16 research outputs found

    Estimating flooded area and mean water level using active and passive microwaves: the example of Paraná River Delta floodplain

    Get PDF
    This paper describes a procedure to estimate both the fraction of flooded area and the mean water level in vegetated river floodplains by using a synergy of active and passive microwave signatures. In particular, C band Envisat ASAR in Wide Swath mode and AMSR-E at X, Ku and Ka band, are used. The method, which is an extension of previously developed algorithms based on passive data, exploits also model simulations of vegetation emissivity. The procedure is applied to a long flood event which occurred in the Paraná River Delta from December 2009 to April 2010. Obtained results are consistent with in situ measurements of river water level

    ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring

    Get PDF
    Doñana National Park wetlands, in South West Spain, undergo yearly cycles of inundation and drying out. During the hydrological year 2006–2007, 43 ASAR/Envisat images of Doñana, mostly in HH and VV polarizations, were acquired with the aim to monitor the flood extent evolution during an entire flooding cycle. The images were ordered in the seven ASAR incidence angles, also referred to as swaths, to achieve high observation frequency. In this study, backscattering temporal signatures of the main land cover types in Doñana were obtained for the different incidence angles and polarizations. Plots showing the σ0HH/σ0VV ratio behavior were also produced. The signatures were analyzed with the aid of miscellaneous site data in order to identify the effect of the flooding on the backscattering. Conclusions on the feasibility to discriminate emerged versus flooded land are derived for the different incidence angles, land cover types and phenological stages: intermediate incidence angles (ASAR IS3 and IS4) came up as the most appropriate single swaths to discriminate open water surface from smooth bare soil in the marshland deepest areas. Flood mapping in pasture lands, the most elevated regions, is feasible at steep to mid incidence angles (ASAR IS1 to IS4). In the medium elevation zones, colonized by large helophytes, shallow incidence angles (ASAR IS6 and IS7) enable more accurate flood delineation during the vegetation growing phase. Since Doñana land covers require different observation swaths for flood detection, the composition of different incidence angle images close in time provides the optimum flood mapping. Such composition is possible four times per ASAR 35-day orbit cycle, using pairs of 12-h apart IS1/IS6 and IS2/IS5 Doñana images

    Mapping Plant Functional Types in Floodplain Wetlands: An Analysis of C-Band Polarimetric SAR Data from RADARSAT-2

    Get PDF
    The inclusion of functional approaches on wetland characterizations and on biodiversity assessments improves our understanding of ecosystem functioning. In the Lower Paraná River floodplain, we assessed the ability of C-band polarimetric SAR data of contrasting incidence angles to discriminate wetland areas dominated by different plant functional types (PFTs). Unsupervised H/ and H/A/ Wishart classifications were implemented on two RADARSAT-2 images differing in their incidence angles (FQ24 and FQ08). Obtained classes were assigned to the information classes (open water, bare soil and PFTs) by a priori labeling criteria that involved the expected interaction mechanisms between SAR signal and PFTs as well as the relative values of H and . The product obtained with the shallow incidence angle scene had a higher accuracy than the one obtained with the steep incidence angle product (61.5% vs. 46.2%). We show how a systematic analysis of the H/A/ space can be used to improve the knowledge about the radar polarimetric response of herbaceous vegetation. The map obtained provides novel ecologically relevant information about plant strategies dominating the floodplain. Since the obtained classes can be interpreted in terms of their functional features, the approach is a valuable tool for predicting vegetation response to floods, anthropic impacts and climate change.Fil: Morandeira, Natalia Soledad. Universidad Nacional de San Martín; ArgentinaFil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Faccinetti, Claudia. Agenzia Spaziale Italiana; ItaliaFil: Kandus, Patricia. Universidad Nacional de San Martín; Argentin

    Envisat/ASAR Images for the Calibration of Wind Drag Action in the Donana Wetlands 2D Hydrodynamic Model

