
Enrique Alexandre Cortizo
Dpto. de Teoría de la Señal y Comunicaciones

Campus Universitario s/n
28805 Alcalá de Henares (Madrid)

Telf: +34 91 885 67 27
Fax: +34 91 885 66 99

enrique.alexandre@gmail.com

D. ENRIQUE ALEXANDRE CORTIZO, Profesor Titular de Universidad del Área de Conocimiento
de Teoría de la Señal y Comunicaciones de la Universidad de Alcalá,

CERTIFICA

Que la tesis “Signal Processing Algorithms for Digital Hearing Aids” , presentada por
Dña. Lorena Álvarez Pérez, realizada en el Departamento de Teoría de la Señal y Comunicaciones
bajo mi dirección, reúne méritos suficientes para optar al grado de Doctor, por lo que puede
procederse a su depósito y defensa.

Alcalá de Henares, 19 de diciembre de 2011.

Fdo. Dr. D. Enrique Alexandre Cortizo

Dpto. de Teoría de la Señal y Comunicaciones
Campus Universitario s/n

28805 Alcalá de Henares (Madrid)
Telf: +34 91 885 88 99
Fax: +34 91 885 66 99

Dña. Lorena Álvarez Pérez ha realizado en el Departamento de Teoría de la Señal y Co-
municaciones y bajo la dirección del Doctor D. Enrique Alexandre Cortizo, la tesis doctoral
titulada “Signal Processing Algorithms for Digital Hearing Aids” , cumpliéndose todos
los requisitos para la tramitación que conduce a su posterior lectura.

Alcalá de Henares, 19 de diciembre de 2011.

EL DIRECTOR DEL DEPARTAMENTO

Fdo. Dr. D. Saturnino Maldonado Bascón

Escuela Politécnica Superior

Departamento de Teoría de la Señal y Comunicaciones

Ph. D. Thesis

Signal Processing Algorithms for
Digital Hearing Aids

Author:

Lorena Álvarez Pérez

Supervisor:

Enrique Alexandre Cortizo, Ph. D.

December, 2011

Abstract

Hearing loss is a problem commonly suffered by middle-aged and elderly people, as
a consequence of the result of the natural process of aging and deterioration of the
human auditory system. Hearing loss severely affects the speech communication and
disqualify most hearing-impaired people from holding a normal life. Although the
vast majority of hearing loss cases (90 %) could be corrected by using hearing aids,
however, only a scarce 20 % of hearing-impaired people who could be benefited from
hearing aids purchase one, and even more, about 25 % of people who purchase a
hearing aid do not wear it in their everyday life, despite the substantial financial
outlay involved in purchasing and maintaining a hearing aid.

This irregular use of hearing aids arises from the existence of a critical, scientific and
technological problem that, to date, has not been solved effectively and comfortably:
the automatic adaptation of the hearing aid to the changing acoustic environment
that surrounds its user. It has been shown that most hearing aid users generally prefer
to have a variety of amplification programs adapted to different acoustic conditions.
There are two approaches aiming to comply with it. On the one hand, the “manual”
approach, in which the user has to identify the acoustic situation and choose the
adequate amplification program by using a switch on the hearing instrument or some
kind of remote control, has been found to be very uncomfortable and frequently
exceeds the abilities of many hearing aid users, especially the abilities of the eldest.
The second approach, probably more comfortable for the user, requires to include an
automatic program selection within the hearing aid. This latter approach is deemed
very useful by most hearing aid users, even if its performance is not completely
perfect, because it would help them in improving the speech intelligibility, holding a
normal life, and increasing the comfort level.

Although the necessity of the aforementioned sound classification system seems to
be clear, its implementation is, on the contrary, a very difficult matter. Despite
the impressive advances in microelectronics, the development of an automatic sound
classification system in a digital hearing aid is a challenging goal because of the
inherent limitations of the Digital Signal Processor (DSP) the hearing aid is based on.
The underlying reason is that most digital hearing aids have very strong constraints
in terms of computational capacity, memory and battery, which seriously limit the
implementation of advanced algorithms in them.

With this in mind, this thesis focuses on the design and implementation of a prototype
for a digital hearing aid able to automatically classify the acoustic environments
hearing aid users daily face on and select the amplification program that is best
adapted to such environment (“self-adaptation”), aiming at enhancing the speech
intelligibility perceived by the user.

The thesis can be divided into three major parts. The first one is related to the design
of an automatic sound classification system that allows to properly discriminate the

input sound signal into speech, music and noise (the acoustic environments considered
in this thesis). Note that not only this part involve the selection of the best suited
feature set, but also the selection of the most appropriate classifying algorithm and
the optimization of its parameters for its further implementation in the DSP. The
second part deals with the design of an approach that aims at enhancing speech in
hearing aids, not only in terms of speech intelligibility but also in terms of speech
quality. Finally, the third part, probably the most important from the practical point
of view, describes in detail the way both the automatic sound classification system
and the speech enhancement approach are implemented in the DSP used to carry out
the experiments.

The main contributions of this thesis are listed below:

• The design of a set consisting of low-complexity features. The key advantage
regarding this feature set consists in that the number of instructions demanded
by the DSP for its computation is extremely low.

• A feature-selection approach for sound classification in hearing aids through
restricted search driven by genetic algorithms.

• A combined growing-pruning method for multilayer perceptrons (MLPs) that
aims at finding the most appropriate number of hidden neurons in MLPs for a
particular classification task.

• An algorithm for automatically selecting, among some piecewise linear approx-
imations, the “approximated” activation function best suited for each of the
hidden and output neurons comprising a multilayer perceptron.

• The design of a gain function aiming at speech enhancement in hearing aids, not
only in terms of speech quality but also in terms of speech intelligibility. This
gain function is created by using a gaussian mixture model fueled by a genetic
algorithm.

• An approach that aims at “simplifying” the implementation of the compressor-
expander algorithm (the very core of a hearing aid) in the DSP. The practical
implementation of this approach consists in storing in the data-memory of the
DSP, a table containing “tabulated” values of the gain to be applied as a function
of both the input signal level (dB SPL) and the frequency band.

The final, global conclusion is that we have implemented a prototype for a digital
hearing aid that automatically classifies the acoustic environment surrounding its
user and selects the most appropriate amplification program for such environment,
aiming at enhancing the sound quality perceived by the user. The battery life of
this hearing aid is 140 hours (or equivalently, approximately 6 days), which has been
found to be very similar to that of hearing aids in the market, and what is of key
importance, there is still about 30 % of the DSP resources available for implementing
other algorithms, such as, for instance, those involved in sound source separation or
acoustic feedback reduction.

Resumen

La pérdida de audición es un problema que generalmente sufren las personas de
mediana edad y las más mayores, como consecuencia del envejecimiento natural y
deterioro del sistema auditivo humano. Esta pérdida de audición afecta de manera
significativa a la comunicación e imposibilita a la mayoría de las personas con dis-
capacidad auditiva a llevar una vida normal. Aunque la inmensa mayoría de los casos
de pérdida de audición (90 %) podrían tratarse mediante la utilización de audífonos,
sin embargo, pocas personas que podrían beneficiarse de su uso (concretamente un
20 %) compra uno, e incluso, muchos de los que han comprado su audífono termi-
nan por no utilizarlo, a pesar del fuerte desembolso económico que puede suponer la
adquisición y mantenimiento de un audífono.
Las razones para este aparentemente extraño comportamiento surge de la existencia
de un problema fundamental, científico y tecnológico que, hasta día de hoy, no ha
sido resuelto de manera eficiente y cómoda: la adaptación automática del audífono
dependiendo del entorno sonoro en el que se encuentra el usuario. Se ha demostrado
que la mayoría de las personas que hacen uso de audífonos prefieren tener una var-
iedad de programas de amplificación adaptados a diferentes entornos sonoros, incluso
aunque su funcionamiento no sea del todo perfecto. Hay dos posibles formas de sat-
isfacer tal necesidad. Por un lado, existe el modo “manual”, en el que el usuario tiene
que identificar el entorno sonoro en el que se encuentra, y elegir él mismo el pro-
grama de amplificación más apropiado para ese entorno, a través de un conmutador
situado en el propio audífono o de alguna clase de control remoto. Este modo es
bastante incómodo y en la mayoría de los casos excede las habilidades de muchos de
los usuarios de audífonos, especialmente las de los más mayores. El segundo modo,
probablemente más cómodo para el usuario, consiste en que el propio audífono clasi-
fique el entorno en el que se encuentra el usuario y él mismo seleccione el programa
de amplificación más apropiado para ese entorno. Este último modo permite a los
usuarios de los audífonos mejorar la inteligibilidad de voz percibida, llevar una vida
normal e incrementar su nivel de comodidad.
Aunque parece evidente la necesidad de incluir un sistema de clasificación de sonidos
en un audífono, su implementación es, por el contrario, algo difícil de conseguir. A
pesar de los importantes avances en microelectrónica que ha habido en los últimos
años, el desarrollo de un sistema de clasificación automática de sonidos en un audí-
fono digital constituye todo un desafío debido a las limitaciones del procesador digital
de señal (también conocido como DSP, de sus siglas en inglés, Digital Signal Proces-
sor) en el que se basa cualquier audífono digital. Nótese que los audífonos digitales
tienes importantes restricciones en términos de capacidad computacional, memoria y
batería, que limitan la implementación de algoritmos complejos en ellos.
Esta tesis se centra en el diseño e implementación de un prototipo de audífono digital
capaz de clasificar automáticamente el entorno sonoro en el que se encuentra la per-
sona que lleva el audífono y seleccionar el programa de amplificación mejor adaptado

a ese entorno, con el objetivo de mejorar la inteligibilidad de voz percebida por el
usuario.

Esta tesis se puede dividir en tres partes. La primera de ellas está relacionada con
el diseño de un sistema de clasificación automática de sonidos que permita clasificar
correctamente la señal sonora de entrada entre voz, música y ruido (los entornos
sonoros considerados en esta tesis). Nótese que esta parte no sólo implica la selección
del conjunto de características más apropiado, sino también la selección del algoritmo
de clasificación más adecuado y la optimización de sus parámetros para su futura
implementación en el DSP. La segunda parte incluye el diseño de una función de
ganancia que tiene como objetivo mejorar la percepción de la voz, no sólo en términos
de inteligibilidad, sino también en términos de calidad. Finalmente, la última parte,
quizás la más importante desde el punto de vista práctico, describe en detalle el modo
en que, tanto el sistema de clasificación automática de sonidos y la función de mejora
de la voz, son implementados en el DSP usado en esta tesis para llevar a cabo los
experimentos.

A continuación se describen las principales contribuciones de esta tesis:

• El diseño de un conjunto de características de baja complejidad. La princi-
pal ventaja de este conjunto de características consiste en que el número de
instrucciones requeridas por el DSP para su cálculo es muy bajo.

• Un método de selección de características para la clasificación de sonidos en
audífonos digitales haciendo uso de algoritmos genéticos que restriguen el espacio
de búsqueda.

• Un método que combina algoritmos de crecimiento y poda para perceptrones
multicapa (también conocidos como MLPs, de sus siglas en inglés, Multilayer
Perceptrons), que permite determinar el número idóneo de neuronas ocultas en
MLPs para cada problema de clasificación.

• Un algoritmo que permite seleccionar automáticamente, entre varias aproxima-
ciones lineales por tramos de la función de activación original (función loga-
rítmica sigmoidal, en nuestro caso), la aproximación más apropiada para cada
una de las neuronas de la capa oculta y de salida que forman un perceptrón
multicapa.

• El diseño de una función de ganancia para audífonos que mejore tanto la calidad,
así como la inteligibilidad de la voz percebida por los usuarios. Esta función de
ganancia se genera usando un modelo de mezcla de gausianas en el que sus
parámetros se estiman por medio de algoritmos genéticos.

• Un método que trata de “simplificar” la implementación del algoritmo de com-
presión-expansión (el núcleo principal de un audífono) en el DSP. La imple-
mentación práctica de este método consiste en almacenar en la memoria de
datos del DSP, una matriz que contenga valores “tabulados” de la ganancia a
aplicar en función del nivel de señal de entrada y de la banda de frequencia.

La conclusión final, global de esta tesis es que se ha desarrollado un prototipo de
audífono digital que automáticamente clasifica el entorno sonoro en el que se en-
cuentra su usuario y selecciona el programa de amplificación más apropiado para ese
entorno, con el objetivo de aumentar tanto la calidad como la inteligibilidad de voz

percibida por el usuario. La duración de la batería de este audífono es 140 horas
(o equivalentemente, aproximadamente 6 días), valor muy similar a la duración de
la batería de los audífonos disponibles en el mercado actualmente, y lo que es más
importante aún, queda aproximadamente el 30 % de los recursos del DSP libre para
la implementación de otros algoritmos, como, por ejemplo, aquellos que llevan a cabo
separación de fuentes sonoras o la reducción de la realimentacióon acústica.

A �t�o�d�o�� �l�o�� �q�u�e �h�a�b�é�i��
�e�s�c�r�i�t�o �c�o�n�m�i�g�o �e�s�t�e �l�i�b�r�o

A�g�r�a�d�e�c�i�m�i�e�n�t�o��

H�a�c�e �u�n�o�� �a�ñ�o�� �e�n�t�r�é �e�n� �c�o�n�t�a�c�t�o �c�o�n� �l�a� �i�n�v�e�s�t�i�g�a�c�i�ó�n�, �c�o�n� �l�a� �s�u�e�r�t�e �d�e
�h�a�c�e�r�l�o �d�e �m�a�n�o�� �d�e �a�l�g�u�i�e�n� �q�u�e �d�i�s�f�r�u�t�a� �t�r�a�b�a�j�a�n�d�o. D�e�s�d�e �e�n�t�o�n�c�e��, �e�n�
�s�u� �e�n�t�u�s�i�a�s�m�o �y �s�u� �l�a�b�o�r�i�o�s�i�d�a�d�, �h�e �t�e�n�i�d�o �u�n� �r�e�f�e�r�e�n�t�e �m�a�g�n�í�f�i�c�o �p�a�r�a�
�r�e�a�l�i�z�a�r� �m�i� �t�r�a�b�a�j�o �c�o�n� �i�l�u�s�i�ó�n�. S�i� �l�a� �f�u�n�c�i�ó�n� �d�e �u�n� �d�i�r�e�c�t�o�r� �d�e �t�e�s�i�� �e��
�g�u�i�a�r� �y �a�c�o�n�s�e�j�a�r�, �n�o �p�u�e�d�e �h�a�b�e�r� �m�e�j�o�r� �f�o�r�m�a� �d�e �h�a�c�e�r�l�o �q�u�e �a�n�i�m�a�n�d�o
�a� �c�u�r�i�o�s�e�a�r� �y �d�e�s�a�r�r�o�l�l�a�r� �l�a�� �i�d�e�a�� �p�r�o�p�i�a�� �c�o�n� �l�i�b�e�r�t�a�d�. M�u�c�h�a�� �g�r�a�c�i�a��,
E�n�r�i�q�u�e.
M�u�c�h�a�� �g�r�a�c�i�a�� �a� R�o�b�e�r�t�o. G�r�a�c�i�a�� �p�o�r� �o�f�r�e�c�e�r�m�e �v�a�l�i�o�s�a�� �o�p�i�n�i�o�n�e�� �y
�c�o�n�s�e�j�o�� �q�u�e �m�e �h�a�n� �h�e�c�h�o �m�e�j�o�r�a�r�, �a�p�r�e�n�d�e�r� �y �a�v�a�n�z�a�r� �p�o�r� �b�u�e�n� �c�a�m�i�n�o.
S�i� �e�s�t�a� �t�e�s�i�� �t�u�v�i�e�r�a� �u�n� �s�e�g�u�n�d�o �d�i�r�e�c�t�o�r�, �e�s�t�o�y �s�e�g�u�r�a� �q�u�e �é�s�e �s�e�r�í�a��
�t�ú�. G�r�a�c�i�a�� �a� J�o�s�é C�a�r�l�o�� �p�o�r� �t�o�d�o�� �e�s�o�� �c�a�f�é�� �y �e�s�a�� �c�h�a�r�l�a�� �q�u�e �t�a�n�t�o
�m�e �h�a�n� �a�n�i�m�a�d�o. G�r�a�c�i�a�� �a� L�u�c�a�� �p�o�r� `̀ �e�n�s�e�ñ�a�r�m�e'' �a� �e�s�c�r�i�b�i�r� �c�o�m�o �s�ó�l�o
S�h�a�k�e�s�p�e�a�r�e �s�a�b�í�a� �h�a�c�e�r�. Y �g�r�a�c�i�a�� �t�a�m�b�i�é�n� �a� R�a�ú�l �y �a� M�a�n�u�e�l, �p�o�r� �s�u��
�á�n�i�m�o�� �y �s�u� �a�p�o�y�o.
G�r�a�c�i�a�� �a� C�r�u�z�a� �y �a� L�e�t�i�, �p�o�r�q�u�e �u�n�a� �g�r�a�n� �p�a�r�t�e �d�e �e�s�t�a� �t�e�s�i�� �h�a� �s�i�d�o
�t�a�m�b�i�é�n� �t�r�a�b�a�j�o �s�u�y�o �y �n�o �h�u�b�i�e�r�a� �p�o�d�i�d�o �l�l�e�g�a�d�o �a� �s�e�r� �l�o �q�u�e �e�� �s�i�n� �s�u��
�a�p�o�r�t�a�c�i�o�n�e��.
I �w�o�u�l�d� �l�i�k�e �t�o �t�h�a�n�k� P�r�o�f�e�s�s�o�r� G�i�a�n�p�a�o�l�o E�v�a�n�g�e�l�i�s�t�a� �f�o�r� �a�d�v�i�s�i�n�g �a�n�d�
�g�u�i�d�i�n�g �m�e �t�h�r�o�u�g�h� �m�y �r�e�s�e�a�r�c�h� �a�t L�i�n�k�ö�p�i�n�g U�n�i�v�e�r�s�i�t�y. M�y �t�i�m�e �a�t
N�o�r�r�k�ö�p�i�n�g �w�a�� �m�a�d�e �e�n�j�o�y�a�b�l�e �i�n� �l�a�r�g�e �p�a�r�t �d�u�e �t�o �p�e�o�p�l�e I �m�e�t �t�h�e�r�e:
L�i�s�a�, Y�o�y�o, M�a�r�c, M�a�h�z�i�a�r�, S�a�r�a�, H�i�u� �a�n�d� K�i�r�u�t�h�i�k�a�, �a�m�o�n�g �o�t�h�e�r��. I �a�m�
�d�e�e�p�l�y �g�r�a�t�e�f�u�l �t�o �t�h�e�m� �f�o�r� �k�i�n�d�l�y �o�f�f�e�r�i�n�g �t�h�e�i�r� �h�e�l�p� �w�h�e�n�e�v�e�r� �p�o�s�s�i�b�l�e.
T�h�a�n�k� �y�o�u� �f�o�r� �m�a�k�i�n�g �m�e �f�e�e�l �l�i�k�e �b�e�i�n�g �a�t �h�o�m�e.
A �l�a� C�o�m�u�n�i�d�a�d� �d�e M�a�d�r�i�d�, �p�o�r� �l�a� �c�o�n�c�e�s�i�ó�n� �d�e �u�n�a� �c�o�n�t�r�a�t�o �d�e �i�n�v�e��-
�t�i�g�a�c�i�ó�n� �p�a�r�a� �r�e�a�l�i�z�a�r� �e�s�t�a� �t�e�s�i��.
N�o �e�� �m�e�n�o�r� �l�a� �s�u�e�r�t�e �q�u�e �h�e �t�e�n�i�d�o �a�l �c�o�m�p�a�r�t�i�r� �e�l �d�í�a� �a� �d�í�a� �c�o�n� �p�e�r�s�o�n�a��
�m�a�r�a�v�i�l�l�o�s�a��. M�e �g�u�s�t�a�r�í�a� �a�g�r�a�d�e�c�e�r� �a� �t�o�d�o�� �l�o�� �c�o�m�p�a�ñ�e�r�o�� �d�e�l �f�o�n�d�o S31

�q�u�e �m�e �h�a�n� �a�n�i�m�a�d�o, �a�p�o�y�a�d�o �e�n� �m�i� �t�r�a�b�a�j�o, �y �q�u�e �e�n� �d�e�f�i�n�i�t�i�v�a� �h�a�n� �h�e�c�h�o
�m�á�� �a�l�e�g�r�e �e�l �t�r�a�y�e�c�t�o �r�e�c�o�r�r�i�d�o. E�s�p�e�c�i�a�l�m�e�n�t�e, �q�u�i�e�r�o �d�a�r� �l�a�� �g�r�a�c�i�a�� �a�
C�o�s�m�e �y D�a�v�i�d�. C�o�n� �e�l�l�o�� �h�e �c�o�m�p�a�r�t�i�d�o �m�i�� �a�l�e�g�r�í�a�� �y �m�i�� �m�a�l�o�� �r�a�t�o��
�d�e �e�s�t�a� �t�e�s�i��, �p�o�r�q�u�e �a�u�n�q�u�e �a�h�o�r�a� �t�o�d�o �p�a�r�e�z�c�a� �m�a�r�a�v�i�l�l�o�s�o, �e�s�t�e �t�r�a�b�a�j�o
�t�r�a�e �m�á�� �d�e �u�n� �d�o�l�o�r� �d�e �c�a�b�e�z�a�. N�o �t�e�n�g�o �p�a�l�a�b�r�a�� �p�a�r�a� �a�g�r�a�d�e�c�e�r�o�� �l�o
�b�i�e�n� �q�u�e �s�i�e�m�p�r�e �o�� �h�a�b�é�i�� �p�o�r�t�a�d�o �c�o�n�m�i�g�o. V�o�y �a� �e�c�h�a�r� �m�u�c�h�o �d�e �m�e�n�o��
�a�q�u�e�l�l�o�� �m�o�m�e�n�t�o�� �e�n� �e�l Í �n�d�a�l�o �y �e�n� �e�l H�e�m�i�s�f�e�r�i�o, �y �s�i�e�m�p�r�e �r�e�c�o�r�d�a�r�é
�c�o�n� �u�n� �s�o�n�r�i�s�a� �a�q�u�e�l `̀ �d�u�l�c�e �n�o�v�i�e�m�b�r�e''. C�o�s�m�e, �m�u�c�h�a�� �v�e�c�e�� �e�l �c�a�m�i�n�o
�e�� �d�i�f�í�c�i�l, �p�e�r�o �c�u�a�n�d�o �t�e�r�m�i�n�a��, �l�a� �s�a�t�i�s�f�a�c�c�i�ó�n� �y �l�a� �a�l�e�g�r�í�a� �h�a�r�á�n� �q�u�e �t�e
�o�l�v�i�d�e�� �d�e �l�o�� �m�a�l�o�� �m�o�m�e�n�t�o��, �m�u�c�h�o �á�n�i�m�o! G�r�a�c�i�a�� �t�a�m�b�i�é�n� �a� R�a�m�ó�n�,
�q�u�e �a�u�n�q�u�e �s�i�n� �t�r�a�b�a�j�a�r� �e�n� �n�u�e�s�t�r�o �f�o�n�d�o, �h�a� �s�i�d�o �u�n� �c�o�m�p�a�ñ�e�r�o �m�á��.
G�r�a�c�i�a�� �p�o�r� �t�o�d�o�� �e�s�o�� �c�a�f�é�� �q�u�e �h�e�m�o�� �c�o�m�p�a�r�t�i�d�o �y �p�o�r� �a�l�e�g�r�a�r�m�e �e�l �d�í�a�
�a� �d�í�a� �c�o�n� �e�s�a�� �c�a�r�i�t�a�� �s�o�n�r�i�e�n�t�e�� :).
H�a�y �o�t�r�o�� �c�a�f�é�� �q�u�e, �a�u�n�q�u�e �a� �v�e�c�e�� `̀ �v�i�r�t�u�a�l�e��'', �m�e �h�a�n� �r�e�s�c�a�t�a�d�o �d�e�l �n�a�u�f�r�a�-
�g�i�o. L�o�� �d�e �e�s�a�� �a�m�i�g�a�� �q�u�e �a� �p�e�s�a�r� �d�e �l�a� �d�i�s�t�a�n�c�i�a� �s�i�e�m�p�r�e �m�e �h�a�c�e�n�
�l�l�e�g�a�r� �s�u� �a�f�e�c�t�o. G�r�a�c�i�a�� E�v�a�, C�r�i�� �y C�r�i��, �s�i�n� �v�o�s�o�t�r�a��, �q�u�e �m�e �c�o�m�-
�p�r�e�n�d�é�i�� �c�o�m�o �n�a�d�i�e, �n�a�d�a� �h�a�b�r�í�a� �s�i�d�o �l�o �m�i�s�m�o. G�r�a�c�i�a�� �t�a�m�b�i�é�n� �a� L�a�u�r�a�,
C�r�i��, B�e�a�, R�a�q�u�e�l �y M�a�r�í�a� J�e�s�ú��, �p�o�r� �c�o�m�p�r�e�n�d�e�r� �l�a� �i�m�p�o�r�t�a�n�c�i�a� �q�u�e
�e�s�t�a� �t�e�s�i�� �t�e�n�í�a� �p�a�r�a� �m�í� �y �p�o�r� �e�l�l�o �c�o�n�d�i�c�i�o�n�a�r� �m�u�c�h�o�� �f�i�n�e�� �d�e �s�e�m�a�n�a�.
A M�a�i�t�e, �p�o�r� �s�e�r� �d�e �e�s�a� �c�l�a�s�e �d�e �p�e�r�s�o�n�a�� �q�u�e �d�a�n� �l�o �m�e�j�o�r� �d�e �s�í�
�m�i�s�m�a�� �s�i�n� �e�s�p�e�r�a�r� �n�a�d�a� �a� �c�a�m�b�i�o, �s�a�b�e �e�s�c�u�c�h�a�r� �y �b�r�i�n�d�a�r� �a�y�u�d�a� �c�u�a�n�d�o
�e�� �n�e�c�e�s�a�r�i�o, �y �s�o�b�r�e �t�o�d�o, �s�a�b�e �g�a�n�a�r�s�e �e�l �c�a�r�i�ñ�o, �a�d�m�i�r�a�c�i�ó�n� �y �r�e�s�p�e�t�o �d�e
�t�o�d�o �e�l �q�u�e �l�a� �c�o�n�o�c�e. G�r�a�c�i�a�� �t�a�m�b�i�é�n� �a� A�n�g�i�e, �h�a� �e�s�t�a�d�o �a�h�í� �c�u�a�n�d�o �m�á��
�l�a� �h�e �n�e�c�e�s�i�t�a�d�o, �y �s�i�e�m�p�r�e �l�e �v�o�y �a� �e�s�t�a�r�é �a�g�r�a�d�e�c�i�d�a� �p�o�r� �e�l�l�o.
A L�e�o, �p�o�r� �p�r�e�o�c�u�p�a�r�s�e �p�o�r� �m�í� �y �p�r�e�g�u�n�t�a�r�m�e �c�ó�m�o �l�l�e�v�a�b�a� �l�a� �t�e�s�i��.
S�i�e�m�p�r�e �l�e �d�e�c�í�a� �q�u�e �y�a� �m�e �q�u�e�d�a�b�a� �p�o�c�o, �p�e�r�o �h�o�y �y�a� �l�e �p�u�e�d�o �d�e�c�i�r� �q�u�e
�p�o�r� �f�i�n� �l�a� �h�e �t�e�r�m�i�n�a�d�o!
A R�a�q�u�e�l, S�u�s�i� �y R�o�c�í�o, �a�m�i�g�a�� �d�e�s�d�e �p�e�q�u�e�ñ�a��, �l�a�� �c�u�a�l�e�� �s�i�e�m�p�r�e, �y �d�e
�m�a�n�e�r�a� �i�n�c�o�n�d�i�c�i�o�n�a�l, �h�a�n� �e�s�t�a�d�o �a� �m�i� �l�a�d�o �c�u�a�n�t�a�� �v�e�c�e�� �h�e �n�e�c�e�s�i�t�a�d�o �s�u�
�a�y�u�d�a�.
G�r�a�c�i�a�� �a� D�i�e�g�o, E�s�t�h�e�r�, L�e�t�i� �y J�e�s�ú��, �p�o�r� �t�o�d�o�� �l�o�� �m�o�m�e�n�t�o��, �p�o�r� �v�u�e�s�t�r�o
�a�p�o�y�o, �p�o�r� �v�u�e�s�t�r�a�� �s�o�n�r�i�s�a��, �v�u�e�s�t�r�a�� �c�o�n�f�i�d�e�n�c�i�a�� �y �t�o�d�o �v�u�e�s�t�r�o �c�a�r�i�ñ�o.
G�r�a�c�i�a�� �p�o�r� �h�a�b�e�r�m�e �b�r�i�n�d�a�d�o �v�u�e�s�t�r�a� �a�m�i�s�t�a�d�.

N�o �m�e �p�u�e�d�o �o�l�v�i�d�a�r� �d�e M�a�r�í�a� J�e�s�ú�� �y N�i�e�v�e��, �c�o�n� �l�a�� �q�u�e �t�a�n�t�o�� �r�a�t�o��
�a� �ú�l�t�i�m�a� �h�o�r�a� �d�e�l �d�í�a� �h�e �c�o�m�p�a�r�t�i�d�o.
Y �v�a�y�a� �m�i� �m�a�y�o�r� �a�g�r�a�d�e�c�i�m�i�e�n�t�o �a� �m�i� �f�a�m�i�l�i�a�. E�n� �e�s�p�e�c�i�a�l, �a� �m�i�� �p�a�d�r�e��,
B�a�s�i�l�i�o �y M�a�r�i�b�e�l, �p�o�r�q�u�e �e�s�t�e �t�r�a�b�a�j�o �e�� �e�l �r�e�s�u�l�t�a�d�o �d�e �l�o �q�u�e �m�e �h�a�b�é�i��
�e�n�s�e�ñ�a�d�o �e�n� �l�a� �v�i�d�a�. G�r�a�c�i�a�� �p�o�r� �c�o�n�f�i�a�r� �s�i�e�m�p�r�e �e�n� �m�í� �y �d�a�r�m�e �l�a�
�o�p�o�r�t�u�n�i�d�a�d� �d�e �c�u�l�m�i�n�a�r� �e�s�t�a� �e�t�a�p�a�. G�r�a�c�i�a�� �a� �m�i� �h�e�r�m�a�n�a� R�a�q�u�e�l, �p�o�r�
�s�u� �e�n�c�a�n�t�o �e�s�p�e�c�i�a�l �y �p�o�r� �s�u�� �á�n�i�m�o��. G�r�a�c�i�a�� �p�o�r� �a�g�u�a�n�t�a�r� �e�s�t�o�i�c�a�m�e�n�t�e
�m�i�� �m�a�l�o�� �r�a�t�o��. A �m�i�� �a�b�u�e�l�o��, �p�o�r�q�u�e �s�é �q�u�e �n�o �h�a�y �n�a�d�i�e �q�u�e �s�e �a�l�e�g�r�e
�t�a�n�t�o �c�o�m�o �e�l�l�o�� �d�e �q�u�e �h�o�y �t�e�r�m�i�n�e �e�s�t�e �t�r�a�b�a�j�o, �y �p�o�r� �s�u�p�u�e�s�t�o, �a� �m�i��
�t�í�o�� �y �a� �m�i�� �p�r�i�m�o��, �p�o�r� �e�s�t�a�r� �p�e�n�d�i�e�n�t�e�� �d�e �m�í� �a� �l�o �l�a�r�g�o �d�e �t�o�d�o �e�s�t�e
�t�i�e�m�p�o, �b�r�i�n�d�á�n�d�o�m�e �s�u� �a�p�o�y�o �i�n�c�o�n�d�i�c�i�o�n�a�l.

G�r�a�c�i�a�� �a� �t�o�d�o�� �a�q�u�e�l�l�o�� �q�u�e �n�o �e�s�t�á�n� �a�q�u�í�, �p�e�r�o �q�u�e �m�e �a�y�u�d�a�r�o�n� �a� �q�u�e
�e�s�t�e �g�r�a�n� �e�s�f�u�e�r�z�o �s�e �v�o�l�v�i�e�r�a� �r�e�a�l�i�d�a�d�.

L�o�r�e�n�a�

Contents

Contents VII

List of Figures XI

List of Tables XV

List of Symbols

Glossary

1 Introduction and scope 1
1.1 Background . 1
1.2 Motivation . 5
1.3 Objective . 6
1.4 Organization . 7

2 Hearing aids 11
2.1 Introduction . 11
2.2 Hearing loss . 12

2.2.1 Description of human auditory system . 12
2.2.2 Hearing loss classification . 13
2.2.3 Degrees of hearing loss . 14
2.2.4 Problems faced by hearing-impaired people 14

2.3 A brief history of hearing aids . 18
2.3.1 The acoustic era . 19
2.3.2 The carbon era . 19
2.3.3 The vacuum tube era . 20
2.3.4 The analog era . 21
2.3.5 The digital era . 23

2.4 Hearing aids models . 28

3 Overview of automatic sound classification systems 31
3.1 Introduction . 31
3.2 Data processing . 33
3.3 Feature extraction . 34

3.3.1 Introduction . 34
3.3.2 Classical spectral features . 36

3.4 Classifying algorithm . 42
3.4.1 Introduction . 42
3.4.2 Mean square error (MSE) linear classifier 44

VII

VIII Contents

3.4.3 k-nearest neighbor (k-NN) classifier . 46
3.4.4 Artificial neural networks . 47

3.4.4.1 Introduction . 47
3.4.4.2 Multilayer perceptrons (MLPs) 48
3.4.4.3 Radial basis function (RBF) networks 54

4 Proposed feature extraction and selection algorithms 59
4.1 Introduction . 59
4.2 Low-complexity features . 60

4.2.1 Mathematical expression of the low-complexity features 60
4.2.2 Mathematical characterization of the feature extraction process 61
4.2.3 Preliminary classification results . 62

4.3 Fundamentals of feature selection . 63
4.3.1 An intuitive approach . 63
4.3.2 How should the feature selection algorithm work? 65
4.3.3 Practical implementation . 66

4.3.3.1 Computational cost of classical and low-complexity features . . . 67
4.3.3.2 Computational cost of MFCCs and ∆MFCCs 71
4.3.3.3 Computational cost of statistical operators 73

4.3.4 Experimental work and results . 74
4.3.4.1 Experimental setup . 75
4.3.4.2 Numerical results . 76

4.4 Conclusions . 79

5 Implementation and optimization of classifying algorithms 83
5.1 Introduction . 83
5.2 Comparative analysis . 84

5.2.1 Introduction . 84
5.2.2 Description of the experimental work . 85
5.2.3 Numerical results . 87

5.2.3.1 One-layer structure . 87
5.2.3.2 Two-layer structure . 89
5.2.3.3 Combination of multiple classifiers 91

5.2.4 Conclusions . 92
5.3 Optimization of multilayer perceptron parameters 93

5.3.1 Introduction . 93
5.3.2 Appropriate number of hidden neurons . 93

5.3.2.1 Growing algorithm . 94
5.3.2.2 Pruning algorithms . 96
5.3.2.3 Combination of growing and pruning algorithms 100

5.3.3 Simplification of the activation function 101
5.3.3.1 Piecewise linear approximations 101
5.3.3.2 Activation function selection algorithm 105

5.3.4 Conclusions . 108
5.4 Conclusions . 108

Contents IX

6 Analysis of the effects of finite precision 111
6.1 Introduction . 111
6.2 The quantization problem . 112
6.3 Experimental work and results . 113

6.3.1 Experimental setup . 113
6.3.2 Numerical results . 113

6.4 Conclusions . 116

7 Speech enhancement algorithms 119
7.1 Introduction . 119
7.2 Measuring the speech quality . 120
7.3 Perceptual evaluation of speech quality . 122

7.3.1 Introduction . 122
7.3.2 Description of PESQ model . 123

7.4 Speech intelligibility index . 124
7.4.1 Introduction . 124
7.4.2 Description of SII . 126

7.5 Blind modeling of the gain function by using gaussian mixtures 130
7.5.1 Gaussian mixture model . 131
7.5.2 The approach at work . 133

7.6 Experimental work and results . 135
7.6.1 Experimental setup . 136
7.6.2 Numerical results . 138

7.7 Conclusions . 146

8 Hardware implementation 149
8.1 Introduction . 149
8.2 Implementation of the multiband compressor-expander 150

8.2.1 Introduction . 150
8.2.2 Average power computation . 153
8.2.3 Gain-search in the gain matrix . 156

8.2.3.1 Practical implementation . 160
8.2.4 Base adjustment . 161
8.2.5 Computational cost . 163

8.3 Implementing the feature extraction . 165
8.3.1 Introduction . 165
8.3.2 Obtaining the building blocks . 166
8.3.3 Obtaining the features included in the set SF 167
8.3.4 Statistical characterization . 169
8.3.5 Practical implementation . 171

8.3.5.1 Preprocessor code . 171
8.3.5.2 Routines . 171
8.3.5.3 Computing the statistical measures 172
8.3.5.4 Implementation . 173

8.3.6 Computational cost . 173
8.4 Implementing a multilayer perceptron-based classifier 177

8.4.1 Introduction . 177
8.4.2 Creating a multilayer-perceptron . 177

X Contents

8.4.3 Running a multilayer-perceptron . 179
8.4.4 Computational cost of multilayer perceptron (MLP) 181

8.5 Hearing aid consumption . 183
8.6 Conclusions . 185

9 Conclusions 187
9.1 Introduction . 187
9.2 Summary . 187
9.3 Contribution to knowledge . 191
9.4 Future work . 193
9.5 List of publications . 194

A Digital signal processor 197

B Hearing aid simulator 199
B.1 Introduction . 199
B.2 Digital hearing aid model . 199

B.2.1 Hearing aid core: the WOLA filter bank 201
B.2.1.1 The analysis stage . 201
B.2.1.2 The gain stage . 201
B.2.1.3 The synthesis stage . 203
B.2.1.4 Practical implementation: WOLA filter bank parameters 203

B.2.2 AFE paths in hearing aids . 203
B.2.2.1 Practical implementation: AFE paths 204

B.2.3 Gain evaluation stage: audio level compression and noise reduction 205

C Databases 211
C.1 Database of sounds . 211
C.2 Database of patients . 212

D Genetic algorithms 215
D.1 Introduction . 215

D.1.1 Codifying the trial solution . 215
D.1.2 Applying genetic mechanisms . 216

E Implementing new features 219
E.1 Implementation of a new building block . 219
E.2 Implementation of a new feature . 220
E.3 Implementation of a new statistical measure . 222

Bibliography 225

List of Figures

1.1 Estimation of the number of people worldwide suffering from hearing loss of more
than 25 dB from years 1995 to 2025. 1

1.2 Representation of the percentage distribution, by sex and age, depicting the age
at which hearing loss begins. 2

1.3 Representation of the variety of sounds a hearing aid user faces daily. 5

2.1 Anatomy of the peripheral human auditory system. 13
2.2 The “shaded” area designates the so-called “speech-banana” that essentially depicts

the most important area for the perception of the most of English vowels and
consonants as a function of both the hearing level (dB HL) and frequency (Hz). . 16

2.3 Dynamic range for a normal hearing person and for a hearing-impaired person. . 17
2.4 Illustrative picture depicting the way in which some sounds should be amplified

for a healthy listener and for a hearing-impaired person. 17
2.5 Picture showing when principal hearing aid eras have began in the history. 19
2.6 Picture illustrating two “hearing aids” from the acoustic era: the so-called ear

trumpet and the speaking tube. 20
2.7 Picture illustrating the first practical commercially wearable carbon hearing aid. . 20
2.8 A relatively late vacuum tube hearing aid. 21
2.9 A simplified diagram of the structure of a typical analog hearing aid. 22
2.10 First analog hearing aids worn completely in the head. 22
2.11 A simplified diagram of the structure of a typical digital hearing aid. 24
2.12 Representation of a typical gain function for each frequency band in digital hearing

aids. 25
2.13 Picture illustrating the acoustic feedback in hearing aids. 26
2.14 Picture depicting the purpose of binaural hearing aids. 27
2.15 Picture illustrating the four most common hearing aid models available in the

market currently: BTE, ITE, ITC and CIC models. 30

3.1 Picture illustrating an automatic sound classification system. 31
3.2 An illustrative representation of the way an automatic sound classification system,

implemented in a DSP-based hearing aid, works. 32
3.3 Conceptual representation of the two main functional blocks to be implemented

in the DSP our hearing aid is based on. 33
3.4 The “digitized” input sound signal, labelled X(t), is segmented into frames, com-

posing Nframes consecutive frames a time slot. The classifier will return a decision
(speech, music or noise, in our case) for each time slot. 34

3.5 Picture illustrating the way the feature extraction process works. 35

XI

XII List of Figures

3.6 Illustrative representation of different groups of features for the same two-classes
classification task. 36

3.7 Picture illustrating the Mel-frequency scale. 40
3.8 An illustrative representation of Mel-frequency filter bank with D = 20 filters. . . 41
3.9 Representation of a two-dimensional feature space, in which for every point in the

feature space, a corresponding class is defined by mapping the feature space to the
decision space. 43

3.10 Two-dimensional picture depicting the way the k-NN classifier works. 47
3.11 Illustrative representation of a multilayer perceptron (MLP) consisting of three

layers of neurons: input, hidden and output layers. 48
3.12 Schematic representation of the m-th hidden neuron in a multilayer perceptron. . 49
3.13 An illustrative representation of the particular multilayer perceptron (MLP) con-

sidered in this thesis to carry out the experiments. 51
3.14 Picture illustrating a radial basis function (RBF) network consisting of three lay-

ers: input, hidden and output layers. 55
3.15 “Mathematical” representation of a radial basis function (RBF) network in which

the radial-basis activation function implemented in each hidden neuron is a gaus-
sian function. 56

4.1 Conceptual description of the way the proposed feature-selection method works. . 64
4.2 Mean percentage of correct classification, for distinguishing among speech, music

and noise, as a function of the maximum study-case computational cost, attained
by the feature-selection approach and that obtained when the approach is not con-
strained to maximum computational cost. It is also represented the classification
performance obtained when there is no feature selection. 77

4.3 Illustrative histogram showing the mean percentage of use of the features arranged
in the set F, for the different maximum study-case computational cost scenarios
considered. 80

5.1 Conceptual representation of the way the “zero-mean and unit-variance normal-
ization” strategy works. 86

5.2 Illustrative representation of a one-layer classifying system containing three classes:
speech, music and noise. 88

5.3 Illustrative representation of a two-layer structure comprising two binary classifiers
for discriminating among three classes: speech, music and noise. 90

5.4 Illustrative representation of a classification system based on the combination of
multiple classifiers. 91

5.5 Representation of the classification system based on the combination of three
particular classifying algorithms, being these individual classifiers those that best
perform separately. 92

5.6 A schematic representation of the growing algorithm proposed in this thesis. . . . 94
5.7 MSE value computed over the patterns available in the validation set, as a function

of the number of hidden neurons, reached by two different growing scenarios. . . 96
5.8 Representation of the piecewise linear approximations used to simplify the imple-

mentation of the logarithmic sigmoid function in the DSP. 103
5.9 Block diagram illustrating the way the proposed “unconstrained GA-based acti-

vation function selection approach” works. 105

List of Figures XIII

5.10 Mean percentage of correct classification reached by the “constrained GA-based
activation function selection approach”, as a function of the number of assembler
instructions allowed. 108

6.1 Average relative increase (%) in the percentage of error, as a function of the number
of bits of the fractional part, for the MLP-based classifiers explored. 116

