125 research outputs found

    Methods of frequency tuning vibration based micro-generator

    No full text
    A vibration based micro-generator is an energy harvesting device that couples a certain transduction mechanism to the ambient vibration and converts mechanical energy to electrical energy. In order to maximize available power, micro-generators are typically inertial devices that operate at a single resonant frequency. The maximum output power is generated when the resonant frequency of the generator matches the ambient vibration frequency. The output power drops significantly if these two frequencies do not match due to the high Q-factor of the generator. This thesis addresses possible methods to overcome this limit of vibration based micro-generators, in particular, method of tuning the resonant frequency of the generator to match the ambient vibration frequency. This thesis highlights mechanical and electrical methods of resonant frequency tuning of a vibration based micro-generator. The mechanical frequency tuning is realized by applying an axial tensile force to strain the cantilever structure of the generator. A tunable micro-generator with a tuning range from 67.6 Hz to 98Hz and a maximum output power of 156.6?W at a constant low vibration acceleration level of 0.59m·s-2 was designed and tested. The tuning mechanism was found not to affect the damping of the generator. A closed loop frequency tuning system as well as the frequency searching algorithms has been developed to realize automatic frequency tuning using the proposed mechanical tuning method. The model of duty cycle of the system was established and it was proved theoretically that a reasonable duty cycle can be achieved if the generator and tuning system is designed properly.The electrical tuning method is realized by changing the load capacitance of the generator. Models of piezoelectric and electromagnetic generators using electrical tuning methods were derived. The model of the electromagnetic generator has also been experimentally verified. The electrically tunable generator tested has a maximum 3dB bandwidth of 4.2Hz. In conclusion, resonant frequency tuning using mechanical methods presented in the thesis have larger tuning range than that using electrical methods. However, frequency tuning using electrical tuning methods consumes less power than that using mechanical methods for the same amount of tuning range

    Beitrag zur Gestaltung und Herstellung einer integrierten Mikropositionierungssystem