    Get PDF
    Donana National Park wetlands are located in southwest Spain, on the right bank of the Guadalquivir River, near the Atlantic Ocean coast. The wetlands dry out completely every summer and progressively flood again throughout the fall and winter seasons. Given the flatness of Donana's topography, the wind drag action can induce the flooding or emergence of extensive areas, detectable in remote sensing images. Envisat/ASAR scenes acquired before and during strong and persistent wind episodes enabled the spatial delineation of the wind-induced water displacement. A two-dimensional hydrodynamic model of Donana wetlands was built in 2006 with the aim to predict the effect of proposed hydrologic restoration actions within Donana's basin. In this work, on-site wind records and concurrent ASAR scenes are used for the calibration of the wind-drag modeling by assessing different formulations. Results show a good adjustment between the modeled and observed wind drag effect. Displacements of up to 2 km in the wind direction are satisfactorily reproduced by the hydrodynamic model, while including an atmospheric stability parameter led to no significant improvement of the results. Such evidence will contribute to a more accurate simulation of hypothetic or design scenarios, when no information is available for the atmospheric stability assessment. Doñana National Park wetlands are located in southwest Spain, on the right bank of the Guadalquivir River, near the Atlantic Ocean coast. The wetlands dry out completely every summer and progressively flood again throughout the fall and winter seasons. Given the flatness of Doñana’s topography, the wind drag action can induce the flooding or emergence of extensive areas, detectable in remote sensing images. Envisat/ASAR scenes acquired before and during strong and persistent wind episodes enabled the spatial delineation of the wind-induced water displacement. A two-dimensional hydrodynamic model of Doñana wetlands was built in 2006 with the aim to predict the effect of proposed hydrologic restoration actions within Doñana’s basin. In this work, on-site wind records and concurrent ASAR scenes are used for the calibration of the wind-drag modeling by assessing different formulations. Results show a good adjustment between the modeled and observed wind drag effect. Displacements of up to 2 km in the wind direction are satisfactorily reproduced by the hydrodynamic model, while including an atmospheric stability parameter led to no significant improvement of the results. Such evidence will contribute to a more accurate simulation of hypothetic or design scenarios, when no information is available for the atmospheric stability assessmen

    Métodos de classificação de imagens de satélite para delineamento de banhados

    Get PDF
    As Áreas Úmidas (AUs) são ecossistemas de importância global, que apresentam altos níveis de diversidade ecológica e produtividade primária e secundária. Os Banhados são um tipo de AU, característicos nos estados do Sul do Brasil, no Uruguai e na Argentina. O delineamento e classificação desses ecossistemas é uma tarefa árdua, dada as características estruturais hidrológicas, de solos, de cobertura vegetal e espectrais. No estado Rio Grande do Sul os Banhados são considerados Áreas de Preservação Permanente, porém, não há um inventário e tampouco um delineamento desses ambientes. Deste modo, o objetivo destatese é comparar diferentes métodos baseados em sensoriamento remoto ativo e passivo e aprendizado de máquina(AP)para o delineamento de Banhados. Para isto, utilizamos três abordagens: i) aplicação de índices espectrais de sensoriamento remoto e árvore de decisão; ii) integração de imagens SAR de dupla e quádrupla polarização em bandas C e L e árvore de decisão; e, iii) análise multisensor (ativo e passivo), Geobia e diferentes classificadores. Nossos resultados mostram que os índices espectrais de sensoriamento remoto apresentaram acurácias entre 77,9% e 95,9%; a aplicação de imagens SAR resultou em acurácias entre 56,1% e 72,9%, ambos pelo algoritmo Árvore de Decisão. Para a abordagem multisensor utilizando Geobia e diferentes classificadores, as acurácias variaram entre 95,5% e 98,5%, sendo que, o k-NN foi o algoritmo que apresentou maior acurácia entre os modelos avaliados, demonstrando o potencial da análise multisensor (ativo e passivo) e doaprendizado de máquinapara o delineamento e classificação de Banhados. Adotamos como estudo de caso um Banhado localizado no Sul do Brasil, porém recomendamos que devido as semelhanças hidrológicas, estruturais e espectrais desses ambientes, essas metodologias possam ser aplicadas em outras áreas de Banhados (marshes).Wetlands are ecosystems of global importance, with high levels of ecological diversity and primary and secondary productivity.Marshes are a type of wetland characteristic of the southernBrazil, Uruguay and Argentina.The delineationand classification of these ecosystems is an arduous task, given the hydrological structure, soil, vegetation and spectral characteristics.In the Rio Grande do Sul state, marshesare considered Permanent Preservation Areas, however, there is no inventory and no delineationof these environments.Thus, the aim of this thesis is to compare different active and passive remote sensing based methodsand machine learningfor the delineationof marshes. For this, we use three approaches: i) application of spectral indices of remote sensing and decision tree; ii) integration of dual and quad-poll SAR images in C and L-bands and decision tree, and iii) multisensor analysis (active and passive), Geobia and different classification methods. Our results show that the spectral indexes of remote sensing presented accuracy between 77.9% and 95.9%; the application of SAR images resulted in accuracy between 56.1% and 72.9%, both using the Decision Tree algorithm. For the multisensor approach using Geobia and different classifiers, the accuracy varied between 95.5% to 98.5%, k-NN was the algorithm that showed greater accuracy among the models evaluated, demonstrating the potential of the multisensor analysis (activeand passive) and machine learningfor marshesdelineation and classification. Our study was carried out in a marsh located in the southernBrazil, however due to the hydrological, structural and spectral similarities of these environments, the methodologies can be applied in other marshes area