7.1 Illustrative diagram block of PESQ algorithm. 123
7.2 Speech intelligibility index (SII) rating scale. 125
7.3 “Importance” of the different frequencies aiming to calculate the speech intelligi-

bility index. 126
7.4 Conceptual representation of the way the SII score is computed. 130
7.5 Illustrative example of an ideal gain matrix (G) obtained with the speech enhance-

ment approach proposed in this thesis. 132
7.6 Simplified block diagram illustrating the way the proposed speech enhancement

approach works. 133
7.7 Block diagram illustrating the way the speech enhancement approach works when

it makes use of the PESQ measure. 134
7.8 Block diagram illustrating the way the speech enhancement approach works when

it makes use of the SII measure. 135
7.9 Schematic representation of an individual that encodes a trial solution of the

parameters the gain matrix G depends on. 137
7.10 Mean value and standard deviation of the PESQ score computed as a function of

the SNR (dB) for g = 1 gaussian component in the mixture. 139
7.11 Mean value and standard deviation of the PESQ score computed as a function of

the SNR (dB) for g = 2 gaussian components in the mixture. 139
7.12 Mean value and standard deviation of the PESQ score computed as a function of

the SNR (dB) for g = 3 gaussian components in the mixture. 140
7.13 Mean value of the PESQ score computed as a function of SNR (dB). These results

correspond to those obtained by using “database 2”. The algorithm has been
trained with files containing speech-in-noise at SNR = 5 dB and making use of
g = 3 gaussian components. 141

7.14 Mean value of the PESQ score computed as a function of SNR (dB). These results
correspond to those obtained by using “database 3”. The algorithm has been
trained with files containing speech-in-noise at SNR = 5 dB and making use of
g = 3 gaussian components. 142

7.15 Mean speech intelligibility index (SII) (green line), computed over the available
test-patterns, as a function of the input signal level (dB SPL) for the subset of 4
real study-case subjects. It is also shown the mean SII score for the situation in
which these patients do not wear any type of hearing aid (blue line). 143

7.16 Mean speech intelligibility index (SII) score (green line), computed over the pat-
terns available in a test phase, as a function of the input signal level (dB SPL)
for the subset of the 4 real study-case subjects. It is also shown the mean SII
score for the situation in which these patients do not wear any type of hearing
aid (dark blue line) and the mean SII score obtained when these subjects wear a
conventional hearing aid (light blue green). 144

XIV List of Figures

7.17 An illustrative representation of the gain matrix (with g = 3 gaussian components)
obtained with the algorithm proposed in this thesis for the subject that suffers
from severe hearing loss. 145

8.1 Gain matrix G used to estimate the gain value to apply to the input audio signal
from a hardware implementation point of view. 151

8.2 Flowchart representing the main concepts involved in the sequence of operations
carried out for properly computing the average power in the DSP. 155

8.3 Picture showing the way the base address of the corresponding gain matrix is
loaded in the pointer Gain_pointer. 156

8.4 Picture illustrating the way the pointer Gain_pointer is located in the block
corresponding to the analysis frequency band. 157

8.5 Picture depicting the way the exponent of the gain value to be applied is obtained
for the example at hand. 158

8.6 The 9 lowest significant bits of each word are arranged into 3 different groups (3
bits per group) in order to obtain the base of the gain value to be applied 159

8.7 Illustrative representation of the way of selecting the corresponding 3-bit group as
a function of the numerical value of the base of average power value. 159

8.8 The corresponding 3-bit group to be used codifies a numerical value ranging from
0 to 7 (base 10). This number is used to search in a block consisting of 8 words
the corresponding value of the base of the gain value. 160

8.9 Flowchart representing the main concepts involved in the sequence of operations
carried out for properly searching the gain value in the corresponding gain matrix. 162

8.10 Flowchart representing the main concepts involved in the sequence of operations
carried out for properly implementing the base adjustment process in the DSP. . 163

8.11 Flowchart representing the way the feature extraction task is programmed in the
DSP. 174

8.12 Flowchart depicting the sequence of operations carried out in the macro labelled
LAYER, which intends for creating a layer of neurons in a multilayer perceptron. . 180

8.13 Flowchart showing the sequence of operations carried out in the macro labelled
MLP_EXECUTION, which intends for running a multilayer perceptron. 181

A.1 Simplified architecture diagram of the DSP used by our platform to carry out the
experiments. 197

B.1 Schematic diagram of the digital hearing aid model used for the purpose of de-
signing the “digital hearing aid simulator”. 200

B.2 Conceptual description of the hearing aid core, which is basically composed of the
WOLA filter bank. 202

B.3 Representation of the AFE path-magnitude frequency response for the hearing aid
models considered: the ITC, the ITE, the BTEA2 and the BTEB. 205

B.4 Representation of the insertion gain curves for three input audio levels: 40 dB
SPL, 65 dB SPL and 95 dB SPL, as a function of the hearing losses at the k-th
frequency band. 206

B.5 Representation of the input-to-gain mapping model, based on a standard 3-piece
linear approximation, used here to design the gain curves at each k-th frequency
band. 207

List of Tables

1.1 Number of people suffering from hearing loss for different European countries. . . 2

2.1 Classification system for the degree of hearing loss. 15
2.2 Summary of most typical features for different current hearing aid models. 29

3.1 Mathematical expression and range of output values of the most common transfer
functions used in multilayer perceptrons. 50

4.1 Mean percentage of correct classification reached by three different feature sets,
which include low-complexity features proposed, for distinguishing among speech,
music and noise. 63

4.2 Mean percentage of correct classification reached by two different feature sets,
consisting of classical, spectral features, for distinguishing among speech, music
and noise. 66

4.3 Mathematical expression of seven “building blocks” designed aiming at providing
a valuable mathematical tool that help us analytically define the features included
in the set S1 = {SC,V2W, SF, STE, ŜC, S̃C, V̂2W, Ṽ2W, ŜF} as a function of the
mentioned building blocks. 68

4.4 Table illustrating for each of the features arranged in the set S1, the building
blocks they make use of. 69

4.5 Total number of clock cycles demanded by the DSP, used to carry out the exper-
iments, to implement each building block. 69

4.6 Number of “additional” clock cycles required for calculating the features, arranged
in the set S1, in the DSP used to carry out the experiments. 70

4.7 Total computational cost demanded by the DSP, used to carry out the experi-
ments, to implement each of the features arranged in the set S1. 71

4.8 Total computational cost (in number of clock cycles) demanded to compute each
MFCC in the DSP used to carry out the experiments. 72

4.9 Total computational cost (in number of clock cycles) required to compute each
∆MFCC in the DSP used to carry out the experiments. 73

4.10 Computational cost demanded by the DSP, used to carry out the experiments, to
program the statistical operators considered in the different experiments. 74

4.11 Design parameters the GA makes use of for automatically selecting the “best
suited” feature vector constrained to maximum computational cost. 76

4.12 For each maximum study-case computational cost, this table depicts the mean
percentage of correct classification achieved for distinguishing among speech, music
and noise, and the number of selected features. It is also shown the computational
cost needed to implement the selected feature vector H for each study-case. . . . 78

XV

XVI List of Tables

4.13 Summary of the statistical measures selected by the feature-selection approach,
for each feature arranged in the set F, for the particular case of maximum com-
putational cost equal to 900 clock cycles. 79

5.1 Mean percentage of correct classification obtained by using the study-case classi-
fying algorithms: MSE linear classifier, k-NN algorithm, and two particular kinds
of neural networks: an MLP and an RBF network for the speech/music/noise
classification task. 88

5.2 Mean percentage of correct classification for the speech/non-speech classification
task and for the music/noise classification task, obtained by using the study-
case classifying algorithms. It is also shown the total mean percentage of correct
classification reached by the global approach that make use of two-layers of two
binary classifiers. 90

5.3 Mean percentage of correct classification obtained by applying the three pruning
algorithms proposed in this thesis to a trained MLP 30 (M=30 hidden neurons). 99

5.4 Mean percentage of correct classification and number of assembler instructions
required for implementing in the DSP an MLP 23 that makes use of the different
“approximated” activation functions based on piecewise linear approximations. . . 104

5.5 design parameters the GA makes use of for automatically selecting the “best
suited” approximated activation functions for each of the hidden and outputs
neurons composing the MLP. 106

5.6 Mean percentage of correct classification and number of assembler instructions
demanded to implement in the DSP the approximated MLP obtained when ap-
plying the “unconstrained GA-based activation function selection approach” to an
exact MLP. 107

6.1 Mean percentage of correct classification of different MLPs, returning a decision
with time slots of 2.5 seconds, achieved by using 9 quantization schemes. 114

6.2 Mean percentage of correct classification of different MLPs, returning a decision
with time slots of 20 milliseconds, achieved by using 9 quantization schemes. . . . 115

7.1 Two widely-used standardized 5-point quality scales. One of them aims at evalu-
ating the signal quality and the other one intends for measuring the quality signal
with respect to the audibility of the distortion. 121

7.2 Illustrative representation of PESQ quality scale. 125
7.3 Design parameters the GA makes use of for automatically generating a gain func-

tion (G) that aims at not only enhancing the speech quality, but also the speech
intelligibility. 137

7.4 Mean speech quality improvement (%) and mean speech intelligibility improve-
ment (%), as a function of the number of gaussian components used (g). The
results correspond to the situation in which the algorithm has been trained by
using speech-in-noise files at SNR = 0 dB. 140

7.5 Mean speech quality improvement (%) and mean speech intelligibility improve-
ment (%), as a function of the number of gaussian components used (g). The
results correspond to the situation in which the algorithm has been trained by
using speech-in-noise files at SNR = 5 dB. 140

List of Tables XVII

7.6 Mean speech intelligibility improvement (%) and mean speech quality improve-
ment (%), for the subset of four study-case subjects, achieved by the hearing aid
that implements the gain matrix obtained by using the approach proposed, with
respect to the situation in which the gain provided by the hearing aid is based on
a standard 3-piecewise linear approximation for each frequency band. 145

8.1 Computational cost and CPU-load average demanded by the DSP, used in the
experiments, to program the three main functional blocks, along with the assem-
bler instructions, involved in the implementation of the compression-expansion
approach proposed. 164

8.2 Computational cost and CPU-load average demanded by the DSP, used in the
experiments, to program the three building blocks considered in the final imple-
mentation, that is, BB_SSC, BB_STE and BB_V2W. 175

8.3 Computational cost (in clock cycles) and CPU-load average (in %) demanded by
the DSP, used in the experiments, to program the six features considered in the
final implementation, that is, CF_NSC, CF_SSC, CF_NVW, CF_SVW, CF_SF
and CF_STE. 175

8.4 Computational cost and CPU-load average demanded by the DSP, used in the
experiments, to compute the statistical operators considered in the experiments,
that is, the mean and variance measures. 176

8.5 Total computational cost and CPU-load average demanded by the DSP, used in
the experiments, to implement the priority routine labelled Features. 176

8.6 Total computational cost and CPU-load average demanded by the DSP, used in
the experiments, to implement the non-priority routine labelled Final_features. 177

8.7 Computational cost demanded by the DSP, used in the experiments, to implement
a layer comprising an arbitrary number of neurons (N). 182

8.8 CPU-load average, current-consumption and battery life corresponding to the dig-
ital hearing aid implemented in this thesis for four different scenarios considered
in the experiments. 185

B.1 Appropriate zero-pole configuration of the AFEs filters of a variety of hearing aid
models that include the ITC, the ITE, the BTEA2 and BTEB models. 205

C.1 Sound database created in this thesis to carry out the experiments. 212
C.2 Fundamental parameters for the 18 real patients that have been found to be suf-

ficiently representative. 213

List of Symbols

g Number of gaussian components in the gaussian mixture model
C Number of output neurons in a multilayer perceptron
C Computational cost
F Feature vector
Fpractical Feature vector programmed in the digital signal processor
G Gain matrix
Laverage Load average
L Number of input neurons in a multilayer perceptron
M Number of hidden neurons in a multilayer perceptron
M1 Number that represents the lower limit of speech frequency band
M2 Number that represents the upper limit of speech frequency band
NB Number of frequency bands available in the digital signal processor
NL Number of input signal levels
NP Number of patterns available in a design set
Nframes Number of frames into which the sound signal is segmented
P Training or design set
Pavgi

(k) Average power of input frame i-th at frequency band k-th
Pinsi(k) Instantaneous power of input frame i-th at frequency band k-th
T Test set
V Validation set

Glossary

A

ADC Analog-to-Digital Converter.

AFE Acoustic Feedback Equivalent.

AI Articulation Index.

B

BSD Bark Spectral Distortion.

BTE Behind The Ear.

C

CIC Completely In-the-Canal.

CPU Central Processing Unit.

D

DAC Digital-to-Analog Converter.

DCT Discrete Cosine Transform.

DFT Discrete Fourier Transform.

DSP Digital Signal Processor.

E

EPROM Erasable Programmable Read-Only Memory.

F

FET Field Effect Transistor.

FFT Fast Fourier Transform.

G

GA Genetic Algorithm.

GMM Gaussian Mixture Model.

Glossary

I

IC Integrated Circuit.

IDFT Inverse Discrete Fourier Transform.

IEEE Institute of Electrical and Electronics Engineers.

IIR Infinite Impulse Response.

ITC In-The-Canal.

ITE In The Ear.

ITU-R ITU Radiocommunications Sector.

ITU-T ITU Telecommunication Standardization Sector.

M

MAC Multiplier/ACcumulator.

MFCC Mel Frequency Cepstral Coefficients.

MIPS Millions Instructions Per Second.

MLP Multi-Layer Perceptron.

MNB Measuring Normalizing Blocks.

MOS Mean Opinion Score.

MSB Most Significant Bit.

MSE Mean Square Error.

N

NN Neural Network.

P

PAMS Perceptual Analysis Measurement System.

PAQM Perceptual Audio Quality Measure.

PEAQ Perceptual Evaluation of Audio Quality.

PESQ Perceptual Evaluation of Speech Quality.

PSQM Perceptual Speech Quality Measure.

Glossary

R

RAM Random-Access Memory.

RBF Radial Basis Function.

RMSE Root Mean Square Error.

ROM Read Only Memory.

S

SII Speech Intelligibility Index.

SNR Signal to Noise Ratio.

SPL Sound Pressure Level.

STE Short Time Energy.

STFT Short Time Fourier Transform.

U

USA United States of America.

W

WOLA Weighted Overlapp-Add.

Chapter 1

Introduction and scope

1.1 Background

According to the latest scientific statistics, hearing loss has become a global major healthcare
concern. Nowadays, almost 600 million people worldwide, which amounts to approximately 10 %
of the total population, suffer from hearing loss, and, regrettably, this number of deaf and hard
of hearing people is increasing at an alarming rate not only because of the aging of the world’s
population, and consequently, the deterioration of the auditory system (in particular, most of
elderly people suffer usually from specifically pernicious high-frequency hearing loss) [Gordon-
Salant, 2005], but also because of the growing exposure to excessive noise in their quotidian
life, such as, for instance, in the work environment (construction site, factory, etc.) or when
they listen to loud music (MP3 players, iPod, concerts, etc.). Just in this respect, it is worth
mentioning that it has been estimated that the total number of people suffering from hearing
loss of more than 25 dB (the definition of hearing impairment recognized by the World Health
Organization) will exceed 700 million worldwide by 2015, and this statistics also suggests that
more than 900 million people will suffer from hearing loss of more than 25 dB in 2025 [Hear-it,
2011]. Figure 1.1 aims at illustrating this situation by showing the estimation of the number of
people worldwide suffering from hearing loss of more than 25 dB from years 1995 to 2025.

0

300

600

900

1995 2005 2015 2025

Million people

Year

440 mio

More than
 560 mio

More than
 700 mio

More than
 900 mio

Figure 1.1: Estimation of the number of people worldwide suffering from hearing loss of more than
25 dB (the definition of hearing impairment recognized by the World Health Organization) from
years 1995 to 2025 [Hear-it, 2011].

1

2 Chapter 1. Introduction and scope

As clearly depicted in Figure 1.2, hearing loss is a problem that commonly suffer middle-aged
and elderly people. In this sense, it is very illustrative to point out that about 17 % of American
adults, or in others words, 36 million people, report some degree of hearing loss, there being
a strong relationship between age and reported hearing loss: the National Institute of Health
estimates that 8 % of American population between the ages of 18 and 44, 19 % of adults 45
to 64 years old, 30 % of adults 65 to 74 years old and 40 % over the age of 75 have significant
hearing loss [NIH, 2008].

Birth 45-64

Male

Age

0-2 3-5 6-18 19-44

Female

65+

3% 2% 3% 2%2% 1%

9%10%

27%

39%

27%
29% 29%

17%

Figure 1.2: An illustrative representation of the percentage distribution, by sex and age, depicting
the age at which hearing loss begins. This representation is based on the subjects’ report of any
permanent hearing loss [NHIS, 2002].

In Europe, for instance, about 71 million adults, aged between 18 and 80, have hearing loss
greater than 25 dB. It is interesting to note that, only in European Union, the number of people
suffering from hearing loss is more than 55 million, being the number of hearing-impaired people
in Spain about 5.5 million of those. For comparative purposes, Table 1.1 shows the hearing loss
statistics for some specific countries in Europe [Kochin, 2009; Shield, 2006a].

Country Million people
Germany 10.2
France 7.6

United Kingdom 7.5
Italy 7.2
Spain 5.5
Poland 4.7

The Netherlands 2

Table 1.1: Number of people suffering from hearing loss for different European countries [Kochin,
2009; Shield, 2006a].

The question arising here is: How much does hearing loss affect hearing-impaired people in
their everyday life? Addressing this question demands to mention that hearing loss severely

1.1. Background 3

affects the speech communication and disqualifies most of hearing-impaired people from holding
a normal life, or in other words, hearing loss degrades considerably the quality of life of hearing-
impaired people. In order to better understand what this assertion means, it is worth mentioning
that hearing loss might result in psychological, physical and social disorders. Most of deaf and
hard of hearing people, whose hearing loss has not been correctly treated, usually find it difficult
to participate in social activities, even within their own family. According to [RNID, 1999], it
has been reported that 71 % of hearing-impaired people feel isolated because of their hearing
loss, 39 % avoid meeting new people and that 91 % have difficulties coping in public places.

For illustrative purposes, we summarize in the following paragraphs some common social
problems affecting hearing-impaired people with untreated hearing loss:

• Isolation and withdrawal

• Inattentiveness

• Bluffing

• Distraction or lack of concentration

• Problems at work that many times involve ceasing working or retiring

• Problems participating in social life (and consequently, a reduced social activity)

• Communication problems with his wife or her husband, friends and relatives

The aforementioned problems become in serious negative psychological effects, such as, for
instance:

• Shame, guilt and anger

• Embarrassment

• Problems concentrating

• Sadness or depression

• Worry and frustration

• Anxiety and suspiciousness

• Insecurity

• Self-criticism and low self-esteem or self-confidence

Additionally, from an economic point of view, untreated hearing loss costs Europe 213.000
million euros per year [Shield, 2006b]. In this sense, mild hearing loss costs 2.200 euros per
individual each year, moderate hearing loss costs 6.600 euros annually per person, whereas a
severe or profound hearing loss costs about 11.000 euros per person every year1. Note that,
these figures do not include lost income and lost tax revenues due to unemployment or early
retirement because of hearing loss.

1In the aim of facilitating the reader’s comprehension, although will be explained in a detailed way in Chapter
2, it is worth mentioning that a person’s hearing loss is generally categorized as being mild, moderate, severe or
profound, depending upon how well a person can hear the intensities or frequencies most strongly associated with
speech.

4 Chapter 1. Introduction and scope

The good news is that 90 % of hearing loss cases could be mitigated by using some kind of
hearing aid1, whereas 10 % of them would require medical or surgical intervention. The bad news
is that only about 5 % of people who could be benefited from hearing aids, wear it in their daily
life.

These previous paragraphs probably make the reader not directly involved in hearing loss
problems wonder, among others, the following two questions:

• If the vast majority of hearing problems (90 %) could be corrected with hearing aids, why do
only a scarce 20 % of hearing-impaired people who could be benefited from digital hearing
aids purchase one?

• Why do not 25 % of people who purchase a hearing aid wear it in their everyday life, despite
the substantial financial outlay involved in purchasing and maintaining a hearing aid2?

This astonishing irregular use of hearing aids arises from a variety of problems, which may
include not only sanitary arguments, but also social, economic and technological reasons. In
[Kochkin, 2000], it was reported that some of the reasons were: poor benefit, background noise,
negative side effects, price, sound quality and volume adjustments. In this sense, the most
common complaints are listed below [Killion, 1997; Kochkin, 2000]:

• “It does not work well in background noise”

• “I can’t adjust the hearing aids constantly to every noise”

• “Volume is OK, but I can’t distinguish words”

• “Hearing aids amplify other sounds so much that I actually feel pain”

The abovementioned complaints are closely related to the following fact: hearing aid users
face a variety of different acoustic environments in their quotidian life, such as, for instance,
conversation in a quiet environment or speech in a noisy crowded cafe, noise, music, etc., as
clearly represented in Figure 1.3; and although they expect authentic, significant benefits in each
of the mentioned situations, regrettably, this is not the case.

To illustrate this, we can imagine, for the sake of simplicity, the following situation considered
as being representative enough of the aforementioned problem: the person wearing the hearing
aid goes from a quiet place to a noisy one, such as, for instance, a crowded cafe, where there
are many talks, the TV sound and background noise like, for example, the coffee maker. Not
only will the hearing aid amplify the speech but also the other sounds and thus, upon entering
the cafe, the background noise will be extremely unpleasant for the hearing aid user. Although
will be explained in detail in Chapter 2, we can say in advance that the problem becomes
more accentuated because, due to the dynamic range compression performed by the hearing aid,
understanding speech with background noise is much more difficult for hearing-impaired people
than for healthy listeners [Moore, 1989].

In order to overcome this, some modern current digital hearing aids, especially the most
sophisticated and high-end devices3 allow their users to face a variety of different acoustic en-
vironments, or in other words, these devices have a variety of amplification programs fitted to

1Put it very simple, a hearing aid is basically an electronic device for sound amplification.
2Hearing aids are powered by batteries, which are not exactly cheap. Increasing the battery life consumed by

hearing aids would be good news for their users.
3We say sophisticated devices in the sense that these instruments usually provide higher fidelity of sound,

greater overall amplification, directional sound detection, dynamic compression and frequency-specific amplifica-
tion.

1.2. Motivation 5

School

Heavy
traffic

Train

Music
Aircraft
cabin

KindergardenSpeech

People shouting in a
football stadium

Input
audio
signal

Digital
hearing aid

Output audio signal
adapted to the

acoustic surroundings

Figure 1.3: Artistic representation of the variety of sounds a hearing aid user faces daily. Please
note that, apart from the speech signal (the general target of hearing aid users), a number of different
sound sources has been represented, such as, for instance, traffic, school, people shouting in a football
stadium, etc.

different acoustic situations, which can be manually selected by the user. The main drawback
in these instruments is that, sometimes, they are uncomfortable and difficult to handle, espe-
cially for elderly people. In addition, these devices are very expensive (generally, their price is
higher than 3.000 euros), making its acquisition and maintenance difficult for a particular so-
cial group, retired people (the main group of hearing aid users) who, unfortunately, have lower
purchasing power. Many times, this scenario forces elderly people to purchase a low-cost device,
which is worthless in many situations, like, for example, those in which an elderly grandfather or
grandmother is with their grandchildren, or in a social gathering, in which the hearing aid only
produces very unpleasant whistles, irritating howls and/or other amplified noises.

Therefore, we can say that there is a still crucial, scientific and technological problem in
hearing aids that has not been solved efficiently and comfortably at low-cost: the automatic
adaptation to the changing acoustic environment.

1.2 Motivation

Some studies have shown that hearing aid users generally prefer to have a number of amplification
programs fitted to different listening conditions, even if its performance is not always perfect
[Büchler, 2002; Keidser, 1996].

In the effort of satisfying such necessity, there are two basic approaches in digital hearing aids.
As mentioned in the previous section, some modern digital multi-memory hearing aids in the
market allow their users to face a variety of different acoustic environments, such as, for instance,
conversation in quiet or conversation in the presence of background noise, music, etc. The main
drawback in this approach is that the hearing aid user has to recognize the acoustic environment
he or she is in and then choose the amplification program that best fits this situation by using
a switch on the hearing instrument or some kind of remote control. Even for normal hearing
people, it is not always clear which program should be selected to ensure the best performance
and bearing in mind that elderly people are the main group of hearing aid users, it cannot be

6 Chapter 1. Introduction and scope

expected that they will always handle this task properly.
A second, feasible approach that could be deemed as very useful by most of hearing aid

users is that in which the hearing aid itself classifies the acoustic environment that surrounds its
user [Alexandre et al., 2006a, 2008c; Kates, 2008; Nordqvist, 2004; Nordqvist and Leijon, 2004]
and automatically selects the amplification program that is best adapted to such surrounding
[Alexandre et al., 2006a, 2008c]. This is referred to as “self-adaptation” and could significantly
improve the usability of hearing aids, increasing presumably the speech intelligibility perceived
by its user, and, what is of key importance, allowing him or her to hold a normal life. In fact,
within the more general and highly relevant topic of sound classification in hearing aids [Kates,
2008; Nordqvist, 2004; Nordqvist and Leijon, 2004], self-adaptation is currently deemed as very
appreciated by hearing aid users, especially by the elderly because, as mentioned, the “manual”
approach very often exceeds their abilities [Büchler, 2002; Büchler et al., 2005].

Although the necessity of the aforementioned sound classification system seems to be clear,
its implementation is, on the contrary, a very difficult matter. Despite the impressive advances in
microelectronics, the development of an automatic sound classification system in a digital hearing
aid is a challenging goal because of the inherent limitations of the digital signal processor (DSP)
the hearing aid is based on. The underlying reason is that most digital hearing aids have very
strong constraints in terms of computational capacity, memory and battery, which seriously
limit the implementation of advanced algorithms in them. For the sake of clarity and for making
this thesis self-contained, we have summarized in Appendix A the restricted resources of the
particular DSP used by our platform to carry out the experiments. This restriction in number
of operations per second enforces us throughout this entire thesis to put special emphasis on
signal processing techniques and algorithms tailored for properly classifying while using a number
of operations as small as possible to bring down consumption and extend battery life.

With these motivations in mind, we can proceed further in explaining the main objective of
this thesis.

1.3 Objective

According to the concepts stated in the two previous sections and after the analysis of the state
of the art about this topic, the following objective is set as principal in this thesis:

To design and implement a prototype for a digital hearing aid able to automatically
classify the acoustic environments its user faces daily and select the “amplification
program” that is best adapted to such environment (“self-adaptation”).

As previously mentioned, hearing aid users face a variety of different acoustic environments
in their everyday life and, although at a first glance, the reader could expect that we have
implemented an amplification scheme for each one of those situations, this is not the case. This
is basically due to the fact of programming on a digital hearing aid an amplification program
for each of the acoustic listenings hearing aid users face on in their daily life would exceed the
scarce DSP computational resources and thus, from a practical point of view, it has been found
to be unfeasible.

In this respect, it is worth mentioning that we have considered in this thesis three different
acoustic environments: speech, music and noise. We restrict the classification process to these
three particular acoustic environments (and not to more environments) because these situations
have been found enough by most hearing aid users aiming at holding a normal life. For the
particular case of the listening environment consisting in speech, not only have we aimed at

1.4. Organization 7

improving the speech intelligibility perceived by hearing-impaired people, but also the speech
quality.

Some particular aims emerge from this main objective, which are presented as follows:

• To design a sound classification system that allows to properly classify the input sound
signal into speech, music or noise, taking into account the aforementioned severe constraints
digital hearing aids suffer from. Note that not only does this aim involve the selection of the
best suited feature set, but also the selection of the most appropriate classifying algorithm
and the optimization of its parameters.

• To design an approach that aims at speech enhancement in hearing aids, not only in terms
of speech intelligibility but also in terms of speech quality.

• To clearly quantify the effects of finite-precision limitations on the performance of the
automatic sound classification system prior to its practical implementation in the DSP.

• To implement the overall automatic sound classification system in the DSP used by our
platform to carry out the experiments.

1.4 Organization

The rest of this thesis describes the research that has been undertaken to carry out the above-
mentioned aims. In this respect, the remaining chapters are organized and presented as follows:

• Chapter 2: this chapter illustrates the way the sound is perceived the by the human
auditory system, which will assist us in introducing the types and degrees of hearing loss.
It is also shown here a brief review of hearing aids history, starting from large, horn-shaped
devices to lightweight and almost invisible current assistive medical devices, putting special
emphasis on the common models currently available in the market.

• Chapter 3: in the effort of facilitating the reader’s comprehension of the remainder of this
thesis, this chapter describes the blocks involved in the implementation of an automatic
sound classification system for hearing aids, which basically include: 1) the data processing
stage, 2) the feature extraction stage and 3) the classifying algorithm itself. For the sake of
clarity, the basic concept underlying the data processing stage, along with the cornerstone
ideas describing the feature extraction block and the classifying algorithm are also described
in this chapter. With this in mind, this chapter presents a summary of a set of well-known
spectral sound signal-describing features, proposed in the literature, for the purpose of
sound classification in hearing aids. With regard to the classifying algorithms, this chapter
describes a variety of widely-used classifiers that exhibit good performance for the purpose
of sound classification in hearing aids.

• Chapter 4: aiming at reducing the computational cost associated to the programming in
the DSP of the set of features described in Chapter 3, a set of low-complexity features
is proposed in this chapter. These novel features are based on a “variation” of some of
the features explored in the aforementioned chapter. Since the fact of programming in
the DSP all the features explored in this thesis has been found to be unfeasible from a
practical implementation point of view, this chapter also proposes a novel feature-selection
approach for sound classification in hearing aids through restricted search driven by genetic
algorithms, or in other words, the goal of this approach consists in finding a feature subset

8 Chapter 1. Introduction and scope

that assists the overall classification system in reducing its computational cost without
degrading its ability to classify sounds into speech, music and noise.

• Chapter 5: this chapter explores the feasibility of the classifying algorithms described in
Chapter 4 for the speech/music/noise classification task in hearing aids. In this respect,
a number of experiments are carried out aiming at evaluating the performance of these
classifiers. The aim of this experimental work is to determine the classifying algorithm
that best performs for the aforementioned classification task.

• Chapter 6: this chapter intends to clearly quantify the effects of finite precision limitations
on the overall classification performance of the automatic sound classification system de-
signed in this thesis, with special emphasis on the effects of finite word length for the sound
signal-describing features and the parameters of the classifying algorithm.

• Chapter 7: this chapter proposes a novel approach aiming at speech enhancement in hearing
aids, not only in terms of speech quality but also in terms of speech intelligibility, regardless
the user’s hearing loss. To what extent the proposed approach enhances the speech quality
and speech intelligibility perceived by the user is measured by means of two standardized
objective measures.

• Chapter 8: one important question that may arise is whether the overall classification sys-
tem could be implemented in real-time on an in-the-market, average performance hearing
aid. Elucidating this is the objective of this chapter. In particular, this chapter clearly
illustrates the way each functional block, involved in the implementation of an automatic
sound classifier embedded in a self-adapting hearing aid, is programmed in the DSP used
by our platform to carry out the experiments.

• Chapter 9: finally, the conclusions obtained throughout this work are shown, including
some guidelines for research lines opened by this thesis. A list of published work derived
from this thesis is also illustrated.

Additionally, five appendices have been added that include supplementary information with-
out disrupting the development of the main argument. These appendices are as follows:

• Appendix A: this appendix describes the digital signal processor (DSP) used by our plat-
form to carry out the experiments.

• Appendix B: this appendix describes, in a detailed way, the hearing aid simulator we will
make use of in order to evaluate the performance of the different hearing-aid processing
algorithms proposed in this thesis, prior to their implementation in the DSP.

• Appendix C: this appendix describes the two databases used to carry out the experiments
in this thesis. These two databases are as follows:

1. A “sound database” containing 7299 audio files, including speech-in-quiet, speech-in-
noise, speech-in-music, vocal music, instrumental music and noise files, each of 2.5
seconds length.

2. A “patient database”, which collects data from 18 real hearing aid users, with different
types of hearing loss, including mild, moderate, severe and profound hearing loss.

1.4. Organization 9

• Appendix D: since a number of experiments carried out in this thesis make use of a ge-
netic algorithm (GA), this appendix aims at introducing the main concepts related to this
successful technique.

• Appendix E: this last appendix aims at helping the reader understand the assembly code
programmed in this thesis for the computation of the feature vector that feeds the classi-
fying algorithm.

Chapter 2

Hearing aids

2.1 Introduction

A hearing aid is basically an electronic device that intends for partially overcoming auditory
deficits and is commonly employed to compensate the particular hearing loss any person suffers
from. The main objective of a hearing aid is to fit the dynamic range of speech and some common
quotidian sounds, such as, for instance, household noises (dishwasher, water dripping or noise
from a vacuum cleaner), or environmental noises (aircrafts, trains, road vehicles, etc.), into the
reduced dynamic range of hearing-impaired people, as will be clearly shown later on. In the effort
of achieving a better understanding of these instruments and their functionality, the first section
of this chapter will explain in detail how sound is perceived by the human auditory system and,
which exactly the problems encountered by hearing-impaired people are. Note that the location
of the disease within the peripheral auditory system1 will assist us in introducing the types and
the degrees of hearing loss.

As the reader may intuitively imagine, current hearing aids have changed considerably since
the first large, horn-shaped devices from more than two hundred years ago. Apart from the
fact that they have become much smaller and practically invisible to the casual observer2, there
is a still noticeable change concerning to current hearing aids. This change is due to the in-
troduction of digital signal processing into hearing aids in 1996 [Edwards, 2007], which allowed
signal processing algorithms could be programmed in hearing aids in the aim of increasing the
speech intelligibility perceived by their users. Note that speech signals in hearing aids can be also
processed in the analog domain but digital domain offers high speed, better accuracy, greater flex-
ibility and increased storing capabilities. For illustrative purposes, and facilitating the reader’s
comprehension, the second section of this chapter will show a brief review of hearing aids history,
putting special emphasis on the main benefits of current digital hearing aids.

Since current hearing aids may vary in size, power and circuitry, the last section of this
chapter will help us explain the main models of hearing aids currently available in the market.
As will be shown throughout this last section, roughly speaking, the smaller the hearing aid is,
the better benefits it exhibits (not only in terms of being smaller in size but also in terms of better
sound quality perceived by the user), but at the expense of generally being more expensive.

With this in mind, this chapter is structured in four sections. Section 2.2 shows the way
sound is perceived by the human auditory system, and, which exactly the problems encountered

1The human auditory system is composed of two parts: 1) the peripheral auditory system and 2) the central
nervous system.

2The demand of making them smaller and less conspicuous has been a constant driving force behind techno-
logical progress. Sometimes, these size reductions have been achieved at the expense of their performance, but
over time, performance has been improved despite, and sometimes because of, the size reduction [Dillon, 2001].

11

12 Chapter 2. Hearing aids

by hearing-impaired people are. This will assist us in introducing the types and the degrees
of hearing loss. Section 2.3 shows a brief review of hearing aids history, starting from large,
horn-shaped devices to lightweight and almost invisible to the casual observer devices available
in the market currently. Finally, Section 2.4 describes the main models of hearing aids available
currently in the market.

2.2 Hearing loss

Hearing loss is defined as the reduced ability to hear sound signals, and can happen in one ear
or in both ears. Prior to describing the types of hearing loss, it is interesting to have a brief look
at the way sound is perceived by the human auditory system, since problems in any part of this
system may lead to loss of hearing.

2.2.1 Description of human auditory system

The human auditory system is the responsible for transmitting sound from outside the ear to
the auditory nerve, which sends the information as an electrical impulse to the brain, where it
is processed and interpreted as sound. Although, strictly speaking, the human auditory system
consists of both the auditory periphery system, or in other words, the human ear, and the central
nervous system comprising infinitely many neurons, we will focus here on the peripheral auditory
system, since most of hearing loss cases are due to problems in this part of the human auditory
system.

The peripheral auditory system is divided anatomically into three parts, as clearly depicted
in Figure 2.1. These parts are as follows:

• The outer ear consists of both the visible part of the ear, named “pinna”, and the external
auditory canal. What we call “sound signals” or simply “sounds”, are actually just sound
waves, which are transmitted by the air. These sound waves are collected in the outer ear
and guided through the air-filled external auditory canal to the eardrum. The eardrum is
a flexible, circular membrane that vibrates when sound waves strike it.

• Themiddle ear contains, apart from the aforementioned eardrum, three tiny bones: malleus,
incus and stapes, often referred to as the hammer, the anvil and the stirrup, respectively.
They are collectively known as the ossicles. The ossicles also vibrate in response to move-
ments of the eardrum and in doing so, amplify and guide the sound to the inner ear by
means of the oval window.

• The inner ear basically consists of the cochlea, which is similar in shape to a snail shell.
It contains several membranous sections filled with fluids. When the ossicles conduct the
sound to the oval window, the fluid begins to move, stimulating the tiny hearing nerve cells
(also called “hair cells”) inside the cochlea. These hair cells in turn send electrical impulses
by means of the auditory nerve to the brain, where they will be finally interpreted as sound.

Perhaps the reader may wonder what the relationship between the types of hearing loss and
some problems in any of the mentioned parts of the periphery human ear is. Elucidating this is
just the objective of the following subsection.

2.2. Hearing loss 13

 External
auditory canal Eardrum

 Malleus

 Incus
 Stapes

 Eustachian
 tube

 Cochlea
 Semicircular
 canals

Vestibular nerve

Facial nerve

Auditory nerve

 Pinna

 Outer
 ear

 Inner
 ear

 Middle
 ear

 Oval
 window

Figure 2.1: A detailed aspect of the anatomy of the peripheral human auditory system. As shown,
it basically consists of three parts: the outer ear, the middle ear and the inner ear.

2.2.2 Hearing loss classification

There are three different types of hearing loss according to the “location” of the disease within
the peripheral auditory system:

• Conductive hearing loss is the most common type of hearing loss and happens when sound
is not guided efficiently through either the external auditory canal or the middle ear. This
type of hearing loss can be originated from an abnormality of development, such as, for
instance, the absence or incomplete formation of a part of the outer or middle ear system, or
caused by a disease within the outer or the middle ear like, for example, severe o continuous
otitis media.

Conductive hearing loss usually involves a reduction in the sound level or ability to hear
faint sounds. Fortunately, this type of hearing loss can often be medically or surgically
corrected.

• Sensorineural hearing loss happens when there is a damage either to the inner ear or the
nerve pathways from the inner ear to the brain. It can be caused by either an abnormality
of development or a disease affecting the cochlea or auditory nerve.

Not only does sensorineural hearing loss involve a reduction in sound level or ability to hear
faint sounds, but it also affects speech understanding or ability to hear clearly. Regrettably,
this type of hearing loss cannot be treated by current medical or surgical techniques and
consequently, it is a permanent hearing loss.

14 Chapter 2. Hearing aids

• Mixed hearing loss is caused, intuitively, by a combination of both sensorineural and con-
ductive factors. This type of hearing loss usually happens when a person firstly has sen-
sorineural hearing loss and then develops conductive hearing loss (to understand this, it is
convenient to imagine a person who has already sensorineural loss and gets a middle ear
infection; these two types of loss combined result in a greater hearing loss), or other times,
may be the result of the outer and inner ear malformation, which causes both types of
hearing loss.

In general, the conductive part of a mixed loss may be treated by medical or surgical
techniques, whereas the sensorineural part is usually permanent and cannot be medically
treatable.

2.2.3 Degrees of hearing loss

In general, the degree of hearing loss can be classified into different categories. In this respect,
it is very illustrative to notice how a person may hear some speech sounds but find soft sounds
difficult to hear, whereas other person, for instance, may hear only loud sounds.

The degree of hearing loss is commonly based on the average hearing loss measured at a
particular octave-band, ranging the level of loss from slight to profound. Although there is no
a standard classification system that is universally used, a very well-known system is the one
recognized by the American Speech-Language-Hearing Association [GAO, 2011]. According to
this classification system, hearing loss, measured in decibels (dB HL), is defined as the average
hearing loss at frequencies 250, 500, 1000, 2000 and 4000 Hz.

For illustrative purposes, this system is represented in Table 2.1, showing also to what extent
each degree of hearing loss affects speech communication and whether the use of hearing aids
could be beneficial or not to compensate that degree of acoustic loss. As depicted, for hearing
impaired people suffering from slight to mild hearing loss, a hearing aid is needed in some specific
situations, or at least on a frequent basis. For moderate hearing loss cases, a hearing aid is needed
for all communications, whereas for severe hearing loss cases, the use of a hearing aid may be
combined with speech-reading (lip-reading) or sign language. Regrettably, for profound hearing
loss cases, the use of hearing aids is of little benefit. For this latter degree of hearing loss, cochlear
implants may be considered.

2.2.4 Problems faced by hearing-impaired people

We put forward in the introductory chapter that hearing-impaired people face a variety of dif-
ferent problems in their everyday life when they do not make use of hearing aids. Deepening a
little more in these problems and in an effort of better understanding the main goals of hearing
aids, we summarize in the following paragraphs the main difficulties that hard of hearing people
face in their everyday life [Dillon, 2001].

• Decreased audibility
As stated beforehand, whereas a person with slight or mild hearing loss will hear some
speech sounds but find soft sounds difficult to be heard, a person with moderate hearing
loss will probably hear only few sounds, and the one suffering from severe hearing loss will
not hear any speech sounds unless they are shouted.

In this respect, softer phonemes, basically consonants, may be difficult to be heard. In the
aim of facilitating the reader’s comprehension, let us imagine, for instance, the sequence
of sounds i e a ar that might have been originated as “pick the black harp” and could

2.2. Hearing loss 15

Degree of Hearing loss Effect on speech Use of
hearing loss (dB HL) communication hearing aid

Normal −10-15 no hearing impairment −

Slight 16-25 speech understanding −not affected

Mild 26-40
speech understanding

may be helpfulreduced, especially
in noisy environments

Moderate 41-55 conversation noticeably very beneficialdifficult

Moderately 56-70 speakers must raise essentialsevere their voice to be heard

Severe 71-90 conversational speech of less benefitcannot be heard

Profound 91 and above deaf
of little benefit;
cochlear implants
may be considered

Table 2.1: Classification system for the degree of hearing loss. According to the American Speech-
Language-Hearing Association, hearing loss, measured in decibels (dB HL), is defined as the average
hearing loss at frequencies 250, 500, 1000, 2000 and 4000 Hz. It is also represented to what extent
each degree of hearing loss affects speech communication and whether the use of hearing aids could
be beneficial or not to compensate that degree of hearing loss.

have been heard as “kick the cat hard”. For hard of hearing people, essential parts of
some phonemes are not perceptible and they recognize sounds by noting which frequencies
contain the most energy. In general, the high-frequency components of speech are weaker
than the low-frequency components and consequently, hearing-impaired people tend to miss
high-frequency information. Figure 2.2 aims at illustrating this situation by showing the
so-called “speech-banana” that depicts how vowels and consonants (in English language)
spoken with normal loudness are experienced at a distance of one meter from the speaker.
It seems clear to notice that vowels have a higher intensity level than consonants and
are hence easier to be heard. The picture also includes some drawings depicting typical
quotidian sounds, such as, for instance, a bird chirping, a dog barking, a baby crying, a
telephone ringing, fall leaves or jet planes. Just in this respect, it is very clear to note
that jet planes are loud, high frequency sounds while wind rustling leaves is a much lower
sound.

