1,756 research outputs found

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    Natural Language Processing Methods for Acoustic and Landmark Event-Based Features in Speech-Based Depression Detection

    Full text link
    The processing of speech as an explicit sequence of events is common in automatic speech recognition (linguistic events), but has received relatively little attention in paralinguistic speech classification despite its potential for characterizing broad acoustic event sequences. This paper proposes a framework for analyzing speech as a sequence of acoustic events, and investigates its application to depression detection. In this framework, acoustic space regions are tokenized to 'words' representing speech events at fixed or irregular intervals. This tokenization allows the exploitation of acoustic word features using proven natural language processing methods. A key advantage of this framework is its ability to accommodate heterogeneous event types: herein we combine acoustic words and speech landmarks, which are articulation-related speech events. Another advantage is the option to fuse such heterogeneous events at various levels, including the embedding level. Evaluation of the proposed framework on both controlled laboratory-grade supervised audio recordings as well as unsupervised self-administered smartphone recordings highlight the merits of the proposed framework across both datasets, with the proposed landmark-dependent acoustic words achieving improvements in F1(depressed) of up to 15% and 13% for SH2-FS and DAIC-WOZ respectively, relative to acoustic speech baseline approaches

    Objective methods for reliable detection of concealed depression

    Get PDF
    Recent research has shown that it is possible to automatically detect clinical depression from audio-visual recordings. Before considering integration in a clinical pathway, a key question that must be asked is whether such systems can be easily fooled. This work explores the potential of acoustic features to detect clinical depression in adults both when acting normally and when asked to conceal their depression. Nine adults diagnosed with mild to moderate depression as per the Beck Depression Inventory (BDI-II) and Patient Health Questionnaire (PHQ-9) were asked a series of questions and to read a excerpt from a novel aloud under two different experimental conditions. In one, participants were asked to act naturally and in the other, to suppress anything that they felt would be indicative of their depression. Acoustic features were then extracted from this data and analysed using paired t-tests to determine any statistically significant differences between healthy and depressed participants. Most features that were found to be significantly different during normal behaviour remained so during concealed behaviour. In leave-one-subject-out automatic classification studies of the 9 depressed subjects and 8 matched healthy controls, an 88% classification accuracy and 89% sensitivity was achieved. Results remained relatively robust during concealed behaviour, with classifiers trained on only non-concealed data achieving 81% detection accuracy and 75% sensitivity when tested on concealed data. These results indicate there is good potential to build deception-proof automatic depression monitoring systems

    Artificial Intelligence for Suicide Assessment using Audiovisual Cues: A Review

    Get PDF
    Death by suicide is the seventh leading death cause worldwide. The recent advancement in Artificial Intelligence (AI), specifically AI applications in image and voice processing, has created a promising opportunity to revolutionize suicide risk assessment. Subsequently, we have witnessed fast-growing literature of research that applies AI to extract audiovisual non-verbal cues for mental illness assessment. However, the majority of the recent works focus on depression, despite the evident difference between depression symptoms and suicidal behavior and non-verbal cues. This paper reviews recent works that study suicide ideation and suicide behavior detection through audiovisual feature analysis, mainly suicidal voice/speech acoustic features analysis and suicidal visual cues. Automatic suicide assessment is a promising research direction that is still in the early stages. Accordingly, there is a lack of large datasets that can be used to train machine learning and deep learning models proven to be effective in other, similar tasks.Comment: Manuscript submitted to Arificial Intelligence Reviews (2022

