -> seller( book_title )
5 price seller = getPrice ( book_title )

6 { price seller( price ) -> buyer1 ( price )
7 price seller( price ) -> buyer2 ( price ) }

8 agreement buyer1 = false continue buyer1 = true
9 ( ( agreement ) continue ) buyer1 {

10 share buyer2 = ( "Insert share for " + book_title )

11 offer buyer2( share ) -> buyer1 ( share )
12 agreement buyer1 = ( "Offer " + share + ", do you accept?" )

13 ( agreement ) buyer1 {
14 continue buyer1 = ( "Do you want to ask for another offer?" )
15 }}

16 ( agreement ) buyer1 {
17 ... / / payment p r o c e d u r e

18 }}

Listing 2: Adaptation Rule for Two Buyers Scenario

This rule applies to scopes labeled pay every time the scope is reached (the applicability condition defined in Line

2 is indeed always true). In the new code buyer1 asks to the seller the price of the book that is sent in parallel by the

seller to both the buyers. Then buyer2 enters the share she wants to pay and sends it to buyer1, that could accept or refuse
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the offer. In case of refusal buyer1 can ask to buyer2 to make another offer or withdraw the acquisition of the book. In

case an agreement is reached the payment procedure, here omitted, is executed.

From an AIOC specification of a system one can automatically derive an (executable) distributed application by

means of a projection function. A compositionality result and a protocol ensuring that adaptation is applied in a

coordinated way allow us to prove relevant properties of the adapted system. Provided that an AIOC and the rules

satisfy some simple syntactic conditions, we have as a theorem that the choreographic specification has the same

behaviour of the projected and distributed programs. As a corollary, for all possible adaptation scenarios, we can

ensure properties such as deadlock freedom or termination of the projected code.

It is worth noticing that, even though adaptation steps can occur at run-time, these checks are all static: in order

to ensure correctness the initial systems and the rules describing the adaptation steps have to satisfy some syntactic

conditions which do not require run-time information.

To validate this approach on real, executable case studies, we have implemented a framework where AIOC are

projected on code written in Jolie [24, 31], an open-source service-oriented programming language.

2.1. Workflow Patterns as Design Patterns

Workflow Patterns [34] were defined as patterns that describe recurring flow of interactions among several partic-

ipants. They are independent and composable, following the basic design principle of Service Oriented Computing

where a new service is defined as a composition of already existing ones. In [17] many workflow patterns have been

implemented in Jolie [24], thus providing a first step towards the realization of a library that programmers can use for

realizing Service Oriented Architectures (SOA) based on Workflow Patterns.

More generally, Workflow Patterns could be used to build real SOAs and distributed systems ensuring (partial)

correctness by construction, along the lines of what has been discussed in this section. The basic idea here is to

provide a library of Workflow Patterns implemented in the AIOC language usable by programmers. The correctness

results on the AIOC, together with suitable conditions, ensure that the relevant correctness properties of the system

are preserved, once the “holes” in the templates are “filled” by specific, simple pieces of code (which satisfy the

conditions). Also, in case of adaptation, these parts could be replaced by others while maintaining correctness.

3. Further tools for correctness

The approach outlined in the previous section does not allow us to prove all the relevant correctness properties of

a system, hence further analysis and verification phases may be needed, both static and dynamic. In this section we

examine the most relevant ones, namely static analysis by abstract interpretation and monitoring.

3.1. Abstract interpretation

When considering analysis and verification by using abstract interpretation the presence of adaptation causes

several difficulties. In fact, static analysis of real systems is usually performed in a modular way which requires to

specify, for each method, pre- and post-conditions and, for each class, an object invariant1. In the context of adaptive

systems this approach is impractical, since the presence of many different objects, which may interact in complex

and even unpredictable ways, makes the system difficult to describe and the analysis a daunting task: considering all

possible interactions and behaviours, including those which will never happen in the deployed system, could easily

produce a combinatorial explosion. A key point to tackle these problems is to define suitable abstract semantics able

to capture the structure of programs that change at run-time, taking inspiration from the techniques used for modelling

self-modifying/metamorphic malware in [14].