With these considerations in mind, hearing aids intend for providing more gain at fre-
quencies where speech has the weakest components (usually high frequencies). Or in other
words, hearing aids provide different amount of gain in different frequency regions.

• Reduced dynamic range
Although not clear at first glance, it is interesting to note that it is not always appropriate
to amplify soft sounds by the amount needed to make them perceptible. The reason is
as follows. The “dynamic range” of the ear is defined as the level difference between the

16 Chapter 2. Hearing aids

125 250 500 1000 2000 4000 8000

0

10

20

30

40

50

60

70

80

90

100

110

120

N
or

m
al

M
ild

M
od

er
at

e
S

ev
er

e
P

ro
fo

un
d

D
eg

re
e

of
 h

ea
rin

g
lo

ss

Frequency (Hz)

th
s

f

kp
ch
sh
h

a
o
r

H
ea

rin
g

le
ve

l (
d

B
)

j
z
g

l
ng
n
m i

u

v
b
d

Minimum level for hearing protection

Figure 2.2: The “shaded” area designates the so-called “speech-banana” that essentially depicts the
most important area for the perception of the most of English vowels and consonants as a function
of both the hearing level (dB HL) and frequency (Hz). For illustrative purposes, this picture also
includes some drawings depicting typical sounds, such as, for instance, a bird chirping, a dog barking,
a baby crying or a telephone ringing.

audibility threshold and the discomfort threshold (sometimes, also called “threshold of
pain”). Since for hearing-impaired people, the audibility threshold is increased much more
than that for normal hearing people, their dynamic range is thus more reduced than for
healthy listeners. This can be clearly noticed in Figure 2.3. Figure 2.3(a) illustrates the
dynamic range for a normal hearing person, whereas Figure 2.3(b) depicts the dynamic
range for a hearing-impaired person.

Since the different sounds hearing-impaired people face daily must be fit within the men-
tioned restricted dynamic range, hearing aids must thus amplify weak sounds more than
intense sounds, as clearly represented in Figure 2.4. Although will be explained in detail
in Section 2.3.5, we can say in advance that this is the main purpose of the compression-
expansion algorithm implemented in hearing aids, which aims at compensating for the
reduced dynamic range in the impaired ear not only by applying a frequency-dependent
gain but also a signal level-dependent gain.

• Reduced frequency resolution
Hearing-impaired people have great difficulty for distinguishing between a variety of sounds
of different frequencies simultaneously. To illustrate this situation, let us imagine in the
frequency-domain sound signal, a speech and a noise component that have different fre-

2.2. Hearing loss 17

 0 dB SPL (audibility)

 120 dB SPL (discomfort)

(a) Dynamic range for a normal hear-
ing person.

 60 dB SPL (audibility)

 120 dB SPL (discomfort)

 reduced
dynamic range

(b) Dynamic range for a hearing-impaired person.

Figure 2.3: In (a), it is illustrated the dynamic range for a normal hearing person, whereas in (b),
it is shown the dynamic range for a hearing-impaired person, which is much more reduced than that
for a healthy listener.

Too loud

Too soft

Intense
Moderate
Weak

(a) Amplified sounds for a healthy listener.

Intense
Moderate
Weak

Too loud

Too soft

(b) Amplified sounds for a hearing-impaired
person.

Figure 2.4: Illustrative picture depicting the way in which some sounds should be amplified for: (a)
a healthy listener and (b) a hearing-impaired person. Specifically, it is shown the spacing of different
sound levels before their amplification (the left end of the dashed lines) and after their amplification
(the right end of the dashed lines) for both a normal and a hearing-impaired person.

quencies which are close enough. In this scenario, the cochlea will have a single broad region
of activity rather than two finely tuned separate regions and the brain will be probably
unable to discern the signal from the noise.

Since frequency resolution gradually decreases as the degree of hearing loss increases,
hearing-impaired people usually experience a decreased frequency resolution [Dillon, 2001].
This decreased frequency resolution is partially due to 1) the loss of ability of hair cells to
increased sensitivity of the cochlea for tuning frequencies (or in other words, frequencies
at which the affected part of the cochlea is tuned) and 2) their need to listen at elevated
level1.

Some solutions, which we summarize below, have been proposed in the literature aiming
at hearing aids overcoming these problems:

1Even for healthy listeners, their frequency resolution is poorer at high intensity input signal levels than at
low input signal levels.

18 Chapter 2. Hearing aids

– The use of noise reduction schemes.

– The use of directional microphones to focus on the desired sounds and eliminate those
coming from undesired directions.

– Variation of the gain with the frequency aiming at low-frequency components of speech
or noise do not mask high-frequency components.

• Decreased time resolution
In general, weaker sounds may often be masked by intense sounds that immediately precede
or follow them, which involves that the speech intelligibility perceived by hearing-impaired
people is decreased.

Since the ability to hear weak sounds during short time slots gradually decreases as the
degree of hearing loss increases, hearing-impaired people usually experience decreased time
resolution. In the effort of compensating this decreased temporal resolution, hearing aids
perform the so-called “fast-acting compression”, where the gain is rapidly increased or
decreased during weak or intense sounds, respectively. The main drawback of this method
is that undesired background noise is also amplified and thus, made more audible.

All these abovementioned problems combined together can cause significant reduction in the
speech intelligibility perceived by hearing-impaired people. In this respect and as it was advanced
in the introductory chapter, it has been estimated that a person who suffers from moderate or
severe hearing loss requires, respectively, a SNR of about 5-10 dB higher than that required by
a normal hearing listener in an effort of achieving the same level of speech understanding [den
Bogaert et al., 2009].

Therefore, it seems to be apparent from the previous paragraphs the necessity for hearing-
impaired people to make use of hearing aids in order to overcome this kind of problems.

2.3 A brief history of hearing aids

As succinctly stated in the Introduction, hearing aids have experienced major changes as time
goes by. Just in this respect, their history may be divided into five periods or eras, as shown
below:

1. Acoustic era

2. Carbon era

3. Vacuum tube era

4. Analog era

5. Digital era

Figure 2.5 will assist us in explaining when each of the mentioned eras have began in the
history and whether hearing aids designed in these eras were wearable or not, because, as will
be shown later on, not all hearing aids designed in the history have been wearable.

A more detailed description of this variety of hearing aids can be found in [Bennion, 1994;
Bentler and Duve, 2000; Dillon, 2001] and the excellent online resources in [Bauman, 2011].

2.3. A brief history of hearing aids 19

1900 '10 '20 '30 '40 '50 '60 '70 '80 '90 2000

Vacuum-Tube

Carbon

Acoustic

Analog

Digital

Non-wearable

Wearable

Figure 2.5: Picture showing when principal hearing aid eras have began in the history. It is also
represented whether hearing aids designed in these eras were wearable or not.

2.3.1 The acoustic era

The acoustic era began the first time someone cupped a hand behind an ear. Collecting sound
from an area larger than the ear’s area may produce about 5-10 dB of gain at middle and high
frequencies.

In the middle of the 17th century, more “sophisticated” acoustic aids appeared. They were
formed by anything with a shape like, for example, a trumpet (depicted in Figure 2.6(a)), horn
or funnel. The basic idea underlying these instruments was to have a large open end to collect as
much sound as possible. The energy was transferred to the ear by means of a gradual reduction
in area along the length of the trumpet or funnel1. It is very convenient to note that these
instruments had to be both wide and long.

Deepening a little more in these instruments, it is worth noting that if the open end of these
acoustic hearing aids was moved closer to the talker, it collected more intense sound as well as
a greater area of sound. In order to do this, the speaking tube, shown in Figure 2.6(b), was
designed. It basically consisted of a horn-shaped end attached to a long tube that terminated in
an earpiece. If the talker spoke directly into the horn end, the SNR at the input to the device was
much better (about 15-30 dB higher) than that obtained when the listener received naturally.

2.3.2 The carbon era

A carbon hearing aid, in its simplest form, consisted of a carbon microphone, a battery of 3−6 V
and a magnetic receiver, all components connected in series. Although the way this instrument
worked is out of the scope of this thesis, it is worth mentioning that the level at the output of
the receiver was about 20-30 dB greater than the level at the input to the microphone.

Aiming at achieving greater gain, the “carbon amplifier” was invented. If one microphone

1If the area decreases too quickly, most of the sound just reflects back out again instead of traveling into the
ear.

20 Chapter 2. Hearing aids

(a) The ear trumpet (b) The speaking tube

Figure 2.6: Picture illustrating two “hearing aids” from the acoustic era. In (a), it is represented
the so-called ear trumpet, and in (b), it is illustrated the speaking or conversation tube.

and receiver pair could increase the sound level about 20-30 dB, in the same line of reasoning, a
second pair (but with only a single diaphragm in common) could increase it much more.

In this respect, the first carbon amplifier hearing aid (a large table model) appeared in 1899,
and the first practical commercially wearable model, shown in Figure 2.7, appeared shortly after
in 1902. It used a carbon microphone and a battery, which was as large as a desk radio. Carbon
hearing aids continued to be used through to the 1940s, being beneficial only for people who had
mild or moderate hearing loss.

Microphone

Receiver

Figure 2.7: The first practical commercially wearable carbon hearing aid, called the Akouphone or
Acousticon, appeared in USA in 1902. The battery, which was as large as a desk radio, is not shown
in the figure.

The key point to highlight in this era is that the idea of amplifying different frequencies by
different gain amounts emerged. This was basically achieved by selecting different combinations
of microphones, receivers and amplifiers.

2.3.3 The vacuum tube era

The vacuum tube electronic amplifier was invented in 1907 and applied to hearing aids in 1920.
By combining several vacuum tubes, one after the other, the resulting system was a very powerful
amplifier (70 dB gain and 130 dB SPL output), increasing the range of hearing loss that could
be treated.

2.3. A brief history of hearing aids 21

The main drawback of vacuum tube aid devices was their large size. Although, thanks to
military requirements, the size of these devices was significantly reduced over time, however, two
batteries were needed to make them work. Vacuum tube hearing aids became practical during
the 1930s, but until 1944, their batteries were so large that they had to be housed separately from
the microphone and amplifier. In 1944, both vacuum tube and battery technology had advanced
sufficiently to make possible a one-piece hearing aid. Batteries, microphone and amplifier were
combined into a single body-worn electrical hearing aid, which connected to a receiver placed in
the ear by means of a wire. For the sake of clarity, Figure 2.8 shows a relatively late vacuum
tube hearing aid with the receiver, amplifier and its two separate batteries.

AmplifierBatteries

Receiver

Figure 2.8: A relatively late vacuum tube hearing aid. The microphone, amplifier and the two
batteries were combined into a single body-worn electrical hearing aid, which connected to a receiver
placed in the ear by means of a wire.

It is worth mentioning that important concepts concerning to current hearing aids such as,
for instance, earmold venting, magnetic microphones, piezoelectric microphones or compression
amplification were already devised during this era. This early origin of compression amplification
is surprising; compression seems to have rapidly become largely forgotten until the 1980s, but
then became the dominant type of advanced amplification schemes in the late 1990s.

2.3.4 The analog era

With the introduction of the transistor in the market in 1952, there was a such significant
reduction in terms of battery size, that all devices designed in the middle 1950s used transistors
rather than valves. Not only did this reduction in battery size and the small size of transistors
(when compared to valves) allow that all elements composing a hearing aid could be moved up
to the head but it also extended the battery life, the most important constraint for designing
advanced algorithms in hearing aids.

A simplified model of an analog hearing aid is shown in Figure 2.9. As clearly illustrated, it
is basically composed of:

22 Chapter 2. Hearing aids

• A microphone to convert the input sound into an electrical signal.

• An amplifier to intensify the electrical signal in the aim of compensating the acoustic loss
the user suffers from. Please note that the core of this amplifier essentially consists of one
or more stages of transistors and resistors.

• A tiny loudspeaker to convert the amplified signal back to sound.

• A small battery to supply electric power to the electronic devices that compose the hearing
instrument.

Amplifier

Electrical
 signals

Microphone Loudspeaker

Input
signal

Amplified output
 audio signal

Battery

Figure 2.9: A simplified diagram of the structure of a typical analog hearing aid. As illustrated, it
basically consists of a microphone, an amplifier, a loudspeaker and a small battery.

The idea of packaging the microphone, amplifier and batteries into one piece with a single
wire to the receiver had some advantages such as, for instance, clothing did not create noise as
a consequence of clothes rubbing against the microphone, the body did not have such adverse
effects on the tonal balance of sound coming from different direction, large wires were no longer
required or true binaural hearing aids were physically possible.

The first analog hearing aids worn completely in the head were the so-called barrettes (which
had an external receiver like a body aid) or eyeglass devices, represented in Figure 2.10(a) and
2.10(b), respectively.

Figure 2.10: First analog hearing aids worn completely in the head. In (a), it is shown several
barrette hearing aids, which had an external receiver like a body aid, and in (b), it is depicted an
eyeglass aid, in which all the components were included into the device.

The continuous reduction in the size of the components allowed that they could soon all be
moved behind the ear, either as part of the eyeglass bow, as a self-contained curved package that

2.3. A brief history of hearing aids 23

attached to a sawn-off standard eyeglass bow, or finally as the so-called behind-the-ear (BTE)
hearing aid. With further decreases in the size of components, in-the-ear (ITE) devices started
to appear in the mid and late 1950s.

However, it was not until the the introduction in the market of the integrated circuit (IC) in
1964 and a new type of transistor, the FET, when hearing aids became much smaller. By the
early 1980s, ITE aids had become small enough for most of components to fit within the ear
canal portion of the device, what involved the design of a new hearing aid model, the so-called
ITC device. With further improvements in electronics, the entire hearing aid could finally be
located inside the ear canal by the early 1990s. The CIC had arrived and at last the hearing aid
was practically invisible to the casual observer. Because of their greatest relevance in current
hearing aids, these four types of hearing aids, that is, BTE, ITE, ITC and CIC models, will be
explained in-depth in Section 2.4.

For many years, conventional analog hearing aids have been the only option available for
hearing-impaired people. However, these instruments have very serious associated drawbacks,
which, for the sake of clarity, we summarize below:

1. Analog hearing aids provide the same gain regardless the frequency, however, hearing loss
may not be the same for the different frequencies. In this respect, a hearing aid capable to
provide a variable gain with respect to frequency would be deemed as very appreciated by
most of hearing aid users.

2. Since the advantage of programmability is not included in analog circuits, adjusting the
hearing aid to compensate the particular hearing loss the user suffers from becomes a
challenging goal because it would involve designing a unique circuit for each particular
user. This would be excessively costly.

3. The fact of amplifying all input sound signals, regardless the frequency and the level input
signal, leads to increase the high-intensity level signals to extremely high values, which
results in very unpleasant and amplified sounds for the user. This illustrates the necessity
for hearing aids can also adjust its gain according to the level of the input sound signal.

2.3.5 The digital era

The introduction of the digital signal processor (DSP) in the market, along with the important
abovementioned drawbacks associated to analog hearing aids, led to the development of digital
hearing aids, which usually offered their users greater flexibility to compensate for their hearing
loss, and, in many situations, provided a more natural sound quality than conventional analog
hearing aids.

Figure 2.11 will assist us in introducing the structure of a typical digital hearing aid. As
clearly depicted, it is composed of:

• A microphone to convert the input sound into an electrical signal.

• A analog-to-digital converter (ADC), to transform the analog electrical signal into a digital
signal.

• A digital signal processor (DSP), the very core of a digital hearing aid, that intends for
processing the digital signal aiming at compensating the particular hearing loss the user
suffers from.

24 Chapter 2. Hearing aids

• A digital-to-analog converter (DAC) to back the amplified digital signal into an analog
signal.

• A tiny loudspeaker to convert the analog signal back to sound.

• A small battery to supply electric power to the electronic devices that compose the instru-
ment.

DSP

Electrical
 signals

Microphone Loudspeaker

Input
signal

ADC DAC Amplified output
 audio signal

Battery

Figure 2.11: A simplified diagram of the structure of a typical digital hearing aid. As shown, it is
composed of a microphone, an analog-to-digital converter (ADC), a digital signal processor (DSP)
that it is the very core of a digital hearing aid, a digital-to-analog converter (DAC), a loudspeaker
and a small battery.

Digital hearing aids exhibit two key advantages when compared to analog hearing aids. The
first one is that the input sound signal is “separated” into a number of frequency bands aiming at
some frequency bands, such as, for instance, the high-frequency bands or the bands that contain
the speech information being more amplified than other bands, like, for example, low-frequency
bands or bands that contain a high level of noise. It is interesting to note that this technique
solves one of the problems associated with analog hearing aids: providing the same gain value
regardless the frequency. The second benefit is based on the dynamic range compression that
plays the key role of estimating a desirable gain to map the wide range of an input sound signal
(e.g. speech) into the reduced dynamic range of a hearing impaired listener. Basically, this
strategy is an automatic gain control, in which the gain is automatically adjusted based on the
intensity level of the input signal. In this scenario, frames with a high intensity level (loud sounds)
are amplified less compared to frames with a low intensity level (soft sounds), since a comfortable
listening level for loud sounds makes soft sounds inaudible. In this respect, we are made sure
that loud sounds are not becoming uncomfortably loud because, apart from improving speech
intelligibility, this strategy is also designed to avoid discomfort, distortion, and damage. With
this in mind, the gain function in each frequency band may be based on a curvilinear or piecewise
linear function, such as, for instance, the 3-piece linear approximation illustrated in Figure 2.12
[Hersh and Johnson, 2003]. In this example at hand, it seems clear to notice that low input level
sound signals are expanded and high input level signals are compressed in the impaired dynamic
range. The two advantages combined together is the so-called “multichannel compression”, or
also known “multiband compression”, that intends for applying a different separate compression
function in each frequency band, since the subject’s dynamic range often differs in different
frequency bands.

Additionally, the most sophisticated digital hearing aids may also provide some interesting

2.3. A brief history of hearing aids 25

Input signal level
 (dB SPL)

Gain (dB)

0 20 40 60 80 100 120

20

40

60

80

100

120

Exp
an

sio
n

Linear Com
pression

Figure 2.12: An illustrative representation of a typical gain function, for each frequency band, in
digital hearing aids. It is based on a 3-piece linear approximation in which low input level sound
signals are expanded (“expansion” area), whereas high input level signals are compressed in the
impaired dynamic range (“compression” area).

advantages that for making this chapter self-contained, we summarize in the following para-
graphs.

26 Chapter 2. Hearing aids

• Acoustic feedback cancellation
As clearly illustrated in Figure 2.13, acoustic feedback appears when part of the conve-
niently amplified output signal produced by the hearing aid returns through the external
auditory canal, and enters again this device, being thus anew amplified [Dillon, 2001; Hell-
gren et al., 1999; Kates, 2008; Spriet, 2004; Spriet et al., 2007, 2008]. Sometimes, feedback
may cause the hearing aid to become unstable, producing very unpleasant and irritating
howls. Preventing the hearing aid from such instability enforces designers to limit the
maximum gain that can be used to compensate the user’s acoustic loss.

Figure 2.13: Acoustic feedback in hearing aids appears when part of the conveniently amplified
output signal produced by the device returns through the external auditory canal, and enters again
this instrument, being thus anew amplified.

In the effort of canceling acoustic feedback in digital hearing aids, there are two widely-used
approaches that we list in the following paragraphs.

1. To selectively attenuate the frequency components for which feedback happens. This
approach is effective in avoiding feedback, but the drawback here consists in the fact
that it is equivalent to a narrowband hearing aid gain reduction.

2. To model the feedback path with an internal filter in parallel to the feedback path,
subtracting thus the feedback signal. It is interesting to note that, by making use of
this approach, the hearing aid gain is not affected.

• Environmental classification
As advanced in the introductory chapter, hearing aid users face a variety of different acous-
tic environments in their daily life, and, although they expect authentic, significant benefit
in each of these situations, this is not the case. The reason is as follows. Analog hear-
ing aids are designed and programmed for only one listening environment what, in turns,
means that the gain to apply is the same regardless the acoustic situation the user is in.

In this respect, advanced digital hearing aids have a variety (although reduced) of amplifi-
cation schemes or programs adapted to different listening conditions what, in turns, means
that the amplification program to be applied when the user is embedded in an acoustical
environment consisting, for instance, in a quiet situation (i.e., a conference) will be different
than that to be used when the user is embedded in a noisy place, such as, for instance, a
traffic jam.

2.3. A brief history of hearing aids 27

• Directional microphones
As stated beforehand, one of the main problems for hearing-impaired people is the reduction
of speech intelligibility when they are immersed in noisy environments, which is mainly
caused by the loss of temporal and spectral resolution in the auditory processing of the
impaired ear.

In the effort of improving speech intelligibility in many noisy environments, directional
microphones are used in both digital hearing aids [Hamacher et al., 2005], which basically
allows to locate the sound source of interest in the horizontal plane, by means of spatial
cues estimated from both signals entering the two ears. This is referred to as “binaural
hearing aids”.

The basic idea underlying to the use of binaural hearing aids is to locate and enhance the
sound source of interest (the speech signal for most of hearing aid users), and attenuate
other sound sources, such as, for instance, noises or interferences. This leads to improve
speech intelligibility in noisy environments when compared to conventional, analog hearing
aids, as succinctly illustrated in Figure 2.14.

SPEECH Speech

Noise

Traditional

Directional

Speech Noise

Figure 2.14: Picture depicting the purpose of binaural hearing aids. They allow to locate the sound
source of interest by employing both signals entering the two ears. The basic idea underlying this
system is to focus on the sound source of interest (the speech signal for most of hearing aid users),
and attenuate other sound sources, such as, for instance, noises or interferences, coming from other
undesired directions.

Note that this approach requires the necessity to wear two hearing aids. Many hearing-
impaired people, specially elderly people, have acoustic loss in both ears, and consequently
they need two devices. Often, when hearing aids are worn at both ears, these devices
usually operate independently. However, in binaural hearing aids, both devices should work
collaboratively at two ears (“ipsilateral” and “contralateral” ear). This obviously requires
a communication link between both hearing devices. The simplest solution would be to
connect them by using a wire. However, most users do not like this approach because of
the non-aesthetic aspect of the wire linking both hearing aids from one ear to the other.
This enforces to use a wireless link between both devices, what unavoidably increases the
power consumption and, consequently, reduces the battery life, one of the most important
limiting factors for implementing complex signal processing in digital hearing aids. Roughly
speaking, the current technology demands as much power to communicate both hearing
aids as that required for the signal processing on a mono-aural device [Kates, 2008]. Thus,

28 Chapter 2. Hearing aids

only most sophisticated, high-cost digital hearing aids make use of directional microphones
in order to improve speech intelligibility in noisy environments.

Having a look at the abovementioned advantages, it seems to be clear that digital hearing aids
would improve significantly the quality of life of many hearing-impaired people. Nevertheless,
currently, high costs of these advanced devices force many hearing-impaired people to choose
cheaper, analog hearing aids instead, or medium-cost digital hearing aids, which regrettably do
not perform the aforementioned functionalities.

Regrettably, an extremely point to note here is that most of digital hearing aids in the market
suffer from important constraints in terms of computational capability, memory and battery,
that make difficult the implementation of an automatic sound classification system in the DSP
hearing aids are based on. For the sake of clarity and for making this thesis self-contained, we
have summarized in Appendix A the restrictions imposed by the DSP used by our platform to
carry out the experiments.

2.4 Hearing aids models

Although all current hearing aids essentially consist of the same basic components, they may
come in different models, which basically differ on their size and their location on the hearing aid
user’s ear. Roughly speaking, the degree and type of acoustic loss the user suffers from determine
the model and the way of placement the device on the ear.

Obviously, due to the differences in physical appearance of these four models of hearing aids,
they have rather different properties regarding the maximum gain, dynamic range, sound quality,
minimum feedback channel attenuation and so on. These current hearing aid models are briefly
described in the following paragraphs:

• Behind-the-ear (BTE):
This type of hearing aid has its central processing unit placed behind the pinna of the
user. The microphone and control buttons are placed on this unit and the loudspeaker is
connected to the external auditory canal by means of a sound tube.

Among all hearing aid models currently available in the market, BTE devices fit the widest
range of hearing loss, from mild to profound hearing loss, and generally offer the greatest
possibilities for hearing aid adjustment.

• In-the-ear (ITE):
This model of tailored hearing aid is much smaller than BTE hearing aid and is placed
inside the deepest impression of the pinna, the concha. Note that we say tailored in the
sense that the earmold is fitted to each particular hearing aid user’s ear.

Among fitted hearing aids models, this style lends itself best to venting, although the
benefit is minimized if large vents are used, which leads to increase the acoustic feedback.

• In-the-canal (ITC):
ITC hearing aid is inserted into the external auditory canal of the user. Due to its small
physical size, it is more discrete than ITE hearing aid.

Even though it has less gain and output than ITE device, the microphone position and
slightly deeper insertion of the device provide a smaller residual volume, what, in turns,
means that it requires approximately 5 dB less gain to fit a comparable acoustic loss
[Sandlin, 1990].

2.4. Hearing aids models 29

ITC models are highly recommended for those people who suffer from mild to moderate
acoustic loss.

• Completely-in-the-canal (CIC):
This device is, among the hearing aid models explained in this section, the most inconspic-
uous one since it is inserted deep into the external auditory canal of the user.

The main advantages of CIC devices are summarized below:

– To reduce occlusion effect.

– To reduce feedback.

– To improve sound localization.

– To require less gain than other hearing aid models, because the distance between the
end of the hearing aid and the eardrum is minimal.

– To eliminate wind noise.

– To provide greater high-frequency gain.

For the sake of clarity, we summarize in Table 2.2 the most typical features of the abovemen-
tioned hearing aid models (in particular, BTE, ITC and CIC models) [Hersh and Johnson, 2003].
Being more precise, we illustrate the frequency range (Hz), the maximum gain (dB), and the
maximum output (dB), the battery life and the feature telecoil. Note that telecoil in the table
simply refers a feature available on many current hearing aids. Basically, a telecoil is a tiny coil
of wire around a core that will induce an electric current in the coil when it is in the presence
of a changing magnetic field. The basic idea underlying the fact of using a telecoil, within a
hearing aid, is that the telecoil is used as the input sound source instead of (or in addition to)
the microphone and thus the hearing aid user can hear a magnetic signal which represents sound.

Hearing Frequency Maximum Maximum Battery
Telecoilaid range gain output life

model (Hz) (dB) (dB) (hours)
CIC 4 to 5 octaves 45± 10 100 100 No
ITC starting in the 45± 10 100 100 Few
BTE region 100 to 500 65± 10 140 200− 500 Most

Table 2.2: Summary of most typical features for different current hearing aid models [Hersh and
Johnson, 2003].

Finally, for properly completing this section, these hearing aids models are depicted in Figure
2.15. In this figure, from top to bottom row the types are: BTE, ITE, ITC and CIC models.
Please note that the pictures are courtesy of Widex, Sweden.

30 Chapter 2. Hearing aids
Subband Adaptive Feedback Control in Hearing Aids. . . 25

Figure 2.13: Four types of hearing aids. From top to bottom row the types
are: BTE, ITE, ITC, and CIC. Pictures courtesy of Widex, Sweden.Figure 2.15: Picture illustrating the four most common hearing aid models available in the market
currently. From top to bottom row these models are: BTE, ITE, ITC and CIC models. The pictures
are courtesy of Widex, Sweden.

Chapter 3

Overview of automatic sound
classification systems

3.1 Introduction

As mentioned in the introductory chapter, the objective of this thesis is to design and implement
a prototype for a digital hearing aid that can be automatically fitted according to the preferences
of its user for various listening conditions. Just in this respect, this chapter describes in a detailed
way the basic blocks composing any automatic sound classification system.

Figure 3.1 depicts the structure of an automatic sound classification system. The basic idea
underlying to this system is that the classifier categorizes the input sound signal into one of the
output audio classes considered, by means of a set of sound signal-describing features extracted
from the input sound.

Data
processing

Feature
extraction ClassifierSound Class

Figure 3.1: Picture illustrating an automatic sound classification system. It classifies the input
sound signal into one of the output audio classes considered, by means of a set of sound signal-
describing features extracted from the input sound.

Deepening a little more in the particular application at hand, the purpose of implementing
an automatic sound classification system in a DSP-based hearing aid is that, according to the
classifier decision (that is, the output audio class returned by the classifier), the most appropriate
“amplification program” to such class, or within the context of the application at hand, acoustic
environment (that is, speech, music or noise), is automatically selected, as clearly depicted in
Figure 3.2. To understand the importance of this purpose, it is convenient to imagine the two
following situations that we have considered as being representative enough of the importance of
implementing this automatic classification system in a hearing aid. Let us suppose that the user
is in an acoustical environment consisting in a speech-in-quiet situation, such as, for instance,
a conference, in which the user aims to clearly understand what the lecturer is saying. In this
scenario, the hearing aid will decide that it is worth amplifying the signal (the hearing aid will

31

32 Chapter 3. Overview of automatic sound classification systems

recognize the acoustic environment as “speech” environment and will automatically select the
“speech amplification program”) and thus, the user will not lose the information contained in
the speech fragment. Let us now imagine that the user is embedded in a noisy place, such
as, for instance, a traffic jam. In this situation, the hearing will decide that it is not worth
amplifying such a signal, and thus will reduce the gain, which will also result in saving battery
life, the most important constraint for designing advanced algorithms in hearing aids. With these
two situations in mind, it seems to be clear that the implementation of this automatic sound
classification system is important, since not only does it allow to improve speech intelligibility,
but also the sound quality perceived by its user.

Data
processing

Feature
extraction

Automatic sound classification

Classifier Music
amplification scheme

Speech
amplification scheme

Noise
amplification scheme

Amplification
scheme

ClassSound

Sound
amplification

Output signal

Figure 3.2: An illustrative representation of the way an automatic sound classification system,
implemented in a DSP-based hearing aid, works. According to the classifier decision (that is, the
output audio class returned by the classifier), the most appropriate “amplification program” to such
class, or within the context of the application at hand, acoustic environment (that is, speech, music
or noise), is automatically selected.

It is important to highlight that sound classification does not modify the hearing aid output
directly, but it rather provides a control signal to select the best amplification program for each
of the acoustic environments considered within the context of each classification task.

From a practical implementation point of view, Figure 3.3 will assist us in showing the two
main functional blocks that should be implemented in the DSP our hearing aid is based on.
The first one, labelled “Functional block A”, would correspond to the set of signal processing
stages aiming to compensate the particular hearing loss the user suffers from. The second one,
labelled “Functional block B”, would be related to the set of signal processing steps aiming at
classifying the input sound signal and, by means of a control signal, selecting the most appropriate
amplification program for user’s comfort, whose overall implementation is the main focus of this
thesis. As previously mentioned, this classifying system consists conceptually of three basic
parts:

• A pre-processing functional block that aims at carrying out a sequence of processes to be
applied to all the frames in which the input signal has been segmented.

• A feature extraction process that calculates a number of features arranged in the feature
vector.

3.2. Data processing 33

• A three-classes classifier that categorizes input sound signals into three classes (speech,
music and noise).

"Functional block A"
Signal processing to compensate the hearing loss

 Signal from
the microphone

Signal to the
loudspeaker

Feature
extraction Classifier

"Functional block B"
Automatic sound classification system

speech

music

noise

Feature
 vector

 Control signal
 to select
the best program

Data
processing

Figure 3.3: Conceptual representation of the two main functional blocks to be implemented in
the DSP our hearing aid is based on. The block labelled “Functional block A” groups all the signal
processing operations leading to compensate the particular hearing loss the user suffers from. The
other block, labelled “Functional block B”, is related to the set of signal processing steps aiming at
classifying the sound and, by means of a control signal, selecting the most appropriate amplification
program for user’s comfort.

The key points underlying these three blocks will be explained in a very detailed way in the
sections that follow.

With these concepts in mind, this chapter is structured in four sections. Section 3.2 describes
the purpose of the data processing block, with a detailed description of the steps commonly
carried out in this block when classifying environmental sounds in digital hearing aids. Section
3.3 shows, in an illustrative way, the basic idea underlying to the crucial issue of selecting features
when discriminating among different acoustic environments. As will be better understood later
on, the classifier performance is severely dependent on the features selected in the sense that,
the most appropriate features for a particular classification task, like, for example, distinguishing
between music and speech, may not be the most well-suited for another different one, such as, for
instance, separating speech from noise. Finally, Section 3.4 depicts the purpose of the classifier
itself, putting special emphasis on both the kind of classifiers proposed in the literature and
the way these classifiers are trained, or in other words, the way these classifiers are able to learn
from an appropriate set of training patterns, and properly classify other patterns that have never
been found before. This section also explains in-depth the study-case classifiers: the mean square
error (MSE) linear classifier (Subsection 3.4.2), the k-NN algorithm (Subsection 3.4.3) and two
particular kinds of neural networks: multilayer perceptrons (MLPs) (Subsection 3.4.4.2) and
radial basis function (RBF) networks (Subsection 3.4.4.3).

3.2 Data processing

In the effort of classifying the input sound signal, it is necessary to carry out a number of signal
processing steps that, for the sake of clarity, we summarize in the following paragraphs. Prior
to describing this sequence of processes, it is worth pointing out that the input audio signal

34 Chapter 3. Overview of automatic sound classification systems

to be classified, labelled X(t) within our framework, is the “digitized” signal obtained after the
analog-to-digital conversion performed by the ADC integrated in the DSP.

With this in mind, the signalX(t), which will be assumed as a stochastic process, is segmented
into consecutive frames, as clearly shown below:

Xi(tk) i = 1, . . . , Nframes (3.1)

where i = 1, . . . , Nframes is the index over the Nframes composing a time slot and the index k
simply labels the one over the p samples of each frame. Please note that the classifier will return
a decision (speech, music and noise, in our case) for each time slot. For illustrative purposes,
and facilitating the reader’s comprehension, Figure 3.4 aims at depicting in a very illustrative
way our framework.

X1(tk)

time slot
i = 1, . . . , Nframes

k = 1, . . . , p

frame

time slot

X2(tk) Xi(tk) X1(tk) X2(tk) Xi(tk) X(tk)

Figure 3.4: The “digitized” input sound signal, labelled X(t), is segmented into frames, composing
Nframes consecutive frames a time slot. The classifier will return a decision (speech, music or noise,
in our case) for each time slot. In this picture, k labels the index over the p samples of each frame.

Since each frame Xi(tk) (Xi(t), henceforth) is a windowed stochastic process, any of its
samples, Xi(tk), is thus a random variable that, for the sake of simplicity, we label it Xik.

Thus, for each audio frame, Xi(t), the following random vector is obtained:

Xi = [Xi1, . . . , Xip] . (3.2)

With this initial data, and bearing in mind the DSP used by our platform to carry out the
experiments (see Appendix A for further details), the WOLA filterbank coprocessor computes
the Discrete Fourier Transform (DFT) of this initial data, leading to the matrix that we label
χi = [χi(1), χi(2), . . . , χi(NB)], with NB the number of frequency bands available in the DSP.
This is just the initial information the system uses to calculate the complete set of the sound
signal-features describing any frame Xi(t).

3.3 Feature extraction

3.3.1 Introduction

A reliable and robust feature extraction process is an important step in any automatic sound
classification system. As sketched in Figure 3.5, this stage plays the key role of processing the
input audio signal, after carrying out the sequence of operations described in the data processing
block, aiming at extracting some kind of relevant, essential information that characterizes it.
Thus, each input audio signal is represented by a number of sound signal-describing features
that, for computational reasons, are grouped forming a vector, commonly called feature vector,

3.3. Feature extraction 35

Extraction
of

features

Feature
vector

Any of these audio files
 is divided into frames

 Set of audio files for
training, validation and test

Figure 3.5: Picture illustrating the way the feature extraction process works. Basically, after a
sequence of mathematical operations performed in the data processing stage, the feature extraction
block generates a number of sound signal-describing features that, for computational reasons, are
grouped forming a vector, commonly called feature vector, labelled F within our framework.

labelled F within our framework. Note that this feature vector should be as much discriminative
as possible among the audio classes to distinguish (speech, music and noise, in our case).

In general, we can say that a “proper” feature is the one that contains the kind of valuable
audio signal information that allows the classifier to properly distinguish among the classes con-
sidered. If this is not the case, some features may degrade the classifier performance because of
two fundamental reasons: 1) if the features do not contain all the essential, adequate informa-
tion, the classifier may not perform properly, and 2) if the features contain excessive, irrelevant
information, the system will also fail; in this sense, it is sometimes said that such unrelated
features behave as noise [Duda et al., 2001].

In the effort of better understanding why some features may improve or degrade the classifier
performance, we have included Figure 3.6, which basically assists us in showing different groups
of features for the same two-classes classification task. As clearly illustrated, the linear separable
features, shown in Figure 3.6(a), are the most desirable from the practical point of view of the
classifier, because using a simple linear discriminant is good enough to separate both classes.
The nonlinear separable, correlated and multimodal features, illustrated, respectively, in Figures
3.6(b), 3.6(c) and 3.6(d), are generally manageable, but features with poor separability, depicted
in Figure 3.6(e), are practically impossible to deal with from the classifier point of view.

Many signal features have been proposed in the literature for classifying environmental sounds
in hearing aids [Büchler et al., 2005]. In particular, there is a number of available, general-purpose
spectral features that could potentially exhibit different behavior for speech, music and noise,
and, thus may assist the classifier in properly discriminating the input signal into one of the
mentioned classes. Some experiments [Alexandre et al., 2008a; Carey et al., 1999; Li et al., 2001;
Lu et al., 2002; Tzanetakis and Cook, 2002] suggest that the features that we describe in the
subsection that immediately follows provide a high discriminating capability for the problem of
speech, music and noise classification in hearing aids.

36 Chapter 3. Overview of automatic sound classification systems

x

x
x

x x
x xx

x
x

x

x

(a) Features with linear sep-
arability.

x
x

x

x

x x

x
x x

x

x

x
xx

x
x

xx

x
x

x
x
x

x

x

(b) Features with nonlinear
separability.

x

x

x x

x

x

x
x
x x

x
xx

(c) Highly corre-
lated features.

x

x
x

x

x

x
x

x
x

x

x x
x

x

x

(d) Multimodal fea-
tures.

x

x

x
x

x

x x

x

x

x

x

x

x

(e) Features with poor sepa-
rability.

Figure 3.6: In the effort of better understanding why some features may improve or degrade the
classifier performance, this picture aims at showing different groups of features for the same two-
classes classification task. The linear separable features, shown in 3.6(a), are the most desirable
from the classifier point of view. The nonlinear separable, correlated and multimodal features,
illustrated, respectively, in 3.6(b), 3.6(c) and 3.6(d), are generally manageable, but features with
poor separability, depicted in 3.6(e), are practically impossible to deal with from the classifier point
of view.

3.3.2 Classical spectral features

As previously mentioned, there is a number of interesting spectral features that exhibit different
behavior for speech, music and noise, and thus, may assist the classifier in appropriately classify-
ing the input sound signal. Note that we say spectral features in the sense that they are basically
computed from the spectrum magnitude corresponding to each sound frame, which is deemed
as very beneficial from our practical implementation point of view, since the WOLA coprocessor
provides at its output the spectrum magnitude of such sound frame. As stated beforehand, it
provides the k-th frequency bin of the spectrum of any sound frame Xi(t). For the sake of clarity,
we labelled this matrix χi = [χi(1), χi(2), . . . , χi(NB)], where k = 1, . . . , NB is the index over the
NB frequency bands available in the DSP (NB = 64, in our case).

With this in mind, these spectral features for each analysis sound frame Xi(t), which take as
initial information the aforementioned matrix χi, have been found to be as follows.

• Spectral centroid
As defined in [Scheirer and Slaney, 1997], the spectral centroid of a frame Xi(t) is a measure
of the center of gravity of the spectral power distribution, and thus, it outlines if the
spectrum contains a majority of high or low frequencies. From a mathematical point of
view, the spectral centroid of a frame Xi(t), that we label it SCi, can be calculated by

3.3. Feature extraction 37

means of the expression shown below:

SCi =

NB∑
k=1

|χi(k)| · k
NB∑
k=1

|χi(k)|
, (3.3)

being NB the number of frequency bands available in the DSP used to carry out the
experiments.

This feature has been widely-used for sound classification in hearing aids. At this respect,
it is worth mentioning that not only has it been used to discriminate among speech, music
and noise [Li et al., 2001], but also to classify music into different genres [Tzanetakis and
Cook, 2002].

• Voice2white
This parameter, proposed in [Guaus and Batlle, 2004], is a measure of the energy inside
the typical speech band (300-3600 Hz) with respect to the whole energy of frame Xi(t).
We label this feature V2Wi and, from a mathematical point of view, it can be computed
by means of the following expression:

V2Wi =

M2∑
k=M1

|χi(k)|

NB∑
k=1

|χi(k)|
(3.4)

with M1 and M2 being the indexes that limit the speech band (300-3600 Hz), that is, in
terms of number of frequency band, M1 = 2 and M2 = 32.

This feature has been widely used in our work to discriminate between speech and non-
speech signals [Alexandre et al., 2006b] and also to distinguish among speech, music and
noise [Alexandre et al., 2008d]. Note that we say non-speech signals in the sense that they
contain any other signal different from speech, including not only environmental noise but
also music, both instrumental and vocal.

• Spectral flux
The spectral flux of a frame Xi(t), labelled SFi, is defined as the average variation value
of spectrum magnitude between two adjacent frames [Lu et al., 2002], as clearly defined as
follows:

SFi =
NB∑
k=1

(|χi(k)| − |χi−1(k)|)2. (3.5)

With this in mind, it is very clear to note that this feature is closely related to the amount
of spectral local changes. The practical point to note regarding this feature is that SF
values for speech sounds are generally higher and vary rapidly, whereas SF values for music
vary slower and SF values for noisy signals barely vary. This is the reason why this feature
has been used in the literature for distinguishing between speech and music [Lu et al., 2002;
Tzanetakis and Cook, 2002] or even for discriminating between music and environmental
sounds.

38 Chapter 3. Overview of automatic sound classification systems

• Spectral roll-off
This parameter, that we label it SRi, is defined as the frequency bin of the spectrum below
which a PR% of the magnitude distribution of the spectrum is concentrated [Tzanetakis
and Cook, 2002]. Its mathematical definition is depicted in the following expression:

Rt∑
k=1

|χi(k)| = PR ·
NB∑
k=1

|χi(k)| (3.6)

where a typical value for PR is 85 %. This feature “gives an idea” of the shape of the
spectrum, or in other words, it shows how high in the spectrum a certain part of the
energy lies.

This feature is very adequate for properly classifying between speech and music, since
speech signals tend to have lower spectral roll-off values than music signals. In general,
music signals contain higher frequencies from instruments such as, for instance, flutes,
distorted guitars or hi-hats, and thus, these sound signals tend to have higher values of
this feature. It is worth mentioning that SR feature has been already used to discriminate
among speech, music and noise [Li et al., 2001].

• Short time energy
Although short time energy is a “simple” feature, it is, however, widely-used in sound
classification systems [Li et al., 2001; Lu et al., 2002]. We label it STEi and, mathematically,
it is basically defined as the mean energy of the signal within each analysis frame Xi(t):

STEi =
1
NB

NB∑
k=1

|χi(k)|2. (3.7)

In general, speech signals consist of words mixed with silence what involves the variation of
STE values for this kind of signals is generally higher than that obtained for music signals.
This is the main reason why this feature is commonly used for discriminating between
speech and music.