    Science-based restoration monitoring of coastal habitats, Volume Two: Tools for monitoring coastal habitats

    Get PDF
    Healthy coastal habitats are not only important ecologically; they also support healthy coastal communities and improve the quality of people’s lives. Despite their many benefits and values, coastal habitats have been systematically modified, degraded, and destroyed throughout the United States and its protectorates beginning with European colonization in the 1600’s (Dahl 1990). As a result, many coastal habitats around the United States are in desperate need of restoration. The monitoring of restoration projects, the focus of this document, is necessary to ensure that restoration efforts are successful, to further the science, and to increase the efficiency of future restoration efforts

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Differential Spring Migration in the White-throated Sparrow (\u3cem\u3eZonotrichia albicollis\u3c/em\u3e)

    Get PDF
    Differential migration timing between distinct classes of individuals is commonly observed in songbirds, however, the underlying behavioural mechanisms of differential timing are still uncertain for most species. My research applied a suite of advanced techniques to examine differential migration timing (by sex and morph) and its underlying behavioural mechanisms (refuelling rate, stopover duration, and wintering latitude) in spring migrating White-throated Sparrows (Zonotrichia albicollis) at a key stopover site. Protandry was the only form of differential migration timing observed, with males arriving at stopover on average 11 days earlier than females. Males and females had similar refuelling rate, stopover duration, and wintering latitude, suggesting that other behavioural mechanisms must contribute to the high level of protandry observed. Migration timing, stopover behaviour, and wintering latitude did not differ between morph classes. This study adds to the mounting evidence that differential migration timing does not result from differences in stopover behaviour

    L’utilisation de la polarimétrie radar et de la décomposition de Touzi pour la caractérisation et la classification des physionomies végétales des milieux humides : le cas du Lac Saint-Pierre

