1,596 research outputs found

    Multiresolution editing for B-spline curves and surfaces

    Get PDF
    Since 1980 surface modeling has been used in industrial design, CAD and entertainment to create and represent complex forms. Even with this comparatively long history of development, challenges remain in free-form surface modeling. One such challenge is building surface creation and editing techniques that effectively balance the need for local control with the need to control the overall global shape, or sweep of the surface. This dissertation presents a multiresolution approach to the creation of surfaces that allows a designer to more easily manage this balance between local and global control. The techniques presented in this dissertation utilize a wavelet decomposition of B-spline curves and surfaces to allow a designer to easily develop the basic shape using lower level representations, and then seamlessly switch to higher level representations to achieve fine control over local features. The algorithms described in the dissertation are implemented in an interactive software system that is used to demonstrate their effectiveness in comparison to existing methods

    Subdivision Surface based One-Piece Representation

    Get PDF
    Subdivision surfaces are capable of modeling and representing complex shapes of arbi-trary topology. However, methods on how to build the control mesh of a complex surfaceare not studied much. Currently, most meshes of complicated objects come from trian-gulation and simplification of raster scanned data points, like the Stanford 3D ScanningRepository. This approach is costly and leads to very dense meshes.Subdivision surface based one-piece representation means to represent the final objectin a design process with only one subdivision surface, no matter how complicated theobject\u27s topology or shape. Hence the number of parts in the final representation isalways one.In this dissertation we present necessary mathematical theories and geometric algo-rithms to support subdivision surface based one-piece representation. First, an explicitparametrization method is presented for exact evaluation of Catmull-Clark subdivisionsurfaces. Based on it, two approaches are proposed for constructing the one-piece rep-resentation of a given object with arbitrary topology. One approach is to construct theone-piece representation by using the interpolation technique. Interpolation is a naturalway to build models, but the fairness of the interpolating surface is a big concern inprevious methods. With similarity based interpolation technique, we can obtain bet-ter modeling results with less undesired artifacts and undulations. Another approachis through performing Boolean operations. Up to this point, accurate Boolean oper-ations over subdivision surfaces are not approached yet in the literature. We presenta robust and error controllable Boolean operation method which results in a one-piecerepresentation. Because one-piece representations resulting from the above two methodsare usually dense, error controllable simplification of one-piece representations is needed.Two methods are presented for this purpose: adaptive tessellation and multiresolutionanalysis. Both methods can significantly reduce the complexity of a one-piece represen-tation and while having accurate error estimation.A system that performs subdivision surface based one-piece representation was im-plemented and a lot of examples have been tested. All the examples show that our ap-proaches can obtain very good subdivision based one-piece representation results. Eventhough our methods are based on Catmull-Clark subdivision scheme, we believe they canbe adapted to other subdivision schemes as well with small modifications

    Shape optimisation with multiresolution subdivision surfaces and immersed finite elements

    Get PDF
    We develop a new optimisation technique that combines multiresolution subdivision surfaces for boundary description with immersed finite elements for the discretisation of the primal and adjoint problems of optimisation. Similar to wavelets multiresolution surfaces represent the domain boundary using a coarse control mesh and a sequence of detail vectors. Based on the multiresolution decomposition efficient and fast algorithms are available for reconstructing control meshes of varying fineness. During shape optimisation the vertex coordinates of control meshes are updated using the computed shape gradient information. By virtue of the multiresolution editing semantics, updating the coarse control mesh vertex coordinates leads to large-scale geometry changes and, conversely, updating the fine control mesh coordinates leads to small-scale geometry changes. In our computations we start by optimising the coarsest control mesh and refine it each time the cost function reaches a minimum. This approach effectively prevents the appearance of non-physical boundary geometry oscillations and control mesh pathologies, like inverted elements. Independent of the fineness of the control mesh used for optimisation, on the immersed finite element grid the domain boundary is always represented with a relatively fine control mesh of fixed resolution. With the immersed finite element method there is no need to maintain an analysis suitable domain mesh. In some of the presented two- and three-dimensional elasticity examples the topology derivative is used for creating new holes inside the domain.The partial support of the EPSRC through grant # EP/G008531/1 and EC through Marie Curie Actions (IAPP) program CASOPT project are gratefully acknowledged.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.cma.2015.11.01

    Wavelet representation of functions defined on tetrahedrical grids

    Get PDF
    In this paper, a method for representing scalar functions on volumes is presented. The method is based on wavelets and it can be used for representing volumetric data (geometric or scalar) defifined on non structured grids. The basic contribution is the extension of wavelets to represent scalar functions on volumetric domains of arbitrary topological type. This extension is made by constructing a wavelet basis defifined on any tetrahedrized volume. This basis construction is achieved using multiresolution analysis and the lifting schemeFacultad de Informátic

    Subdivision Directional Fields

    Full text link
    We present a novel linear subdivision scheme for face-based tangent directional fields on triangle meshes. Our subdivision scheme is based on a novel coordinate-free representation of directional fields as halfedge-based scalar quantities, bridging the finite-element representation with discrete exterior calculus. By commuting with differential operators, our subdivision is structure-preserving: it reproduces curl-free fields precisely, and reproduces divergence-free fields in the weak sense. Moreover, our subdivision scheme directly extends to directional fields with several vectors per face by working on the branched covering space. Finally, we demonstrate how our scheme can be applied to directional-field design, advection, and robust earth mover's distance computation, for efficient and robust computation

    Boundary element based multiresolution shape optimisation in electrostatics

    Get PDF
    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.We gratefully acknowledge the support provided by the EU commission through the FP7 Marie Curie IAPP project CASOPT (PIAP-GA-2008-230224). K.B. and F.C. thank for the additional support provided by EPSRC through #EP/G008531/1. J.Z. thanks for the support provided by the European Regional Development Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by the project SPOMECH – Creating a Multidisciplinary R&D Team for Reliable Solution of Mechanical Problems, reg. no. CZ.1.07/2.3.00/20.0070 within the Operational Programme ‘Education for Competitiveness’ funded by the Structural Funds of the European Union and the state budget of the Czech Republic. Special thanks to Andreas Blaszczyk from the ABB Corporate Research Center Switzerland for fruitful discussions and for providing the industrial applications.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jcp.2015.05.01

    Boundary element based multiresolution shape optimisation in electrostatics

    Get PDF
    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.Web of Science29759858
    corecore