• Spectral flatness measure
Spectral flatness measure (SFM) is a parameter that describes the flatness properties of the
spectrum magnitude of a sound frame. From a mathematical point of view, the SFM value
for the frame Xi(t), that we label it SFMi, can be computed as the ratio of the geometric
mean to the arithmetic mean of the spectrum magnitude [Izmirli, 1999], as stated in the
following expression:

SFMi =

[
NB∏
k=1

|χi(k)|
]1/NB

1
NB
·
NB∑
k=1

|χi(k)|
. (3.8)

Sometimes, this feature is also called “tonality coefficient”, and is widely-used to quantify
how much tonal a sound signal is. Note that we say “tonal” in the sense that a high value of
SFM indicates that the spectrum magnitude of the sound signal has a comparable amount
of power in all frequency bands, what, in turns, means that the signal is “similar” to a noisy

3.3. Feature extraction 39

signal, whereas a low value of SFM indicates that, the spectral power is concentrated in a
relatively small number of frequency bands, what involves the presence of tonal components
in the sound signal, or equivalently, the signal can be considered as a speech sound.

It is interesting to note that this measure is one of the many features used in the MPEG-7
standard, in which it is named “Audio Spectral Flatness” [Martínez, 2004].

• Spectral crest factor
Similar to the SFM feature, the spectral crest factor (SCF) is also a measure for quan-
tifying the tonality of a sound signal. Instead of computing the geometric mean of the
spectrum magnitude for the numerator, the maximum of the spectral energy is calculated,
and consequently, this feature is obtained by calculating the ratio between the maximum
and the mean value of the spectral energy [Hosseinzadeh and Krishnan, 2008]. Put it in a
more mathematical way, it can be expressed as follows:

SCFi =
max(|χi(k)|2)

1
NB

NB∑
k=1

(|χi(k)|2)
. (3.9)

In general, SCF values for musical instruments are higher than those obtained for speech
signals.

• Spectral bandwidth
Spectral bandwidth (SB) is a parameter closely related to the spectral centroid. It can be
computed by using the following expression [Andersson, 2004]:

SB2
i =

NB∑
k=1

(k − SCi)2 · |χi(k)|2

NB∑
k=1

|χi(k)|2
, (3.10)

where SCi labels the spectral centroid at frame Xi(t). Please note that prior to computing
this feature it is necessary to calculate the value of the spectral centroid for each analysis
frame.

Spectral bandwidth is a measure that indicates if the spectral power is concentrated around
the centroid or if it is dispersed over the spectrum. Music generally consists of a broad
mixture of frequencies, whereas speech consists of a limited range of frequencies. This makes
spectral bandwidth an appropriate feature for discriminating between speech and music.
This feature can be also appropriate for distinguishing among different musical genres since,
for instance, rock music has higher spectral power spread than flute instruments.

• Renyi entropy
The Renyi entropy of a sound frame Xi(t), labelled REi, is a measure of its spectral
distribution. From a mathematical point of view, it can be computed by using the following
expression [Hosseinzadeh and Krishnan, 2008]:

REi =
1

1− α · log2

NB∑
k=1

∣∣∣∣∣∣∣∣∣
χi(k)

NB∑
k=1

χi(k)

∣∣∣∣∣∣∣∣∣
α . (3.11)

40 Chapter 3. Overview of automatic sound classification systems

Here, the normalized energy of the band can be seen as a probability distribution for
calculating entropy. Experimentally, α has been found to be α = 3 [Aviyente and Williams,
2001; Flandrin et al., 1994].

This feature is very adequate for discriminating between speech and noise, since it can detect
the degree of randomness in the signal in the sense that a “structured” sound corresponds
to a sound signal and has a lower entropy than that compared to a “non-structured” sound,
which corresponds to noise and has a larger entropy value.

• Shannon entropy
In the same line of reasoning as that in the previous feature, this parameter that we label
it SEi, is a measure that quantifies the randomness of each analysis frame Xi(t). From
a mathematical point of view, it is computed by means of the expression shown below
[Ramalingam and Krishnan, 2006]:

SEi =
NB∑
k=1

|χi(k)| · log2 |χi(k)|. (3.12)

This feature is deemed useful for distinguishing between speech and noise.

• Mel-frequency cepstral coefficients
Psychophysical studies have shown that human perception of the frequency contents of
sounds for speech signals does not follow a linear scale [Moore, 1997]. Just in this respect,
the basic idea underlying to Mel-frequency cepstral coefficients (MFCCs) is to “imitate”
the behavior of the human ear. In this sense, for each tone with an actual frequency f ,
measured in Hz, a subjective pitch is measured on the “Mel-frequency scale”, having the
Mel-frequency scale a linear frequency spacing below 1 kHz and a logarithmic spacing above
1 kHz, as clearly shown in Figure 3.7.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

Frequency (Hz)

M
el

fre
qu

en
cy

 s
ca

le
 (M

el
s)

Figure 3.7: Picture illustrating the Mel-frequency scale. As shown, it is a linear frequency spacing
below 1 kHz and a logarithmic spacing above 1 kHz.

As a reference point, the pitch of a 1 kHz frequency tone, 40 dB above the perceptual
hearing threshold, is defined as 1000 Mels. Therefore, we can use the following expression

3.3. Feature extraction 41

to approximate the Mels for a particular frequency f in Hz,

Mel(f) = 2595 · log10

(
1 +

f

700

)
. (3.13)

In the effort of simulating the subjective spectrum, we have made use of a filter bank,
spaced uniformly on the Mel scale, as depicted in Figure 3.8. This filter bank is applied
to the spectrum of the speech signal to obtain a Mel-spectrum. The Mel-spectrum is log
compressed and, when transformed back to time domain by means of DCT, provides us
the so-called MFCCs. Therefore, MFCCs, that we label them cn (n denoting the index
over the nc MFCCs), can be calculated by means of:

cn =
D∑
d=1

(logSd) · cos
[
n

(
d− 1

2

)
π

D

]
n = 1, 2, . . . , nc (3.14)

being Sd the Mel-power spectrum coefficients (where d is the index over the D Mel-spaced
filters, that is, d = 1, 2, . . . , D).

1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mel frequency scale

Am
pl

itu
de

Figure 3.8: An illustrative representation of Mel-frequency filter bank with D = 20 filters. In this
picture, the vertical axis represents the weights of the filter coefficients.

We represent MFCCs, calculated by means of the Expression 3.14, as an MFCC column
feature vector, or in other words,

c = [c1 c2 c3 . . . cnc]
T . (3.15)

Aiming at providing a good representation of the local spectral properties of the signal, we
have computed 20 MFCCs, although it has been demonstrated that for classification tasks,
it is good enough to take into account only the first 5 coefficients [Tzanetakis and Cook,
2002].

• Delta Mel-frequency cepstral coefficients
These features are basically motivated by the non-stationarity of speech signals, since it
has been observed that the short-time spectrum of speech signals varies much more rapidly
than the short-time spectrum of noisy signals [Carey et al., 1999; Chou and Gu, 2001;
Takeuchi et al., 2001].

42 Chapter 3. Overview of automatic sound classification systems

The great difference between the rate of change of the spectrum magnitude for speech
and noisy signals is probably one of the many cues that human ear can use to ignore the
relatively stationary noisy signals and focus on the rapidly-changing spectrum of speech
signals [Kumar et al., 2011].

Mathematically, for an analysis frame Xi(t), delta mel-frequency cepstral coefficients, that
we label ∆MFCCs, are calculated by means of the expression stated below:

∆MFCCi(k) = MFCCi(k − 2)−MFCCi(k + 2), (3.16)

where k = 1, . . . , NB is the index over the NB frequency bands available in the DSP.

In the same line of reasoning as that in MFCCs, we have computed 20 ∆MFCCs.

An important point to note regarding Expression 3.16 is that since there does not exist
neither MFCC(−1) nor MFCC(0) for a particular sound frame, ∆MFCC(1) is simply equal
to MFCC(3) and ∆MFCC(2) is equal to MFCC(4). In the same line of reasoning, since
there does not exit neither MFCC(21) nor MFCC(22), ∆MFCC(19) is simply equal to
MFCC(17) and ∆MFCC(20) is equal to MFCC(18).

Finally, for completing this section, it is worth mentioning that we label this set of classical,
spectral features SC, as clearly shown below:

SC = {SC,V2W, SF, STE, 20MFCCs, 20∆MFCCs, SR, SB, SCF, SFM,RE, SE},
subscript C meaning “classical”.

3.4 Classifying algorithm

3.4.1 Introduction

After the feature extraction process, a decision on the class to which the input sound signal
belongs must be made, based on the features extracted from the sound signal. This process is
performed by the classifying algorithm. The aforementioned feature vector, that is, F, forms the
input to the classifier, and the output of the classifier is the assignment of the input sound signal
to one of the audio output classes considered (speech, music and noise, in our case), as clearly
shown in Figure 3.2.

Roughly speaking, classifiers can be classified into discriminative and generative [Rubinstein
and Hastie, 1997]. The first ones determine the boundaries between classes without modeling
the probabilities directly. In order to better understand what this assertion means, it is worth
having a look at Figure 3.9, which represents a two-dimensional feature space. In this picture,
for every point in the feature space, a corresponding class is defined by mapping the feature space
to the decision space. The borders between classes (the dashed lines in the feature space) are
found by performing some kind of “training” process, which is accomplished by an adequate sound
database. Once the borders are fixed by means of a set of design patterns, the performance of the
classifier is tested with the patterns available in a test phase, which are completely different from
those patterns available in the design phase. This type of classification algorithms include, among
other classifiers, linear discriminants, Artificial Neural Networks or Support Vector Machines.

On the one hand, training this kind of algorithms can be a difficult task because it involves
considering all audio classes at the same time and often demands the use of iterative algorithms
which are not guaranteed to converge to a good result. On the other hand, discriminative

3.4. Classifying algorithm 43

Feature 1

Fe
at

ur
e

2

 Class 1

 Class 2

 Class 3

Feature space Decision space

Figure 3.9: Representation of a two-dimensional feature space. In this figure, for every point in the
feature space, a corresponding class is defined by mapping the feature space to the decision space.
The borders between classes (the dashed lines in the feature space) are found by performing some
kind of “training” process, which is accomplished by an adequate sound database.

classifiers can be very adequate when there is enough sufficiently varied design patterns to train
the classifier, and can work even in those situations where the underlying probability distribution
for the feature set is unknown a priori.

The second type of classifiers, that is, generative classifiers, model the probability density
function for the feature set arising from each audio class. In this case, classification is performed
by determining the probability of each class produced by the feature sets, and selecting the class
that has the highest probability. This type of classification algorithms include, among other
classifiers, Hidden Markov Models or Bayes classifiers. The key point to note regarding this type
of classifiers is that they are relatively easy to train because the probability density function for
the feature set can be determined separately for each class. The serious associated drawback
is, however, that these classifiers demand to know the probability distributions for the feature
set a priory. In our particular case at hand, since we do not know this initial information, the
different experiments carried out in this thesis have been done using discriminative classifiers.

Bearing in mind that we have made use of discriminative classifiers, perhaps the reader may
wonder what training the classifier exactly means. Aiming at answering this question demands
to mention that training the classifier basically refers to the process in which, by learning from
appropriate patterns available in a design phase, the parameters of the classifier are adjusted to
exhibit the best performance, or equivalently, within the application at hand, to properly classify
other patterns (sound signals, in our case) that have never been found before. In other words,
the purpose of the training process is to give the most accurate performance in the real world,
where patterns not included in the design set can be expected to happen. The ability to deal
with these “unfound” patterns is called “generalization”, and the goal when training the classifier
is thus to produce accurate generalized results.

Roughly speaking, there are two types of algorithms to train classifiers: supervised and
unsupervised algorithms. In the first ones, the classifier is presented with a set of “training
vectors” (feature vectors, in our case) and its associated class (that is, the desired class), and,
a classifier output that differs from the desired one generates an error that is used to modify
the classifier parameters. In the second ones, the classifier organizes the training vectors into

44 Chapter 3. Overview of automatic sound classification systems

groups that occur “naturally”, without reference to the assigned classes. The classifier looks for
training vectors that tend to form related clusters. It can be specified the number of clusters at
the beginning of the unsupervised learning, but the labels are not known a priory (that is, we do
not know the desired classes). Classificatory experiments that rely on unsupervised learning are
often used for exploratory data analysis, in which the main question is: how many classes are
there?, rather than what is the best way to assign any input sound to the classes that have already
been identified? Intuitively, it seems to be clear that, in the batches of classification experiments
carried out in this thesis, the classifiers have been trained in a supervised way, because we are
interested in properly assign to an input sound to the correct output, rather than in knowing
how many classes there are.

An extremely important point to note here is that the training process of the classifier is
always performed off-line on a desktop computer, and never on the hearing aid itself. Only once
the classifier has been properly trained, validated and tested in the laboratory, this classifier will
be uploaded onto the hearing aid.

With these concepts in mind, we describe in the following subsections the classifiers used in
this thesis to carry out the experiments.

3.4.2 Mean square error (MSE) linear classifier

One of the classifiers explored in this thesis is the mean square error (MSE) linear classifier
because of its simplicity and good results [Alexandre et al., 2008d].

Although the Bayes classifier that minimizes the mean square error, shown in Expression
3.17, is optimum,

Ŷopt =
∫ +∞

−∞
Y · f(Y |F) · dY = E[Y |F] (3.17)

the problem is that it requires to know a priory the probability density function f(Y |F).
As stated beforehand, this is a difficult task in the problem at hand. A feasible, although sub-
optimal solution to overcome this drawback is to use the MSE linear classifier [Srinath et al.,
1995]. In this approach, the classifier is forced to be a linear combination of the available data,
whose weighting coefficients will be those that minimize its mean square error computed over
the patterns available in a design phase.

Being more explicit, if Y is the unknown class of a given audio file, let say, for instance, the
j-th file, and whose class we would like to recognize, the output class determined by the MSE
linear classifier, Ŷj , can be computed by means of,

Ŷj = w0 +
L∑
n=1

wn · Fn,j (3.18)

where:

• wn labels any of the weights in such a linear combination,

• Fn,j represents the value of th n-th element in the classifying feature vector F applied to
the j-th sound file, and finally,

• L is the number of features, that is, dim(F) = L.

Note in Expression 3.18 that the sound X(t) is not actually the signal that directly enters
the classifier: the signal that do enter the classifier is the feature vector, labelled F, that contains
the kind of adequate information that assists it in accurately classifying the sound signal X(t).

3.4. Classifying algorithm 45

Taking into account the nature of the patterns available in the design phase, it is convenient
to describe this by using matrix notation. In this regard, if NP represents the number of input
sound patterns available in such a design phase, the matrix of input design patterns can be
described as follows:

Q =

1 1 1 · · · 1

F11 F12 F13 · · · F1NP

...
...

...
. . .

...

FL1 FL2 FL3 · · · FLNP

(3.19)

L being, as mentioned before, the total number of features used to characterize the patterns,
and NP the number of input patterns available in the design phase.

Note in Expression 3.19 that the matrix elements in the first row are equal to unity in
order to implement the independent terms of the linear combinations. With this in mind, the
corresponding matrix of weights can be defined as shown below:

W =

w01 w11 w21 . . . wL1

w02 w12 w22 . . . wL2

...
...

. . .
...

...

w0C w1C w2C . . . wLC

(3.20)

where C represents the number of classes to classify (C = 3, in our case).
Thus, the output of the linear combinations for the input patterns can be expressed as stated

below:

Y = W ·Q (3.21)

Y being a matrix with C rows and NP columns.
In the supervised learning approach, if T represents the target matrix containing the class of

each input pattern, that is, the desired class, the error matrix is thus defined as follows:

Y −T = [eo e1 . . . eNP] .

If we define the mean square error (MSE) being

MSE =
1
NP

NP∑
n=1

e2
n, (3.22)

the coefficients wn in Expression 3.18 are just those that minimize the MSE computed over
the patterns available in the design phase:

∂MSE
∂wn

= 0, n = 1, . . . , L (3.23)

46 Chapter 3. Overview of automatic sound classification systems

what leads to the usually named “Wiener-Hopf equations” [Asmussen, 1998].
Thus, using Expression 3.23, the values of the matrix of weights can be determined as follows:

W = T ·QT ·
(
Q ·QT

)
. (3.24)

3.4.3 k-nearest neighbor (k-NN) classifier

The k-nearest neighbor classifier, commonly known as the “k-NN classifier”, is a distance-based
classifier [Duda and Hart, 1973].

Put it very simple, to obtain the class corresponding to a new vector p, the algorithm has
simply to look for the k nearest vectors, called “neighbors” within this algorithm, to the mentioned
vector p, and weigh, usually using a majority rule, their class numbers they belong to. Please
note that, within the application at hand, p is simply the classifying feature vector that we have
labelled F.

For the sake of clarity, and in the aim of expressing this idea in a more formal way, let us
consider a set of feature vectors {F1,F2, . . . ,FNP} available in a design phase, with Fi ∈ Rn

organized into C different classes Yi and NP being, as previously mentioned, the number of
patterns available in the design phase.

Let Rn(F) = F′ : ||F − F′|| 6 r2 be a volume centered in the vector F that encompasses
k patterns of the NP available patterns in the design phase. With this in mind, the k-nearest
neighbor classification rule is defined as:

q(F) = argmaxv(F, y) (3.25)

where v(F, y) is the number of feature vectors Fi with hidden state Yi = Y , which lie in the
volume Fi ∈ Rn(F).

Although it is possible to use different distance metrics [Cost and Salzberg, 1993; Everitt,
1974; Fukunaga and Beauregard, 1984; Salton and McGill, 1983; Wilson and Martinez, 1997],
most implementations employ euclidean distance, and consequently, the volumes are hyper-
spheres around the vector F.

For illustrative purposes, we will make use of Figure 3.10, which will assist us in better
understanding the way this classifying algorithm works. In the particular two-dimensional space
represented in this figure, the green circle represents a pattern to be classified into either “class
1” (blue plus sign-class → +) or “class 2” (red cross-class → x). It is important to mention that
this pattern to be classified does not belong to the set of patterns available in the design phase.
With the k-NN scheme in mind, in order to assign the class, the algorithm looks for the k nearest
neighbors to that pattern, and, by using the majority rule, weighs their class number they belong
to. In this respect, it is worth noting that the performance of this classifier is severely dependent
on the number of k patterns considered. In order to better understand what this assertion
means, it is convenient to imagine the two following situations, which have been considered to
be representative enough: if k is set to be 3, the pattern is assigned to “class 2” because there
are 2 patterns belonging to “class 2” (red cross-class → x) and only 1 pattern belonging to “class
1” (blue plus sign-class → +) inside the inner circle. On the contrary, if k is set to be 5, the
pattern is assigned to “class 1” because there are 3 patterns belonging to “class 1” and only 2
patterns belonging to “class 2”, inside the dashed outer circle.

Thus, the question arising here is how to determine the most appropriate value of k? Intu-
itively, the value of k in the k-NN classifier is an user-specific parameter. In many articles, it
is automatically selected in order to minimize the error probability over the patterns available
in a validation phase. In this thesis, different k-NN classifiers with values of k ranging from 1

3.4. Classifying algorithm 47

+

x

o
?

x

x
x

+
+

+

+

+

Figure 3.10: Two-dimensional picture depicting, in a very illustrative way, the way the k-NN
classifier works. The green circle represents a pattern to be classified into either “class 1” (blue plus
sign-class→ +) or “class 2” (red cross-class→ x). If k is chosen to be 3, the pattern is then assigned
to the “class 2” because there are 2 patterns belonging to the “class 2” and only 1 pattern belonging
to the “class 1”, inside the inner circle. On the contrary, if k is chosen to be 5, the pattern is assigned
to the “class 1” because there are 3 patterns belonging to the “class 1” and only 2 patterns belonging
to the “class 2”, inside the dashed outer circle.

to 20 have been implemented, and the value of k that achieves the best percentage of correct
classification computed over the patterns available in the validation phase has been ultimately
selected.

3.4.4 Artificial neural networks

3.4.4.1 Introduction

The human brain is the most complex, nonlinear, and parallel information processing system
produced by the nature. We can say that it is a living proof that not only is the fault tolerant
parallel processing physically possible but also fast and robust. It has the ability of organizing
its main constituents, called neurons, in order that certain computations are carried out many
times faster than the fastest digital computer. It has a specific structure and the capacity for
constructing its own rules through experience. This experience is constructed over the years,
with the most dramatic development of the human brain in the first years, producing millions of
synapses1 per second.

Artificial neural networks, commonly called simply “neural networks” (NNs), emerge as an
approach to model the way in which brain performs some particular tasks, which can be usually
difficult to carry out using traditional programming methods, such as, for instance, classification
tasks using pattern recognition, prediction, etc.

Although will be explained in a very clear way later on, we can formally define in advance
artificial neural networks as follows [Hetch-Nielsen, 1990]:

An artificial neural network is a parallel, distributed information processing structure consist-
ing of processing units (which can possess a local memory and can carry out localized information
processing operations) interconnected via unidirectional signal channels called connections. Each
processing unit has a single output connection that branches into as many collateral connections
as desired; each one carries the same signal - the processing unit output signal. The process-
ing unit output signal can be of any mathematical type desired. The information processing that

1A synapse is a connection between two neurons through which “information” (or being more precise, nerve
impulses) flows from one neuron to another.

48 Chapter 3. Overview of automatic sound classification systems

goes on within each processing unit can be defined arbitrarily with the restriction that it must be
completely local; that is, it must depend only on the current values of the input signals arriving
at the processing element via impinging connections and on values stored in the processing unit’s
local memory.

It is worth mentioning that, we have explored in this thesis the feasibility of two kinds of
tailored neural networks for driving the particular sort of sound classification in digital hearing
aids: multilayer perceptrons (MLPs) and radial basis function (RBF) networks, which will be
explained in-depth in Subsections 3.4.4.2 and 3.4.4.3, respectively.

3.4.4.2 Multilayer perceptrons (MLPs)

Architecture

The basic architecture of a multilayer perceptron consists of three layers of neurons (input, hidden
and output layers) in which each neuron in the hidden and output layer is interconnected with
all the neurons in the previous layer by links with adjustable weights [Bishop, 1995; Duda et al.,
2001], as clearly represented in Figure 3.11. This type of neural networks is commonly known
as “feedforward neural networks” and is probably the most popular and widely-used network in
many practical implementations. It is worth mentioning that multilayer perceptrons may consist
of more than one hidden layer, but it has been shown that a single hidden layer is sufficient
enough to approximate any function to arbitrary accuracy, given a sufficient and finite number
of neurons [Cybenko, 1989].

F 1

F L

Input
layer

Hidden
layer

Output
layer

Figure 3.11: Multilayer perceptron (MLP) consisting of three layers of neurons: input, hidden and
output layers. Each of the hidden and outputs neurons is interconnected with all the neurons in the
previous layer by links with adjustable weights. In this picture, L represents the number of features
selected for feeding the classifying algorithm, or in other words, the dimension of the feature vector
that we have labelled F.

Having a look at Figure 3.11, one can notice that each neuron in the input layer holds a
value, holding thus the input layer the input vector, or being more precise, within the particular
application at hand, the feature vector (labelled F), being thus dim(F) = L. As mentioned
before, each of these neurons in the input layer is connected to every neuron in the next layer,
called the hidden layer, and consequently, each connection has an associated weight that, for the
sake of clarity, we have labelled wlm, where l = 1, . . . , L is the index over the L input neurons,

3.4. Classifying algorithm 49

while m = 1, . . . ,M labels the one over the M hidden neurons.
In the same line of reasoning, each neuron in the hidden layer is connected to every neuron in

the output layer and each connection has an associated weight that we have labelled wmc where,
intuitively, m = 1, . . . ,M is the index over the M hidden neurons and c = 1, . . . , C labels the
one over the C output neurons. Note that, within the application at hand, C represents the
number of output audio classes to distinguish by the classifier, that is, C = 3.

Deepening a little more in the way a particular neuron in the network works, Figure 3.12
illustrates the m-th hidden neuron in a multilayer perceptron.

F 1

F L

b m ⍵ 1m

f(x) y m

⍵ Lm

m-th hidden neuron

Figure 3.12: Schematic representation of the m-th hidden neuron in a multilayer perceptron.
In this picture, the vector F = [F1, F2, . . . , FL] labels the L-dimensional feature vector that feeds
the classifier, the weight vector w = [w1m, . . . , wLm] represents the weights associated with the
connections between the input neurons and the study-case m-th hidden neuron, bm is the bias that
can be interpreted as a constant value, and finally, f(x) labels the transfer function used for the
m-th hidden neuron.

Put it in a more mathematical way, the output neuron value in this picture, that is, ym can
be computed by means of the expression that follows:

ym = f

(
L∑
l=1

Fl · wlm + bm

)
(3.26)

where:

• F = [F1, F2, . . . , FL] labels the L-dimensional feature vector that feeds the classifier,

• wlm labels the weight associated with the connection between the l-th input neuron and
the study-case m-th hidden neuron,

• bm represents the bias node, which can be interpreted as a constant value, and finally,

• f(·) is the transfer function used for the study-case m-th hidden neuron.

Perhaps the reader may wonder what the “transfer function” exactly means. Put it very
simple, the transfer function in a neuron defines the output of that neuron as a function of the
input value to it. The mathematical expression and the range of output values of the most

50 Chapter 3. Overview of automatic sound classification systems

Function Mathematical expression Range

Identity y = x (−∞, +∞)

Step y = sign(x) [−1, 1]

y = u(x) [0, 1]

Piecewise linear y =

(−1, x 6 −l
x, −l < x < l
1, x > l

[−1, 1]

Logarithmic sigmoid y = 1
1+e−x (0, 1)

Hyperbolic tangent y = e2x−1
e2x+1

(−1, 1)

Gaussian y=Ae−Bx2
(0, 1]

Table 3.1: Mathematical expression and range of output values of the most common transfer
functions used for hidden and output neurons in multilayer perceptrons.

common transfer functions used for hidden and output neurons in multilayer perceptrons are
represented in Table 3.1. In this thesis, the transfer function that we have considered as the
most appropriate one for the hidden and output neurons is the logarithmic sigmoid, or in other
words, the so-called “logsig”. As shown in the table, the output of this function is limited to the
range (0, 1), which is very beneficial from the point of view of interpreting the network outputs
as Bayesian posterior probabilities. Please note that the input neurons do not perform any
operation on the input values, and consequently, we do not specify any transfer function for
these neurons.

Finally, for completing this description, it is worth having a look at Figure 3.13. This figure
represents the particular multilayer perceptron considered in this thesis: it consists of three layers
of neurons, which aim at classifying the input sound signal into the three classes of interest:
speech, music and noise. L represents the number of features selected in a general case, that
is, the dimension of the feature vector F. As stated beforehand, this figure also illustrates the
transfer functions considered as the most appropriate: the logarithmic sigmoid for hidden and
output neurons. In this MLP architecture, the number of input neurons corresponds to that
of the features used to characterize the sound, the number of output neurons is related to the
three classes we are interested in, and finally, the number of hidden neurons depends on the
adjustment of the complexity of the network [Duda et al., 2001]. If too many hidden neurons
are used, the capability to generalize will be poor; on the contrary, if too few hidden neurons
are considered, the training data cannot be learned satisfactorily. In this respect and as will be
shown throughout this chapter, selecting the appropriate number of hidden neurons becomes a
fundamental issue when designing multilayer perceptrons.

MLP training

Roughly speaking, “network training” is related to the way in which the weights of each neuron
composing the network are adjusted. To explain this, it is convenient to consider an untrained
network, or in other words, a network in which the weights have been randomly initialized. The
feature vectors corresponding to the patterns available in a design phase are presented to the
input layer of this network, and the output networks are determined at the output layer. The

3.4. Classifying algorithm 51

F 1

F L

Input
layer

Hidden
layer

Output
layer

Speech

Noise

Music

Figure 3.13: An illustrative representation of the particular multilayer perceptron (MLP) consid-
ered in this thesis to carry out the experiments. It consists of three layers of neurons, which aim
at classifying the input sound signal into the three classes of interest: speech, music and noise. L
represents the number of features selected for the classifying algorithm, that is, the dimension of the
feature vector F. The figure also illustrates the transfer functions considered as the most appropriate
ones for the problem at hand: the logarithmic sigmoid, or in other words, the so-called “logsig”, for
hidden and output neurons.

difference between desired or correct outputs and network outputs is known as “network error”.
Typically, this error is the so-called mean square error (MSE) between desired and network
outputs. With this in mind, the purpose of the training process is just to minimize that error
by means of modifying the weights in the network, being thus the weights “adjusted” at the end
of this process.

A variety of algorithms has been proposed in the literature aiming at training multilayer per-
ceptrons. They include the gradient descent, Gauss-Newton, Levenberg-Marquardt or Levenberg-
Marquardt with the use of Bayesian regularization techniques. The following paragraphs just
focus on describing these training techniques.

• Gradient descent
Gradient descent is one of the simplest MLPs training algorithms [Bishop, 1995]. The
algorithm usually starts initializing the weight vector, labelled w(0), with random values.
Then, this weight vector is updated iteratively, moving a small amount in the direction of
the greatest rate of decrease of the error. w(i) refers to the weight vector at epoch number
i. Denoting the error function for a given weight vector w(i) by E(w(i)), the weight vector
for the epoch i+ 1 is thus given by:

w(i+1) = w(i) − η∇E(w(i)) = w(i) − ηJ(i), (3.27)

where J(i) represents the Jacobian of the error function evaluated in w(i), given by:

J(i) =

∂E(w(i),x1)

∂w1
. . . ∂E(w(i),x1)

∂wP
...

. . .
...

∂E(w(i),xN)
∂w1

. . . ∂E(w(i),xN)
∂wP

 . (3.28)

Note that the gradient is re-evaluated at each step. Turning again our attention to Expres-
sion 3.27, the parameter η is the so-called “learning rate”, and is of great importance for

52 Chapter 3. Overview of automatic sound classification systems

the convergence of the algorithm. If η is too small, the learning process will be slow, and
it may take a long time to train the MLP. On the contrary, if η is too high, the learning
process will be much faster, but the algorithm may not converge, and the system could
become unstable.

• Gauss-Newton
The Newton method can be seen as an “evolution” of the gradient descent algorithm in
the sense that information from the second derivative is considered. The expression for
updating the weight vector is given by:

w(i+1) = w(i) −H(i)−1∇E(w(i)) (3.29)

where H(i) represents the Hessian matrix of the error function E(w) evaluated in w(i),
given by:

H(i) =

∂2E(w(i),x1)

∂w2
1

. . . ∂2E(w(i),x1)
∂w1∂wP

...
. . .

...
∂2E(w(i),xN)
∂wP ∂w1

. . . ∂2E(w(i),xN)
∂w2

P

 . (3.30)

This method converges in only one iteration when the error surface is quadratic, and is in
general, much more efficient than the gradient descent method for two main reasons: 1)
there is no need to adapt any constants, and 2) because the direction in which the weights
vary is more efficient than for the gradient descent.
The main problem of the Newton method is that it demands to calculate the Hessian
matrix and its inverse, which may require large training time. Just in this respect, the
Gauss-Newton method is a simplification for the case when the error function is a sum of
square errors. In this case, the Hessian matrix can be approximated by a function of the
Jacobian (JTJ), and the gradient of the error function can be approached by a function of
the Jacobian and the error function (JTE). Thus, according to the Gauss-Newton method,
the expression for the calculation of the network weights is given by:

w(i+1) = wi −
(
J(i)T

J(i) + αI
)−1

J(i)T
E(i), (3.31)

where the parameter α is chosen to ensure that the matrix J(i)T
J(i) + αI is positively

defined. That is, the parameter α compensates the most negative eigenvalue in case the
matrix is not positively defined. Note that if α = 0, Expression 3.31 leads to the one of
the Newton method (Expression 3.29), whereas if α is very high the method behaves like
the gradient descent with a small learning rate.

• Levenberg-Marquardt
In the Levenberg-Marquardt algorithm [Hagan and Menhaj, 1994], the parameter α varies
depending on the value of the error function, being smaller when the error function de-
creases and higher when it increases.

If the Levenberg-Marquardt algorithm is selected in order to train a multilayer perceptron,
the key point of adjusting the size and complexity of the MLP arises: how to obtain good
generalization capability with a “small” MLP size? This objective basically motivates the
use of regularization techniques. Just in this respect, it has been shown that Bayesian

3.4. Classifying algorithm 53

regularization techniques exhibit good performance. The next subsection is devoted to
clearly explain this issue.

• Levenberg-Marquardt with Bayesian regularization
The technique of Bayesian regularization is based on the minimization of the following
error function:

E(w) = αwTw + βED (3.32)

where ED labels the sum of square errors. If α� β, then the training algorithm will make
the errors smaller. If α � β, the training algorithm will emphasize weight size reduction.
The Bayesian regularization algorithm aims to find the optimal values of α and β by means
of maximizing the joint probability function of α and β assuming a uniform density for
them [Foresee and Hagan, 1997]. This leads to the following expressions for α and β:

α(i+1) =
P − 2α(i)

tr(H(i+1))
2w(i+1)T w(i+1)

=
γ

2w(i+1)T w(i+1)
(3.33)

β(i+1) =
NP − P + 2α(i)

tr(H(i+1))

2E(i+1)
D

=
NP − γ
2E(i+1)

D

(3.34)

being:

– γ the effective number of parameters,

– P the total number of parameters in the network, and finally,

– NP the total number of available patterns in the design phase.

Note that the main advantage of using regularization techniques is that the generalization
capabilities of the classifier are improved and it is possible to obtain better results with
smaller networks, since the regularization algorithm itself prunes those neurons that are
not strictly necessary.

w(i+1) = w(i) −
(
J(i)(T)

J(i)
)−1

J(i)(T)
E(i). (3.35)

For the reasons stated above, all MLPs experiments in this thesis will be done using the
Levenberg-Marquardt algorithm with Bayesian regularization techniques [Álvarez et al., 2007].

Backpropagation of error

Common to all abovementioned training algorithms, the computation of the Jacobian or the
Hessian matrix is involved, which demands to calculate the derivative of the error function with
respect to each weight in the network. This can be simply noted by having a look at Expressions
3.28 and 3.30. Regarding this, it is worth mentioning that the computation of the derivative of
the error function with respect to the output neurons weights (that is, weights associated to the
connections between hidden and output neurons) is a relatively easy task since the outputs of
these neurons depend directly on the weights, but the calculation of the derivative of the error
function with respect to the hidden neurons weights (or in other words, weights associated to the
connections between input and hidden neurons) is not an easy task because we do not have any

54 Chapter 3. Overview of automatic sound classification systems

desired output values for these hidden neurons, and consequently, we are not able to compute
the error between the desired and hidden neuron outputs.

The specialized literature contains the backpropagation algorithm aiming at solving this
type of problem. This algorithm is quite popular as a learning strategy for multilayer percep-
trons because it is conceptually simple, computationally efficient and exhibits good performance
[Rumelhart et al., 1986; Werbos, 1974].

The basic purpose of backpropagation algorithm is to minimize iteratively the error function
(labeled E) with respect to the network weights, such that, the change in the network weights,
labeled 4w, complies with the following condition at each epoch in the training process:

4w ∝ −∂E
∂w

. (3.36)

As previously mentioned, the training algorithms require, during the training process, the
computation of the partial derivative of error function with respect to each weight in the network.
This computation is simple for output neurons weights, but, nevertheless for weights associated to
connections between input and hidden neurons is not so simple. Thanks to the backpropagation
error approach, instead of computing the partial derivative of error function with respect to each
weight in the hidden layer, we reformulate it in the following way by using the chain rule:

∂E

∂wlm
=

∂E

∂fTFm

∂fTFm

∂wlm
(3.37)

where:

• E is the error function,

• wlm is the weight associated to the connection between l-th input neuron and m-th hidden
neuron, and finally,

• fTFm is the transfer function of m-th neuron in the hidden layer.

With this expression in mind, the derivative of error function with respect to the weight wlm
can be expressed as the product of the derivative of error function with respect to the transfer
function of the neuron and the derivative of transfer function with respect to the weight. The
derivative of error function with respect to the transfer function can be computed taking into
account that such activation is contributing to network outputs, and thus, to the error.

3.4.4.3 Radial basis function (RBF) networks

Multilayer perceptrons have been widely-used as nonlinear approaches in the aim of solving cer-
tain problems that otherwise would be unfeasible [Agarwal, 1997]. Regrettably, from a practical
implementation point of view, MLPs may be a time-consuming task, especially because of their
associated training process, which may demand a large processor time. This is basically the rea-
son why there has been a considerable emerging interest in a particular kind of neural network,
the so-called radial basis function (RBF) network, in an effort of reaching similar performance,
but, with the added advantage of avoiding some time-consuming calculations [Chen et al., 1990].

Roughly speaking, RBF networks can be employed in any sort of model (linear and nonlinear)
and any sort of network (single-layer or multi-layer). However, they have been traditionally
associated with multilayer networks (in particular, networks consisting of three layers of neurons),
as will be shown in the subsection that immediately follows [Broomhead and Lowe, 1998].

3.4. Classifying algorithm 55

RBF network architecture

The basic architecture of a radial basis function network consists of three layers of neurons (input,
hidden and output layers), in which each hidden neuron implements a radial basis activation
function and, unlike what happens with MLPs, the output layer performs a simple weighted sum
with a linear output.

Perhaps the reader may wonder what a radial basis activation function is. Put it very simple,
a radial basis function is a multidimensional function that describes the distance (typically, the
euclidean distance) between an input vector and a pre-defined center vector. Although there are
different types of radial basis functions, the gaussian function is the most commonly used. For
the sake of clarity, Figure 3.14 shows the architecture of an RBF network, in which the hidden
neurons perform a gaussian function with different variances values.

F 1

F L

Input
layer

Hidden
layer

Output
layer

+

+

Figure 3.14: Radial basis function (RBF) network consisting of three layers: input, hidden and
output layers. Each hidden neuron implements a radial-basis activation function, being the gaussian
function the most commonly used. The output layer performs a simple weighted sum with a linear
output. In this picture, L represents the number of features selected for the classifying algorithm,
that is, the dimension of the feature vector labelled F.

In the effort of expressing these concepts in a more formal way, it is worth noting that the
euclidean distance between an input vector, or being more precise, the feature vector F in our
particular problem at hand and a pre-defined center vector (labeled z) can be mathematically
written as:

I(F) = |F− z|2Σ = (F− z)TΣ−1(F− z) (3.38)

where:

• F = [F1, F2, . . . , FL] labels the L-dimensional feature vector,

• z = [z1, z2, . . . , zL] is the L-dimensional pre-defined center vector of the radial-basis func-
tion for the hidden neuron, and finally,

• Σ is the covariance matrix, which controls the “smoothness” and the orientation of the
radial-basis function for each hidden neuron.

56 Chapter 3. Overview of automatic sound classification systems

Note that Expression 3.38 is particular for each hidden neuron, or in other words, both the
pre-defined center vector z and the covariance matrix Σ are different for each hidden neuron.

Considering that the radial basis function is the gaussian function, the expression of the
radial-basis function can be determined as follows:

g(I(F)) = exp
(−I(F)

2

)
= exp

(
−(F− z)TΣ−1(F− z)

2

)
. (3.39)

In the above expression, the argument of the function is a distance and is always positive,
which leads to evaluate the non-linear function only for positive values of the argument.

For the sake of clarity, Figure 3.15 illustrates, in a mathematical way, an RBF network
in which the radial basis activation function implemented in each hidden neuron is a gaussian
function.

F 1

F L

Input
layer

Hidden
layer

Output
layer

−1
2
(F− z2)T Σ−1

2 (F− z2)

−1
2
(F− z1)T Σ−1

1 (F− z1)

−1
2
(F− zM)T Σ−1

M (F− zM)

g(·)

g(·)

g(·)
+

+

Figure 3.15: “Mathematical” representation of a radial basis function (RBF) network in which the
radial-basis activation function implemented in each hidden neuron is a gaussian function.

With this in mind, if Y is the unknown class of a given audio file, let say, for instance, the
j-th file, and whose class we would like to recognize, the output class determined by the c-th
output neuron in the RBF network, Ŷc, can be computed by means of:

Ŷc =
M∑
m=1

wmc · g(|F− zm|2Σm
) + bc. (3.40)

Completing this section demands to mention that the covariance matrix Σ can be set to the
identity matrix (or a scalar multiple), to a diagonal matrix with different diagonal elements or
to a non-diagonal matrix. In the particular problem at hand, we have set Σ to a diagonal matrix
with different diagonal elements hlm, which basically involves that the radial-basis functions are
oriented following the axis of coordinates. With this in mind, Expression 3.39, evaluated for
diagonal Σi matrices, can be rewritten as:

gm = exp

(
− 1

2hlm

L∑
l=1

(xl − zlm)2

)
. (3.41)

3.4. Classifying algorithm 57

RBF network training

Not only does the training of RBF networks involve computing the pre-defined center vectors and
the covariance matrices but also estimating the weights that connect the hidden and the output
layers. For this purpose, nonlinear optimization algorithms, such as, for instance, the gradient
descent, are the most appropriate approaches for training RBF networks [Poggio and Girosi,
1990]. However, most nonlinear algorithms suffer from problems of demanding a large processor
training time and the possibility of being trapped in local minima. Just in this respect, RBF
neural networks are usually trained by using a combination of supervised and non-supervised
training techniques, which are basically applied in two steps, as follows:

1. The RBF centers are determined empirically by applying a non-supervised clustering tech-
nique, such as, for instance, the k-means clustering algorithm [Moody and Darken, 1989]
or vector quantization [Kohonen, 2001], to form templates of the input. In this thesis, we
have made use of the k-means clustering algorithm.

2. The elements of the covariance matrix are varied and those that minimize the mean square
error computed over the patterns available in a validation phase are selected.

3. The weights are computed by minimizing the mean square error between desired and
network outputs.

Finally, it is worth mentioning that the above steps describe the way RBF networks have
been trained in this thesis.

Chapter 4

Proposed feature extraction and
selection algorithms

4.1 Introduction

As mentioned in Chapter 3, within any automatic sound classification system, the feature extrac-
tion task plays the key role of processing the input sound signal in order to extract some kind of
valuable information that helps the classifying algorithm properly discriminate the input signal
among the classes considered (speech, music or noise, in our case). The great difficulty here re-
lies on the fact that due to the complexity of human audio perception, extracting representative
features is a crucial task because no feature has been designed so far that allows the classifier to
discriminate accurately among the different classes. Or in other words, the features best suited
for a particular classification task, such as, for instance, discriminating between speech and mu-
sic may not be the same as those best fitted to a different classification task, like, for example,
separating speech from traffic noise.

In the aforementioned chapter, we listed a set of available, general-purpose spectral features
that could potentially exhibit different behavior for speech, music and noise, and thus, may assist
the classifier in properly discriminating the input sound signal into one of the mentioned classes.
Bearing in mind the severe design restrictions imposed by the DSP hearing aids are based on,
we have focused in this chapter on a procedure to improve sound classification in hearing aids
by designing a set of “low-complexity” features based on a variation of some of the features
listed in Chapter 3. The key point that exhibits the greatest relevance here is that these new
features can be programmed in the DSP by using a lower number of operations per seconds, or
equivalently, the computational cost associated to their implementation is significantly reduced,
with the added advantage of not degrading the classification performance. For the sake of clarity,
this set of low-complexity features is described in a detailed way in Subsection 4.2.1.