    Full text link
    Les milieux humides remplissent plusieurs fonctions écologiques d’importance et contribuent à la biodiversité de la faune et de la flore. Même s’il existe une reconnaissance croissante sur l’importante de protéger ces milieux, il n’en demeure pas moins que leur intégrité est encore menacée par la pression des activités humaines. L’inventaire et le suivi systématique des milieux humides constituent une nécessité et la télédétection est le seul moyen réaliste d’atteindre ce but. L’objectif de cette thèse consiste à contribuer et à améliorer la caractérisation des milieux humides en utilisant des données satellites acquises par des radars polarimétriques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thèse se fonde sur deux hypothèses (chap. 1). La première hypothèse stipule que les classes de physionomies végétales, basées sur la structure des végétaux, sont plus appropriées que les classes d’espèces végétales car mieux adaptées au contenu informationnel des images radar polarimétriques. La seconde hypothèse stipule que les algorithmes de décompositions polarimétriques permettent une extraction optimale de l’information polarimétrique comparativement à une approche multipolarisée basée sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la décomposition incohérente de Touzi pour l’inventaire et le suivi de milieux humides est examiné en détail. Cette décomposition permet de caractériser le type de diffusion, la phase, l’orientation, la symétrie, le degré de polarisation et la puissance rétrodiffusée d’une cible à l’aide d’une série de paramètres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohérence. La région du lac Saint-Pierre a été sélectionnée comme site d’étude étant donné la grande diversité de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des défis posés par cette thèse consiste au fait qu’il n’existe pas de système standard énumérant l’ensemble possible des classes physionomiques ni d’indications précises quant à leurs caractéristiques et dimensions. Une grande attention a donc été portée à la création de ces classes par recoupement de sources de données diverses et plus de 50 espèces végétales ont été regroupées en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposées pour valider les hypothèses de cette thèse (chap. 9). Des analyses de sensibilité par diffusiogramme sont utilisées pour étudier les caractéristiques et la dispersion des physionomies végétales dans différents espaces constitués de paramètres polarimétriques ou canaux de polarisation (chap. 10 et 12). Des séries temporelles d’images RADARSAT-2 sont utilisées pour approfondir la compréhension de l’évolution saisonnière des physionomies végétales (chap. 12). L’algorithme de la divergence transformée est utilisé pour quantifier la séparabilité entre les classes physionomiques et pour identifier le ou les paramètres ayant le plus contribué(s) à leur séparabilité (chap. 11 et 13). Des classifications sont aussi proposées et les résultats comparés à une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramètres polarimétrique en bande C et L est proposé pour le suivi de l’hydrologie des tourbières (chap. 15 et 16). Les analyses de sensibilité montrent que les paramètres de la 1re composante, relatifs à la portion dominante (polarisée) du signal, sont suffisants pour une caractérisation générale des physionomies végétales. Les paramètres des 2e et 3e composantes sont cependant nécessaires pour obtenir de meilleures séparabilités entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thèse montre qu’il est préférable de considérer individuellement les paramètres des 1re, 2e et 3e composantes plutôt que leur somme pondérée par leurs valeurs propres respectives (chap. 10 et 12). Cette thèse examine également la complémentarité entre les paramètres de structure et ceux relatifs à la puissance rétrodiffusée, souvent ignorée et normalisée par la plupart des décompositions polarimétriques. La dimension temporelle (saisonnière) est essentielle pour la caractérisation et la classification des physionomies végétales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nécessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en été (juillet et août) sont nécessaires pour raffiner la classification des physionomies végétales. Un arbre hiérarchique de classification développé dans cette thèse constitue une synthèse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement réduit de paramètres polarimétriques et de règles de décisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succès les hauts marais herbacés des autres classes physionomiques sans avoir recours à des sources de données auxiliaires. Les résultats obtenus sont comparables à ceux provenant d’une classification supervisée utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine à vecteurs de support (SVM) permettent de reproduire les résultats obtenus avec l’arbre hiérarchique de classification. L’exploitation d’une plus forte dimensionalitée par le SVM, avec une précision globale maximale de 79.1%, ne permet cependant pas d’obtenir des résultats significativement meilleurs. Finalement, la phase de la décomposition de Touzi apparaît être le seul paramètre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbières ouvertes (chap. 16). Ce paramètre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbières comparativement à la différence de phase entre les canaux HH et VV. Cette thèse démontre que les paramètres de la décomposition de Touzi permettent une meilleure caractérisation, de meilleures séparabilités et de meilleures classifications des physionomies végétales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espèces végétales en classes physionomiques est un concept valable. Mais certaines espèces végétales partageant une physionomie similaire, mais occupant un milieu différent (haut vs bas marais), ont cependant présenté des différences significatives quant aux propriétés de leur rétrodiffusion.Wetlands fill many important ecological functions and contribute to the biodiversity of fauna and flora. Although there is a growing recognition of the importance to protect these areas, it remains that their integrity is still threatened by the pressure of human activities. The inventory and the systematic monitoring of wetlands are a necessity and remote sensing is the only realistic way to achieve this goal. The primary objective of this thesis is to contribute and improve the wetland characterization using satellite polarimetric data acquired in L (ALOS-PALSAR) and C (RADARSAT-2) band. This thesis is based on two hypotheses (Ch. 1). The first hypothesis stipulate that classes of plant physiognomies, based on plant structure, are more appropriate than classes of plant species because they are best adapted to the information content of polarimetric radar data. The second hypothesis states that polarimetric decomposition algorithms allow an optimal extraction of polarimetric information compared to a multi-polarized approach based on the HH, HV and VV channels (Ch. 3). In particular, the contribution of the incoherent Touzi decomposition for the inventory and monitoring of wetlands is examined in detail. This decomposition allows the characterization of the scattering type, its phase, orientation, symmetry, degree of polarization and the backscattered power of a target with a series of parameters extracted from an analysis of the coherency matrix eigenvectors and eigenvalues. The lake Saint-Pierre region was chosen as the study site because of the great diversity of its wetlands that are covering more than 20 000 ha. One of the challenges posed by this thesis is that there is neither a standard system enumerating all the possible physiognomic classes nor an accurate description of their characteristics and dimensions. Special attention was given to the creation of these classes by combining several data sources and more than 50 plant species were grouped into nine physiognomic classes (Ch. 7, 8 and 9). Several analyzes are proposed to validate the hypotheses of this thesis (Ch. 9). Sensitivity analysis using scatter plots are performs to study the characteristics and dispersion of plant physiognomic classes in various features space consisting of polarimetric parameters or polarization channels (Ch. 10 and 12). Time series of made of RADARSAT-2 images are used to deepen the understanding of the seasonal evolution of plant physiognomies (Ch. 12). The transformed divergence algorithm is used to quantify the separability between physiognomic classes and to identify the parameters (s) that contribute the most to their separability (Ch. 11 and 13). Classifications are also proposed and the results compared to an existing map of the lake Saint-Pierre wetlands (Ch. 14). Finally, an analysis of the potential of polarimetric parameters in C and L-band is proposed for the monitoring of peatlands hydrology (Ch. 15 and 16). Sensitivity analyses show that the parameters of the 1st component, relative to the dominant (polarized) part of the signal, are sufficient for a general characterization of plant physiognomies. The parameters of the second and third components are, however, needed for better class separability (Ch. 11 and 13) and a better discrimination between wetlands and uplands (Ch. 14). This thesis shows that it is preferable to consider individually the parameters of the 1st, 2nd and 3rd components rather than their weighted sum by their respective eigenvalues (Ch. 10 and 12). This thesis also examines the complementarity between the structural parameters and those related to the backscattered power, often ignored and normalized by most polarimetric decomposition. The temporal (seasonal) dimension is essential for the characterization and classification of plant physiognomies (Ch. 12, 13 and 14). Images acquired in spring (April and May) are needed to discriminate between upland and wetlands while images acquired in summer (July and August) are needed to refine the classifications of plant physiognomies. A hierarchical classification tree developed in this thesis represents a synthesis of the acquired knowledge (Chapter 14). Using a relatively small number of polarimetric parameters and simple decision rules, it is possible to identify, among other, three low marshes classes and to discriminate with success herbaceous high marshes from other physiognomic classes without using ancillary data source. The results obtained are comparable to those from a supervised classification using two Landsat-5 images with an overall accuracy of 77.3% and 79.0% respectively. Various classifications using the support vector machine (SVM) can reproduce the results obtained with the hierarchical classification tree. But the possible exploitation by the SVM of a higher dimensionality, with a maximum overall accuracy of 79.1%, does not allow however to achieve significantly better results. Finally, the phase of the Touzi decomposition appears to be the only parameter (in L-band) sensitive to changes in water level beneath the peat surface (Ch. 16). Therefore, this parameter offer a great potential for peatlands hydrology monitoring compared to the HH-VV phase difference. This thesis demonstrates that the Touzi decomposition parameters allow a better characterization, better separability and better classifications of wetlands plant physiognomic classes than HH, HV and VV polarization channels. The grouping of plant species into physiognomic classes is a valid concept. However, some plant species sharing a similar physiognomy, but occupying a different environment (high vs. low marshes), have presented significant differences in their scattering properties
    corecore