    Objective methods for reliable detection of concealed depression

    Get PDF
    Recent research has shown that it is possible to automatically detect clinical depression from audio-visual recordings. Before considering integration in a clinical pathway, a key question that must be asked is whether such systems can be easily fooled. This work explores the potential of acoustic features to detect clinical depression in adults both when acting normally and when asked to conceal their depression. Nine adults diagnosed with mild to moderate depression as per the Beck Depression Inventory (BDI-II) and Patient Health Questionnaire (PHQ-9) were asked a series of questions and to read a excerpt from a novel aloud under two different experimental conditions. In one, participants were asked to act naturally and in the other, to suppress anything that they felt would be indicative of their depression. Acoustic features were then extracted from this data and analysed using paired t-tests to determine any statistically significant differences between healthy and depressed participants. Most features that were found to be significantly different during normal behaviour remained so during concealed behaviour. In leave-one-subject-out automatic classification studies of the 9 depressed subjects and 8 matched healthy controls, an 88% classification accuracy and 89% sensitivity was achieved. Results remained relatively robust during concealed behaviour, with classifiers trained on only non-concealed data achieving 81% detection accuracy and 75% sensitivity when tested on concealed data. These results indicate there is good potential to build deception-proof automatic depression monitoring systems

    ์ฃผ์š” ์šฐ์šธ ์žฅ์• ์˜ ์Œ์„ฑ ๊ธฐ๋ฐ˜ ๋ถ„์„: ์—ฐ์†์ ์ธ ๋ฐœํ™”์˜ ์Œํ–ฅ์  ๋ณ€ํ™”๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋””์ง€ํ„ธ์ •๋ณด์œตํ•ฉ์ „๊ณต), 2023. 2. ์ด๊ต๊ตฌ.Major depressive disorder (commonly referred to as depression) is a common disorder that affects 3.8% of the world's population. Depression stems from various causes, such as genetics, aging, social factors, and abnormalities in the neurotransmitter system; thus, early detection and monitoring are essential. The human voice is considered a representative biomarker for observing depression; accordingly, several studies have developed an automatic depression diagnosis system based on speech. However, constructing a speech corpus is a challenge, studies focus on adults under 60 years of age, and there are insufficient medical hypotheses based on the clinical findings of psychiatrists, limiting the evolution of the medical diagnostic tool. Moreover, the effect of taking antipsychotic drugs on speech characteristics during the treatment phase is overlooked. Thus, this thesis studies a speech-based automatic depression diagnosis system at the semantic level (sentence). First, to analyze depression among the