    Get PDF
    Modern positioning systems are significantly applied in many engineering fields dealing with products emerging from different technologies at macro-, micro- and nanoscale. These systems are the back-bone systems behind any manipulation task in these areas. Currently, miniaturization trend have led numerous scientific communities to realize down scaled versions of these systems with a footprint size up to few hundreds of millimeters. These miniature positioning systems are cost effective solutions in many micro applications. This thesis presents the development of a miniature positioning system integrated with a non-contact long range displacement sensor. The uniqueness of the presented positioning system lies in its simple design with ability to perform micrometer to millimeter level strokes with pre-embedded auto guidance feature. Its design consists of a mobile part driven with four electromagnetic linear motors. Each motor consists of a fixed two phase current carrying planar electric drive coil and permanent magnet array that is realized with 14 permanent magnets arranged in north-south configuration. In order to achieve smooth motion a four point contact technique with hemispherical glass beads has been adapted to minimize the adherence effect. The overall design of the planar positioning system have been optimized to achieve a footprint size of 80 mm × 80 mm. The device can deliver motion within working range of 10 mm × 10 mm in xy-plane with sub micrometer level resolution at a speed of 12 mm/s. The device is capable to deliver a rotation motion of ±11° about the z axis in the xy-plane. Secondly, in order to measure the displacement performed by the mobile part, a non-contact long range linear displacement sensor has been designed. The overall dimensions of the sensor were optimized using a geometrical model. The fabrication of the sensor has been carried out via microfabrication in silicon material to achieve compact dimensions, so that it could be integrated in the mobile part of the positioning system. The sensor is able to provide 30.8 nm resolution with a linear measurement range of 12.5 mm. At the end, a novel cross structure has been designed and fabricated using microfabrication with the perspective to integrate the long range sensor.Moderne Positioniersysteme werden in vielen aufstrebenden Bereichen der Technik eingesetzt. Die Produkte stammen hierbei aus unterschiedlichen Technologiebereichen, die den Makro-, Mikro- und Nano- Maßstab abdecken. Diese Systeme bilden die Basis jeder Manipulationsaufgabe, in diesen Bereichen. In jüngster Zeit hat der Miniaturisierungstrend dazu geführt, dass in zahlreichen wissenschaftlichen Bereichen immer kleinere Versionen von Systemen realisiert wurden. Die typischen Abmessungen wurden dabei auf einige hundert Millimeter reduziert. Diese Miniatur Positioniersysteme sind kostengünstige Lösungen in vielen Mikro Anwendungen. Die vorliegende Arbeit stellt die Entwicklung eines Miniatur-Positioniersystems dar, in welches ein berührungsloser Wegsensor für lange Distanzen integriert wurde. Die Einzigartigkeit dieses Positionierungssystems liegt in der Einfachheit der Konstruktion in Kombination mit der Fähigkeit Bewegungen vom Mikrometer bis zum Millimeter Bereich mittels einer eingebetteten Autopilotfunktion auszuführen. Das Design besteht aus einem beweglichen Teil, welches mit vier elektrischen Linearmotoren angetrieben wird. Jeder Motor besteht aus zwei Teilen: Einem planaren elektrisch angetriebenen Schlitten und einer Anordnung von Permanentmagneten. Die Anordnung ist mit 14 Permanentenmagneten in Nord-Süd Ausrichtung realisiert. Um eine sanfte Bewegung zu erreichen wird eine Vierpunktauflage mit halbkugelförmigen Glasperlen verwendet. Hierdurch werden Adhäsionseffekte minimiert. Das Positionierungssystem kann Bewegungen im Arbeitsbereich von 10 mm × 10 mm in der xy-Ebene mit Submikrometer Auflösung und einer Geschwindigkeit von 12 mm/s ausführen. Das Gerät ist in der Lage eine Drehbewegung von ±11° um die z-Achse in der xy-Ebene auszuführen. Weiterhin wurde, um die Verschiebung des beweglichen Teils zu messen, ein kontak tloser Langstrecken-Wegsensor entworfen. Die Gesamtabmessungen des Sensors wurden mit einem geometrischen Modell optimiert. Die Herstellung des Sensors wurde mittels Mikrostrukturierung in Silizium ausgeführt um eine kompakte Abmessung zu erreichen, so dass es in den beweglichen Teil des Positionierungssystems integriert werden konnte. Der Sensor erreicht eine Auflösung von 30,8 nm in einem linearen Messbereich von 12.5 mm. Am Ende der Arbeit wurde eine neue Kreuz-Struktur konzipiert und hergestellt, gleichfalls mit Hilfe der Mikrostrukturierungstechnik. Hieraus ergibt sich die Perspektive den Langstrecken Wegsensor problemlos zu integrieren

    Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: a Review

    Get PDF
    Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts

    Design, Fabrication, and Characterization of a Rotary Variable-Capacitance Micromotor Supported on Microball Bearings

    Get PDF
    The design, fabrication, and characterization of a rotary micromotor supported on microball bearings are reported in this dissertation. This is the first demonstration of a rotary micromachine with a robust mechanical support provided by microball-bearing technology. One key challenge in the realization of a reliable micromachine, which is successfully addressed in this work, is the development of a bearing that would result in high stability, low friction, and high resistance to wear. A six-phase, rotary, bottom-drive, variable-capacitance micromotor is designed and simulated using the finite element method. The geometry of the micromotor is optimized based on the simulation results. The development of the rotary machine is based on studies of fabrication and testing of linear micromotors. The stator and rotor are fabricated separately on silicon substrates and assembled with the stainless steel microballs. Three layers of low-k benzocyclobutene (BCB) polymer, two layers of gold, and a silicon microball housing are fabricated on the stator. The BCB dielectric film, compared to conventional silicon dioxide insulating films, reduces the parasitic capacitance between electrodes and the stator substrate. The microball housing and salient structures (poles) are etched in the rotor and are coated with a silicon carbide film to reduce friction. A characterization methodology is developed to measure and extract the angular displacement, velocity, acceleration, torque, mechanical power, coefficient of friction, and frictional force through non-contact techniques. A top angular velocity of 517 rpm corresponding to the linear tip velocity of 324 mm/s is measured. This is 44 times higher than the velocity achieved for linear micromotors supported on microball bearings. Measurement of the transient response of the rotor indicated that the torque is 5.620.5 micro N-m which is comparable to finite element simulation results predicting 6.75 micro N-m. Such a robust rotary micromotor can be used in developing micropumps which are highly demanded microsystems for fuel delivery, drug delivery, cooling, and vacuum applications. Micromotors can also be employed in micro scale surgery, assembly, propulsion, and actuation

