1,029 research outputs found

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures

    Memory and forgetting processes with the firing neuron model

    Get PDF
    The aim of this paper is to present a novel algorithm for learning and forgetting within a very simplified, biologically derived model of the neuron, called firing cell (FC). FC includes the properties: (a) delay and decay of postsynaptic potentials, (b) modification of internal weights due to propagation of postsynaptic potentials through the dendrite, (c) modification of properties of the analog weight memory for each input due to a pattern of long-term synaptic potentiation. The FC model could be used in one of the three forms: excitatory, inhibitory, or receptory (gan­glion cell). The computer simulations showed that FC precisely performs the time integration and coincidence detection for incoming spike trains on all inputs. Any modification of the initial values (internal parameters) or inputs patterns caused the following changes of the interspike intervals time series on the output, even for the 10 s or 20 s real time course simulations. It is the basic evidence that the FC model has chaotic dynamical properties. The second goal is the presentation of various nonlinear methods for analysis of a biological time series. (Folia Morphol 2018; 77, 2: 221–233

    Evolving Synaptic Plasticity with an Evolutionary Cellular Development Model

    Get PDF
    Since synaptic plasticity is regarded as a potential mechanism for memory formation and learning, there is growing interest in the study of its underlying mechanisms. Recently several evolutionary models of cellular development have been presented, but none have been shown to be able to evolve a range of biological synaptic plasticity regimes. In this paper we present a biologically plausible evolutionary cellular development model and test its ability to evolve different biological synaptic plasticity regimes. The core of the model is a genomic and proteomic regulation network which controls cells and their neurites in a 2D environment. The model has previously been shown to successfully evolve behaving organisms, enable gene related phenomena, and produce biological neural mechanisms such as temporal representations. Several experiments are described in which the model evolves different synaptic plasticity regimes using a direct fitness function. Other experiments examine the ability of the model to evolve simple plasticity regimes in a task -based fitness function environment. These results suggest that such evolutionary cellular development models have the potential to be used as a research tool for investigating the evolutionary aspects of synaptic plasticity and at the same time can serve as the basis for novel artificial computational systems

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    Platonic model of mind as an approximation to neurodynamics

    Get PDF
    Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    The Role of Synaptic Tagging and Capture for Memory Dynamics in Spiking Neural Networks

    Get PDF
    Memory serves to process and store information about experiences such that this information can be used in future situations. The transfer from transient storage into long-term memory, which retains information for hours, days, and even years, is called consolidation. In brains, information is primarily stored via alteration of synapses, so-called synaptic plasticity. While these changes are at first in a transient early phase, they can be transferred to a late phase, meaning that they become stabilized over the course of several hours. This stabilization has been explained by so-called synaptic tagging and capture (STC) mechanisms. To store and recall memory representations, emergent dynamics arise from the synaptic structure of recurrent networks of neurons. This happens through so-called cell assemblies, which feature particularly strong synapses. It has been proposed that the stabilization of such cell assemblies by STC corresponds to so-called synaptic consolidation, which is observed in humans and other animals in the first hours after acquiring a new memory. The exact connection between the physiological mechanisms of STC and memory consolidation remains, however, unclear. It is equally unknown which influence STC mechanisms exert on further cognitive functions that guide behavior. On timescales of minutes to hours (that means, the timescales of STC) such functions include memory improvement, modification of memories, interference and enhancement of similar memories, and transient priming of certain memories. Thus, diverse memory dynamics may be linked to STC, which can be investigated by employing theoretical methods based on experimental data from the neuronal and the behavioral level. In this thesis, we present a theoretical model of STC-based memory consolidation in recurrent networks of spiking neurons, which are particularly suited to reproduce biologically realistic dynamics. Furthermore, we combine the STC mechanisms with calcium dynamics, which have been found to guide the major processes of early-phase synaptic plasticity in vivo. In three included research articles as well as additional sections, we develop this model and investigate how it can account for a variety of behavioral effects. We find that the model enables the robust implementation of the cognitive memory functions mentioned above. The main steps to this are: 1. demonstrating the formation, consolidation, and improvement of memories represented by cell assemblies, 2. showing that neuromodulator-dependent STC can retroactively control whether information is stored in a temporal or rate-based neural code, and 3. examining interaction of multiple cell assemblies with transient and attractor dynamics in different organizational paradigms. In summary, we demonstrate several ways by which STC controls the late-phase synaptic structure of cell assemblies. Linking these structures to functional dynamics, we show that our STC-based model implements functionality that can be related to long-term memory. Thereby, we provide a basis for the mechanistic explanation of various neuropsychological effects.2021-09-0

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    An efficient automated parameter tuning framework for spiking neural networks

    Get PDF
    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier
    corecore