We also intend to move part of the static analysis at execution time: when components are loaded (or generated)

at run-time, the entire system is known, so that properties may be checked at global level.

We plan to use abstract interpretation techniques also to verify security properties of adaptive systems. Some

recent works have proposed to use session types for the verification of security properties such as integrity [3, 32],

access control [26], and information flow [9, 8]. These analyses can be extended to adaptive systems by defining a

1We are referring here to object oriented languages. The case of other programming paradigms is analogous.
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notion of secure APOC (for example an APOC with no information leakage) and then identifying the constraints that

the AIOC, the adaptation rules, and the projection function have to satisfy in order to ensure that the projected code

is secure. More specifically, we plan to consider the generalized notion of non-interference known as Abstract Non-

Interference (ANI) [19], which is parametric on the observable property and on the property to protect. Interestingly,

there are systematic techniques based on abstract interpretation for enforcing ANI [20]. We plan to understand the

relation between APOC and AIOC in the abstract interpretation framework (where AIOC could probably be seen as

an abstraction of APOC). Next, we want to investigate how the systematic techniques for enforcing ANI could be

adapted for ensuring that an AIOC that satisfies a certain ANI property projects into an APOC that still satisfies the

ANI property.

3.2. Monitoring and dynamic verification

As previously discussed, choreography specifications are used to generate concrete services via projection. The

performances of this automatically generated code may however be worse than the ones of ad-hoc developed services.

For this reason, one may manually optimize some of the services and this may break correctness by design. Thus one

should verify correctness at run-time by using monitors and other dynamic techniques to check whether the system

behaves correctly. For example, one could be interested in checking, locally for every service, the arrival order of the

messages, while a relevant global property to check is that all the participants of a payment transaction receive the

(success or failure) payment notification.

The presence of a choreographic description can be useful in this case since monitors used to check the validity of

local and global proprieties can be derived automatically by exploiting the choreography. Indeed, choreographic spec-

ifications, possibly enhanced with assertions or constraints to express proprieties not captured by the choreographic

description (e.g., [4]), could be used to create, for every service, a local monitor which uses the incoming and out-

going message flow to check local proprieties. Global proprieties could instead be checked by a global monitor, still

derived from the choreography, that collects a subset of the logs of the local monitors to verify if the global property

is violated.

Following [5], this approach could be implemented by first deriving from the choreography specification suitable

monitoring rules, which could be expressed in formalism like the Event Calculus [27]. These rules can then be effec-

tively checked by using business rule management systems like Drools [16]. Potential violations of the choreography

specification could then be signalled to the administrator and culprit detection mechanisms could be adopted in order

to check which participant was responsible for it. More generally, suitable dynamic verification techniques could be

integrated in order to enhance the verification capabilities of our framework.

4. Conclusion

We have illustrated our approach to develop and verify distributed, adaptive software systems. The approach is

intended to be used for building real systems. Indeed, we have already implemented the projection function which,

from high level adaptive IOC specifications, produces executable Jolie code which is correct by construction, as it

inherits all the properties of the IOC level.

This approach to correctness by construction, further detailed in [15], is the first one which tries to integrate adap-

tation techniques into choreography-based languages. Such an integration, in our opinion, can foster relevant results,

since IOCs and their projections onto executable languages are important tools for specifying and programming cor-

rect, complex distributed systems. This approach is further enhanced by defining at IOC level suitable implementation

of Workflow Patterns , which, as previously discussed, can be used by a programmer as templates for designing correct

software. Several possible improvements are possible, in particular the matching of rules with scopes for perform-

ing adaptation steps is currently based only on labels. Moreover it is possible to use more refined techniques based

on preconditions and postconditions specified in a suitable assertion language and exploiting information provided by

specific ontologies in order to express more sophisticated matching policies. To develop all these extensions and check

the syntactical properties needed by the AIOC we are considering the use of Rascal [25], a DSL language framework

that allows an high level integration of source code analysis and manipulation.

Also the integration of choreography languages with abstract interpretation and dynamic techniques is particularly

important for addressing real systems, as it allows us to reduce the complexity in verification arising from adaptation.

In this case we have only preliminary results, and most of the work has to be done in the near future.
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