Taking into account that the features listed in Chapter 3 (Subsection 3.3.2) and those included
in Section 4.2.1 result in a number of features larger than that we can program in a DSP-based
hearing aid, we have placed special emphasis here on designing an feature-selection approach
that aims at finding a subset H ⊆ F (being F the set of all features listed in Subsection 3.3.2
and Subsection 4.2.1), consisting of a “reduced” number of satisfactory sound-describing features
that, by feeding the classifier, assists it in properly distinguishing among the different acoustic
environments considered, while saving DSP resources. In the effort of doing this, we have explored
the benefits of using a genetic algorithm with constrained maximum computational cost (or,
equivalently, number of instructions per second), which will be described in a detailed way in
Section 4.3.

59

60 Chapter 4. Proposed feature extraction and selection algorithms

With these ideas in mind, this chapter has been structured in four sections. Section 4.2
mathematically defines the new low-complexity features proposed in this chapter. Section 4.3
shows in a very illustrative way the feature-selection approach we propose in this chapter. For
the sake of clarity, a detailed description of the computational cost (in number of clock cycles),
demanded by the DSP used by our platform to carry out the experiments, to compute the
features considered in the different experiments is also outlined in this section. Finally, Section
4.4 concludes the chapter with a summary of the key points.

4.2 Low-complexity features

In the effort of reducing the computational cost demanded by the DSP to compute some of the
features described in Subsection 3.3.2 (page 36), we have designed in this thesis a set of five
new, “low-complexity” features inspired by some of the mentioned features, aiming at achieving
comparable or even better results in terms of classification performance than those obtained with
the original ones, but, this is the crucial point, with the added advantage of extremely reducing
the computational cost demanded by the DSP for their computation.

4.2.1 Mathematical expression of the low-complexity features

For this goal to be reached, we have based the design of these features on the following original
ones: spectral centroid (SC), voice2white (V2W) and spectral flux (SF). Although other spectral
features, such as, for instance, the Mel-frequency cepstral coefficients could be used, we have
deliberately restricted the study to the variation of the mentioned features because they are
well-known in hearing aid applications, and the computational cost demanded to calculate them
in the DSP used to carry out the experiments is relatively low [Cuadra et al., 2010].

The key point that exhibits the greatest relevance in these features basically consists in
the fact of avoiding some complex mathematical operations, or in other words, operations that
require high computational cost for being programmed in the DSP, such as, for instance, the
computation of the magnitude of the spectrum of a given sound frame Xi(t) at a particular k-th
frequency band (or, mathematically written as, |χi(k)|), or the division operation.

With these ideas in mind, the low-complexity features, for each analysis sound frame Xi(t),
have been found to be as follows:

• New features based on spectral centroid:

ŜCi =

NB∑
k=1

|χi(k)|2 · k
NB∑
k=1

|χi(k)|2
(4.1)

S̃Ci =
NB∑
k=1

|χi(k)|2 · k (4.2)

• New features based on voice2white:

V̂2Wi =

M2∑
k=M1

|χi(k)|2

NB∑
k=1

|χi(k)|2
(4.3)

4.2. Low-complexity features 61

Ṽ2Wi =
M2∑

k=M1

|χi(k)|2 (4.4)

• New feature based on spectral flux:

ŜFi =
NB∑
k=1

(|χi(k)|2 − |χi−1(k)|2)2. (4.5)

We label this set of new, low-complexity features SLC, as depicted below:

SLC = {ŜC, S̃C, V̂2W, Ṽ2W, ŜF},
subscript LC meaning “low-complexity”.

4.2.2 Mathematical characterization of the feature extraction process

In the effort of computing the aforementioned low-complexity features and features listed in
Subsection 3.3.2, it is necessary to carry out a number of signal processing steps that for the
sake of clarity we summarize below.

Let us assume that F is the set that contains all the available features as follows:

F = [f1, . . . , fNF] (4.6)

NF being the number of features.
Any feature fv can be assumed, in the most general case, as a complex function of p real

variables,

fv : Cp → R. (4.7)

In our particular case, all the considered features are real.
Since frame Xi(t) has been shown to be a random-variable vector in Expression 3.2 (page

34), then any feature fv ∈ F applied on it, fv(Xi), is thus a function of p random variables,
fv(Xi1, . . . ,Xip), and, consequently, a random variable. In order to simplify the notation, the
random variable fv(Xi1, . . . ,Xip) will be labelled fvi. Finally, to complete the characterization
of the input audio signal, the aforementioned sequence of processes has to be applied onto all the
Nframes frames into which the input audio signal has been segmented. Please note that Nframes
consecutive frames compose a time slot, and the classifying algorithm returns a decision per time
slot.

Let us imagine now that we are interested in how properly feature fv ∈ F describes the input
signal. One of the results that provides the previously described sequence of processes is the
random data vector

[fv1, . . . , fvNframes] ≡ Fv. (4.8)

The elements of this vector are the results obtained when feature fv is applied to each of
the Nframes frames into which the input audio signal has been segmented to be processed. The
random vector Fv can be characterized, for instance, by estimating its mean value:

Ê[Fv] ≡ µ =
1

Nframes

Nframes∑
i=1

fvi (4.9)

62 Chapter 4. Proposed feature extraction and selection algorithms

where Nframes represents the number of values that the given random variable Fv has. The
vector Fv can be also characterized by estimating its variance:

σ̂2[Fv] =
1

Nframes

Nframes∑
i=1

(fvi − µ)2 (4.10)

its standard deviation:

σ̂[Fv] =

√√√√ 1
Nframes

Nframes∑
i=1

(fvi − µ)2 (4.11)

its range:

R[Fv] = max [Fv]−min [Fv] (4.12)

the most significative bit (MSB) of the mean value:

N [Fv] = log2{Ê[Fv]} (4.13)

and the MSB of the variance:

W [Fv] = log2{σ̂2[Fv]}. (4.14)

It is important to note that the previously described statistical characterization can be done
for all the available features fv ∈ F, so that the feature extraction algorithm generates:

F = [Ê[F1], σ̂2[F1], σ̂[F1], R[F1], N [F1],W [F1] . . .

. . . Ê[FNF], σ̂2[FNF], σ̂[FNF], R[FNF], N [FNF],W [FNF]]T
(4.15)

a random vector whose dimension is dim(F) = 6 ·NF = L.
This is just the signal-describing vector that should feed the classifier. For the sake of clarity,

it is formally written as

F = [F1, . . . , FL]T . (4.16)

4.2.3 Preliminary classification results

For illustrative purposes, we have included this brief section that aims at succinctly exhibiting
the performance of the aforementioned low-complexity features for the problem of discriminating
among speech, music and noise in hearing aids. To achieve this, we have made use of the sound
database described in Section C.1 in Appendix C (page 211) (we refer the reader to the mentioned
appendix for further details) and the mean square error (MSE) linear classifier, explained in a
detailed way in Section 3.4.2 in Chapter 3 (page 44). The results we illustrate below correspond
to the test set.

In the batches of experiments we have put into practice, we have considered three different
feature sets, which are defined as follows:

• Set 1 = {SC,V2W, SF, STE}.

• Set 2 = {ŜC, V̂2W, ŜF, STE}.

4.3. Fundamentals of feature selection 63

• Set 3 = {ŜC, S̃C, V̂2W, Ṽ2W, ŜF, STE}.

As shown, features included in “Set 1” label the original ones, along with STE feature because
this latter feature demands a relative low number of operations for its programming in the DSP,
whereas “Set 2” includes the low-complexity features “more similar” to the original ones, along
with also STE feature, and finally, “Set 3” contains all the low-complexity features proposed in
this thesis, along with STE feature. For the sake of simplicity, we have only computed the mean
and variance of the features included in each feature set.

Table 4.1 depicts the percentage of correct classification, PCC (%), reached by the three
mentioned feature sets for the speech/music/noise classification task. Please note that it is also
shown the number of features included in each set.

Number of features PCC (%)
Set 1 8 66.1
Set 2 8 65.5
Set 3 12 67.5

Table 4.1: Mean percentage of correct classification, PCC (%), reached by three different feature
sets, which include low-complexity features proposed in this thesis, for distinguishing among speech,
music and noise. Note that it is also shown the number of features included in each feature set.

Thanks to this table, we can observe that the new, low-complexity features proposed here
achieve similar results than those obtained with the original ones, along with considerably lower
computational cost. The way to note this simply consists in comparing the percentage of correct
classification, PCC (%), listed in row “Set 1” (that is, that achieved by using the original features),
which has been found to be 66.1 %, with that corresponding to “Set 2” (or in other words, that
achieved by using the low-complexity features proposed in this thesis), which has been found to
be 65.5 %, and the number of features used in both sets. It is worth mentioning that “Set 3”
provides a better result than the others do, assisting the classifier in achieving PCC = 67.5 % at
the expense of making use of a greater number of features

Finally, completing this brief section demands to mention that these results are very promis-
ing in the sense that the low-complexity features included in set SLC, proposed in this thesis,
exhibit very good results, with the added bonus of saving a great amount of computational re-
sources available in the DSP as will be shown later on. Regrettably, the problem here is that
implementing in the DSP all the features described in this section, along with the classical,
spectral features described in Subsection 3.3.2, has been found to be unfeasible from a practical
implementation point of view, because it exceeds the scarce computational resources available
in the DSP. It seems to be clear that it is necessary to reduce the number of features to be
programmed in the DSP. Elucidating this is just the objective of the section that immediately
follows.

4.3 Fundamentals of feature selection

4.3.1 An intuitive approach

As advanced in the introductory chapter and explained in a more detailed way in Chapter 3, the
problem of the “self-adapting hearing aid” is that its implementation is very difficult because of
the inherent limitations of the DSP the hearing aid is based on. This enforces us to put special
emphasis on signal processing techniques and algorithms tailored for properly classifying while
using the minimum number of operations. Bearing in mind that the calculations involved in the

64 Chapter 4. Proposed feature extraction and selection algorithms

feature extraction process may be the system’s most time-consuming task, programming in the
DSP all the features listed in Subsections 3.3.2 and 4.2.1 have been found to be unfeasible from
a practical implementation point of view.

Indeed such limitations motivate the purpose of this section. Figure 4.1 will assist us in
introducing such objective. As shown, the purpose basically consists in searching inside the set
of all available features, labelled within our stated framework F, a subset H ⊆ F, composed of a
“reduced” number of satisfactory sound signal-describing features that, by feeding a three-classes
classifier, assists it in properly distinguishing among the different acoustic environments (speech,
music and noise, in our case), while presumably saving DSP resources.

Computational
cost

Music

Noise

Speech

F

D

PCC

Feature Selection
Algorithm

Data
processing

Feature
Extraction Classifier

H

Figure 4.1: Conceptual description of the way the proposed feature-selection algorithm works. It
selects features (from the feature set labelled F) and calculates the percentage of correct classification
(PCC) and the computational cost demanded by the DSP to calculate the selected features. By
minimizing the computational cost and maximizing PCC, the algorithm creates the optimized low-
cardinality subset H ⊆ F.

There are two latent reasons to work towards the objective of selecting sound signal-describing
features in sound classification for digital hearing aids:

• The first, more evident reason, is that a lessened number of features to be computed on
the DSP will save some of its limited resources.

• The second cause is related to the feature concept itself. As mentioned in Chapter 3, a
“proper” feature must contain the sort of audio signal information that allows the classifier
to properly distinguish among the different classes considered in each particular classifi-
cation task. If this is not the case, some features may degrade the classifier performance,
basically for two reasons. On the one hand, if the features do not contain all the essential
information, the classifier may not perform properly. But on the other, if the selected
features contain excessive, irrelevant information, the system will also fail; in this sense, it
is said that such irrelevant features behave as noise.

Once we have explained the purpose of this section, the immediate point arising here is how
to put it into practice. The method to reach the aforementioned goal is immediately related
to: 1) the feature selection problem exhibits an NP-complete behavior [Weston et al., 2000]
(NP stands for nondeterministic polynomial time and means that a computer -as we know them
today- cannot solve the problem in polynomial time), and 2) the large number of local minima
the classifying function has. If the number of available features is large, an exhaustive search
through all the combinations of features is not computationally feasible. Solving the stated
problem requires to make use of global search and optimization techniques able to deal with

4.3. Fundamentals of feature selection 65

solution spaces that have constrained parameters, and a large of local relative extreme. In
this respect, a variety of algorithms have been proposed in the literature for solving this type
of problem. They include genetic algorithms (GAs) [Goldberg, 1989; Haupt and Haupt, 2004],
mutual information techniques [Torkkola, 2002; Torkkola and Campbell, 2000], sequential forward
search, sequential backward search [Bishop, 1995], principal/independent component analysis
[Hyvaarinen et al., 2001; Jolliffe, 1986], self-organizing maps [Kohonen, 2001], and so on. Genetic
algorithms, described in-depth in Appendix D, are particularly effective in finding the global
optimum, or at least a local optimum that is good enough, of a multiple local problem [Goldberg,
1989], such as, for instance, the one at hand. Thus, GAs will be explored in this section in the
effort of reaching the mentioned goal.

Perhaps the reader may wonder why we make use of GAs for solving this problem, because it
may be inconsistent that, although we are looking for ways to save DSP resources, we use GAs,
which can eventually suffer from high computational load. In this respect, it is worth mentioning
that this does not matter because these algorithms will be run off-line in the aim of selecting the
most appropriate features. The selected feature subset, H, which has low computational cost,
will be the one that is finally implemented in the DSP.

4.3.2 How should the feature selection algorithm work?

Keeping in mind the data structure described in Subsection 4.2.2, the purpose of this section can
be “reformulated” in the following way. Given F, the set of L available, general-purpose features,
the algorithm should find a subset H ⊆ F that maximizes the percentage of correct classification,
PCC, and minimizes the computational cost, constrained by the following conditions:

• card(H) 6 card(F), card() denoting the cardinality of the considered set. Note that
card(H) and the elements belonging to subset H are unknown a priori. This statement
is equivalent to reducing the dimension of the feature vector, or in other words, to find-
ing a vector H, which contains N sound signal-describing features and whose dimension
dim(H) = N 6 dim(F) = L,

• the classifier accuracy is maximized (or, equivalently, the percentage of correct classification
is maximized), and finally,

• the computational cost required to compute the feature vector H and classify the input
audio signal are minimized.

Put it in a more schematic way, we can say that, for any candidate feature subset H, the
algorithm has to complete the following sequence of operations:

• feeding the complete system with audio input files from the adequate database D as illus-
trated in Figure 4.1,

• calculating the feature vector H for the complete file,

• classifying the file, and finally,

• calculating 1) the mean square error between the classifier outputs (Ô), and the correct
outputs (O), labelled MSE(Ô, O), 2) the percentage of correct classification (PCC) and 3)
the computational cost demanded by the DSP to compute the feature vector H.

66 Chapter 4. Proposed feature extraction and selection algorithms

This sequence of operations can be considered a wrapper method [Kohavi and John, 1997]
since, in order to select features, it uses, as a selection criterion, the output of the learning
machine itself. The main advantage of this approach is that, if properly designed, it guarantees
that in each step of the algorithm, the performance of the selected subset is better than the
previous one. Just in this respect, GAs are easy to implement and provide very good results in
terms of the selected features and the overall performance of the classifier.

4.3.3 Practical implementation

To put into practice this global design, it is worth mentioning that, although for the particular
problem at hand, one may expect that F = SC ∪ SLC, in an effort of saving computational
resources, we have reduced the number of signal-describing features involved in the feature set
F. In this sense, regarding the spectral features proposed in the literature (that is, those listed
in Subsection 3.3.2), it has been found to be unfeasible, from a practical implementation point
of view, the fact of programming in the DSP all these features. In order to find the classical,
spectral features more appropriate for carrying out the batches of experiments outlined in this
section, we have defined two different feature sets that are defined as follows:

• Set 4 = {SC,V2W, SF, STE, [1, . . . , 20]MFCCs, [1, . . . , 20] ∆MFCCs}.

• Set 5 = {SC,V2W, SF, STE, [1, . . . , 20]MFCCs, [1, . . . , 20] ∆MFCCs, SR, SB,
SCF, SFM,RE, SE}.

Perhaps the reader may wonder why we have selected these two particular feature sets. The
reason is as follows. On the one hand, the set of features labelled “Set 4” includes the features
contained in “Set 1”, along with [1, . . . , 20] MFCCs and [1, . . . , 20] ∆MFCCs. Both MFCCs and
∆MFCCs features are also well-known in sound classification and, as will be shown throughout
this chapter, they can be computed in the DSP with relatively low computational complexity.
On the other hand, “Set 5” includes all the classical, spectral features considered in this work in
the effort of evaluating the performance of the whole classical, spectral feature set SC.

Aiming at evaluating the performance of these two feature sets, we have illustrated in Table
4.2 the percentage of correct classification reached by the two sets for the speech/music/noise
classification task. To achieve this, we have made use of the sound database describe in Section
C.1 in Appendix C (page 211) and the mean square error (MSE) linear classifier. As in Table
4.1, it is also shown the number of features included in each set.

Number of features PCC (%)
Set 4 88 86.6
Set 5 100 89.4

Table 4.2: Mean percentage of correct classification, PCC (%), reached by two different feature sets,
consisting of classical, spectral features proposed in the literature, for distinguishing among speech,
music and noise. Note that it is also shown the number of features included in each feature set.

Having a brief look at the above table, one can notice that “Set 5” provides a better result than
the other does, assisting the classifier in achieving PCC = 89.4 %. However, it is worth noting
that the result reached by “Set 4”, being close to 86.6 %, is quite similar than that obtained by
“Set 3”, with the added advantage of using a lower number of features, or equivalently, requiring
lower computational cost for its implementation in the DSP.

With this in mind, it seems to be clear that:

4.3. Fundamentals of feature selection 67

F = SC ∪ Set 4

that is,

F = Set 3 ∪ Set 4

or, equivalently,

F = {SC,V2W, SF, STE, 20MFCCs, 20∆MFCCs, ŜC, S̃C, V̂2W, Ṽ2W, ŜF}.
With regard to the statistical characterization of the features included in F, it is worth noting

that the mean, variance, standard deviation, range and MSB of both mean and variance of the
listed features are estimated, which basically leads to compute the resulting feature vector as
follows:

F = [Ê[SC], σ̂2[SC], σ̂[SC], R[SC], N [SC],W [SC],

Ê[V2W], σ̂2[V2W], σ̂[V2W], R[V2W], N [V2W],W [V2W],
. . .

σ̂2[∆MFCC], σ̂[∆MFCC], R[∆MFCC],W [∆MFCC],
. . .

Ê[Ṽ2W], σ̂2[Ṽ2W], σ̂[Ṽ2W], R[Ṽ2W], N [Ṽ2W],W [Ṽ2W],

Ê[ŜF], σ̂2[ŜF], σ̂[ŜF], R[ŜF], N [ŜF],W [ŜF]]T

(4.17)

being thus dim(F) = L = 254, or in other words, the total number of features available in F

is 254. Just in this respect, it is important to note that as the mean as MSB of mean of ∆MFCCs
are not computed because they result in zero.

Having a look at the previously described sequence of operations in the proposed algorithm,
it seems clear that it is necessary to calculate the computational cost demanded by the DSP to
compute the features available in the feature F. Just in this respect, the following subsections
aim to help the reader understand the computational cost demanded by the DSP, used by our
platform to carry out the experiments, to program the features included in the feature set F.

4.3.3.1 Computational cost of classical and low-complexity features

We deduce here the computational cost (in number of clock cycles) required to compute the
feature set {SC,V2W, SF, STE, ŜC, S̃C, V̂2W, Ṽ2W, ŜF}. For the sake of clarity, we have labelled
this feature set S1. Therefore, the feature set S1 can be written formally as follows:

S1 = {SC,V2W, SF, STE, ŜC, S̃C, V̂2W, Ṽ2W, ŜF}.
Aiming at making this section stand by itself, we have defined seven “building blocks” that

we have labelled BBi(b), where b = 1, . . . , B is the index over the B building blocks (in our
study-case, as will be shown later on, B = 7), while i = 1, . . . , Nframes labels the one over the
Nframes frames into which any time slot is segmented. The main purpose of these building blocks
is just to provide a valuable mathematical insight that helps us analytically define the features
included in the set S1 as a function of the mentioned building blocks, as clearly explained in the
paragraphs that follow. With this in mind, these building blocks are defined as depicted in Table
4.3.

68 Chapter 4. Proposed feature extraction and selection algorithms

Building block Definition

BBi(1)
NB∑
k=1

|χi(k)| · k

BBi(2)
NB∑
k=1

|χi(k)|2 · k

BBi(3)
NB∑
k=1

|χi(k)|

BBi(4)
NB∑
k=1

|χi(k)|2

BBi(5)
M2∑

k=M1

|χi(k)|

BBi(6)
M2∑

k=M1

|χi(k)|2

BBi(7)
NB∑
k=1

|χi(k)| · |χi−1(k)|

Table 4.3: Mathematical expression of seven “building blocks” designed aiming at providing a
valuable mathematical tool that help us analytically define the features included in the feature set
S1 = {SC,V2W, SF, STE, ŜC, S̃C, V̂2W, Ṽ2W, ŜF} as a function of the mentioned building blocks.
We have labelled these building blocks BBi(b), being b-index the index over the B building blocks
(in our study-case, B = 7), while i = 1, . . . , Nframes labels the one over the Nframes frames into which
any time slot is segmented.

For the sake of clarity and in the aim of facilitating the reader’s comprehension, we have
preferred to clearly explain the way such involved features in the set S1 can be expressed as a
function of these building blocks. In particular, we have illustrated the way that, for instance,
the SC and S̃C features calculated for a given sound frame Xi(t) are expressed. For this purpose,
having a look at Table 4.3 and Expressions 3.3 and 4.1, it can be clearly noticed that SCi (note
that SCi simply labels the SC feature for the frame i-th) makes use of BBi(1) and BBi(3),
whereas S̃Ci (in the same line of reasoning, S̃Ci designates the S̃C feature for the frame i-th)
only uses BBi(2). By means of this example, it is very illustrative to note that, at first glance,
the computational cost demanded by the DSP to calculate the S̃C feature for a given input sound
frame is much lower than that demanded to compute the original one, that is, the SC feature for
such frame.

In the effort of showing the way the remaining features are expressed as a function of the
building blocks, we have included Table 4.4 in which, for each of the features available in the
set S1, we have placed an X in each building block they make use of. Please note that i simply
labels the index over the Nframes frames into which any time slot is segmented.

With this in mind, we can proceed further in explaining the computational cost (in number
of clock cycles) demanded by the DSP to program the computation of the mentioned building
blocks. For this purpose, since the building blocks are basically computed by using addition,
addition-multiplication or square root operations, we have partially determined the computa-
tional cost, for each building block, as the sum of number of clock cycles required to carry out
the aforementioned operations. In this respect, it is worth mentioning that the addition opera-
tion as well as the addition-multiplication operation require only 1 clock cycle in the DSP used
to carry out the experiments, whereas the root square operation needs for its implementation
11 clock cycles. For example, since BB(1) needs 64 addition-multiplication operations, and 64

4.3. Fundamentals of feature selection 69

Features Building blocks
BBi(1) BBi(2) BBi(3) BBi(4) BBi(5) BBi(6) BBi(7)

SCi X X
ŜCi X X
S̃Ci X
V2Wi X X
V̂2Wi X X
Ṽ2Wi X
SFi X X
ŜFi X
STEi X

Table 4.4: Table illustrating for each of the features arranged in the set S1, the building blocks
they make use of. For this purpose, we have placed an X on each building block they use. Note that
i = 1, . . . , Nframes is the index over the Nframes frames into which any time slot is segmented.

square roots operations, the total number of clock cycles needed would be 768. In the aim of
making easier the reader’s comprehension, we have succinctly represented the total number of
clock cycles required by each building block in Table 4.5.

Building block
Operations Total

Addition Multiplication Square root clock
(1 cycle) (1 cycle) (11 cycles) cycles

BBi(1) 0 64 64 768
BBi(2) 0 64 0 64
BBi(3) 64 0 64 768
BBi(4) 64 0 0 64
BBi(5) 34 0 34 408
BBi(6) 34 0 0 34
BBi(7) 0 64 64 768

Table 4.5: Total number of clock cycles demanded by the DSP, used to carry out the experiments,
to implement each building block. Since the building blocks are calculated by means of addition,
addition-multiplication or square root operations, we have partially determined the computational
cost as the sum of clock cycles needed to carry out the aforementioned operations, which require 1
clock-cycle, 1 clock-cycle and 11 clock-cycles, respectively.

In this respect, it is very illustrative to note that the building blocks that require for its
computation to calculate the magnitude of the spectrum and consequently to carry out a root
square operation at each analysis frame, such as, for instance, building blocks labelled BB(1),
BB(3) or BB(7), are the blocks that demand significantly higher computational cost.

Prior to depicting the total number of clock cycles demanded by the DSP to program the
features included in the set S1, it is indispensable to have a brief look at the number of clock
cycles needed to carry out “additional operations”, such as, for instance, to perform a division
operation between two building blocks or to store and to recover data from registers (by means of
push and pop instructions), to call a subroutine (by using call instruction) or to return from a
subroutine (by making use of ret subroutine). We have clearly summarized in Table 4.6, for each
building block, these additional number of clock cycles. Please note that the division operation
requires a total of 15 clock cycles.

70 Chapter 4. Proposed feature extraction and selection algorithms

Feature
Additional operations Additional Total

Addition Multiplication Division clock clock
(1 cycle) (1 cycle) (15 cycles) cycles cycles

SCi 1 1 1 21 38
ŜCi 1 1 1 21 38
S̃Ci 1 1 0 11 13
V2Wi 1 1 1 19 36
V̂2Wi 1 1 1 19 36
Ṽ2Wi 1 1 0 9 11
SFi 2 2 0 8 12
ŜFi 2 1 0 8 11
STEi 1 1 0 8 10

Table 4.6: Summary of the number of “additional” clock cycles required for calculating the features,
arranged in the set S1, in the DSP used to carry out the experiments. We say additional in the
sense that these clock-cycles are due to additional operations, such as, for instance, to compute the
division operation between two building blocks or to store and to recover data from registers, to call
a subroutine or to return from a subroutine.

Now, with this in mind, we have the background to define the computational cost demanded
by the DSP to program any of the features included in the set S1. Let us imagine that we are
interested in calculating the total computational cost associated to the programming of the SC
feature for the analysis frame i-th (that is, SCi). For this purpose, we have a look at Table 4.4
that basically assists us in knowing what building blocks the feature SCi makes use of. Regarding
this, it is very clear to note that this feature makes use of both building blocks labelled BBi(1)
and BBi(3). Then, thanks to Tables 4.5 and 4.6, we can conclude that the computational cost
required to implement the SCi feature in the DSP has been found to be:

C(SC) = C(BB(1)) + C(BB(3)) + C(Additional cycles)
= 768 + 64 + 38
= 870 clock cycles.

(4.18)

Perhaps the reader may wonder why we have written that the computational cost of the
building block labelled BB(3) is 64 clock cycles instead of 768 clock cycles as depicted in Table
4.5. In this respect, it is worth mentioning that the computation of the magnitude of χi(k),
or in other words, |χi(k)|, needs to be calculated for both building blocks. Intuitively, instead
of computing |χi(k)| twice, it is only once calculated and then the value is stored in the data
memory available in the DSP. For that reason, we have written that the computational cost for
programming the building block labelled BB(3) is only 64 clock cycles instead of 768 clock cycles
as represented in the Table 4.5.

Finally, we complete this section by summarizing in Table 4.7 the total computational cost
(in number of clock cycles) of each of the features available in the set S1. As shown, the com-
putational cost required to implement in the DSP the low-complexity features proposed in this
chapter is significantly lower than that needed to program the “original” features, or in other
words, the SC, V2W or SF features. Bearing in mind the classification results obtained in Sub-
section 4.2.3, we can conclude that the low-complexity features proposed in this chapter are very
appropriate for the classification problem at hand, not only in terms of computational complexity
but also in terms of classification performance.

4.3. Fundamentals of feature selection 71

Feature Computational cost
(clock cycles)

SCi 870
ŜCi 166
S̃Ci 77
V2Wi 838
V̂2Wi 134
Ṽ2Wi 45
SFi 844
ŜFi 75
STEi 74

Table 4.7: Total computational cost (in number of clock cycles) demanded by the DSP, used to
carry out the experiments, to implement each of the features arranged in the set S1. As clearly
illustrated, the new, low-complexity features proposed in this thesis (that is, ŜC, S̃C, V̂2W, Ṽ2W
and ŜF) demand a lower number of clock cycles than those demanded by the original ones (or
equivalently, SC, V2W and SF).

4.3.3.2 Computational cost of MFCCs and ∆MFCCs

Roughly speaking, the computational cost demanded to program in the DSP the computation of
MFCCs and ∆MFCCs features depends on the number of filter coefficients needed in the filter
bank to obtain each MFCC. In this respect, we can proceed in explaining the computational cost
(in number of clock cycles) required to compute each MFCC as follows:

C(MFCCn) = C(Filter bank) + C(Logarithm) + 1 (4.19)

where:

• C(Filter bank) represents the computational cost (in number of clock cycles) needed to
obtain, at the output filter bank, the n-th MFCC, or as we have labelled it MFCCn (n-
index ranging from 1 to 20, in our case),

• C(Logarithm) designates the computational cost required to perform the logarithm opera-
tion in the DSP, being C(Logarithm) = 13 clock cycles in the DSP used by our platform
to carry out the experiments (see [Dspfactory, 2002a,b] for further details), and finally,

• 1 simply labels an additional clock cycle due to an accumulation operation.

Table 4.8 will assist us in illustrating the total computational cost required to compute each
MFCC in the DSP. Note that the higher the number of calculated MFCCs is, the higher the
computational cost required is. Intuitively, this is due to the fact that as the number of MFCC
to be computed is higher, the number of filter coefficients to be calculated increases.

On the other hand, the computational cost required to compute in the DSP each ∆MFCC
is intimately related to the computational cost needed to calculate the MFCCs they depend on.
To better explain this, the expression shown below illustrates the computational cost (in number
of clock cycles) demanded to calculate each ∆MFCC in the DSP used by our platform to carry
out the experiments:

C(∆MFCCn) = C(MFCCn−2) + C(MFCCn+2) + 1 (4.20)

72 Chapter 4. Proposed feature extraction and selection algorithms

Coefficient Computational cost (clock cycles) Total
Filter bank Logarithm Extra operation clock cycles

MFCC1 1 13 1 15
MFCC2 2 13 1 16
MFCC3 2 13 1 16
MFCC4 2 13 1 16
MFCC5 2 13 1 16
MFCC6 3 13 1 17
MFCC7 4 13 1 18
MFCC8 3 13 1 17
MFCC9 3 13 1 17
MFCC10 5 13 1 19
MFCC11 6 13 1 20
MFCC12 6 13 1 20
MFCC13 6 13 1 20
MFCC14 7 13 1 21
MFCC15 8 13 1 22
MFCC16 9 13 1 23
MFCC17 10 13 1 24
MFCC18 12 13 1 26
MFCC19 14 13 1 28
MFCC20 14 13 1 28

Table 4.8: Total computational cost (in number of clock cycles) demanded to compute each MFCC
in the DSP used to carry out the experiments. Note that the higher the number of calculated MFCC
is, the higher the computational cost required is. Intuitively, this is due to the fact that as the number
of MFCC to be computed is higher, the number of filter coefficients to be calculated increases.

where:

• C(MFCCn−2) intuitively represents the computational cost needed to compute in the DSP
the MFCCn−2, and in the same line of reasoning,

• C(MFCCn+2) represents the computational cost needed to obtain in the DSP the MFCCn+2,
and finally,

• 1 simply labels an additional clock cycle due to an accumulation operation.

With this scenario in mind, Table 4.9 summarizes the total number of clock cycles needed to
compute each ∆MFCC in the DSP.

As illustrated, the higher the number of calculated ∆MFCC is, the higher the computational
cost required is, except from that corresponding to the one for ∆MFFC19 or ∆MFFC20. To
explain this, it is worth mentioning that for determining the computational cost demanded to
program in the DSP, such as, for instance, ∆MFCC1 or ∆MFCC2, we would need to compute
the computational cost to implement MFCC−1 or MFCC0, respectively. Since these MFCCs do
not exist, we assume that,

C(MFCC−1) = C(MFCC0) = 0. (4.21)

In the same line of reasoning, we can assume that the computational costs for computing
MFCC21 or MFCC22 required to implement ∆MFCC19 or ∆MFCC20, respectively, have been

4.3. Fundamentals of feature selection 73

Coefficient
Computational cost (clock cycles) Total

MFCCn−2 MFCCn+2 Extra operation clock cycles
∆MFFC1 0 16 1 17
∆MFFC2 0 16 1 17
∆MFFC3 15 16 1 32
∆MFFC4 16 17 1 34
∆MFFC5 16 18 1 35
∆MFFC6 16 17 1 34
∆MFFC7 16 17 1 34
∆MFFC8 17 19 1 37
∆MFFC9 18 20 1 39
∆MFFC10 17 20 1 38
∆MFFC11 17 20 1 38
∆MFFC12 19 29 1 41
∆MFFC13 20 22 1 43
∆MFFC14 20 23 1 44
∆MFFC15 20 24 1 45
∆MFFC16 21 26 1 48
∆MFFC17 22 28 1 49
∆MFFC18 23 28 1 52
∆MFFC19 24 0 1 25
∆MFFC20 26 0 1 27

Table 4.9: Total computational cost (in number of clock cycles) required to compute each ∆MFCC
in the DSP used to carry out the experiments. In general, the higher the number of calculated
∆MFCC is, the higher the computational cost required is.

found to be:

C(MFCC21) = C(MFCC22) = 0. (4.22)

Another important point to note is the fact of considering the scenario in which we are in-
terested in determining the computational cost to implement a feature vector F which contains,
for instance, ∆MFCC6 and ∆MFCC10, that is, F = [∆MFCC6,∆MFCC10]. With this in mind,
the computational cost of MFCCs to be considered would be: C(MFCC4), C(MFCC8) for com-
puting ∆MFCC6, and, C(MFCC8), C(MFCC12) for calculating ∆MFCC10. At this respect, it is
important to note that in the aim of estimating the computational cost of the mentioned feature
vector, the number of clock cycles needed to obtain MFCC8 should be taking into account only
once.

For completing this section, it is worth mentioning that the computational cost for program-
ming in the DSP the computation of MFCCs and ∆MFCCs features is relatively low, when
compared to that needed to implement the SC, V2W or SF features. Basically, this will involve
that in experiments in which the feature-selection approach is constrained to a relatively low
number of clock cycles (or, equivalently, computational cost), the trial feature vector H will
probably consist only of MFCCs and ∆MFCCs features.

4.3.3.3 Computational cost of statistical operators

Finally, for properly completing this description, we illustrate in Table 4.10 the computational
cost (in clock-cycles) demanded by the DSP to estimate the statistical operators considered in

74 Chapter 4. Proposed feature extraction and selection algorithms

the batches of experiments. In the effort of facilitating the reader’s comprehension, it is worth
mentioning that the statistical operators considered are the mean, variance, standard deviation,
range and MSBs of both mean and variance (see Subsection 4.2.2 for further details).

Statistical operator Computational cost
(clock cycles)

Mean 9
Variance 23

Standard deviation 23
Range 7

Most significative bit (MSB) 3

Table 4.10: Summary of the computational cost (in number of clock cycles) required by the DSP,
used to carry out the experiments, to program the computation of the statistical operators considered
in the different experiments (mean, variance, standard deviation, range and MSBs of both mean and
variance).

Having a look at the aforementioned table, it is worth mentioning that, since computing
the variance of a vector requires to calculate previously the mean of the mentioned vector,
the number of clock cycles illustrated in the table for both measures, the variance or standard
deviation, include thus the number of clock cycles required to compute also the mean of the
vector, that is, 9 clock cycles. For illustrative purposes, this basically means that the total
computational cost for computing in the DSP, for instance, the variance of SC feature for the
analysis sound frame has been found to be 893 clock cycles, as summarized below:

C(σ̂2[SCi]) = C(SCi) + C(σ̂2[SCi])
= 870 + 23
= 893 clock cycles.

(4.23)

However, the total computational load for computing in the DSP both the mean and variance
of SC feature for the analysis frame has been found to be also 893 clock cycles. This is clearly
summarized below:

C(Ê[SCi] & σ̂2[SCi]) = C(SCi) + C(Ê[SCi]) + C(σ̂2[SCi])
= 870 + 9 + 14
= 893 clock cycles.

(4.24)

4.3.4 Experimental work and results

Prior to the description of the batches of experiments carried out in this section in an effort
of evaluating the performance of the feature-selection approach when selecting features with a
constrained maximum number of clock cycles (or, equivalently, computational cost), and the
discussion of the corresponding results (Subsection 4.3.4.2), it is worth having a brief look at
the sound database and classifier used for the experiments, along with a summary of the main
design parameters the GA, in which the feature-selection approach is based on, makes use of
(Subsection 4.3.4.1).

4.3. Fundamentals of feature selection 75

4.3.4.1 Experimental setup

In order to carry out the batches of experiments, we have made use of the sound database
described in Section C.1 in Appendix C (page 211). Regarding the classifier, in the same line of
reasoning as that in the sequence of experiments carried out in Subsection 4.2.3, we have made
use of the mean square error (MSE) linear classifier because of its simplicity and good results.

Concerning to the feature set F, into which our feature-selection approach searches for the
best sound-describing features, it is worth mentioning that we have not used all the features
included in both SC and SLC feature sets because it would take a large time for our approach to
properly converge in the experiments. As mentioned, according the classification results shown in
Table 4.1 and 4.2, we have made use of the features included in both “Set 3” and “Set 4”, that is,
F = Set 3 ∪ Set 4, as a balance between the number of features used and a good discrimination
among speech, music and noise. With this in mind, we list below the features that we have
extracted:

• Mean, variance, standard deviation, range and MSB of both mean and variance of: SC,
ŜC, S̃C, V2W, V̂2W, Ṽ2W, SF, ŜF and STE.

• Mean, variance, standard deviation, range and MSB of both mean and variance of [1, . . . , 20]
MFCCs.

• Variance, standard deviation and MSB of variance of [1, . . . , 20] of ∆MFCCs.

Intuitively, the final 254-feature vector F (note that 254 here labels the dimension of the
feature vector, that is, dim(F) = 254) is created by calculating the abovementioned features
from the input sound signal. It is interesting to point out that some of these features show a
high correlation between them which assist us in exploring the efficiency of the feature-selection
approach proposed in this thesis. As will be shown in the numerical results obtained throughout
this section (Subsection 4.3.4.2), our approach is robust enough to manage this problem.

Figure 4.1 assisted us in introducing the feature-selection approach proposed in this thesis.
As shown in that figure, the basic idea underlying this approach is to compute the percentage of
correct classification (PCC) achieved by using each candidate feature vector H and the computa-
tional cost (C) demanded by the DSP to calculate the mentioned feature vector H. The higher
the percentage of correct classification is, the best suited the feature vector is. The GA looks for,
by maximizing the PCC, the best suited feature vector H for the particular problem at hand. Or
in other words, for selecting the best feature set H, we have utilized a single GA that computes
those features vq that maximize the percentage of correct classification (the objective function
here) for the available validation-patterns in the classification process with a constrained maxi-
mum number of clock cycles (or, equivalently, computational cost). For the sake of clarity when
discussing the results achieved with the different approaches explored in this section, we have la-
belled this approach “constrained GA-based approach”. With this in mind, any individual is thus
a binary vector with the structure I ≡ [v1, v2, v3, . . . , v254], whose elements vq encode whether
the q-th feature in the candidate vector H is used or not. Intuitively, the allele vq = 1 codifies
that the feature Hq has been selected, however, vq = 0 indicates that this has not happened.
The goal of the GA is to find the best individual Ibest ≡ [vbest1, vbest2, vbest3, . . . , vbest254] that is
“best fitted”, or in other words, the one that maximizes the percentage of correct classification
(computed over the patterns available in the validation phase), while minimizes the computa-
tional cost demanded by the DSP for its implementation. The complete GA operates as listed
in Appendix D.

76 Chapter 4. Proposed feature extraction and selection algorithms

For comparative purposes, we have also considered the approach in which the feature-selection
approach is not constrained to a maximum number of clock cycles. We have labelled this last
approach “unconstrained GA-based approach”.

We complete this description by summarizing in Table 4.11 the main design parameters of
the GA, in which the feature-selection approach is based on. These values have been found to
be large enough to allow the algorithm to properly converge in our experiments.

Parameters Value
Initial population (p0) 1000
Crossover probability (pc) 0.8
Mutation probability (pm) 0.1
Max. no. of generations 50
Max. no. of iterations in which PCC remains unchanged 20

Table 4.11: Summary of the design parameters the GA makes use of for automatically selecting the
“best suited” feature vector with a constrained maximum number of clock cycles (or, equivalently,
computational cost).

Completing this description of the batches of experiments demands to mention that the
experiments have been repeated 20 times. The best of these realizations in terms of percentage
of correct classification computed over the patterns available in a validation phase has been
selected. The results we have illustrated in the following subsection correspond to the test set.

4.3.4.2 Numerical results

Figure 4.2 shows the percentage of correct classification, PCC (%), for distinguishing among
speech, music and noise as a function of the maximum study-case number of clock cycles (or,
equivalently, computational cost).

The single, filled dot shows the percentage of correct classification achieved by using the
“unconstrained GA-based approach”, or in other words, when the feature-selection approach is
not constrained to a maximum number of clock cycles. The continuous line shows the results
achieved by the “constrained GA-based approach” we explore in this chapter. For comparative
purposes, the dashed line represents the percentage of correct classification reached when there
is no feature selection, or equivalently, when all features available in both “Set 3” and “Set 4”
feature sets are used to feed the MSE linear classifier. Regarding the results illustrated in Figure
4.2, we would like to emphasize that:

1. The dashed line (which represents the no selection feature situation) is constant since it
does not depend on the computational cost. Or in other words, it represents the percentage
of correct classification when all features available in both “Set 3” and “Set 4’ feature sets
are used to feed the classifier.

2. The “unconstrained GA-based approach” selects, among the 254 available features, a subset
H, which for the best realization results in containing dim(H) = 109 features. Making use
of these features, the classifier achieves PCC ≈ 91 %.

3. To reach PCC ≈ 88.5 %, the “constrained GA-based approach” requires only 50 features.
In other words, the restricted GA algorithm selects a feature set H containing a reduced
number of features (dim(H) = 50), which allows the classifier to reach quite similar results

4.3. Fundamentals of feature selection 77

than those obtained with the feature vector obtained by means of the “unconstrained GA-
based approach”, with the added bonus of decreasing the computational cost demanded by
the DSP to implement the feature vector. Thus, the fact of using more features does not
cause a substantial improvement of percentage of correct classification, though it would
require larger amount of computational power.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Number of clock cycles

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n
(%

)

Feature-selection approach
Unconstrained GA

No feature selection

Figure 4.2: Mean percentage of correct classification, PCC (%), for distinguishing among speech,
music and noise as a function of the maximum study-case number of clock cycles (or, equivalently,
computational cost), attained by the feature-selection approach proposed in this thesis and that
obtained by means of the “unconstrained GA-based approach” (or in other words, when the approach
is not constrained to a maximum number of clock cycles). The dashed line corresponds to the result
obtained when there is no feature selection.

For the sake of clarity, the number of selected features (according to the percentage of correct
classification computed over the patterns available in the validation phase), for each maximum
study-case computational cost (in number of clock cycles), has been listed in Table 4.12. Having
a look at this table, it seems to be clear that, the higher the computational cost becomes, the
higher of the number of selected features is.