elderly whose emotional changes do not adequately reflect speech characteristics, it developed the mood-induced sentence to build the elderly depression speech corpus and designed an automatic depression diagnosis system for the elderly. Second, it constructed an extrapyramidal symptom speech corpus to investigate the extrapyramidal symptoms, a typical side effect that can appear from an antipsychotic drug overdose. Accordingly, there is a strong correlation between the antipsychotic dose and speech characteristics. The study paved the way for a comprehensive examination of the automatic diagnosis system for depression.์ฃผ์š” ์šฐ์šธ ์žฅ์•  ์ฆ‰ ํ”ํžˆ ์šฐ์šธ์ฆ์ด๋ผ๊ณ  ์ผ์ปฌ์–ด์ง€๋Š” ๊ธฐ๋ถ„ ์žฅ์• ๋Š” ์ „ ์„ธ๊ณ„์ธ ์ค‘ 3.8%์— ๋‹ฌํ•˜๋Š” ์‚ฌ๋žŒ๋“ค์ด ๊ฒช์€๋ฐ” ์žˆ๋Š” ๋งค์šฐ ํ”ํ•œ ์งˆ๋ณ‘์ด๋‹ค. ์œ ์ „, ๋…ธํ™”, ์‚ฌํšŒ์  ์š”์ธ, ์‹ ๊ฒฝ์ „๋‹ฌ๋ฌผ์งˆ ์ฒด๊ณ„์˜ ์ด์ƒ๋“ฑ ๋‹ค์–‘ํ•œ ์›์ธ์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์šฐ์šธ์ฆ์€ ์กฐ๊ธฐ ๋ฐœ๊ฒฌ ๋ฐ ์ผ์ƒ ์ƒํ™œ์—์„œ์˜ ๊ด€๋ฆฌ๊ฐ€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ธ๊ฐ„์˜ ์Œ์„ฑ์€ ์šฐ์šธ์ฆ์„ ๊ด€์ฐฐํ•˜๊ธฐ์— ๋Œ€ํ‘œ์ ์ธ ๋ฐ”์ด์˜ค๋งˆ์ปค๋กœ ์—ฌ๊ฒจ์ ธ ์™”์œผ๋ฉฐ, ์Œ์„ฑ ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ ์ž๋™ ์šฐ์šธ์ฆ ์ง„๋‹จ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ์—ฌ๋Ÿฌ ์—ฐ๊ตฌ๋“ค์ด ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์Œ์„ฑ ๋ง๋ญ‰์น˜ ๊ตฌ์ถ•์˜ ์–ด๋ ค์›€๊ณผ 60์„ธ ์ดํ•˜์˜ ์„ฑ์ธ๋“ค์—๊ฒŒ ์ดˆ์ ์ด ๋งž์ถ”์–ด์ง„ ์—ฐ๊ตฌ, ์ •์‹ ๊ณผ ์˜์‚ฌ๋“ค์˜ ์ž„์ƒ ์†Œ๊ฒฌ์„ ๋ฐ”ํƒ•์œผ๋กœํ•œ ์˜ํ•™์  ๊ฐ€์„ค ์„ค์ •์˜ ๋ฏธํก๋“ฑ์˜ ํ•œ๊ณ„์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์˜๋ฃŒ ์ง„๋‹จ ๊ธฐ๊ตฌ๋กœ ๋ฐœ์ „ํ•˜๋Š”๋ฐ ํ•œ๊ณ„์ ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ํ•ญ์ •์‹ ์„ฑ ์•ฝ๋ฌผ์˜ ๋ณต์šฉ์ด ์Œ์„ฑ ํŠน์ง•์— ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ ๋˜ํ•œ ๊ฐ„๊ณผ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„์˜ ํ•œ๊ณ„์ ๋“ค์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•œ ์˜๋ฏธ๋ก ์  ์ˆ˜์ค€ (๋ฌธ์žฅ ๋‹จ์œ„)์—์„œ์˜ ์Œ์„ฑ ๊ธฐ๋ฐ˜ ์ž๋™ ์šฐ์šธ์ฆ ์ง„๋‹จ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์‹œํ–‰ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ๊ฐ์ •์˜ ๋ณ€ํ™”๊ฐ€ ์Œ์„ฑ ํŠน์ง•์„ ์ž˜ ๋ฐ˜์˜๋˜์ง€ ์•Š๋Š” ๋…ธ์ธ์ธต์˜ ์šฐ์šธ์ฆ ๋ถ„์„์„ ์œ„ํ•ด ๊ฐ์ • ๋ฐœํ™” ๋ฌธ์žฅ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋…ธ์ธ ์šฐ์šธ์ฆ ์Œ์„ฑ ๋ง๋ญ‰์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜๊ณ , ๋ฌธ์žฅ ๋‹จ์œ„์—์„œ์˜ ๊ด€์ฐฐ์„ ํ†ตํ•ด ๋…ธ์ธ ์šฐ์šธ์ฆ ๊ตฐ์—์„œ ๊ฐ์ • ๋ฌธ์žฅ ๋ฐœํ™”๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๊ณผ ๊ฐ์ • ์ „์ด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ๋…ธ์ธ์ธต์˜ ์ž๋™ ์šฐ์šธ์ฆ ์ง„๋‹จ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํ•ญ์ •์‹ ๋ณ‘ ์•ฝ๋ฌผ์˜ ๊ณผ๋ณต์šฉ์œผ๋กœ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ถ€์ž‘์šฉ์ธ ์ถ”์ฒด์™ธ๋กœ ์ฆ์ƒ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•ด ์ถ”์ฒด์™ธ๋กœ ์ฆ์ƒ ์Œ์„ฑ ๋ง๋ญ‰์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜์˜€๊ณ , ํ•ญ์ •์‹ ๋ณ‘ ์•ฝ๋ฌผ์˜ ๋ณต์šฉ๋Ÿ‰๊ณผ ์Œ์„ฑ ํŠน์ง•๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์šฐ์šธ์ฆ์˜ ์น˜๋ฃŒ ๊ณผ์ •์—์„œ ํ•ญ์ •์‹ ๋ณ‘ ์•ฝ๋ฌผ์ด ์Œ์„ฑ์— ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด์„œ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ฃผ์š” ์šฐ์šธ ์žฅ์• ์˜ ์˜์—ญ์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Research Motivations 3 1.1.1 Bridging the Gap Between Clinical View and Engineering 3 1.1.2 Limitations of Conventional Depressed Speech Corpora 4 1.1.3 Lack of Studies on Depression Among the Elderly 4 1.1.4 Depression Analysis on Semantic Level 6 1.1.5 How Antipsychotic Drug Affects the Human Voice? 7 1.2 Thesis objectives 9 1.3 Outline of the thesis 10 Chapter 2 Theoretical Background 13 2.1 Clinical View of Major Depressive Disorder 13 2.1.1 Types of Depression 14 2.1.2 Major Causes of Depression 15 2.1.3 Symptoms of Depression 17 2.1.4 Diagnosis of Depression 17 2.2 Objective Diagnostic Markers of Depression 19 2.3 Speech in Mental Disorder 19 2.4 Speech Production and Depression 21 2.5 Automatic Depression Diagnostic System 23 2.5.1 Acoustic Feature Representation 24 2.5.2 Classification / Prediction 27 Chapter 3 Developing Sentences for New Depressed Speech Corpus 31 3.1 Introduction 31 3.2 Building Depressed Speech Corpus 32 3.2.1 Elements of Speech Corpus Production 32 3.2.2 Conventional Depressed Speech Corpora 35 3.2.3 Factors Affecting Depressed Speech Characteristics 39 3.3 Motivations 40 3.3.1 Limitations of Conventional Depressed Speech Corpora 40 3.3.2 Attitude of Subjects to Depression: Masked Depression 43 3.3.3 Emotions in Reading 45 3.3.4 Objectives of this Chapter 45 3.4 Proposed Methods 46 3.4.1 Selection of Words 46 3.4.2 Structure of Sentence 47 3.5 Results 49 3.5.1 Mood-Inducing Sentences (MIS) 49 3.5.2 Neutral Sentences for Extrapyramidal Symptom Analysis 49 3.6 Summary 51 Chapter 4 Screening Depression in The Elderly 52 4.1 Introduction 52 4.2 Korean Elderly Depressive Speech Corpus 55 4.2.1 Participants 55 4.2.2 Recording Procedure 57 4.2.3 Recording Specification 58 4.3 Proposed Methods 59 4.3.1 Voice-based Screening Algorithm for Depression 59 4.3.2 Extraction of Acoustic Features 59 4.3.3 Feature Selection System and Distance Computation 62 4.3.4 Classification and Statistical Analyses 63 4.4 Results 65 4.5 Discussion 69 4.6 Summary 74 Chapter 5 Correlation Analysis of Antipsychotic Dose and Speech Characteristics 75 5.1 Introduction 75 5.2 Korean Extrapyramidal Symptoms Speech Corpus 78 5.2.1 Participants 78 5.2.2 Recording Process 79 5.2.3 Extrapyramidal Symptoms Annotation and Equivalent Dose Calculations 80 5.3 Proposed Methods 81 5.3.1 Acoustic Feature Extraction 81 5.3.2 Speech Characteristics Analysis recording to Eq.dose 83 5.4 Results 83 5.5 Discussion 87 5.6 Summary 90 Chapter 6 Conclusions and Future Work 91 6.1 Conclusions 91 6.2 Future work 95 Bibliography 97 ์ดˆ ๋ก 121๋ฐ•
    • โ€ฆ
    corecore