342 research outputs found

    Control of feedback for assistive listening devices

    Get PDF
    Acoustic feedback refers to the undesired acoustic coupling between the loudspeaker and microphone in hearing aids. This feedback channel poses limitations to the normal operation of hearing aids under varying acoustic scenarios. This work makes contributions to improve the performance of adaptive feedback cancellation techniques and speech quality in hearing aids. For this purpose a two microphone approach is proposed and analysed; and probe signal injection methods are also investigated and improved upon

    Feedback suppression in digital hearing instruments

    Get PDF

    A study on wireless hearing aids system configuration and simulation

    Get PDF
    Master'sMASTER OF SCIENC

    Signal processing algorithms for digital hearing aids

    Get PDF
    Hearing loss is a problem that severely affects the speech communication and disqualify most hearing-impaired people from holding a normal life. Although the vast majority of hearing loss cases could be corrected by using hearing aids, however, only a scarce of hearing-impaired people who could be benefited from hearing aids purchase one. This irregular use of hearing aids arises from the existence of a problem that, to date, has not been solved effectively and comfortably: the automatic adaptation of the hearing aid to the changing acoustic environment that surrounds its user. There are two approaches aiming to comply with it. On the one hand, the "manual" approach, in which the user has to identify the acoustic situation and choose the adequate amplification program has been found to be very uncomfortable. The second approach requires to include an automatic program selection within the hearing aid. This latter approach is deemed very useful by most hearing aid users, even if its performance is not completely perfect. Although the necessity of the aforementioned sound classification system seems to be clear, its implementation is a very difficult matter. The development of an automatic sound classification system in a digital hearing aid is a challenging goal because of the inherent limitations of the Digital Signal Processor (DSP) the hearing aid is based on. The underlying reason is that most digital hearing aids have very strong constraints in terms of computational capacity, memory and battery, which seriously limit the implementation of advanced algorithms in them. With this in mind, this thesis focuses on the design and implementation of a prototype for a digital hearing aid able to automatically classify the acoustic environments hearing aid users daily face on and select the amplification program that is best adapted to such environment aiming at enhancing the speech intelligibility perceived by the user. The most important contribution of this thesis is the implementation of a prototype for a digital hearing aid that automatically classifies the acoustic environment surrounding its user and selects the most appropriate amplification program for such environment, aiming at enhancing the sound quality perceived by the user. The battery life of this hearing aid is 140 hours, which has been found to be very similar to that of hearing aids in the market, and what is of key importance, there is still about 30% of the DSP resources available for implementing other algorithms

    Low noise amplifier design and noise cancellation for wireless hearing aids

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Subband Adaptive Modeling of Digital Hearing Aids

    Get PDF
    In this thesis, the application of a subband adaptive model to characterize compression behaviour of five digital hearing aids is investigated. Using a signal-to-error ratio metric, modeling performance is determined by varying the number of analysis bands in the subband structure as well as consideration of three adaptive algorithms. The normalized least mean-squares (NLMS), the affine projection algorithm (APA), and the recursive least-squares (RLS) algorithms are employed using a range of parameters to determine the impact on modeling performance. Using the subband adaptive model to estimate the time-varying frequency response of each hearing aid allows the Perceptual Evaluation of Speech Quality (PESQ) mean-opinion score (MOS) to be computed. The PESQ MOS facilitates an estimation of a subjective assessment of speech quality using an objective score. Initial results suggest the PESQ MOS score is able to differentiate speech processed by hearing aids allowing them to be ranked accordingly. Further work is required to obtain subjective assessments of the processed speech signals and determine if possible correlations exist
    corecore