As succinctly mentioned, for the study-case Cmax = 900 clock cycles, the dimension of the
feature vector has been found to be dim(H) = 50. By making use of this feature vector, the
MSE linear classifier achieves PCC ≈ 88.5 %. Note that this numerical result is close to the
percentage of correct classification reached by using all the available features. For illustrative
purposes, Table 4.13 summarizes the set of features selected by our feature-selection approach
for this particular study-case in which Cmax = 900 clock cycles. Please note that it is only shown
those features in which any of its statistical measures is selected.

Regarding this table, it is worth mentioning that the low-complexity features, based on
spectral centroid have been selected, the same for MFCCs or ∆MFCCs. Intuitively, the features
not used are those that are most complex from a practical implementation point of view, such
as, for instance, spectral centroid, voice2white or spectral flux. This is because selecting these
features generally exceeds the maximum computational cost the algorithm is constrained to. It

78 Chapter 4. Proposed feature extraction and selection algorithms

Max. computational cost Number of PCC Computational cost
(clock cycles) features (%) (clock cycles)

50 6 63.4 42
100 7 73.0 96
200 16 78.0 198
300 17 82.3 300
400 20 82.4 396
500 26 85.4 499
600 33 86.1 600
700 35 86.5 691
800 42 87.7 794
900 50 88.4 876
1000 51 88.6 998
1500 87 89.5 1351
2000 56 88.5 1984
2500 103 89.9 2457
3000 119 90.8 2443

Table 4.12: For each maximum study-case computational cost, this table depicts the mean per-
centage of correct classification achieved for distinguishing among speech, music and noise, and the
number of selected features. Note that it is also shown the computational cost finally needed to
implement the selected feature vector H for each study-case (column labelled “Computational cost”).

is interesting to note that the low-complexity features based on voice2white or spectral flux have
not been chosen.

For the sake of clarity, Figure 4.3 illustrates the mean percentage of use (%) of the features
arranged in the set F, for the different maximum study-case computational cost scenarios con-
sidered in this section. These results correspond to the average of 20 iterations. The features,
illustrated in the picture, are ordered as follows (from the left side to the right one): SC, ŜC,
S̃C, V2W, V̂2W, Ṽ2W, SF, ŜF, STE, [1, . . . , 20] MFCCs and [1, . . . , 20] ∆MFCCs.

As clearly shown, for scenarios in which the maximum computational cost is relatively low,
MFCCs are usually selected, in particular MFCC1, MFCC2, MFCC3, MFCC4 and MFCC17,
whereas, the less-used features are those which require high computational cost for its imple-
mentation in the DSP, such as, for instance, spectral centroid, voice2white or spectral flux. As
the maximum computational cost becomes higher, the selection process favors those features
that provide a higher discrimination capability at the expense of requiring higher computational
cost. In this respect, for situations in which the maximum computational cost ranges from 500
to 1000 clock cycles, the five new, low-complexity features proposed in this thesis appear to be
very adequate for the problem at hand because they are selected in most of the repetitions. The
key point in these new features is that they require lower computational cost than the original
ones and, for that reason, they are selected instead of spectral centroid, voice2white or spectral
flux. Finally, for the scenario in which the maximum computational cost is equal or greater than
2000 clock cycles, the features selected are spectral centroid, voice2white, spectral flux, the five
new, low-complexity features, most of MFCCs and ∆MFCC1, ∆MFCC4, ∆MFCC10, ∆MFCC15

and ∆MFCC20.

4.4. Conclusions 79

Feature Statistic
mean var std range MSB mean MSB var

ŜC X
S̃C X

MFCC1 X
MFCC2 X X
MFCC3 X X X
MFCC4 X
MFCC6 X X
MFCC7 X
MFCC10 X X X
MFCC11 X
MFCC12 X
MFCC13 X
MFCC14 X X
MFCC15 X X
MFCC16 X X X X
MFCC17 X X
MFCC19 X X X
∆MFCC2 - X -
∆MFCC3 - X -
∆MFCC4 - X -
∆MFCC7 - X -
∆MFCC9 - X - X
∆MFCC10 - - X
∆MFCC12 - X -
∆MFCC13 - - X
∆MFCC14 - X X - X
∆MFCC15 - - X
∆MFCC16 - X -
∆MFCC17 - X X -
∆MFCC19 - X -
∆MFCC20 - X - X

Table 4.13: Summary of the statistical measures selected by the feature-selection approach, for
each feature arranged in the set F, for the particular case of maximum computational cost equal
to 900 clock cycles. Please note that it is only shown those features in which any of its statistical
measures has been selected.

4.4 Conclusions

Since DSP-based hearing aids have very strong constraints in terms of computational capacity,
memory and battery and taking into account that the feature extraction process can be the most
time-consuming task in the classification system, the reduction of the number of features used to
automatically classify the sound signals in hearing aid applications becomes a challenging topic.
In the effort of reducing the computational cost associated with this process, we have explored:

• The design of a set of new, low-complexity features based on a variation of some spectral
features widely-used in the literature (more specifically, spectral centroid, voice2white and
spectral flux). These low-complexity features aims at achieving similar or even better
classification results than those obtained with original ones the added bonus of demanding

80 Chapter 4. Proposed feature extraction and selection algorithms

SC
V F

E MFCC1

DeltaMFCC1

2500
1000

500

50

0

50

100

Features

Number of
operations

Us
ag

e
(%

)

Figure 4.3: Illustrative histogram showing the mean percentage of use (%) of the features arranged
in the set F, for the different maximum study-case computational cost scenarios considered. The
features, illustrated in the picture, are ordered as follows (from the left side to the right one): SC,
ŜC, S̃C, V2W, V̂2W, Ṽ2W, SF, ŜF, STE, [1, . . . , 20] MFCCs and [1, . . . , 20] ∆MFCCs.

lower computational cost than that required by the original ones.

• The benefits of a feature-selection approach, based on a genetic algorithm, that aims at
selecting the “best suited” feature vector for a particular classification task. “Best suited”
here means those feature vector trials that make the classifier work as accurately as possible,
along with demanding lower computational cost for their programming in the DSP.

Regarding the low-complexity features, it is important to note that they assist the classifier
in discriminating the input sound signal with the same accuracy than that reached when using
the original features. This can be noticed simply by noting that when using the original feature
set Set 1 = {SC,V2W, SF, STE}, the classifier achieves PCC = 66.1 %, whereas when using the
low-complexity feature set Set 2 = {ŜC, V̂2W, ŜF, STE}, the classifier reaches PCC = 65.4 %
and finally, when using the complete set of low-complexity features, or equivalently, Set 3
= {ŜC, S̃C, V̂2W, Ṽ2W, ŜF, STE}, the classifier achieves PCC = 67.5 %. These results are very
promising in the sense that the low-complexity features, proposed in this thesis, exhibit very good
performance, with the added bonus of saving a great amount of DSP computational resources.

With respect to the feature-selection approach proposed here, it basically searches into a
complete feature set, labelled F, that within our stated framework contains a total of 254 features,
and selects a subset H ⊆ F constrained by the following conditions: 1) card(H) < card(F),
card() denoting the cardinality of the considered set, 2) the classifier accuracy is maximized,
or in other words, maximizes the percentage of correct classification and 3) the computational
cost required to compute the feature vector H is minimized. The experimental work carried
out in this thesis show that, implementing all the features included in the set F, assists the
classifier in reaching PCC = 91.1 %. The “unconstrained GA-based approach”, or in other words,
when the feature-selection approach is not constrained to a maximum number of clock cycles

4.4. Conclusions 81

(or, equivalently, computational cost) selects a subset H, which for the best realization results
in containing 109 features. By making use of these features, the classifier achieves PCC ≈ 91 %.
Finally, the feature-selection approach proposed here, with only 50 features, assists the classifier
in reaching PCC ≈ 88.5 %. This basically means that using more features does not cause a
substantial improvement of percentage of correct classification, though it would require larger
amount of computational power.

The final, global conclusion is that the feature-selection approach proposed in this chapter
will assist us in selecting the best suited feature set for being programmed in the hearing aid.
As will be shown in the next chapters, this feature set will basically consist of most of “low-
complexity” features proposed here because of their good classification performance, along with
the fact of demanding a lower number of clock cycles for their implementation in the DSP used
by our platform to carry out the experiments.

Chapter 5

Implementation and optimization of
classifying algorithms

5.1 Introduction

As advanced in Chapter 3, the cornerstone idea describing the classifier in any automatic sound
classification system is to discriminate the input sound signal, into one of the output audio classes
considered (speech, music and noise, in our case), by means of a set of sound signal-describing
features extracted from the input sound.

Many different classifiers have been proposed in the literature and several of them have
been applied to the problem of classifying sounds [Kates, 2008]. Bearing in mind that the
implementation of signal processing techniques in digital hearing aids is severely constrained by
the inherent limitations of the digital signal processor hearing aids are based on, the drawback
regarding these classifiers consists in the fact that programming any of these complex algorithms
in DSP-based hearing aids is a challenge goal, because it requires to make use of the scarce
computational resources of the DSP. Thus, this forces us to design classification algorithms
so that they require a number of operations per seconds as small as possible to reduce power
consumption and thus extend the battery life.

With this in mind, we have evaluated in this thesis a variety of well-known classifiers that
exhibit good performance in sound classification in hearing aids. These classifiers have been
described in-depth in Chapter 3 and include:

• The mean square error (MSE) linear classifier.

• The k-nearest neighbor (k-NN) classifier.

• Two particular kinds of neural networks:

– Multilayer perceptrons (MLPs).

– Radial basis function (RBF) networks.

In the effort of achieving good classification results, we have explored in this thesis three
different classification approaches, which are descried below:

• A simple one-layer system in which each study-case three-classes classifier is evaluated
separately.

83

84 Chapter 5. Implementation and optimization of classifying algorithms

• A divide-and-conquer strategy that leads to a classification system composed of two layers
that make use of more specialized binary classifiers. The input sound signal is discriminated
by the first layer into either signals containing speech (in a quiet environment or in the
presence of music/noise) or signals containing only music or noise and these latter signals
are ulteriorly classified more specifically in a second layer depending on whether the hearing
aid user is in a music environment or in a noisy one.

• A separation system based on the combination of multiple classifiers. Instead of relying
on the decision made by a single classifier, within this classification system, the decision
is made by combining, using a standard method, like, for example, the majority rule, the
decision of multiple classifiers.

As will be pointed out in the results obtained in this chapter, the approach that reaches the
best results, in terms of percentage of correct classification, is the one that makes use of a single
classifier. To be more precise, an RBF network with a large number of hidden neurons is the
classification approach that best performs for the problem at hand. However, from a practical
implementation point of view, this number of hidden neurons is extremely large. Just in this
respect, and having look at the results obtained, it is interesting to note that MLPs exhibit
slightly worse classification performance than that reached by RBF networks, but, this is the
crucial point, they demand a much lower number of hidden neurons, which involves that the
computational cost is lessened. This is basically the motivation that has compelled us to choose
an MLP as the classifier to be implemented in the DSP used in our platform to carry out the
experiments.

In the effort of helping the classification system achieve accurate enough results by using an
MLP as classifier, and aiming at reducing the number of instructions per seconds demanded by
the DSP for its implementation, we have also focused on exploring 1) the use of growing and
pruning algorithms aiming at determining the most appropriate number of hidden neurons in
MLPs and 2) the effects of simplifying the original logarithmic sigmoid activation function used
in hidden and outputs neurons by using some kind of piecewise linear approximation.

With this in mind, this chapter is composed of four sections. Section 5.2 illustrates the clas-
sification performance of the study-case classifying algorithms when using the abovementioned
three classification approaches. In particular, Subsection 5.2.2 describes the database and pro-
tocol used for the batches of experiments and Subsection 5.2.3 shows the results obtained with
the different approaches. Section 5.3 describes the batches of experiments carried out aiming at
reducing the computational cost associated to the implementation of MLPs in the DSP. Being
more precise, Subsection 5.3.2 aims at determining the appropriate number of hidden neurons
in MLPs for a particular classification task, whereas Subsection 5.3.3 intends for simplifying
the activation function used in the hidden and output neurons of the MLP. Finally, Section 5.4
presents the conclusions obtained throughout this chapter.

5.2 Comparative analysis

5.2.1 Introduction

As mentioned in the Introduction, the study-case classifiers are the mean square error (MSE)
linear classifier, the k-nearest neighbor (k-NN) classifier and two particular kinds of neural net-
works: multilayer perceptrons (MLPs) and radial basis function (RBF) networks. This section
aims at evaluating the performance of each study-case classifying algorithm when discriminating

5.2. Comparative analysis 85

among speech, music and noise in hearing aids. Apart from evaluating these classifiers sepa-
rately, we have explored two more classification approaches consisting in the combination of the
mentioned classifiers in an effort of improving the classification performance.

Prior to the description of the batches of experiments carried out and the discussion of the
corresponding results (Subsection 5.2.3), it is worth having a brief look at the sound database
and features used for the experiments, along with the normalization strategy that can be used
for normalizing the feature vector in the aim of improving the percentage of correct classification
(Subsection 5.2.2).

5.2.2 Description of the experimental work

In order to carry out the batches of experiments, we have made use of the sound database
described in Section C.1 in Appendix C (page 211). Regarding the features that feed the study-
case classifying algorithms, we list below the particular classical, spectral features that we have
extracted:

• Spectral centroid

• Voice2white

• Spectral flux

• Short time energy

• 5 Mel-frequency cepstral coefficients

or, equivalently, the feature set that we have extracted is defined as follows:

F = {SC,V2W, SF, STE,MFCC1,MFCC2,MFCC3,MFCC4,MFCC5}. (5.1)

Perhaps the reader may wonder why we have selected the above listed features and why we
have not considered all the features described in Subsections 3.3.2 and 4.2.1 aiming at evaluating
the performance of the study-case classifying algorithms. Addressing this question requires to
mention that considering all the features listed in the mentioned subsections would require large
training time. In the effort of reducing this computation time and clearly exploring the efficiency
of the classifying algorithms implemented in this thesis, we have selected a subset of them that
provide a high discrimination capability for the classification problem at hand, along with medium
computational cost, as shown in Subsection 4.3.4.2 (page 76). Please note that the priority of
this chapter is not to propose these features as the best ones for the problems considered in this
chapter, but to efficiently evaluate the classifying algorithms proposed in this thesis.

As stated in Chapter 3, the features are computed every 20 ms in our platform, and, at the
end, the classifier makes a decision every 2.5 seconds. In order to make this decision, and for
the sake of simplicity, we have completed the statistical characterization of the random vector
that contains the above listed features computed every 20 ms by estimating its mean value and
variance. With this in mind, the dimension of the resulting feature vector, labelled F, that feeds
the classifying algorithm, is found to be dim(F) = L = 2× 9 = 18.

In the effort of removing “biases” associated with different scaled features and preserving
good numerical behavior, we have used the so-called “zero-mean and unit-variance normaliza-
tion” strategy. It basically aims at normalizing the individual elements of the extracted feature
vectors in such a way that the resulting (normalized) vectors are better suited for sound classifi-
cation. “Better suited” here means that the normalized feature vectors make the classifier work

86 Chapter 5. Implementation and optimization of classifying algorithms

better than with non-normalized feature vectors. The particular way this feature normalization
technique works is easier to understand if we make use of the conceptual representation we have
illustrated in Figure 5.1.

^ ~
E(F)1

^ ~σ (F)1
2

^ ~
E(F)L

^ ~σ (F)L
2

F1 F2 FN

F11

F41

F13 F14 P
F1N

F21

F31

P
FLN

F12

FL1

P

M =

Fe
at
ur
es

Patterns

Figure 5.1: Conceptual representation of the way the “zero-mean and unit-variance normalization”
strategy works. It aims at normalizing the individual elements of the extracted feature vectors in
such a way that the resulting (normalized) feature vectors are better suited for sound classification.

In this figure, the matrix M contains the feature vectors extracted from the NP patterns
available in a design phase, labelled [F1, . . . ,FNP]. Please note that: a) the number of rows in
matrix M is dim(F) = L and b) the number of columns in matrix M is Card(P) = NP. Thus M

is a L ×NP matrix. Mathematically, the zero-mean and unit-variance normalization technique
consists in:

F ∗ln =
Fln − Ê(F̃l)

σ̂2(F̃l)
n = 1, 2, . . . , NP l = 1, 2, . . . , L (5.2)

where:

• F ∗ln is the “normalized” element of the feature vector,

• Fln is the “non-normalized” element of the feature vector,

• Ê(F̃l) is the mean of the feature F̃l, being l = 1, . . . L the index over the L features, and
finally,

• σ̂2(F̃l) is the variance of the feature F̃l.

Please note in Expression 5.2 that the vector F̃ is note actually the feature vector (F =
[F1, . . . , FL]) extracted when applying the data process described in Section 4.2.2 in Chapter 4
(page 61) on each of the available patterns in the design phase: the elements composing the l-th
row in matrix M are arranged in the vector F̃l.

Obviously, the resulting vector F̃∗l ≡ [F ∗l1, . . . , F
∗
lNP

], where l = 1, . . . , L is the index over the
L extracted features, ends in having zero mean (Ê(F̃∗l) = 0) and standard deviation equal to one

5.2. Comparative analysis 87

(σ̂2(F̃∗l) = 1). It is important to highlight that the values of Ê(F̃l) and σ̂2(F̃l) computed for the
patterns available in the design phase are also used to normalize the patterns available in both
validation and test phases. Note that the patterns available in the design phase are unknown a
priori.

With these considerations in mind and for the sake of generality, we have explored here three
different separation systems, these being:

• A simple one-layer three-classes system in which the input sound signal is classified into
speech, music and noise (Subsection 5.2.3.1). In this subsection, we have carried out
experiments with both normalized and non-normalized feature vectors. As will be shown,
the fact of normalizing the feature vector has been found to provide very good results in
terms of percentage of correct classification than those reached when the feature vector is
not normalized. These results have led us to normalize the feature vectors for the remaining
two separation systems explored in this chapter.

• In the effort of working more efficiently, the second approach consists in dividing the clas-
sifying system into two layers that make use of two more specialized binary classifiers
(Subsection 5.2.3.2). With this scheme in mind, the input sound signal is discriminated by
the first layer into either signals containing speech (in a quiet environment or in the pres-
ence of music/noise) and signals containing music (vocal and instrumental) or noise and
these latter signals are ulteriorly classified more specifically in a second layer depending on
whether the user is in a music environment (“music” class) or in a noisy ambient (“noise”
class).

• The last separation system is based on the combination of multiple classifiers in the aim of
exploring whether this approach works better than a single classifier (Subsection 5.2.3.3).
Within this framework, the global decision is made by combining, using a standard method,
like, for example, the majority rule, the individual decisions of R classifiers.

Completing this description of the batches of experiments demands to mention that all the
MLPs experiments have been carried out using the MATLAB’s Neural Network Toolbox [Demuth
and Beale, 1993], and they have been trained using the Levenberg-Marquardt algorithm with
Bayesian regularization techniques. The layer’s weights and biases are initialized according to
the Nguyen-Widrow initialization algorithm [Nguyen and Widrow, 1990]. Any of neural networks
experiments have been independently trained 20 times and the best realization in terms of
percentage of correct classification computed over the patterns available in a validation phase
has been selected. The results we have illustrated in the next subsection correspond to the test
set.

5.2.3 Numerical results

5.2.3.1 One-layer structure

The first batch of experiments has explored the performance of the study-case classifying algo-
rithms in discriminating sounds among the three mentioned classes: speech, music, and noise,
as clearly represented in Figure 5.2. It is important to note that, within this framework, not
only does the class labelled “speech” refer to speech-in-quiet files, but also to speech-in-noise and
speech-in-music files.

In this batch of experiments we have put into practice, it is worth mentioning three comments:

• k-NN experiments have explored a value of k ranging from 1 to 20.

88 Chapter 5. Implementation and optimization of classifying algorithms

Sound-describing
 features

Three-classes
 classifier

Speech

Music

Noise

Figure 5.2: Illustrative representation of a one-layer classifying system containing three classes:
speech, music and noise. Sound-describing features should assist the system in classifying input
sound signals into any of the three illustrated classes. Please note that not only does the class
labelled “speech” refer to speech-in-quiet files, but also to speech-in-noise and speech-in-music files.

• MLPs experiments have explored a number of hidden neurons ranging from M = 1 to
M = 40. A superior number of hidden neurons has been found to be unfeasible because of
the greater associated computational cost.

• RBF networks experiments have explored a number of hidden neurons that ranges from
M = 1

15 ·NP toM = 10
15 ·NP, in steps of 1

15 ·NP, NP being the number of patterns available
in the design phase [Gil-Pita, 2006].

Table 5.1 shows the results in terms of mean percentage of correct classification, PCC (%),
achieved, respectively, by the corresponding study-case classifying algorithms. Note that it is
also shown the results reached by both “normalized” and “non-normalized” feature vectors. As
previously mentioned, in this design process, the “adequate” value of k in k-NN experiments or
the number of hidden neurons (M) in MLPs and RBF networks experiments is precisely the
one corresponding to that which exhibits the best realization in terms of percentage of correct
classification computed over the patterns belonging to the validation set, respectively.

Normalized feature vector Non-normalized feature vector

Classifier PCC (%) Classifier PCC (%)

MSE 77.1 MSE 77.1
4-NN 81.0 13-NN 75.5

MLP 23 86.4 MLP 13 85.9
RBF network 388 87.2 RBF network 1164 81.0

Table 5.1: Mean percentage of correct classification, PCC (%), for the speech/music/noise clas-
sification task obtained by the study-case classifying algorithms: mean square error (MSE) linear
classifier, k-nearest neighbor (k-NN) algorithm, and two particular kinds of neural networks: a mul-
tilayer perceptron (MLP) and a radial basis function (RBF) network. k-NN simply means that k
neighbors are used to assign the class to a new sound signal and MLP M or RBF network M simply
means that the multilayer perceptron or radial basis function network contains M hidden neurons.

A detailed observation of Table 5.1 leads to the following key conclusions:

• The fact of normalizing the feature vector makes any of the study-case classifying algo-
rithms achieve equal or better results than those obtained when the feature vector is not
normalized.

5.2. Comparative analysis 89

• The use of neural networks make the classifying system achieve better classification results
than those obtained with the other algorithms. In particular, the best result is achieved by
using an RBF network since it assists the system in reaching PCC = 87.2 % (with M = 388
hidden neurons).

• From a practical implementation point of view, it is important to highlight that a similar
result than that achieved by the sound classifier based on an RBF network can be also
achieved by a classifier based on an MLP. To be more precise, an MLP withM = 23 hidden
neurons (reference MLP 23, henceforth) reaches PCC = 86.4 %. This result, slightly lower
than the previous one, exhibits the added bonus of demanding a lower number of hidden
neurons and thus involves lower computational cost.

5.2.3.2 Two-layer structure

In the first batch of experiments we have explored the performance of using a single classifier
to distinguish among three classes: speech, music and noise, but this approach has some disad-
vantages for the particular application at hand. To better understand this, it is convenient to
imagine the two following situations that we have considered as being representative enough of
the problem at hand:

• Situation 1: The hearing aid user is in an acoustical environment consisting in speech in a
quiet situation, such as, for instance, at a conference. If the system erroneously classifies
the speech-in-quiet signal as noise, then the hearing aid will likely decide that it is not
worth amplifying such a signal, and thus will reduce the gain. The consequence is that the
hearing-impaired person will loose all the information contained in the speech fragment.
On the other hand, if the systems classifies the sound as music, the signal will be amplified
but the speech intelligibility perceived by the user will be degraded because, instead of
amplifying mid and high frequencies as desired with speech-in-quiet signals, the hearing
aid will strongly amplify the low-frequency signal components. These situations degrade
the usability of hearing aids.

• Situation 2: The hearing aid user is now embedded in a noisy place like, for example, a
traffic jam or a crowded cafe. If the system wrongly classifies the sound as speech, then the
hearing aid will decide that it is worth amplifying the signal. The immediate consequence
is that the user hears a sudden, unpleasant and irritating amplified noise. This degrades
the comfort of hearing aids.

Since the two abovementioned scenarios clearly exhibit the crucial task of discriminating
between signals containing speech (in a quiet environment or in the presence of music/noise) and
signals containing only music (vocal or instrumental) or only noise in hearing aids, the question
arising here is: Is a two-layer structure composed of two binary classifiers more successful than
using a single classifier for the speech/music/noise classification task?

With this in mind, we have explored in this second batch of experiments the performance of an
approach based on a divide-and-conquer strategy that leads to a two-layer structure comprising
two more specialized binary classifiers [Alexandre et al., 2006a,b]. Figure 5.3 will assist us in
better explaining this approach. As depicted, the first classifier aims to distinguish between
speech signals (in a quiet environment or in the presence of music/noise) and signals containing
only noise or music (vocal or instrumental), while the second one would ulteriorly classify more
specifically the latter signals depending on whether the hearing aid user is in a music environment

90 Chapter 5. Implementation and optimization of classifying algorithms

or in a noisy ambient. Please note that each one of the two classifiers may be based on a different
algorithm, and both will be separately trained.

Sound-describing
 features

Two-classes
 classifier

Speech

Two-classes
 classifier

Music

Noise

Figure 5.3: Illustrative representation of a two-layer structure comprising two binary classifiers
for discriminating among three classes: speech, music and noise. Following a divide-and-conquer
strategy, a preliminary classification is made to distinguish between signals containing speech (in a
quiet environment or in the presence of music/noise) and signals containing only music (vocal or
non-vocal) or only noise. The second layer classifies more specifically the latter signals depending on
whether the hearing aid user is in a music environment or in a noisy ambient. Note that each one of
the two classifiers may be based on a different algorithm, and both will be separately trained.

Making use of this structure, Table 5.2 shows the results in terms of percentage of correct
classification, PCC (%), achieved, respectively, by the global approach when the corresponding
study-case classifying algorithms are used in each layer. Please note that, according to the
results obtained in the first batch of experiments, these experiments have been carried out by
using normalized feature vectors.

First layer Second layer Total

Classifier PCC (%) Classifier PCC (%) PCC (%)

MSE 87.4 MSE 84.0 78.0
8-NN 89.0 4-NN 86.7 80.3
MLP 8 91.8 MLP 20 89.5 85.4

RBF network 388 92.1 RBF network 388 86.9 84.0

Table 5.2: Mean percentage of correct classification, PCC (%), for the speech/non-speech classifica-
tion task (column labelled “First layer”) and for the music/noise classification task (column labelled
“Second layer”), obtained by using the study-case classifying algorithms: mean square error (MSE)
linear classifier, k-nearest neighbor (k-NN) algorithm, and two particular kinds of neural networks:
a multilayer perceptron (MLP) and a radial basis function (RBF) network. It is also shown the total
mean percentage of correct classification reached by the global approach that make use of two-layers
of two binary classifiers (column labelled “Total PCC (%)”). k-NN simply means that k neighbors are
used to assign the class to a new sound signal and MLP M or RBF network M simply means that
the multilayer perceptron or radial basis function network contains M hidden neurons.

As illustrated, the best result in terms of global percentage of correct classification is reached
by making use of an MLP classifier in each layer, with a global percentage of correct classification
equal to PCC = 85.4 %. To be more precise, the first layer, which centers on classifying the input
signal into either speech or non-speech, by using an MLP 8 (M = 8 hidden neurons) returns
PCC = 91.8 %, whereas the second layer, which classifies non-speech signals between music or
noise, making use of an MLP 20 (M = 20 hidden neurons) returns PCC = 89.5 %.

5.2. Comparative analysis 91

Thanks to Table 5.2 we can now answer the stated question at the very beginning of this
subsection: Is a two-layer structure composed of two more specialized binary classifiers more
successful than a single classifier for distinguishing among speech, music and noise? Regarding
this table and the results obtained in the previous subsection, we can conclude that the use
of a two-layer binary classifiers does not improve the performance of a neural network-based
sound classifier. Note also that the computational complexity associated to the implementation
of a classification system consisting of two classifiers would be higher than that demanded to
implement a single classifier.

5.2.3.3 Combination of multiple classifiers

The last batch of experiments has explored the feasibility of using an approach based on the
combination of multiple classifiers aiming at exploring whether this classification approach works
better than a single classifier for the particular application at hand.

The cornerstone concept describing this approach is not relying on the decision made by a
single classifier. Instead, multiple classifiers are used to make a global decision by combining
their individual decisions [Kittler et al., 1998]. To better explain this, it is convenient to have
a look at Figure 5.4, which illustrates the approach proposed in this subsection. As shown,
the decision of R classifiers is combined by using a standard method, such as, for instance, the
majority rule [Franke and Mandler, 1992; Kimura and Shridhar, 1991]. Put it very simple, this
method counts the votes for each of the considered classes (speech, music and noise, in our case)
over the R classifier outputs and selects the majority class. For the sake of simplicity, we have
assumed an odd number of classifiers comprising the approach because, otherwise, we would have
to implement a rejection rule for an equal number of votes, which is beyond the scope of this
thesis.

Classifier 1

Classifier R

Classifier 2

Majority rule

Sound-describing
 features

Sound-describing
 features

Sound-describing
 features

Class

Figure 5.4: Illustrative representation of a classification system based on the combination of mul-
tiple classifiers. In this approach, the global decision (“Class” labelled in the picture) is made by
taking into account the decisions of R classifiers by using the majority rule method. This method
counts the votes for each of the considered classes (speech, music and noise, in our case) over the R
classifier outputs and selects the majority class.

In the effort of carrying out the experiments, since the number of study-case classifiers eval-

92 Chapter 5. Implementation and optimization of classifying algorithms

uated in this chapter is even, being these as follows: 1) MSE linear classifier, 2) k-NN algorithm,
3) an MLP-based classifier and finally, 4) an RBF network-based classifier, it is convenient to dis-
card one of them. For this purpose and regarding the numerical results obtained the two previous
subsections, we have excluded the MSE linear classifier because it exhibits the worst performance
when compared to the other classifiers. With this in mind, three classifiers (R = 3) have been
considered in the combination approach. Note that, according to the results obtained in the first
batch of experiments, these experiments have been also carried out by using normalized feature
vectors.

Making use of this taxonomy and using the classifiers obtained in Subsection 5.2.3.1 (see Table
5.1), the classification system, represented in Figure 5.5, achieves a global mean percentage of
correct classification equal to PCC = 84.4 %.

Comparing this result with those achieved by using the study-case classifiers separately (see
Table 5.1), we can conclude that this approach also performs worse than using a single neural
network-based classifier for the particular application at hand. Note that the computational
complexity associated to the implementation of this approach would be also higher than that
demanded to implement a single classifier.

4-NN

RBF network
388

MLP 23 Majority rule

Sound-describing
 features

Sound-describing
 features

Sound-describing
 features

Class

Figure 5.5: Representation of the classification system based on the combination of three particular
classifying algorithms (R = 3 classifiers), being these individual classifiers those that best perform
separately.

5.2.4 Conclusions

Thanks to the results obtained in this section, we can conclude that a single classifier based on
a multilayer perceptron is the classifying algorithm that best performs for the problem at hand,
as a balance between classification performance and computational cost. This is the key reason
that has compelled us to choose an MLP-based sound classifying system as the classifier to be
implemented in the DSP used to carry out the experiments.

Regrettably, one argument against the feasibility of multilayer perceptrons for being used in
DSP-based hearing aids consists in its, a priori, high computational complexity, which, among
other topics, is related to the network size. However, it is worth exploring its implementation
because, as pointed out in Table 5.1, MLPs are able to achieve very good results in terms of
percentage of correct classification when compared to other popular algorithms.

5.3. Optimization of multilayer perceptron parameters 93

We have included the next section in the effort of elucidating how to reduce the computational
cost associated to the implementation of an MLP-based sound classifier in the DSP used by our
platform to carry out the experiments.

5.3 Optimization of multilayer perceptron parameters

5.3.1 Introduction

Roughly speaking, the complexity of multilayer perceptrons depends on the number of weights
that need to be adapted, and consequently, on the number of neurons which compose the neural
network. Being more precise, in an MLP architecture, the number of input neurons corresponds
to that of the features used to characterize the sound, or in other words, to the dimension of the
feature vector, the number of output neurons is related to the number of classes we are interested
in, and finally, the number of hidden neurons depends on the adjustment of the complexity of the
network [Duda et al., 2001]. If too many hidden neurons are used, the capability to generalize
will be poor; on the contrary, if too few hidden neurons are considered, the training data cannot
be learned satisfactorily. In this respect and as will be shown throughout this section, selecting
the appropriate number of hidden neurons becomes a fundamental issue when designing neural
networks.

From this, it can be observed that, on the one hand, one way to decrease the complexity in
MLPs is to reduce the number of input features (that is, the dimensionality of the feature vector
inputting the network), and consequently, the number of input neurons. Note that this is already
achieved by means of the feature-selection method proposed in Section 4.3 in Chapter 4 (page
63), which aims to select, among a set of sound signal-describing features, a subset of them with
lower cardinality that assists the classifier in properly discriminating sounds. Note again the key
importance of the feature-selection approach proposed in this thesis. On the other hand, another
way to reduce the computational complexity would be to decrease the number of neurons in the
hidden layer. As the reader might intuitively imagine, this approach is closely related to the
selection of the appropriate number of neurons in the hidden layer. This is the approach that we
have considered in this thesis in a double effort of a) selecting the appropriate number of hidden
neurons in MLPs, and b) reducing their presumably greater associated computational cost.

The question arising here is: how to obtain good generalization capability with a “small” MLP
size? In this respect, a simple feasible approach to reduce the number of hidden neurons, without
degrading the overall network performance, is to make use of growing and pruning algorithms
[Mathia, 2004; Pearce, 2001]. Growing algorithms progressively construct the MLP by adding
hidden neurons and retraining the network until a minimum of the validation error is achieved,
whereas pruning algorithms start with an extremely large network and progressively remove
unnecessary weights (or equivalently, neurons) according to their contribution to the overall
performance of the network. The following subsection will assist us in elucidating the growing
and pruning algorithms proposed in this thesis, along with the results obtained when making
use of them.

5.3.2 Appropriate number of hidden neurons

This subsection aims at determining the appropriate number of hidden neurons in a multilayer
perceptron. To achieve this, we have made use of growing and pruning algorithms, along with the
combination of both algorithms. In particular, Subsection 5.3.2.1 depicts the growing algorithm
proposed in this thesis, along with the results obtained in two different scenarios in which this

94 Chapter 5. Implementation and optimization of classifying algorithms

growing algorithm has been used. Subsection 5.3.2.2 describes in detail the three pruning algo-
rithms proposed in this thesis, inspired by a pruning algorithm proposed in the literature. This
subsection also illustrates the results obtained when using these pruning algorithms and they
are compared to those obtained when using a pruning algorithm proposed in the literature. The
last subsection, Subsection 5.3.2.3, shows the results obtained when combining both approaches,
that is, growing and pruning algorithms.

5.3.2.1 Growing algorithm

We have implemented a growing algorithm inspired by the one proposed in [Mathia, 2004].
Aiming at clearly explaining how this algorithm works, it is convenient to have a look at Figure
5.6.

Hidden
layer

Output
layer

v

b[1]

w

b[2]

(a)

Hidden
layer

Output
layer

ɛ·v

b[1]

w
b[2]

w

(1-ɛ)·b[1]

(1-ɛ)·v

(b)

Figure 5.6: A schematic representation of the growing algorithm proposed in this thesis, which
aims at determining the appropriate number of hidden neurons in MLPs, or in other words, the
minimum complexity MLP that best performs for a given problem. In 5.6(a), the shaded neuron
is considered as the “parent” neuron and its bias (b[1]) and input weights (v) are divided to obtain
the bias and input weight of the new neuron, as shown in Figure 5.6(b). The output weights of the
parent neuron (w) are copied to the new neuron.

When a new hidden neuron must be added, the following process is carried out:

1. The neuron with the highest weight at its output is selected. This will be considered as
the “parent” neuron. Let it be the shaded one in Figure 5.6(a).

2. The bias (b[1]) and input weights (v) of the parent neuron are divided to obtain the bias
and input weights of the new neuron, as represented in Figure 5.6(b). A factor of ξ, with
0 < ξ < 1 is used.

3. The output weights of the parent neuron (w) are copied to the new neuron.

While the algorithm proposed in [Mathia, 2004] uses a fixed value of ξ, in this thesis we
have decided to modify this algorithm by selecting, for each iteration, a random value of ξ. Our

5.3. Optimization of multilayer perceptron parameters 95

experiments show that with this modification, the results obtained by the growing algorithm are
better in terms of percentage of correct classification.

Aiming at studying the performance of this growing algorithm in the aim of constructing an
MLP, we have considered two different scenarios in the experiments. In the first scenario, the
growing algorithm basically consists in:

1. Starting with a small multilayer perceptron. In particular, the size of this initial MLP is
one neuron in the hidden layer (M = 1).

2. Training this MLP by using the Levenberg-Marquardt algorithm with Bayesian regulariza-
tion techniques.

3. Adding a new hidden neuron according to the growing criterion previously explained and
retraining the MLP.

4. Calculating the MSE between the output of the network for the patterns available in a
validation phase and their desired output.

5. This approach iterates steps 3− 4 until the lowest MSE value is reached for the available
validation-patterns.

This experiment has been repeated 20 times and the best realization in terms of MSE value
computed over the patterns available in the validation phase has been selected.

In a second scenario, the growing approach consists in:

1. Creating 20 initial MLPs containing one layer of one hidden neuron (M = 1).

2. Training each of the 20 MLPs by using the Levenberg-Marquardt algorithm with Bayesian
regularization techniques.

3. Once trained, the MLP that exhibits the lowest MSE value computed over the patterns
available in the validation phase is selected.

4. Adding a new hidden neuron to the selected MLP according to the growing criterion ex-
plained in this section and retraining the MLP.

5. Repeating this training process 20 times and the MLP that, once trained, exhibits the
lowest MSE value computed over the available validation-patterns is selected.

6. This approach iterates steps 4− 5 until the lowest MSE value is reached for the available
training-patterns.

Figure 5.7 shows the behavior of these two abovementioned growing approaches. In particular,
it is shown the MSE value for the patterns available in the validation set as a function of the
number of the hidden neurons reached by the two growing scenarios proposed in this thesis. In the
first scenario (Figure 5.7(a)), the growing algorithm “estimates” that the minimum-complexity
MLP that best performs for the problem at hand contains one layer of M = 11 hidden neurons,
allowing the classifier to achieve PCC = 85.2 %. In the second scenario, the growing approach
“decides” that the minimum-complexity MLP that best performs contains one layer of M = 6
hidden neurons. Making use of this structure, the classifier achieves PCC ≈ 85 %. These results
are slightly lower than that reached by the reference MLP 23, which allowed the classifier to
achieve PCC = 86.4 % (see Table 5.1), but, this is the key point, when using the growing algorithm

96 Chapter 5. Implementation and optimization of classifying algorithms

proposed in this thesis, especially making use of the second scenario, the number of hidden
neurons has dramatically decreased when compared to the reference MLP 23 what, in turns,
means that the computational complexity demanded to implement the MLP constructed by the
growing algorithm in the DSP is lower.

2 4 6 8 10 12 14
0.25

0.3

0.35

0.4

0.45

0.5

Number of hidden neurons

Va
lid

at
io

n
Er

ro
r

(a)

1 2 3 4 5 6 7 8 9 10
0.25

0.3

0.35

0.4

0.45

0.5

Number of hidden neurons

Va
lid

at
io

n
er

ro
r

(b)

Figure 5.7: MSE value computed over the patterns available in the validation set, as a function
of the number of hidden neurons, reached by two different growing scenarios. In the first scenario
(Figure 5.7(a)), the approach “estimates” that the MLP that best performs for the problem at hand
contains one layer of M = 11 hidden neurons, allowing the classifier to achieve PCC = 85.2 %. In the
second scenario (Figure 5.7(b)), the growing approach “decides” that the MLP that best performs
contains one layer of M = 6 hidden neurons, allowing the classifier to achieve PCC ≈ 85 %.

5.3.2.2 Pruning algorithms

We have designed three different pruning algorithms based on the one proposed in [Mathia,
2004] (“Mathia algorithm”, henceforth). The key difference between our algorithms and Mathia
algorithm is basically the stopping criterion for the pruning process. In the effort of facilitating
the reader’s comprehension, it is worth mentioning that the stopping criterion assists us in
knowing when the pruning algorithm must be finished, or in other words, in finding the minimum-
complexity MLP that best performs for a given problem.

Whereas in Mathia algorithm, the stopping criterion only depends on the MSE value between
the output of the network for the available training-patterns and their desired outputs, we have
proposed here a new criterion for our pruning algorithms that not only does it depend on that
MSE value between the outputs of the network and the desired outputs, but also on two more
parameters: 1) the number of hidden neurons (M) and 2) a factor α, with 0 < α < 1. As will
be shown later on, our experiments show that by using this new criterion, the results achieved
are better than those obtained when using the stopping criterion proposed in [Mathia, 2004].

Once we have mentioned the key difference between our pruning algorithms and “Mathia al-
gorithm”, the question arising here is: what is the difference between the three pruning algorithms
proposed in this thesis? The answer to this question is related to the way in which the least sig-
nificant hidden neuron is selected to be pruned. In this respect, two different approaches, based
on a set of statistical strategies and techniques, have been proposed in this thesis to determine
which neurons are the least significant. With these approaches in mind, it is very intuitive to
note that two of our three pruning algorithms make use of these approaches, along with the
stopping criterion proposed in this thesis. Finally, the remaining pruning algorithm uses the

5.3. Optimization of multilayer perceptron parameters 97

same approach as that proposed in [Mathia, 2004] to determine the least significant neuron, but
with the difference that it employs the stopping criterion proposed in this thesis.

In the effort of better understanding these algorithms, they will be explained in a detailed
way in the paragraphs that immediately follows.

Mathia algorithm

This algorithm is proposed in [Mathia, 2004] and has been used in this thesis for the purpose
of comparing the performance of our pruning algorithms. It basically operates in the following
way:

1. Creating an initial multilayer perceptron, containing one layer with a large number of
hidden neurons.

2. Training this initial MLP by using the Levenberg-Marquardt algorithm with Bayesian
regularization techniques.

3. Once trained, the hidden neuron which its sum of the output weights is the smallest one
is selected to be pruned and thus its weights are eliminated.

4. The rest of weights are retrained by using the Levenberg-Marquardt algorithm with Bayesian
regularization.

5. Calculating the MSE value between the outputs of the network and the correct outputs for
the available training-patterns.

6. This process iterates steps 3 − 5 until the lowest MSE value is reached for the available
validation-patterns.

Pruning algorithm #1

The cornerstone idea describing this algorithm is similar to the one depicting the Mathia algo-
rithm, being the key difference the stopping criterion used. As in Mathia algorithm, the least
significant hidden neuron is the one which its sum of the output weights is the smallest one.
This neuron is thus pruned and the pruning process is repeated while maintaining a continuous
decreasing function. For this purpose, we have implemented in this thesis a novel “cost function”
that we have labelled it C, which adopts the following formulation:

C = Etraining + α ·M (5.3)

where:

• Etraining labels the MSE value between the classifier output and the correct output for the
patterns available in a design phase,

• α, which varies from 0 to 1, is a parameter that needs to be optimized for each particular
problem, and finally,

• M labels the number of hidden neurons.

With this in mind, pruning algorithm #1 works as follows:

1. Creating an initial multilayer perceptron, containing one layer with a large number of
hidden neurons.

98 Chapter 5. Implementation and optimization of classifying algorithms

2. Training this initial MLP by using the Levenberg-Marquardt algorithm with Bayesian
regularization techniques.

3. Once trained, the hidden neuron which its sum of the output weights is the smallest one
is selected to be pruned and thus its weights are eliminated.