    低周波数で駆動するフリー・インパクトモーション混合型電磁気振動環境発電に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 割澤 伸一, 東京大学教授 鈴木 雄二, 東京大学教授 松本 潔, 東京大学准教授 中野 公彦, 東京大学准教授 森田 剛University of Tokyo(東京大学

    Second International Symposium on Magnetic Suspension Technology, part 2

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, the 2nd International Symposium on Magnetic Suspension Technology was held at the Westin Hotel in Seattle, WA, on 11-13 Aug. 1993. The symposium included 18 technical sessions in which 44 papers were presented. The technical sessions covered the areas of bearings, bearing modelling, controls, vibration isolation, micromachines, superconductivity, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), rotating machinery and energy storage, and applications. A list of attendees appears at the end of the document

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    A critical survey of power take-off systems based wave energy converters: Summaries, advances, and perspectives

    Get PDF
    Being one of the most promising renewable energy sources, ocean wave energy (OWE) demonstrates considerable development and application potential. Consequently, various related technologies have rapidly advanced in recent decades, particularly in the field of wave energy converters (WEC). Power take-off (PTO) stands as a vital element within WEC systems. During the planning and implementation of WEC systems, diverse types of PTO systems and control strategies emerge as crucial factors that impact overall power output and stability. To comprehensively review PTO systems, this paper offers a comprehensive overview and discussion of state-of-the-art development status of PTO, including of based structures, working principles and control strategies. In contrast to prior reviews, a more thorough classification and comparison of different PTO systems have been undertaken in this review with the consideration of seven types of PTO systems in total and detailed control strategies for various PTO types. Besides, the proposed framework includes an evaluation and comparison of advantages/disadvantages, application, complexity, and costs for each controller. Lastly, seven invaluable perspectives are proposed for future research

    Design and Optimization of Dynamic System for a One-kW Free Piston Linear Engine Alternator-GENSETS Program