4. The rest of weights are retrained by using the Levenberg-Marquardt algorithm with Bayesian
regularization.

5. The cost function is evaluated and the value obtained is stored.

6. This process iterates steps 3 − 5 until the lowest cost function value is reached for the
available validation-patterns.

Pruning algorithm #2

The key concept underlying this algorithm consists in calculating the average statistical measure
of the outputs of hidden neurons in the aim of estimating what neurons are contributing less to
the overall network performance, or equivalently, to find the least significant hidden neurons. To
be more precise, the following sequence of operations is carried out:

1. Creating an initial multilayer perceptron, containing one layer with a large number of
hidden neurons.

2. Training this initial MLP by using the Levenberg-Marquardt algorithm with Bayesian
regularization techniques.

3. Once trained, the “average” value of the outputs of each hidden neuron is calculated.

4. In turn, for each hidden neuron, its output weights are set to zero and its corresponding
average value of its outputs (previously computed) is added to the output bias.

5. Calculating the MSE value between the outputs of the network and the correct outputs for
the available training-patterns.

6. Repeating from steps 3− 5 until all the hidden neurons are investigated.

7. Pruning the hidden neuron which obtains the highest MSE value.

8. The rest of weights are retrained by using the Levenberg-Marquardt algorithm with Bayesian
regularization.

9. The cost function is evaluated and the value obtained is stored.

10. This process iterates steps 3 − 9 until the lowest cost function value is reached for the
available validation-patterns.

Pruning algorithm #3

In the same line of reasoning as that in the previous method, the estimation of the least significant
hidden neuron here is also based on the calculation of a statistical measure. In particular, this
algorithm consists in calculating the standard deviation value of each hidden neuron in order to
determine the least significant hidden neuron. This algorithm operates as follows:

5.3. Optimization of multilayer perceptron parameters 99

Pruning Initial Final
PCC (%)

algorithm MLP size MLP size

Mathia algorithm 18-30-3 18-26-3 85.7
Algorithm #1 18-30-3 18-5-3 84.2
Algorithm #2 18-30-3 18-6-3 85.2
Algorithm #3 18-30-3 18-7-3 84.6

Table 5.3: Mean percentage of correct classification, PCC (%), for the speech/music/noise classifi-
cation task obtained by applying the three pruning algorithms proposed in this thesis to a trained
MLP 30 (M=30 hidden neurons). For comparative purposes, it is also shown the results achieved,
for the same purpose, by the Mathia algorithm proposed in the literature.

1. Creating an initial multilayer perceptron, containing one layer with a large number of
hidden neurons.

2. Training this initial MLP by using the Levenberg-Marquardt algorithm with Bayesian
regularization techniques.

3. Once trained, the “standard deviation” of the outputs of each hidden neuron is calculated.

4. The hidden neuron which achieves the lowest standard deviation value is pruned.

5. The rest of weights are retrained by using the Levenberg-Marquardt algorithm with Bayesian
regularization.

6. The cost function is evaluated and the value obtained is stored.

7. This process iterates steps 3 − 6 until the lowest cost function value is reached for the
available validation-patterns.

We have explored the feasibility of using any of these pruning algorithms to automatically
construct the minimum-complexity MLP that best performs for the problem at hand. For this
purpose, we have initialized 20 different MLPs containing one layer of thirty hidden neurons
(M = 30). These MLPs have been trained by using the Levenberg-Marquardt algorithm with
Bayesian regularization techniques and the best realization in terms of MSE value for the available
validation-patterns has been selected as the MLP to be pruned. With this in mind, each of the
three pruning algorithms proposed in this thesis has been applied to this trained MLP 30. Any
of the experiments by using each of the three pruning algorithms has been repeated 20 times
and the best realization in terms of MSE value for the available validation-patterns has been
selected. Note that, after a number of experiments, the appropriate value of α has been found
to be α = 0.01.

Table 5.3 illustrates the results obtained for each of the three pruning algorithms. For com-
parative purposes, it is also shown the results obtained by using the Mathia algorithm. From
this comparison, it is worth mentioning three comments:

• The three pruning algorithms proposed in this thesis appear to be robust enough since
all the experiments result in finding smaller MLPs without degrading the potential of the
classifying algorithm to properly classify among speech, music and noise.

100 Chapter 5. Implementation and optimization of classifying algorithms

• Mathia algorithm results in finding an MLP that reaches a percentage of correct classifica-
tion slightly better than those achieved by any of our pruning algorithms, at the expense
of demanding significantly higher computational complexity, since the MLP achieved by
means of Mathia algorithm contains a higher number of hidden neurons.

• Pruning algorithm #2 has been chosen as the pruning algorithm that best performs for
the problem at hand, as a balance between computational complexity and performance.
Making use of this algorithm, the classifier achieves PCC = 85.2 %, with M = 6 hidden
neurons. Note that this algorithm provides very similar results than those obtained by
the growing algorithm, especially in the second growing scenario, in which the appropriate
number of hidden neurons was found to be M = 6, assisting the classifier in achieving
PCC ≈ 85 %.

Completing this brief section demands to mention that, as happened with the growing algo-
rithm, by using pruning algorithm #2, the result obtained is slightly lower that that reached by
the reference MLP 23, which allowed the classifier to achieve PCC = 86.4 % (see Table 5.1), but,
this is the key point, the number of hidden neurons has dramatically decreased when compared
to the reference MLP what, in turns, means that the computational complexity demanded to
implement the MLP constructed by the pruning algorithm in the DSP is significantly lower.

5.3.2.3 Combination of growing and pruning algorithms

One question that could arise when using growing and pruning algorithms is whether these
both methods could be combined in some way that, the global approach resulted in finding a
smaller MLP (in terms of network size) that enhanced the classification performance than that
achieved by using the algorithms separately, with the added bonus of demanding a lower number
of hidden neurons. From a practical point of view, making use of the growing approach and
pruning algorithm #2 proposed in this thesis, the global design would add hidden neurons to
an initial small MLP until the lowest MSE value is reached for the available validation-patterns.
Then, the MLP size would be reduced by successively pruning the least significant hidden neurons
while maintaining a continuous decreasing function.

To put into practice this global design, we have initialized 20 MLPs containing one hidden
layer with one neuron (M = 1 hidden neuron). These MLPs have been trained by using the
Levenberg-Marquardt algorithm with Bayesian regularization techniques and the best realization
in terms of MSE value for the available validation-patterns has been selected. With this in mind,
the abovementioned global approach has been applied to this MLP, in which 13 hidden neurons
are added in the growing stage, whereas in the pruning stage, it is determined that 7 hidden
neurons are good enough for the problem at hand. Making use of this MLP, the classifier
achieves PCC = 84.6 %. This result clearly shows that the approach of combining both growing
and pruning algorithms does not provide better results that those obtained by using the growing
or pruning algorithms separately.

The performance of this approach can not be illustrated in a figure because the stopping cri-
terion for both growing and pruning algorithms is different. Note that for the growing algorithm,
the stopping criterion depends on the MSE value for the available validation-patterns, whereas
the stopping criterion for the pruning algorithms is based on the cost function proposed in this
thesis that not only does it depend on the MSE value for the available validation-patterns, but
also on a parameter α and the number of hidden neurons (M).

5.3. Optimization of multilayer perceptron parameters 101

5.3.3 Simplification of the activation function

A topic that plays a key role in reducing the computational cost associated to the implementation
of an MLP in the DSP is the feasibility of simplifying the activation function used in the MLP.

As mentioned in Subsection 3.4.4.2 (page 48), the activation function used in the hidden
and output neurons is the logarithmic sigmoid, or commonly known as “logsig”, which can be
calculated by using the following expression (see Table 3.1):

f(x) =
1

1 + e−x
. (5.4)

From the expression above, it is straightforward to note that, from a practical implementation
point of view, implementing this function in the DSP is not an easy task, since an exponential
and a division need to be computed. Being more precise, the DSP used by our platform to carry
out the experiments demands 25 assembler instructions to implement this activation function.
In some cases (basically when the number of neurons is high), this number of instructions is too
long. This motivates the need for exploring simplifications of this activation function that could
provide similar results in terms of percentage of correct classification than those reached by the
original function, but, with the additional bonus of demanding lower computational load.

With this in mind, the next subsection has particularly centered on exploring the effects of
the simplification of this activation function. In this sense, to what extent an approximation,
labelled, for instance, f̃ , is adequate enough is a balance between how well it “fits” the logsig
function, labelled f , and the number of instructions the DSP requires to compute f̃ .

5.3.3.1 Piecewise linear approximations

Aiming at finding a suitable enough approximation and taking into account that a typical DSP is
able to implement a saturation using one clock cycle, we have evaluated the feasibility of fitting
the original activation function f by using two different approximations, which are based on a
piecewise linear approximation. In general, the way an approximation, f̃(x, {φ1, . . . , φP}), fits
f will depend on a set of design parameters, labelled {φ1, . . . , φP}, whose optimum values have
to be computed by minimizing some kind of error function. In this thesis, we have decided to
minimize the root mean square error (RMSE) between the logsig function and the approximation,
for input values uniformly distributed from −10 to +10, as stated in the following expression:

RMSE(f, f̃) = +
√
Ê
{(
f(x)− f̃(x)

)}
. (5.5)

With this in mind, we can proceed further with the approximations proposed in this thesis. In
this respect, the first practical implementation for approximating f(x) is based on a 5-piece linear
approximation. This approximation, which has been labelled (f5PLA), exhibits the following
expression:

f5PLA(x) =

0, x < −3.948
0.0595x+ 0.2348, −3.948 6 x < −1.628
0.2224x+ 0.5, −1.628 6 x < 1.628
0.0595x+ 0.7652, 1.628 6 x < 3.948
1, x > 3.948

(5.6)

where subscript “5PLA” stands for “5-piece linear approximation”, and the values shown in
the expression are the corresponding design parameters, whose optimum values are the ones

102 Chapter 5. Implementation and optimization of classifying algorithms

that optimize the RMSE(f ,f5PLA). Note that these values that make the RMSE(f ,f5PLA) be
minimum (6 · 10−5) have been calculated by using “bio-inspired algorithms”, or in other words,
algorithms that are inspired by nature [Amor, 2008; Huerta et al., 2008].

The practical point to note here regarding this approximation is that the DSP requires, at
least, the following 5 assembler instructions for its programming:

1. comparing x with the first threshold value,

2. comparing x with the second threshold value,

3. comparing x with the third threshold value,

4. copying the result of the multiplication into the accumulator,

5. a saturation operation.

Please note that the instructions required to copy x and the constant values into some input
registers of the MAC unit have not been considered.

In the same line of reasoning, the second practical implementation, proposed in this thesis,
for approximating f(x) is based on a 3-piece linear approximation. This approximation, which
has been labelled (f3PLA), exhibits the following expression:

f3PLA(x) =

0, x < −2.592
0.1929x+ 0.5, −2.592 6 x < 2.592
1, x > 2.592

(5.7)

where subscript “3PLA” stands for “3-piece linear approximation”, and the values shown in
the expression are the corresponding design parameters, whose optimum values are the ones
that make the RMSE(f ,f3PLA) be minimum (5 · 10−4). Note that these values have been also
calculated by using bio-inspired algorithms [Amor, 2008; Huerta et al., 2008].

The practical point to note here regarding this approximation is that the computational load
is lessened with respect to that demanded by the 5-piece linear approximation, as it demands
the following 4 assembler instructions:

1. comparing x with the first threshold value,

2. comparing x with the second threshold value,

3. copying the result of the multiplication into the accumulator,

4. a saturation operation.

Please note that the instructions required to copy x and the constant values into some input
registers of the MAC unit have not been considered.

In order to simplify the calculation of these piecewise approximations, or in other words, to
reduce even more the number of instructions demanded by the DSP for their programming, we
have tested a third approach, based on the so-called hard-limit function, which could also be
seen as a 2-piece linear approximation. This approximation, which has been labelled (f2PLA),
adopts the following formulation:

f2PLA(x) =

{
0, x < 0
1, x > 0

. (5.8)

5.3. Optimization of multilayer perceptron parameters 103

The additional bonus regarding this approximation consists in that the number of instructions
is drastically reduced to only 1 assembler instruction.

Completing this description of the approximated activation functions demands to mention
that we have explored here the strategy of including a null activation function, that, intuitively
exhibits the expression stated below:

f1PLA(x) = 0 ∀ x. (5.9)

For the sake of clarity when discussing the results achieved with the different approximations
explored in this chapter, this null activation function has been named (f1PLA). We mention
this approximation here for reasons that will be better understood later on, and that we post-
pone to the following paragraphs when using the approach for selecting the most appropriate
approximated activation function.

For illustrative purposes, we complete this description of the approximated activation func-
tions by having a look at Figure 5.8. It represents the 2 piecewise linear approximations proposed
in this thesis: the 5-piece linear approximation (f5PLA) shown in Figure 5.8(a), and the 3-piece
linear approximation (f3PLA) shown in Figure 5.8(b). In Figure 5.8(c), it is depicted the so-called
“hard-limit” function (f2PLA) also considered in this thesis, and finally, Figure 5.8(d) depicts the
null activation function (f1PLA).

10 8 6 4 2 10 8 6 4 2 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

10 8 6 4 2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

10 8 6 4 2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

10 8 6 4 2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 5.8: Representation of the “approximated” activations functions, proposed in this thesis,
for the logarithmic sigmoid (commonly named “logsig”) activation function: the 5-piece linear ap-
proximation (f5PLA) in 5.8(a) and the 3-piece linear approximation (f3PLA) in 5.8(b). In 5.8(c), it is
shown the so-called “hard-limit” function (f2PLA) also considered in this thesis and finally, in 5.8(d)
it is depicted the null activation function (f1PLA).

In the effort of exploring the effects of simplifying the logsig activation function in the per-

104 Chapter 5. Implementation and optimization of classifying algorithms

formance of an MLP, we have considered the following scenario: the reference MLP 23, which
allowed the classifier to achieve PCC = 86.4 % (see Table 5.1), has been evaluated by using,
for each of the hidden and output neurons, the approximated activation functions illustrated in
Figure 5.8. The purpose of this set of experiments consists in quantitatively evaluating how well
each piecewise approximation proposed in this thesis “fits” the original logsig activation function.
Please note that for this first batch of experiments, the null activation function, depicted in
Figure 5.8(d), has not been considered because it would clearly result in PCC = 0 %.

Table 5.4 will assist us in explaining how well each approximation proposed in this thesis “fits”
the original logsig activation function. It represents the mean percentage of correct classifica-
tion, PCC (%), reached by the reference MLP 23 when it makes use of the different approximated
functions considered in this thesis, labelled f5PLA (5-piece linear approximation), f3PLA (3-piece
linear approximation) and f2PLA (2-piece linear approximation), along with the number of assem-
bler demanded by the DSP to implement each approximated MLP. For comparative purposes, it
is also shown the results corresponding to those reached by the “exact” MLP, or in other words,
the MLP 23 that employs of the original logsig activation function (reference MLP 23).

Activation function Assembler instructions PCC (%)

flogsig 1231 86.4
f5PLA 711 86.3
f3PLA 685 86.8
f2PLA 607 76.0

Table 5.4: Mean percentage of correct classification, PCC (%), and number of assembler instructions
required for implementing in the DSP an MLP 23 (M = 23 hidden neurons) that makes use of the
different “approximated” activation functions proposed in this thesis, which are as follows: 5-piece
linear approximation (f5PLA), 3-piece linear approximation (f3PLA) and 2-piece linear approximation
(f2PLA). It is also shown the results reached by the MLP 23 that employs the original logarithmic
sigmoid activation function (row labelled “flogsig”).

A detailed observation of Table 5.4 leads to the following conclusions:

• The 2-piece linear approximation, labelled f2PLA, is the piecewise approximation that
makes the MLP demand the lowest number of assembler instructions for its implemen-
tation, but at the expense of working worse than the MLP that makes use of the original
logsig activation function. This is clearly noted by comparing the mean percentage of cor-
rect classification, PCC (%), and the number of assembler instructions listed on row “flogsig”
(in which the activation function has not yet been approximated) with those corresponding
to row “f2PLA”.

• The 5-piece linear approximation, labelled f5PLA, makes the MLP achieve very similar
results to those obtained when the MLP uses the original logsig activation function, but
exhibiting clear advantages over the number of assembler instructions required. The way
to note this consists in comparing the mean percentage of correct classification, PCC (%),
and the number of assembler instructions listed on row “flogsig” with those corresponding
to row “f5PLA”.

• The use of the 3-piece linear approximation, labelled f3PLA, leads to an average relative
increase in the percentage of correct classification of approximately 0.4 %, which does not

5.3. Optimization of multilayer perceptron parameters 105

cause substantial improvement of PCC (%), but, taking into account that the considered
approximations for the activation function and the number of neurons composing the net-
work are closely related to the number of assembler instructions needed to implement the
MLP in the DSP, it is very relevant to notice that the 3-piece linear approximation exhibits
slightly better performance to that of the original activation function, with the additional
bonus of requiring about half the number of assembler instructions. This can be noted by
having a look at the mean percentage of correct classification and assembler instructions
listed on row “flogsig” with those corresponding to column “f3PLA”.

The first key conclusion that can be inferred from the performance of the approximated
activation functions in Table 5.4 is that, the use of the 3-piece linear approximation is a suitable
way to approach the original logsig activation function because it exhibits very similar results to
those achieved by the MLP that makes use of the logsig function, with the additional bonus of
demanding lower computational cost for its implementation.

5.3.3.2 Activation function selection algorithm

In the aim of selecting the most appropriate approximated function for each of the hidden and
output neurons, among the abovementioned approximations, we have designed a method that
aims at automatically selecting the best suited approximation. To better explain this method, we
will make use of Figure 5.9, which will help us introduce this approach. As illustrated, the RMSE
block calculates the root mean square error between the MLP outputs (ô) and the desired or
correct outputs (o). The lower the error is, the best suited is the approximated function selected
for each of the hidden and output neurons in the MLP. Since the network outputs produced by
the MLP depend on the activation function in each neuron, the GA looks for, by minimizing
the function MSE, the best suited approximated activation function for each of the hidden and
outputs neurons in the MLP. For the sake of clarity when discussing the results achieved with
the different approaches explored in this thesis, we have labelled this approach “unconstrained
GA-based activation function selection approach”.

Set of
files

MLP

For any audio file, the RMSE
is computed as the difference

between network outputs
and desired outputs

network
outputs

MSE

desired
outputs

activation functions

GAFeature
extraction

Figure 5.9: Simplified block diagram illustrating the way the proposed “unconstrained GA-based
activation function selection approach” works. The MSE block computes the mean square error be-
tween MLP outputs and desired outputs. Since the MLP outputs depend on the activation functions
in the MLP, the genetic algorithm (GA), by minimizing the function MSE, searches for the best
activation functions for each neuron composing the MLP.

In the effort of exploring the feasibility of using this method, we have carried out a second

106 Chapter 5. Implementation and optimization of classifying algorithms

batch of experiments. The basic idea underlying this second batch of experiments is to utilize
a single GA to compute those approximated activation functions vq that minimize the function
MSE between the MLP outputs (ô) and the desired outputs (o) (the objective function here) for
the available validation-patterns in the classification process. With this in mind, any individual
is thus a coefficient vector with the structure I ≡ [v1, v2, v3, . . . , v26], where these coefficients may
take different integer values, ranging from 0 to 3, corresponding to the following approximated
activation functions:

• 0 → 1-piece linear approximation (f1PLA), or equivalently, the null activation function,

• 1→ 2-piece linear approximation (f2PLA), or in other words, the so-called hard-limit func-
tion,

• 2 → 3-piece linear approximation (f3PLA), and,

• 3 → 5-piece linear approximation (f3PLA).

Please note that the 23 first elements in the aforementioned vector represent the activation
function used for each of the hidden neurons, whereas the 3 last elements in the vector label the
activation functions employed for the 3 output neurons. The goal of the GA is to find the best
individual Ibest ≡ [vbest1, vbest2, vbest3, . . . , vbest26] that is “best fitted”, or in other words, the one
that minimizes the fitness function MSE between MLP outputs and desired outputs (computed
over the patterns available in the validation phase). The complete GA operates as listed in
Appendix D.

We complete this description by summarizing the main design parameters of the GA in Table
5.5. These values have been found to be large enough to allow the algorithm to properly converge
in our experiments.

Parameters Value
Initial population (p0) 200
Crossover probability (pc) 0.8
Mutation probability (pm) 0.1
Max. no. of generations 50
Max. no. of iterations in which the MSE remains unchanged 20

Table 5.5: Summary of the design parameters the GA makes use of for automatically selecting
the “best suited” approximated activation functions for each of the hidden and outputs neurons
composing the MLP.

Table 5.6 will assist us in explaining the most important results achieved by using the “un-
constrained GA-based activation function selection approach”. The table represents the mean
percentage of correct classification, PCC (%), and the number of assembler instructions required
to implement the “exact”, reference MLP 23, or in other words, the MLP that makes use of
the logsig activation function and the approximated MLP obtained when applying the above-
mentioned approach to the exact MLP 23, row labelled “Approximated MLP” in the table. For
comparative purposes, it is also represented the results obtained by the MLP that makes use
of the 3-piece linear approximation, row labelled “f3PLA MLP” in the table (see Table 5.4, for
further details). As clearly shown, the “unconstrained GA-based activation function selection ap-
proach” results in obtaining an approximated MLP that not only does it work better than both
“exact” MLP and f3PLA MLP in terms of percentage of correct classification (the approximated

5.3. Optimization of multilayer perceptron parameters 107

MLP allows our classifier to achieve PCC = 87.5 %, but also it requires lower computational cost
than any of them. Note that the 1-piece linear approximation, or equivalently, the null activation
function has been selected for three hidden neurons in the approximated MLP.

Hidden Assembler PCC

neurons instructions (%)

Exact MLP 23 1231 86.4
f3PLA MLP 23 685 86.8

Approximated MLP 20 659 87.5

Table 5.6: Mean percentage of correct classification, PCC (%), and number of assembler instruc-
tions demanded to implement in the DSP the approximated MLP obtained when applying the
“unconstrained GA-based activation function selection approach” to an exact MLP. For comparative
purposes, it is also shown the results obtained when the exact MLP makes use of the 3-piece linear
approximation instead of using the original logsig activation function (row labelled “f3PLA MLP”).

In the same line of reasoning as that of “unconstrained GA-based activation function ap-
proach”, the last set of experiments put into practice here explore the feasibility of using an
approach, also based on a genetic algorithm, for automatically selecting the “best suited” ap-
proximated activation functions for each of the hidden and output neurons in the MLP, when we
restrict the number of assembler instructions allowed. Bearing in mind that we are constrained
to the hardware requirements of the DSP the hearing aid is based on (low clock rates in order to
minimize power consumption), we can realistically assume that the number of assembler instruc-
tions for implementing the activation function that the MLP uses is limited. We have labelled
this last approach “constrained GA-based activation function selection approach”.

Figure 5.10 shows the mean percentage of correct classification, PCC (%), as a function of the
maximum number of assembler instructions allowed. There are some issues in the results shown
in Figure 5.10 that we would like to stress:

• Intuitively, as the maximum number of assembler instructions allowed increases, the better
percentage of correct classification is achieved. In this respect, it is important to highlight
that the best result in terms of percentage of correct classification is not achieved for the
maximum number of assembler instructions. As shown in the mentioned figure, the best
result occurs for 800 assembler instructions (the classifier achieves PCC ≈ 87 %).

• When the maximum number of assembler instructions is greater than approximately 550,
the results in terms of percentage of correct classification do not vary significantly. This
basically means that using the most complex approximated activation functions for each
of the hidden and output neurons does not cause a substantial improvement of percentage
of correct classification, although it would require larger amount of computational load.

Although this approach does not result in obtaining an approximated MLP that works better
than that achieved by the “unconstrained GA-based activation function selection approach”, its
implementation of the crucial importance because but it allows us to obtain an approximated
MLP when the number of assembler instructions is limited.

108 Chapter 5. Implementation and optimization of classifying algorithms

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

Number of assembler instructions

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

n
(%

)

Figure 5.10: Mean percentage of correct classification reached by the “constrained GA-based acti-
vation function selection approach”, as a function of the number of assembler instructions allowed.

5.3.4 Conclusions

As a conclusion, we can say that, on the one hand, the use of piecewise linear approximations
makes the MLPs achieve very similar results than those obtained when using the original logsig
activation function. In particular, the use of the 3-piece linear approximation leads to an average
relative increase in the classification performance when compared to that of the original function.
On the other hand, the use of an approach, based on a genetic algorithm, for automatically
selecting the “best suited” approximated activation function for each of the hidden and output
neurons comprising the MLP, leads to prune “unnecessary neurons”, and consequently, to reduce
the computational complexity, while maintaining the classification performance.

5.4 Conclusions

This chapter has been motivated by the fact that implementing a classification system in digital
hearing aids is strongly constrained by the hardware requirements of the DSP the hearing aid is
based on. In this respect, the objective of this chapter has been to evaluate the performance of
different sound classifiers, very well-known in hearing aid applications, for the speech/music/noise
classification task. These study-case classifiers are as follows: the mean square error (MSE) linear
classifier, the k-nearest neighbor (k-NN) algorithm and two particular kinds of neural networks:
a multilayer perceptron (MLP) and a radial basis function (RBF) network.

Regarding the classifier performance, it is worth mentioning that it must be a delicate balance
between keeping the percentage of correct classification within high values (in order to not disturb
the user’s comfort) and achieving this by using a classifier with low computational complexity.
Within this framework, the chapter has particularly centered on exploring the following:

• The performance of the study-case classifiers in discriminating the input sound signal
among speech, music and noise. Or in other words, we have explored the feasibility of
using each study-case classifying algorithm for discriminating among the aforementioned
classes in hearing aids.

5.4. Conclusions 109

• The performance of an approach, based on a divide-and-conquer strategy, which makes
use of two more specialized binary classifiers. With this in mind, the input sound signal is
discriminated by the first layer into either signals containing speech (in a quiet environment
or in the presence of music/noise) and signals containing only noise or music and the latter
signals are ulteriorly classified more specifically in a second layer depending on whether
the user is in a music environment or in a noisy environment.

• The performance of a separation system based on the combination of multiple classifiers.
Within this classification system, the decision is made by combining, using a standard
method, like, for example, the majority rule, the decision of multiple classifiers.

According to the results obtained in Section 5.2, aiming at reducing the computational cost
demanded for the DSP to implement an MLP-based classifier, we have additionally explored:

• In a double effort of a) selecting the most appropriate number of hidden neurons in MLPs,
and b) reducing their presumably greater associated computational cost, the feasibility of
using growing and pruning algorithms for automatically determining the adequate number
of hidden neurons in MLPs, or in other words, the minimum-complexity MLP that best
performs for a particular classification task.

• The effects of simplifying the logarithmic sigmoid activation function, used in the hidden
and output neurons, in the performance of an MLP. In this respect, we have proposed in
this thesis two approaches based on a piecewise linear approximation (a 5-piece linear ap-
proximation and a 3-piece linear approximation) for approximating the original activation
function. In addition, we have considered the so-called hard limit function, which can be
also seen as a 2-piece linear approximation, and a null activation function that, intuitively,
results in zero output values for any input value. In the aim of automatically selecting the
“best suited” approximated activation function, among the approximations proposed in this
thesis, for each of the hidden and output neurons comprising the MLP, we have designed a
method based on an algorithm genetic, which also allows us to prune unnecessary neurons
in the MLP.

With this in mind, the different batches of experiments lead to the following conclusions:

• When using a single classifier for distinguishing among speech, music and noise, the use
of neural networks make the classifying system achieve the best classification results. In
particular, the best result is achieved by using an RBF network since it assists the system
in reaching PCC = 87.2 % (with M = 388 hidden neurons). However, from a practical
implementation point of view, it is worth mentioning that by using an MLP 23 (M = 23
hidden neurons), the results achieved are very similar than those reached by the RBF
network (making use of an MLP 23, the classification system achieves PCC = 86.4 %), but,
this is the crucial point, with the added advantage of extremely reducing the computational
cost in the DSP. Note that the number of hidden neurons of the MLP is much lower than
that needed for the RBF network.

• The use of a classification system, based on a divide-and-conquer strategy, which makes
use of two more specialized binary classifiers, does not improve the percentage of correct
classification than that reached by using a single MLP-based classifier. To illustrate this,
it is worth mentioning that the best result is achieved by using an MLP 8 in the first layer
(speech/non-speech classification task) and an MLP 20 (music/noise classification task) in
the second one, being the global percentage of correct classification PCC = 85.4 %.

110 Chapter 5. Implementation and optimization of classifying algorithms

• The strategy of combining multiple classifiers in order to make the global classification
decision has been proven to work worse than when using a single classifier. To check this,
it is worth mentioning that the combination of three classifiers: a 4-NN (k = 4 neighbors),
an MLP 23 (M = 23 hidden neurons) and an RBF network 388 (M = 388 hidden neurons)
assist the classification system in achieving PCC = 84.4 %.

• The use of growing and pruning algorithms has been proven to achieve reduced MLPs
without degrading the classification performance. For the particular application at hand,
they result in obtaining an MLP 6 (M = 6 hidden neurons) that allows the classification
system to achieve PCC = 85.2 %. Note that the percentage of correct classification is slightly
lower than that reached by the MLP 23, but, this is the key advantage, the number of hidden
neurons is lower, and consequently, the computational cost demanded for the DSP for its
implementation is also lessened.

• The piecewise linear approximation makes the MLPs achieve very similar results than
those obtained when using the original logsig funtion. It is worth mentioning that the use
of the 3-piece linear approximation leads to an average relative increase in the percentage
of correct classification when compared to that of the original function.

• The use of an approach, based on a genetic algorithm, for automatically selecting the “best
suited” approximated activation function for each of the hidden and output neurons com-
prising the MLP, leads to prune “unnecessary neurons” while maintaining the classification
performance. In particular, the experimental work shows that the aforementioned MLP 23
can be approximated by an MLP 20 that performs better for the problem at hand (making
use of the MLP 20 assists the classification system in achieving PCC = 87.5 %) with the
added bonus of demanding lower computational cost for its implementation.

The final, global conclusion is that we have chosen, among a number of explored classifiers,
a particular kind of neural network as the classifier to be implemented in the DSP the hearing
aid is based on. To be more precise, we have chosen a multilayer perceptron (MLP). The variety
of approaches explored in this chapter will help us design the MLP-based classifier that will be
finally implemented in the DSP.

Chapter 6

Analysis of the effects of finite precision

6.1 Introduction

Most of the algorithms to be programmed in DSPs are commonly designed using “no-quantization”,
double floating-point precision, which usually offers both a wide range and high precision for each
numerical computation. However, for practical hardware implementations, the “final model”
barely makes use of “no-quantization”, double floating-point precision formats, and consequently,
these algorithms need to be “redesigned” for being implemented in some quantized finite-precision
format [Fang et al., 2003]. Typically, these final finite-precision formats can be either fixed-point
or reduced-precision floating-point (or also known as “lightweight” format [Fang et al., 2002])
formats.

Just in this respect, the most widely-used format employed for programming the algorithms
in the DSP is the fixed-point format, in which the integer and fractional parts of a number
are represented by using a determined number of bits. The scientific reason for which fixed-
point format is the most widely-used one basically relies on the fact that it exhibits three key
advantages [Fang et al., 2003]. The first one is that they behave mostly like integers, except for
the need to round the fractional parts of the numbers after each mathematical operation. The
second benefit is that it is easy to transform one fixed-point format into another format, which
uses different number of bits to represent the integer and fractional parts, by means of shifting
and zero-padding strategies. As a consequence of this second benefit, the third advantage is that
it is possible to assign each number a unique, minimal number of bits, and thus minimize the
computational complexity.

Turning again our attention to finite-precision formats and within the application at hand, it
is worth mentioning that most of actual DSPs for hearing aids make use of a 16-bit word-length
Harvard Architecture, and only modern hearing instruments have larger internal bit range for
number presentation (22-24 bits). In some cases, the use of larger numerical representations is
reserved for the filterbank analysis and synthesis stages, or to the Multiplier/ACcumulator that
multiplies 16-bit registers, and stores the result in a 40-bit accumulator. In this thesis, since
the DSP used to carry out the experiments (see Appendix A for further details) makes use of
a 16-bit fixed-point format, we have focused on the case in which we have 16 bits to represent
numbers.

Regarding this, the question arising here is: How are the number of bits used to represent the
integer and the fractional part of a number “efficiently” assigned? Since the number of bits used
to represent the integer part and the fractional portion of a number have strong influence on
the final performance of the algorithms implemented in the hearing aid, an improper selection of
these values can lead to saturations or lack of precision in the operations of the DSP. In this way,

111

112 Chapter 6. Analysis of the effects of finite precision

adjusting the adequate number of bits used to represent the integer and the fractional part of a
number becomes a fundamental topic whose main issues we explore in the following sections.

With these ideas in mind, the chapter focuses on: 1) clearly quantifying the effects of the
finite-precision limitations on the performance of an automatic sound classification system for
hearing aids, with special emphasis on the effects of finite word length for the sound signal-
describing features and weights of an MLP-based classifier, and 2) selecting, among the available
16-bit fixed-point format quantization schemes, the most adequate configuration for the hearing
aid performance. The purpose of our study is to demonstrate that a 16-bit numerical representa-
tion configured in a proper way can produce good results in the implementation of an MLP-based
sound classifier. Please note that we say an MLP-based sound classifier because, as shown in
Chapter 5, an MLP-based classifier has been chosen as the classifying algorithm for our practical
implementation since it provides very good results when compared to those obtained with other
popular classification algorithms.

Finally, completing this section demands to mention that this chapter has been structured
as follows. Section 6.2 defines the problem of quantizing the sound signal-features and weights
of the MLP for sound classification in hearing aids. Section 6.3 describes the database and the
protocol used for the experiments (Subsection 6.3.1) and shows the results obtained (Subsection
6.3.2), along with a discussion in Section 6.4.

6.2 The quantization problem

As mentioned in the Introduction, there is a topic that plays a key role in the performance
of the MLP-based sound classification system when it is implemented in a DSP-based hearing
aid, and that constitutes the core of this chapter: the effects of finite-precision for the sound
signal-describing features and weights of the MLP in the classification system performance.

As stated beforehand, the DSP used by our platform to carry out the experiments makes use
of a 16-bit fixed-point format. In this respect, fixed-point numbers are usually represented by
using the so-called “Q number format” [Dspfactory, 2002a,b]. Within the application at hand,
we have used the notation Qx.y, where:

• Q labels the signed fixed-point number is in the “Q format notation”,

• x symbolizes the number of bits used to represent the 2’s complement of the integer part
of the number, and finally,

• y designates the number of bits used to represent the 2’s complement of the fractional
proportion of such number.

As an illustrative example, using a numerical representation of 16 bits, we could decide to
use the quantization scheme Q16.0, which is used for representing 16-bit 2’s complement integers
and 0 bits to represent the 2’s complement of the fractional proportion. Similarly, we could use
Q8.8 quantization, what, in turns, means that 8 bits are used to represent the 2’s complement
of the integer part of the number, and 8 bits are used to represent the 2’s complement of the
fractional proportion, or Q4.12, which basically assigns 4 bits to the integer part, and 12 bits to
the fractional part and so forth.

Apart from this question to be answered later on, there is also a crucial problem related to the
small number of bits available to represent the integer and the fractional parts of numbers: the
limited precision. Although not clear at first glance, it is worth noting that a low number of bits
for the integer part may cause the register to saturate, while a low number of bits in the fractional

6.3. Experimental work and results 113

proportion may cause a loss of precision in the number representation. The appropriate number
of bits for both representing the integer part and the fractional proportion will be determined in
the section that immediately follows.

It is important to highlight that in those modern DSPs that use larger numerical represen-
tations the quantization problem is minimized, since there are several configurations that yield
very good results.

6.3 Experimental work and results

Prior to the description of the experiments carried out in a double effort of 1) exploring the effects
of quantifying both the signal-describing features and the weights of an MLP-based classifier (by
using the so-called Qx.y format) and 2) selecting the most adequate 16-bit quantization scheme
for hearing aid performance and the discussion of the corresponding results (Section 6.3.2), it is
worth having a look at the sound database and features used for the experiments (Section 6.3.1).

6.3.1 Experimental setup

In order to carry out the experiments, we have made use of the sound database described in
Section C.1 in Appendix C (page 211).

In the same line of reasoning as that of Chapter 5, the features that we have selected to feed
an MLP-based sound classifier are the mean and variance of the following ones:

• Spectral centroid

• Voice2white

• Spectral Flux

• Short time energy

• 5 Mel-frequency cepstral coefficients

or, equivalently, the feature set that we have extracted is defined as follows:

F = {SC,V2W, SF, STE,MFCC1,MFCC2,MFCC3,MFCC4,MFCC5}. (6.1)

In the batches of experiments we have put into practice, the experiments have been repeated
20 times and the best realization in terms of percentage of correct classification computed over
the patterns available in a validation phase has been selected. The results that we have illustrated
below correspond to the test set.

6.3.2 Numerical results

In the effort of studying the effects of finite precision, we have considered two different scenarios
in the experiments, as clearly shown below:

1. The classifiers were configured for returning a decision every 2.5 seconds, or in other words,
for time slots of 2.5 seconds. The aim of this study is to determine the effects of the
limited precision over the classifiers (MLPs, in our case) for applications like, for example,
automatic program switching, in which a large time scale is used.

114 Chapter 6. Analysis of the effects of finite precision

No quant. Quant. scheme
Classifier Double Q1.15 Q2.14 Q3.13 Q4.12 Q5.11 Q6.10 Q7.9 Q8.8 Q9.7
MLP 1 73.4 31.2 32.1 70.3 73.6 73.4 73.2 72.8 63.7 50.1
MLP 2 77.2 19.7 50.3 74.3 77.0 77.1 77.0 76.8 72.5 49.8
MLP 3 79.1 20.4 49.3 78.3 79.1 79.1 79.1 79.0 71.9 42.7
MLP 4 81.6 18.6 47.2 76.8 81.3 81.5 81.4 81.0 71.7 40.9
MLP 5 82.8 20.8 47.8 77.2 82.4 82.6 82.4 82.5 71.0 46.8
MLP 6 82.9 24.9 53.1 79.4 82.1 82.8 82.6 82.1 71.3 45.9
MLP 7 83.2 25.0 50.6 79.9 83.1 83.2 83.1 82.8 70.7 44.7
MLP 8 83.3 26.2 55.4 80.2 83.1 83.2 83.1 82.9 71.3 42.5
MLP 9 83.8 26.8 53.9 81.2 83.7 83.7 83.6 82.5 71.1 43.8
MLP 10 84.1 25.9 53.8 81.9 83.9 84.0 83.8 83.0 71.0 44.2
MLP 15 84.7 26.2 54.4 82.0 84.6 84.7 84.5 84.0 71.4 47.9
MLP 20 85.8 36.9 58.3 81.7 85.6 85.8 84.2 84.3 70.9 45.8
MLP 25 86.3 28.5 57.2 81.8 86.2 86.3 85.9 85.1 71.5 47.9
MLP 30 85.9 36.9 54.8 79.9 85.6 85.8 85.6 84.9 71.7 46.8
MLP 35 85.7 37.3 56.9 79.5 85.6 85.7 85.5 76.4 71.5 45.8
MLP 40 84.9 36.8 58.8 79.4 84.7 84.8 84.5 76.6 71.6 47.4

Table 6.1: Mean percentage of correct classification of different MLPs, returning a decision with
time slots of 2.5 seconds, achieved by using 9 quantization schemes: Qx.y represents the quantization
scheme with x bits for the integer part, and y bits for the fractional one. MLPM means a multilayer
perceptron with M neurons in the hidden layer. The column labelled “Double” corresponds to the
percentage of correct classification when no-quantization, double floating-point precision has been
used. Columns in bold aims at helping the reader focus on the most relevant result: Q5.11 provides
very similar results to those of double precision.

2. The classifiers were configured for making a decision with time slots of 20 milliseconds. In
this case, the objective is to study the effects of the limited precision in a classification
scenario in which a small time scale is required, such as, for instance, in noise reduction or
sound source separation applications.

It is important to highlight that in a real-time classification system the classification evidence
can be accumulated across the time for achieving higher percentages of correct classification. This
fact makes necessary a study of the tradeoff between the selected time scale, the integration of
the decision for consecutive time slots, the performance of the final system and the required
computational load. This analysis is out of the scope of this chapter, since our aim is not to
propose a particular classification system, that must be tuned for the considered hearing aid
application, but to illustrate a set of tools and strategies that can be used for determining the
way an MLP can be efficiently implemented in real-time for sound environment classification
tasks with limited computational capabilities.

With these considerations in mind, we proceed further in explaining the results obtained in
this chapter. In this respect, Tables 6.1 and 6.2 show the percentage of correct classification for
a variety of multilayer perceptrons with different numbers of hidden neurons. In this table, MLP
M labels that the corresponding MLP contains M neurons in the hidden layer. These batches of
experiments have explored a number of hidden neurons ranging from 1 to 40. Aiming at clearly
understanding the effect of different quantization schemes, we have also listed the percentage
of correct classification computed with no-quantization, double floating-point precision formats.
These have been labelled in Tables 6.1 and 6.2 by using the header “double”.

Tables 6.1 and 6.2 supply some important pieces of useful information that we would like to
stress:

• The quantization formats with a low number of bits for representing the integer part, such
as, for instance, Q2.14, finally lead to decrease the percentage of correct classification when

6.3. Experimental work and results 115

No quant. Quant. scheme
Classifier Double Q1.15 Q2.14 Q3.13 Q4.12 Q5.11 Q6.10 Q7.9 Q8.8 Q9.7
MLP 1 53.5 46.6 48.2 53.0 53.4 53.4 53.1 53.0 49.2 30.0
MLP 2 62.6 48.3 55.8 61.6 62.4 62.6 62.3 57.5 43.5 29.8
MLP 3 63.9 45.8 46.3 53.3 59.8 63.6 62.8 53.7 43.7 39.0
MLP 4 65.3 40.1 39.4 48.9 59.6 65.1 63.9 53.8 39.8 28.7
MLP 5 67.2 40.3 44.2 50.9 62.3 66.9 62.6 48.8 37.8 25.6
MLP 6 66.9 35.9 39.8 44.9 58.8 65.9 62.7 56.8 40.4 28.3
MLP 7 68.3 37.2 40.9 45.9 61.1 67.7 63.6 51.9 39.8 27.2
MLP 8 69.4 36.3 38.2 42.4 63.2 68.8 64.5 55.2 39.7 29.4
MLP 9 69.8 35.8 40.1 42.8 63.8 68.7 66.6 53.4 39.9 30.1
MLP 10 70.1 33.8 38.9 41.0 62.3 68.2 67.1 54.3 40.3 29.6
MLP 15 70.2 31.7 34.4 37.8 68.6 70.0 69.3 58.6 42.0 27.4
MLP 20 70.4 31.5 33.1 35.7 60.9 70.3 69.7 59.8 43.2 29.3
MLP 25 70.5 31.4 33.0 36.8 60.2 69.9 69.8 59.7 40.8 27.0
MLP 30 70.9 31.0 33.2 38.1 58.3 69.8 69.5 62.1 41.5 29.7
MLP 35 70.7 30.8 34.1 37.8 57.4 69.5 69.0 63.2 45.8 30.1
MLP 40 70.4 32.7 35.8 41.0 61.8 70.3 70.2 63.5 44.2 28.9

Table 6.2: Mean percentage of correct classification of different MLPs, returning a decision with
time slots of 20 milliseconds, achieved by using 9 quantization schemes: Qx.y represents the quantiza-
tion scheme with x bits for the integer part, and y for the fractional one. MLPM means a multilayer
perceptron with M neurons in the hidden layer. The column labelled “Double” corresponds to the
percentage of correct classification when no-quantization, double floating point precision has been
used. Columns in bold aims at helping the reader focus on the most relevant result: Q5.11 provides
very similar results to those of double precision.

compared to those computed with double-precision. This decrease is caused by saturations
of the features and weights of the MLP-based classifier.