    Get PDF
    In power/energy systems, free-piston linear machines are referred to as a mechanism where the constrained crank motion is eliminated and replaced with free reciprocating piston motion. Depending on the application, the piston motion can be converted into other types of energy and includes compressed air/fluid, electricity, and high temperature/pressure gas. A research group at West Virginia University developed a free-piston linear engine alternator (LEA) in 1998 and have achieved significant accomplishment in the performance enhancement of the LEAs to date. The present LEA design incorporates flexure springs as energy restoration components and as bearing supports. The advantages of using flexure springs are threefold and include: (1) it increases the LEA’s stiffness and resonant frequency, and hence the power density; (2) it eliminates the need for rotary or linear bearings and lubrication system; and (3) it reduces the overall frictional contact area in the translator assembly which improves the durability. The current research focuses on the design and optimization of the flexure springs as the system’s resonant dominating component for a 1 kW free-piston LEA. First, the flexure springs were characterized according to the LEA’s target outputs and dimensional limitations. The finite element method (FEM) was used to analyze the stress/strain, different modes of deformation, and fatigue life of a range of flexure spring designs under dynamic loadings. Primary geometric design variables included the number of arms, inside and outside diameter, thickness, and arm’s length. To find the near-optimum designs, a machine learning algorithm incorporating the FEM results was used in order to find the sensitivity of the target outputs to the geometrical parameters. From the results, design charts were extracted as a guideline to flexure spring selection for a range of operations. Then, methods were introduced, investigated, and analyzed to improve the overall energy conversion performance and service life of the flexure springs and the overall LEA system. These included: a transient FE tool used for fatigue analysis to quantify the life and factors of safety of the flexure springs as well as the spring’s hysteresis; a fluid/structure interaction model used to quantify the energy loss due to drag force applied on the flexures’ side surfaces; packaging of multiple flexures to increase the overall stiffness and to reduce the vibration-induced stresses on flexure arms due to higher harmonics; a model to investigate the two-way interactions of the flexures’ dynamics with the alternator and engine components to find an optimum selection of the LEA’s assembly; a non-linear friction analysis to identify/quantify the energy losses due to the friction of the sliding surfaces of the flexures and spacers; and a series of static and transient experiment to determine the non-linearity of flexures’ stiffness and comparison to FEM results and for validation of the energy audit results from numerical and analytical calculations. With over 6000 flexure designs evaluated using artificial intelligent methods, the maximum achievable resonant frequency of a single flexure spring for a 1 kW LEA was found to be around 150 Hz. From the FEM results, it was found that under dynamic conditions the stress levels to be as high as twice the maximum stress under static (or very low speed) conditions. Modifications of the arm’s end shape and implementation of a shape factor were found as effective methods to reduce the maximum stress by 20%. The modal analysis showed that the most damaging modes of deformations of a flexure spring were the second to fourth modes, depending on the number of arms and symmetry of the design. Experiment and FEM results showed that using bolted packaging of the springs can damp a portion of the vibration and improve the performance. The drag force loss was found to account for 10-15% of the mechanical losses in a 100 Wnet LEA prototype. From the manufacturing perspective, use of water jet was found the most economical method for manufacturing the flexures which could make the commercial production of the LEAs feasible; however, for high-efficiency, high-durability machines, additional material treatments, and alternative manufacturing methods are essential

    Multi-purpose Electromagnetic Energy Harvesting System

    Get PDF
    This thesis proposes a multi-purpose electromagnetic energy harvesting system that harnesses mechanical energy from diverse types of mechanical motion sources and converts it into low power electrical energy. The harvested electrical energy is either used to supply power to low-power electronic devices or stored in an internal storage battery for later use. The proposed energy harvester can be i) mounted on a human’s knee, elbow, or hip, ii) hand-cranked, as well as iii) installed on any enclosure with fixed and movable parts (e.g., doors and/or windows). When mounted on a knee or hip, the device is actuated only during the so-called negative energy cycle of the motion and does not disturb the motion in the forward direction. The key building blocks of the proposed multi-purpose electromagnetic energy harvesting system is a new brushless AC electromagnetic generator, an adaptive motion translation mechanism and a smart power management system. The brushless AC generator consists of a new structure with a detachable rotor arrangement comprising mainly Neodymium rare-earth magnets mounted on an adjustable height rotor shaft and a stator made up of top and bottom flanges and a single continuous coil arrangement on a non-magnetic spool worn on a center magnetic stator core. The stator and rotor arrangement is carefully designed to allow for variable air gap so that the initial amount of torque required to move the rotor is adjustable and the amount of the generated output voltage can be controlled. Finite-element modeling magnetics (FEMM) simulation tool was used for the optimization of the new brushless generator, selecting the different generator materials, and determining the placement of the key components to achieve an efficient and truly adjustable system to the variation of frequencies and torque conditions. Furthermore, a gearbox was used as a mechanical up conversion mechanism to multiply the relatively low human motion to up to 5000 RPM at a walk pace of about one step per second. For this purpose, a three-stage spur gear system was designed using a roller-clutch at the front end to only allow motion during the negative cycle. The gearbox, when assembled together with the generator, works together with the adjustable height rotor to create the desired effect – adaptive, multi-purpose energy harvesting system. The power management design was optimized to maximum energy harvesting at rated RPM. When an external load is detected, the harvested power is routed to the external load, else, the power is routed to the internal storage battery for later use. The completed system generates between 2.5 watts and 7.5 watts of electrical power at an overall system efficiency of up to 84%
    corecore