• On the other hand, the use of a low number of bits for the fractional portion also causes
a decrease in the percentage of correct classification, basically arising from the loss of
precision in the numerical representation.

These facts illustrate the need for a tradeoff between integer and fractional bits. For the sake
of clarity, Figure 6.1 shows the average relative increase in the error percentage with respect
to the use of double-precision, as a function of the number of bits of the fractional portion.
Computing this relative increase requires the use of those results obtained when using all the
MLPs listed in Table 6.1 and 6.2, and the average estimated as depicted in the expression shown
below:

I = 100 · Ê
{
PQi.j − Pdouble

Pdouble

}
(%) (6.2)

where Ê {·} represents the mean value of the error percentages involving all the number of
hidden neurons considered. Having a look at this figure, one can see that the lowest relative
increase is achieved by the Q5.11 quantization scheme, for both time slot configurations (files of
2.5 seconds and files of 20 ms). This is basically the reason by which we have chosen the Q5.11
quantization format for evaluating the effects of quantizing the overall sound classification system
prior to its practical implementation in the DSP. Please note also that for this quantization
scheme format, the lowest relative increase is achieved for files of 2.5 seconds.

Finally, for properly completing this section and making use of theQ5.11 quantization scheme,
we have quantified the signal-features and the weights of the MLP 20 obtained in Chapter
5, which assisted the classification system in achieving PCC = 87.5 % (see Table 5.6). After

116 Chapter 6. Analysis of the effects of finite precision

7 8 9 10 11 12 13 14 15
10 1

100

101

102

103

Number of bits of the fractional part

R
el

at
iv

e
in

cr
ea

se
 (%

)

Files of 2.5 s
Files of 20 ms

Figure 6.1: Average relative increase (%) in the percentage of error, as a function of the number
of bits of the fractional part, for the MLP-based classifiers explored in this chapter. Note that it is
shown for both time slot configurations considered: files of 2.5 seconds and files of 20 ms.

quantifying the features and the weights, the percentage of correct classification has been found
to be PCC = 87.3 %. These results clearly prove that the quantized MLP-based classifier achieves
perceptually the same efficiency as that reached by “exact” MLPs (without quantization), or in
other words, the performance of the classification system, once it is implemented in the DSP, is
not appreciably degraded.

6.4 Conclusions

This chapter has been motivated by the fact that the implementation of signal processing algo-
rithms in hearing aids is strongly constrained by the finite precision used for representing the
numbers to implement the algorithms in the DSP the hearing is based on. Within this framework,
this chapter has particularly centered on exploring the following:

• Studying the effects of the quantization format, Qx.y, used for representing both the sound
signal-describing features and the weights of the MLP.

• Selecting, among the available 16-bit quantization schemes, the most adequate one for
hearing aid performance.

The different batches of experiments, for both 2.5 seconds and 20 milliseconds time slots
configurations, lead to the following conclusions.

• The use of time slots of 2.5 seconds has been found to provide better results than those
reached by using shorter time slots (20 milliseconds).

• The Q5.11 quantization scheme exhibits very similar results to those obtained when no-
quantization, double-precision is used, mainly for the case of files of 2.5 seconds.

The final, global conclusion is that the results clearly prove that the quantized MLP-based
classifier achieves perceptually the same efficiency as that reached by “exact” MLPs (that is,

6.4. Conclusions 117

without these approximations), or in other words, the performance of the classification system,
once it is implemented in the DSP, is not appreciably degraded.

Chapter 7

Speech enhancement algorithms

7.1 Introduction

As advanced in the introductory chapter, hearing aid users usually face a variety of different
acoustic environments in their daily life, such as, for instance, speech, music or noisy environ-
ments. It seems to be clear that, among these acoustic listenings, the “noisy environment” is
the most difficult one to have a conversation for hearing aid users because of the surrounding
background noise.

In the effort of achieving a good communication in noisy environments, the relevant informa-
tion (the speech source) should be extracted from the background noise, which is a significant
problem for hearing aid users1. Furthermore, it is important to note that the listening environ-
ment for hearing aid users can change rapidly, like, for example, from being outdoor (the noise
source may come from a car passing by) or in a car (the noise source may come from engine
noise) to entering an office (e. g. fan noise, telephone ringing), a restaurant (e. g. people
talking), home (e. g. television, radio, household appliances), church or a concert hall. These
effects can seriously degrade the speech intelligibility perceived by hearing aid users2, especially
for those users which require a higher SNR. This enforces engineers to design algorithms that
allow hearing aids to compensate for all these effects.

Many algorithms have been proposed in the literature aiming at speech enhancement in
hearing aids. Regrettably, the drawback in these approaches consists in the fact that their
practical implementation in the DSP usually exceeds its scarce computational resources. To
better understand this, it is worth mentioning that only a reduced number of these algorithms
have been effectively implemented and integrated in hearing aids, being these hearing aids the
most sophisticated (and consequently, the most expensive) devices currently available in the
market [Eneman et al., 2008].

With these ideas in mind, we propose in this chapter a different approach aiming at speech
enhancement in hearing aids. As will be shown throughout this chapter, this approach basically
consists in automatically generating -by making use of perceptual concepts [Zwicker and Fastl,
1999], and a supervised learning process driven by a genetic algorithm- a gain function G that
aims at enhancing speech quality. Such perceptual concepts take advantage of the particular way
the human auditory system works. As it will be illustrated in Section 7.5, the proposed algorithm

1As mentioned in Chapter 2, hearing aid users have great difficulty to understand speech when they are
immerse in background noise. Many times, the users can “hear” but not understand the speech signal. They
typically require a SNR of about 5-10 dB higher than that required by normal hearing listeners to achieve the
same level of speech understanding [den Bogaert et al., 2009].

2Improving the speech intelligibility is one of the most desirable improvements sought by hearing aid users
[Kochin, 2002]

119

120 Chapter 7. Speech enhancement algorithms

creates the gain function G by using a gaussian mixture model driven by a genetic algorithm.
This genetic algorithm computes the optimized parameters this model depends on in order to
enhance the speech quality the user perceives. To what extent this is enhanced is measured by
the algorithm itself by using a scheme based on an objective measure. Section 7.2 illustrates
the reason why a scheme based on an objective measure has been chosen. In this respect, it
is important to highlight that, in many applications, the main purpose of speech enhancement
algorithms is to improve speech quality while preserving, at the very last, speech intelligibility. A
few number of algorithms have been evaluated by using intelligibility tests [Arehart et al., 2003;
Boll, 1979; Lim, 1978; Tsoukalas et al., 1997], and in these studies, only one speech enhancement
algorithm was evaluated in different noisy environments [Hu and Loizou, 2007]. In an effort of
properly validating the approach proposed in this thesis, not only in terms of speech quality, but
also in terms of speech intelligibility, we have made use of two different standardized objective
measures: the perceptual evaluation of speech quality (PESQ) and the speech intelligibility index
(SII), which, as their names suggest, aim to evaluate speech quality and speech intelligibility,
respectively. These both standardized measures are described in a detailed way in Section 7.3
and 7.4, respectively. Intuitively, the higher these scores are, the better the speech “perceived” by
the user is. Experimental work, included in Section 7.6, suggests the feasibility of the mentioned
approach to enhance speech quality and speech intelligibility in hearing aids. Finally, this chapter
is completed with a summary and discussion in Section 7.7.

7.2 Measuring the speech quality

Roughly speaking, speech quality measures can be accomplished by using either subjective or
objective algorithms. We say that a measure is considered as objective if it is “computable”, or in
other words, if a numerical value is returned after some mathematical calculations, in contrast
with a subjective measure, which is always based on human perception tests [Halka and Heute,
1992].

Subjective measures usually involve a large number of subjects (typically among 20 and 50
subjects), listening to a live or recorded conversation and assigning a rating to it. This rating
can be either a single overall quality quantifying a particular characteristic, like, for example,
clarity or listening effort, or a particular distortion, such as, for instance, clipping or hum. Since
subjective measures demand to make use of people, these measuring approaches are often very
accurate and appropriate aiming to evaluate speech quality. In this respect, the standardized
mean-opinion-score, commonly named “MOS”, is one of such valuable metrics involved subjective
measures [ITU-T, 2001a]. Although the MOS is not the only subjective measure, it is, however,
one of the most widely-used and recognized.

In order to calculate the MOS value, a large number of subjects listen to a set of test speech
sentences, and assign to each sentence an overall quality according to a N -point quality scale
(being a typical value N = 5). The results of these individual ratings are then averaged to
obtain the MOS value, which ultimately ranges from 1 (bad) to 5 (excellent). Concerning this,
it is worth mentioning that there are two standardized 5-point quality scales widely-used in the
literature [Jayant and Noll, 1990]: 1) a scale for evaluating the signal quality (intuitively, the
higher the MOS score is, the better the signal quality is), and 2) a signal impairment scale that
measures the quality signal with respect to the audibility of the distortion in the signal. For
illustrative purposes, these both 5-point (also called, five-grade) quality scales, along with their
associated numerical scores are outlined in Table 7.1.

Clearly, a metric, such as MOS, which makes use of subjects, can be a good measure of the
speech quality perceived by the user. However, subjective measures have important drawbacks

7.2. Measuring the speech quality 121

MOS Quality Impairment
5 Excellent Imperceptible
4 Good (Just) Perceptible but not annoying
3 Fair (Perceptible and) Slightly annoying
2 Poor Annoying (but not Objectionable)
1 Bad Very annoying (Objectionable)

Table 7.1: Two widely-used standardized 5-point (also called, five-grade) quality scales. One of the
scales aims at evaluating the signal quality (column labelled “Quality”) and the other scale intends
for measuring the quality signal with respect to the audibility of the distortion (column labelled
“Impairment”). For both scales, it is shown their associated MOS values, which range from 1 to 5.

that make them difficult to be used in a practical implementation. In particular, these measuring
approaches can be both excessively time-consuming and expensive tasks, in the sense that, some
researchers or organizations might not have the resources to carry out these particular tests
involving large numbers of subjects (as in our case). Furthermore, such metrics cannot be used in
any sort of real-time or online application. Please note that this latter drawback is not actually
important from the point of view of our approach because, as will be shown throughout this
chapter, the optimized parameters of the model the gain is based on are computed off-line. Only
when these values have been computed on the laboratory, they are stored in the data-memory
available in the DSP.

These drawbacks, among other reasons, have led to the development of objective metrics.
Ideally, these measures should be as highly correlated as possible to the standard MOS value,
or to any another subjective quality measure. In other words, these measures should be good
predictors of average subjective preferences.

Several different objective prediction methods for measuring speech quality when transmitting
packets over networks, or in the design of algorithms, such as, for instance, those involved in
low bit-rate speech coding, have been proposed in the literature [Beerends, 1994; Hansen and
Kollmeier, 2000; ITU-R, 1998; ITU-T, 1996a, 2000, 1997, 1996b; Rix and Hollier, 2000; Thiede
et al., 2000; Voran, 1999a,b]. Such methods basically predict perceived speech quality based
typically on a computation of distortion between the original transmitted signal (also named
“clean”) and the received signal (sometimes named “noisy”).

Among these several objective measures, we have focused here on a model, proposed by the
International Telecommunications Union, for the perceptual evaluation of speech quality (PESQ)
[ITU-T, 2001b]. It achieves an extremely good performance for a very wide range of applications,
such as, for instance, speech quality assessment in speech coding algorithms or in the end-to-
end testing of networks. This sort of applications might make the reader wonder why we have
explored this model to evaluate the performance of the speech enhancement approach for hearing
aids proposed in this chapter. The reason is as follows. Although PESQ measure was not initially
designed for the evaluation of speech enhancement algorithms in hearing instruments, it has been
recently found to provide a significant good indication of its performance and is commonly used
by engineers for evaluating speech quality in these devices [Mancuso et al., 2006; Rohdenburg
et al., 2006].

Deepening a little more in this latter measure, it is worth noting that PESQ measure predicts
speech quality but not speech intelligibility, which may lead to wonder the following question:
a speech sound that shows excellent speech-quality, is it also perfectly intelligible? Although
not clear at first at glance, it is worth noting that excellent speech-quality does not always
involve perfect speech-intelligibility [Preminger and van Tasell, 1995]. Aiming at overcoming
this, we have also made use here of another standardized measure that intends for measuring

122 Chapter 7. Speech enhancement algorithms

speech intelligibility. This measure is the so-called speech intelligibility index (SII) [ANSI, 1997].
It is commonly used to predict speech intelligibility in real-world environments with stationary
background noise1. The key point that exhibits the greatest relevance here, when contrasted with
the PESQ model, is that this measure takes into account the subject’s acoustic loss and thus,
it can be used for predicting speech intelligibility for both normal-hearing and hearing-impaired
subjects.

In the effort of properly evaluating the speech enhancement approach for hearing aids pro-
posed in this chapter, we have made use of the two aforementioned objective measures, since it
has been proven that they both show good performance in predicting speech quality and speech
intelligibility for different speech quality test databases. These both objective measures will be
described in a detailed way in the two sections that immediately follow.

7.3 Perceptual evaluation of speech quality

7.3.1 Introduction

In the early 1990s, several new perceptual models for measuring the quality of speech in speech
coding algorithms were proposed. We say perceptual in the sense that they apply a psychoacoustic
model, or in other words, a mathematical model based on psychoacoustic measurements of the
masked threshold2. In 1996, the perceptual speech quality measure (PSQM) [Beerends, 1994],
was adopted as ITU-T recommendation P.861 [ITU-T, 1996b]. The purpose of this algorithm
consisted in quantitatively evaluating the performance of speech coding algorithms. Two years
later, an alternative system based on measuring normalizing blocks (MNB) [Voran, 1999a], was
added as an appendix to recommendation P.861. Another model, the perceptual audio quality
measure (PAQM) [Beerends, 1992], was combined with several different audio models to produce
a new algorithm known as perceptual evaluation of audio quality (PEAQ), which became an
ITU-R recommendation BS.1387 in 19993 [ITU-R, 1998; Thiede et al., 2000]. Some extensions
to the bark spectral distortion (BSD) model [Wang et al., 1992] led to the development of the
perceptual analysis measurement system (PAMS) [Hollier et al., 1992, 1994; Rix et al., 1999;
Rix and Hollier, 2000]. This was the first model in the literature to focus on end-to-end quality
speech assessment of networks, including the effects of filtering and variable delay [Rix et al.,
1999; Rix and Hollier, 2000].

These effects, along with certain types of coding distortion, packet loss and background noise,
were found to cause earlier models, such as, for instance, BSD, PSQM and MNB, to provide
inaccurate scores [Rix et al., 1999, 2000; Rix and Hollier, 2000]. A competition was therefore
held by ITU-T study group 12 to select a new model with good performance across a wide range
of speech coding algorithms and network conditions. In this respect, the two algorithms with
the highest performance in this competition, PAMS and PSQM99 (an updated and extended
version of PSQM), were combined to produce a new model known as perceptual evaluation of
speech quality (PESQ), which became an ITU-R recommendation P.861 [Beerends et al., 2002;
ITU-T, 2001b; Rix et al., 2002].

Although will be explained in a detailed way later on, we can say in advance that PESQ
algorithm predicts subjective MOS scores by comparing the input signal (called the “reference”
signal in the standard) to a “system under test”, and the signal that has been transmitted

1Stationary noise is defined as noise that does not contain large or rapid changes in its spectrum over time,
such as, for instance, the sound of a fan or engine noise, thermal noise, etc.

2Auditory masking is a well-known psychoacoustic phenomenon in which a weak signal becomes inaudible in
the presence of a stronger masker signal [Moore, 2003].

3It was originally released in 1998 and last updated in 2001.

7.3. Perceptual evaluation of speech quality 123

through that system under test (called the “degraded” signal in the standard), and penalizes
the final score based on measures of distortion. The PESQ measure has a high correlation with
subjective listening tests for a large number of testing conditions [ITU-T, 2001b], which makes
it a measure widely-used for evaluating speech quality.

7.3.2 Description of PESQ model

Figure 7.1 shows, in an illustrative way, the diagram block of PESQ algorithm. As clearly de-
picted, PESQ algorithm requires both a “reference” signal and a “degraded” signal for comparison
and a “system under test”. Please note that, within the particular application at hand, the sys-
tem under test is the hearing aid itself, and the reference and degraded signals are the original
input signal to the hearing aid and that input signal after being processed by the hearing aid,
respectively.

Set of
speech

files

System
under test

 [-0.5 4.5]

Bad Excellent

For any audio file, the
PESQ is computed

Degraded signal

Pre-processing

Pre-processing

Time
alignment

Auditory
transform

Disturbance
processing

Auditory
transform

Time
averaging

Identify bad
intervals

PESQ
score

Reference signal

Re-align bad intervals

PESQ algorithm

Figure 7.1: Illustrative diagram block of PESQ algorithm. For any input speech file, the PESQ
block computes, after some mathematical handling, a score ranging from −0.5 (bad, completely no
understanding) to 4.5 (excellent, perfect understanding). This score basically depends on the “system
under test”, the reference and degraded signals, and the psychoacoustic model applied. Note that,
within the particular application at hand, the system under test is the hearing aid itself, and the
reference and degraded signals are the original input signal to the hearing aid and that input signal
after being processed by the hearing aid, respectively.

PESQ algorithm basically consists of different functional blocks, which are briefly summarized
in the following paragraphs:

• Pre-processing: The reference and degraded signals are first level-equalized to a standard
listening level, and then filtered by using a filter with response similar to a standard tele-
phone handset. Although this filter is band limited to about 3 kHz, however, its use is very
appropriate since all the intelligibility of the speech signal is contained within this band.

• Time alignment: The signals are aligned in time in order to correct time delays, which
basically allows us to compare corresponding parts between the reference and degraded
signals.

• Auditory transform: In the effort of comparing the reference and degraded signals, taking
into account of how a listener would have heard them, each sound signal is passed through

124 Chapter 7. Speech enhancement algorithms

an auditory transform that imitates certain key properties of human ear1. This assists
us in obtaining a time-frequency representation of the perceived loudness of the signal
(sometimes known as the “sensation surface”).

• Calculation of distortion measures: The difference between the sensation surfaces for the
reference and degraded signals is known as the “error surface”, which basically shows any
audible differences introduced by the system under test. The error surface is analyzed by
a process that takes account of the effect that small distortions in a signal are inaudible in
the presence of strong signals (auditory masking).

From the positive and negative errors, two disturbance parameters are calculated. They
are calculated as non-linear averages over specific areas of the error surface. These two
disturbance parameters are:

– The absolute (symmetric) disturbance, or in other words, a measure of absolute au-
dible error.

– The additive (asymmetric) disturbance, that is, a measure of audible errors that are
significantly louder than the reference.

This analysis allows us to obtain two error parameters that summarize the amount of each
type of audible error.

• Realignment of bad intervals: In certain cases, the time alignment may fail to correctly
identify a delay change, resulting in large errors for each section with incorrect delay. These
are identified by labeling bad frames (which have a symmetric disturbance of more than
45) and joining together bad sections in which bad frames are separated by less than 5 good
frames. Each bad section is then realigned, and the disturbance is recalculated, estimating
thus a new delay. The auditory transform of the degraded signal is recalculated and the
disturbance estimated again. For any frame, if the realignment results obtained lead to a
lower disturbance value, the new value is used.

• Mapping to MOS scale: The asymmetric and symmetric distortion measures are mapped
in order to produce the prediction of MOS score that, within this context, varies from −0.5
(bad, or equivalently completely no understanding) to 4.5 (excellent, or in other words,
perfect understanding), although for many cases it will be a MOS-like score ranging from
1 (bad) to 4.5 (excellent), as listed in Table 7.2. Intuitively, the higher the PESQ score is,
the better the speech “perceived by the human auditory system” is.

7.4 Speech intelligibility index

7.4.1 Introduction

The speech intelligibility index (SII) [ANSI, 1997] is a standardized objective measure commonly
used to predict speech intelligibility in stationary noisy environments, like, for example, when
speech goes through noisy telecommunication channels or is processed by electronic devices, such
as, for instance, hearing aids.

1Among other sequence of processes, both signals are divided into frames and the Short-Time-Fourier-
Transform (STFT) of any frame, which makes use of a window length of 512 samples and an overlap factor
of 0.5, is computed

7.4. Speech intelligibility index 125

PESQ Linguistic Quality
score equivalent degradation
4.5 Excellent None
4 Good
3.5 Good/Fair Moderate
3 Fair
2.5 Fair/Poor Severe
2 Poor
1 Bad

Table 7.2: Illustrative representation of PESQ quality scale. Although PESQ score originally ranges
from −0.5 (bad, or equivalently completely no understanding) to 4.5 (excellent, or in other words,
perfect understanding), it is a very common situation to interpret PESQ scores as MOS-like scores,
ranging from 1 (bad) to 4.5 (excellent), as depicted in this table. Note that it is also shown both the
linguistic equivalent and the quality degradation scales.

It was created as a major revision of the articulation index (AI) [French and Steinberg,
1947]. Basically, the articulation index is a measure that quantifies the relationship between the
proportion of the average speech spectrum that remains perceptible in the presence of filtering,
background noise or low-level speech. It was originally developed to assist engineers in the design
of telephone communication systems but it has been proven recently to be a valuable tool for
hearing aids fitting (say, for instance, the design of the best “amplification program” in order to
maximize speech intelligibility in different acoustic situations). Like AI and PESQ measures, SII
is also a measure highly correlated with the intelligibility of speech under a variety of adverse
listening conditions [Azman, 2010].

Being more precise, SII can be interpreted as the total number of speech cues to reach the
listener (the hearing aid user, in our application at hand). As depicted in the intelligibility rating
scale shown in Figure 7.2, the value of SII is always a number between 0 (bad, or equivalently
completely no understanding) and 1 (excellent, or in other words, perfect understanding). Ac-
cording to [ANSI, 1997], good communication systems have a SII value of 0.75 or above, while
poor communication systems have a SII value below 0.45.

BAD POOR FAIR GOOD EXCELLENT

0 0.3 0.45 0.6 0.75 1.0

Figure 7.2: Speech intelligibility index (SII) rating scale. SII score is expressed by a number ranging
between 0 (bad, or equivalently, completely no understanding) and 1 (excellent, or in other words,
perfect understanding).

As mentioned in the Introduction, the computation of the SII requires, apart from the sub-
ject’s acoustic loss, that the spectra corresponding to the speech and noisy signals are available
separately. The cornerstone idea describing how this method works relies on the fact that the
intelligibility of speech depends on the proportion of spectral information that is perceptible to
the listener. In this sense, the spectrum is divided into bands (that is, frequency bands) and
the average of the SNRs in each frequency band is estimated. The SNRs are then weighted by
band-importance functions, or in other words, a numerical value that characterizes the relative
significance of each frequency band to the speech intelligibility. Aiming at clearly understanding

126 Chapter 7. Speech enhancement algorithms

why not all the frequency bands do contribute in the same proportion to the speech intelligibility,
we have included Figure 7.3 that represents an illustrative example of the “importance” of any
particular frequency [ANSI, 1997]. As shown, the contribution of central frequencies is higher
than those of lower or higher frequencies.

100 1000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Ba

nd
 Im

po
rta

nc
e

Frequency (Hz)

Figure 7.3: “Importance” of the different frequencies aiming to calculate the speech intelligibility
index. As represented, the contributions of central frequencies is higher than those of lower or higher
frequencies.

According to the number of frequency bands selected to compute the SII, the methods are
classified as follows (in descending order of accuracy):

1. Critical bands (21 bands)

2. One-third octave bands (18 bands)

3. Equally-contributing critical bands (17 bands)

4. Octave bands (6 bands)

The basic fundamentals of the four methods are essentially the same. The computations
basically differ in the number and the bandwidth of the frequency bands selected. Intuitively,
the higher the number of frequency bands is, the more accurate the method is. In this respect,
it is very illustrative to note that the “critical bands” method is the most precise of the four
listed. Although this is the most accurate method, however, the method we have chosen here
to carry out the experiments is the “one-third octave bands” (from 160 Hz to 8 kHz with a
bandwidth of 150 Hz), since this approach usually corresponds with speech analysis experiments
[Muthukumarasamy, 2009].

The sequence of operations involved in calculating the SII score using this method are ana-
lyzed in the following subsection. We have grouped them under the heading “description of SII”.
For this calculation, it is supposed that, 1) the subject faces the speech source, and 2) the speech
source is assumed to be omnidirectional.

7.4.2 Description of SII

In this section, a review of the most important aspects for the calculation of the SII score are
described, although a more detailed description of the SII can be found in [ANSI, 1997].

7.4. Speech intelligibility index 127

With the “one-third octave bands” method in mind, the SII score is computed based on
three parameters that we will describe later on. Such parameters, as will be shown, include
some factors we are familiar, like, for example, the particular hearing loss the subject suffers
from. Once we have these necessary parameters, the sequence of operations that will help us
analytically compute the SII score is explained in the paragraphs that follow.

• The first descriptive parameter is called speech spectrum level (E′) (dB) and represents,
for each frequency band labelled with the k-index, the spectrum level of the speech signal
at the centre of subject’s head. In the problem at hand, this parameter will be determined
as:

E
′
k = Ek +Gk (7.1)

where:

– Ek is the speech spectrum level at frequency band k, and
– Gk is the insertion gain for the frequency band k. In the particular case at hand,

this insertion gain designates the gain that the hearing aid exhibits to compensate the
particular subject’s acoustic loss.

• The second necessary parameter to estimate the SII score is the noise spectrum level (N ′k)
that, essentially, measures the spectrum power level of noise in each frequency band. Since
SII score has been used to create an amplification scheme, or in other words, a gain function
(G) when the input signal to the hearing aid is classified as a “speech-in-quiet” signal, or
in other words, speech without presence of background noise, this parameter has been
assumed to be 0 dB SPL for all frequency bands in our experiments.

• The third parameter is the equivalent hearing threshold (T ′k). Basically, this parameter is
the amount that a tone must be increased aiming at a hearing-impaired subject can “hear”
sounds as a normal-hearing person does, or in other words, this parameter represents the
hearing loss level (dB) listed Table C.2 in Appendix C (page 213), for the study-case
patients used in our experimental work.

Now, with all these parameters we have defined, we have the background to define the SII
score as follows:

1. Computing the equivalent masking spectrum level (Z ′k) (dB)
This parameter can be seen as the sound pressure level in the spectrum that appropriately
accounts for the masking of speech produced by the equivalent noise. It comprises masking
from within-band, out-of-band (spread of masking) and masking of one speech frequency
by another (known as “self-speech masking”). In the effort of estimating this parameter
when the “one-third octave bands” method is chosen, the following parameters need to be
computed for each frequency band k:

• Self-speech masking spectrum level, Vk (dB): This parameter computes the masking
of higher speech frequency bands by lower speech frequency bands in cases of severe
low-pass or band-pass filtering. It can be calculated by using the following expression:

Vk = Ek − 24 (7.2)

being Ek the equivalent speech spectrum level (dB) for the frequency band k.

128 Chapter 7. Speech enhancement algorithms

• Then, the value of Bk (dB) is determined as the larger of N ′k and Vk. We shall
mathematically define this latter statement as:

Bk =
{
N
′
k, if N ′k > Vk

Vk, if Vk > N
′
k

. (7.3)

• The next step is to determine Ck (dB) which is the slope per octave (doubling of
frequency) of the upward spread of masking in dB/octave for each frequency band.
In our particular case, this parameter can be computed by using the expression given
below:

Ck = −80 + 0.6 · [Bk + 10 · logFk − 6.353] (7.4)

where:
– Bk labels the parameter previously explained, and
– Fk represents the nominal midband frequency of the “one-third octave bands”

method, for each particular frequency band k.
With this in mind, the corresponding equivalent masking spectrum level (Z ′k), for
central and higher frequency bands can now be written as:

Zk = 10 · log {100.1N
′
k +

k−1∑
b=0

100.1[Bb+3.32·Cb·log (0.89·Fk/Fb)]} (7.5)

where:
– N

′
k represents the equivalent noise spectrum level,

– Bb is the same as Bk,
– Fk is the nominal midband frequency of the “one-third octave bands” method,

and finally,
– Fb is the nominal midband frequency for frequency band k.

Note that for lower frequency bands, we assume that Zk = Bk.

2. Estimating the equivalent internal noise spectrum level (X ′k) (dB)
In this thesis, this parameter adopts the following formulation:

X
′
k = Xk + T

′
k (7.6)

where:

• Xk is the reference internal noise spectrum level listed in Table 3 in [ANSI, 1997], and
• T ′k is the estimated equivalent hearing threshold level or, in other words, the particular

hearing loss the subject suffers from.

3. Determining the equivalent disturbance level (Dk) (dB)
This parameter is determined as the larger of Zk and X ′k. We shall mathematically define
this statement as:

Dk =
{
Zk, if Zk > X

′
k

X
′
k, if X ′k > Zk

.

7.4. Speech intelligibility index 129

4. Computing the speech level distortion factor (Lk) (dB)
This parameter accounts for the decrease in the intelligibility of speech at high input signal
levels. It ranges from 0 (high levels) to 1 (there is no distortion due to presentation level).
It can be computed by using the expression shown below:

Lk = 1− E
′
k − Uk − 10

160
(7.7)

where:

• E′k is the equivalent speech spectrum level defined in Expression 7.1, and

• Uk is the standard speech spectrum level at normal vocal effort listed in Table 3 in
ANSI [1997].

5. Computing the band audibility function (Ak) (dB)
This important parameter is the effective portion of the speech dynamic range within the
band that contributes to the speech intelligibility under conditions less than optimal. In the
effort of computing this value, a temporary variable Kk needs to be calculated previously.
This variable represents the total effective signal to noise ratio and is limited to the range
of 0 and 1. The way this variable can be computed is depicted in the following expression:

Kk = 1− E
′
k −Dk + 15

30
(7.8)

where

• E′k represents the equivalent speech spectrum level whose expression for the problem
at hand we deduced in Expression 7.1, and

• Dk is the equivalent disturbance level.

Therefore, the band audibility is computed by using the expression shown below:

Ak = Lk ·Kk (7.9)

where:

• Lk is the speech level distortion factor computed from Expression 7.7, and

• Kk is the constant computed in Expression 7.8.

6. Speech intelligibility index (SII)
With this scenario in mind, we can proceed in explaining the way the SII score can be
computed, as clearly shown below:

SII =
NB∑
k=1

Ik ·Ak (7.10)

where:

130 Chapter 7. Speech enhancement algorithms

• Ik is the band-importance function. This function depends on the sort of speech
signal and the proficiency of talkers and listeners to understand speech (a range of
band-importance functions is given in Table B.2 of the standard [ANSI, 1997]), and

• Ak is the band audibility function that we have previously deduced.

For illustrative purposes, and facilitating the reader’s comprehension, Figure 7.4 aims at
illustrating the conceptual representation of a general SII computation system. The practical
point to highlight here regarding this figure is that the system requires, for estimating the SII
score, the input speech signal, the subject’s hearing threshold and the background noise level.
It is important to note that, within the particular application at hand, since the goal will be to
design an “amplification scheme” for speech-in-quiet signals (or in other words, speech without
presence of background noise or with a high SNR), the background noise will be assumed to be
0 dB SPL.

Hearing threshold

Set of
speech

files

SII

noise

 [0 1]

Bad Excellent

For any audio file, the SII is
computed as a function of

hearing threshold and noise

Figure 7.4: Conceptual representation of the way the SII score is computed. For any speech file,
the SII block computes, after some mathematical handling, a score between 0 (bad) and 1 (excellent)
as a function of the patient’s hearing threshold and the background noise. Within the application
at hand, since the goal is to design an “amplification program” for speech-in-quiet files (with no
background noise or with a high signal-to-noise ratio), the background noise is assumed to be 0 dB
SPL.

7.5 Blind modeling of the gain function by using gaussian mix-
tures

As mentioned in Chapter 2, a digital hearing aid basically consists of a bank of sound compressors,
one for each frequency band, k = 1 , . . . , NB, NB being the number of frequency bands available
in the DSP (NB = 64 bands, in the particular case at hand). We can formally express the gain
matrix G, containing all the parameters required to completely compute the gain in any band
for any input signal level, as shown below:

G = f(X, k) (7.11)

where:

7.5. Blind modeling of the gain function by using gaussian mixtures 131

• X is the level (dB) of the input signal, and

• k = 1, . . . , NB is the index over the NB frequency components of the STFT of the input
signal.

Parameters involved in matrix Ĝ (matrix Ĝ representing the optimized parameters), have to
be optimized in the effort of enhancing: 1) the speech quality (PESQ measure), and 2) the speech
intelligibility (SII measure) perceived by hearing-impaired people. This optimization process can
be mathematically written as:

Ĝ = max
G

PESQ (7.12)

where “PESQ” represents the PESQ measure, or also,

Ĝ = max
G

SII (7.13)

where “SII” represents the SII measure.
Computing the gain, as a function of the input signal level (X) and the frequency (k), can

require intensive computational cost. To illustrate this statement, we can imagine, for the sake
of simplicity, a simple scenario with a conventional hearing aid, in which for any input level and
any frequency, the gain can be modeled with a 3-piece linear approximation (we refer the reader
to Subsection 2.3.5 in page 23 for further details). This demands to compute 5 parameters to
define the curve for each frequency band. If NB = 64 bands are considered, the total number of
parameters included in matrix G would be 65× 5 = 320.

In the effort of reducing this number, and in the aim of “not contaminating” the gain design
with non-perceptual concepts, we propose to model the complete gain G (and not its separate
pieces), as a smooth function in a “blind” method that we describe later on. Prior to this, it
is convenient to remark we say the method is “blind” in the sense we do not introduce any
initial information but that related to “perceptual concepts” (just those that can be numerically
quantified by the PESQ or SII measures). And this is just the reason why we have mentioned
that the method aims to “not contaminate” the gain with non-perceptual impositions. An elegant
way of modeling G is by making use of the gaussian mixture model described in the following
subsection.

7.5.1 Gaussian mixture model

With the aforementioned concepts in mind, the initial, blind structure of the gain G can be
formally approached by using a gaussian mixture model (GMM) [Roberts et al., 1998], which
basically consists in a properly weighted combination of gaussian components, and exhibits the
following expression:

G ≈ p(x) =
g∑

ind=1

pind ·N(mind,Cind) (7.14)

where:

• p(x) is the probability density function of the gaussian mixture,

• x = [x1, x2, . . . , xd] is a d-dimensional data vector,

• g represents the number of gaussian components,

132 Chapter 7. Speech enhancement algorithms

• N is a (normalized) multivariate normal or gaussian distribution (with mean value mind

and covariance matrix Cind) whose density function can be expressed as:

N =
1

(2π)(d/2)|Cind|1/2
exp

{
− 1

2
(x−mind)TC−1

ind(x−mind)
}
. (7.15)

The weights pind in Expression 7.14 can be interpreted as the a priori probability that an
observation of x comes from the source governed by the g-th gaussian distribution. Thus, the
following conditions must be fulfilled:

0 6 pind 6 1, ∀ ind = 1, . . . , g (7.16)

and

g∑
ind=1

pind = 1. (7.17)

With this scenario in mind, the complete gaussian mixture model is parametrized by the
mean vectors, covariance matrices and mixture weights from all components.

In the effort of facilitating the reader’s comprehension, we have included Figure 7.5, which
basically represents an illustrative example of an “ideal” gain matrix (G) obtained with the
approach proposed in this chapter. As shown, this gain function would amplify soft-medium
speech sounds (60-85 dB SPL) and would reduce the gain for not speech sounds. This latter
can be better noticed in Figure 7.17(b), in which the maximum of the gaussian mixture is
approximately located at speech frequencies (frequency bands from 15 to 35) and thus, the gain
for not speech sounds would be approximately 0 dB.

0
20

40
60

020406080100120
0

10

20

30

40

Frequency bandInput signal level (dB SPL)

G
ai

n
(d

B)

(a)

0

10

20

30

40

50

60

0
20

40
60

80
100

120

(b)

Figure 7.5: An illustrative example of an ideal gain matrix (G) obtained with the speech enhance-
ment approach proposed in this chapter. As shown, this gain function would amplify soft-medium
speech sounds (60-85 dB SPL) and reduce the gain for not speech sounds.

Prior to focus on other important details, it is convenient to emphasize that, apart from the
fact we do not introduce non-perceptual information, a second advantage of this approach is that
the number of parameters to be optimized is appreciably reduced since now that number does
not depend on the number of frequency bands in the hearing aid.

An important issue in mixture modeling is the selection of the number of gaussian distribu-
tions that compose the GMM, or in other words, the value of g. This number of components is

7.5. Blind modeling of the gain function by using gaussian mixtures 133

usually unknown in real-world problems. A mixture with too many components will overfit the
data, whereas a mixture with too few components will be too simple to approximate underlying
distributions. Many algorithms have been proposed in the literature for the selection of the
proper number of components. Some of these approaches add a penalty term in the objective
function that can potentially penalize more complex models. A detailed review of different cri-
teria used to penalize complex models is given in [McLachlan and Peel, 2000]. In the batches of
experiments carried out in this chapter, a number of gaussian components higher than g > 3 has
been found to not appreciably increase either the speech quality or speech intelligibility perceived
by the user, and thus, for the sake of simplicity and aiming at using the lowest number of compu-
tational resources, g = 3 has been considered as the maximum number of gaussian components
in G.

The rest of parameters in Expression 7.14 will be computed by making use of a genetic
algorithm (see Appendix D for further details).

7.5.2 The approach at work

Figure 7.6 will assist us in more clearly introducing the approach proposed in this thesis. As
shown, any speech signal available in a training phase, SC, subscript “C” meaning “clean”, is
processed by the hearing aid, and for each amplified output signal produced by the hearing aid,
SO, subscript “O” meaning “output”, a score (based on an objective measure) is computed.

Set of training
speech files

Objective
measure G

Hearing
aid

GA

Parameters

For any audio file,
an score is computed

scoreSO

SC

Figure 7.6: Simplified block diagram illustrating the way the proposed speech enhancement ap-
proach works. Any speech file available in the training set (SC) is processed by the hearing aid, and
for each amplified output signal produced by the hearing aid (SO), a score (based on an objective
measure) is computed. Since the signal SO depends on the gain matrix (G), the goal of the genetic
algorithm (GA) is to find the best candidate solution G that is “best fitted”, or in other words, the
one that maximizes the objective measure (that is, the fitness function).

This amplified output signal produced by the hearing, SO, depends on the amplifying matrix
of the hearing aid. This gain matrix (G) is created by using a gaussian mixture model driven
by a genetic algorithm. The goal of the GA is thus to find the best candidate solution G in
Expression 7.14 that is “best fitted”, or in other words, the one that maximizes the objective
measure (computed over the signal SO).

As pointed out, in an effort of not only improving the speech quality, but also the speech
intelligibility perceived by the user, two different objective methods have been considered here
to compute the score. These objective methods are based on: 1) the PESQ measure and 2) the

134 Chapter 7. Speech enhancement algorithms

SII measure, and consequently, they intend for quantitatively measuring the speech quality and
the speech intelligibility, respectively.

Depending on the method chosen to compute the score, the approach, shown in Figure 7.6,
will be slightly different. For illustrative purposes, and facilitating the reader’s comprehension,
we have preferred to explain such approaches in the ordered way that follows.

1) Figure 7.7 aims at illustrating the approach when it makes use of PESQ measure. As depicted,
this approach basically compares the amplified output signal produced by the hearing aid, SO,
with a reference, high quality speech signal, SC. It is important to highlight that, conceptually,
the output signal SO is basically the reference signal SC after 1) being corrupted with different
kinds of noise (N), and 2) after being modified by the hearing aid. Using both signals, the
PESQ block generates a score ranging from −0.5 (bad) to 4.5 (excellent). The higher the
score is, the better the speech “perceived by the human auditory system” is. Please note that,
in this case, the fitness function (PESQ measure) is computed over both signals SC and SO.

Set of training
speech-in-quiet

files

PESQ

Noise
generator

G
Hearing

aid

GA

Parameters

For any audio file, the
SII score is computed

SC + N SO score

SC
SC

Figure 7.7: Block diagram illustrating the way the speech enhancement approach works when it
makes use of the PESQ measure. The PESQ block compares the amplified output signal produced
by the hearing aid, SO, with a reference, high quality speech signal, SC. Conceptually, the output
signal SO is basically the reference signal SC after 1) being corrupted with different kinds of noise
(N), and 2) after being modified by the hearing aid. Using both signals, the PESQ block generates
a “score” ranging from −0.5 (bad) to 4.5 (excellent). Since SO (and thus the score) depends on the
gaussian mixture gain G, the goal of the GA is thus to find the best candidate solution G, or in other
words, the one that maximizes the PESQ measure (computed over signals SC and SO).

2) Figure assists us in introducing the approach when it makes use of SII measure. As illustrated,
the approach generates a score as a function of: 1) the input speech signal level (in the
particular problem at hand, a speech-in-quiet signal), 2) the background noise level, 3) the
threshold of hearing, and 4) the amplifying function (or gain function) of the hearing aid. In
order to compute this score, since the subject is embedded in a scenario without background
noise, we have assumed the background noise to be 0 dB SPL, as depicted in the figure. Please
note that the output signal SO is basically the input signal (SC) after having been modified
by the hearing aid.

Bearing in mind that one of the parameters for the SII computation is the threshold of

7.6. Experimental work and results 135

Hearing threshold

Set of training
speech-in-quiet

files

SII

noise

0 dB SPL

G
Hearing aid

GA

Parameters
For any audio file, the
SII score is computed

SC

SO

Figure 7.8: Block diagram illustrating the way the speech enhancement approach works when it
makes use of the SII measure. The SII block computes a score as a function of: 1) the input speech-
in-quiet signal level, 2) the background noise level, 3) the threshold of hearing and 4) the amplifying
function (gain) of the hearing aid. The output signal (SO) is basically the input signal after having
been modified by the hearing aid. Since SO (and thus the score) depends on the gaussian mixture
gain G, the goal of the GA is thus to find the best candidate solution G, or in other words, the one
that maximizes the SII measure (computed over the signal SO).

hearing and in the effort of making the more realistic approach, we have carried out a series
of experiments with different thresholds of hearing. To be more precise, we have considered a
subset of 4 different real patients, with mild to profound hearing loss, which have been found
to be sufficiently representative for the problem at hand.

These patients, in ascending order of acoustic loss, are as follows:

• Patient 6 (P6): a mild hearing loss subject, with an average hearing threshold level of
31 dB.
• Patient 2 (P2): a moderate hearing loss subject, with an average hearing threshold level

of 56 dB.
• Patient 9 (P9): a severe hearing loss subject, with an average hearing threshold level of

72 dB.
• Patient 8 (P8): a profound hearing loss subject, with an average hearing threshold level

greater than 80 dB.

The main characteristics of these patients are listed in Table C.2 in Appendix C (page 213).

7.6 Experimental work and results

Prior to the description of the experiments carried out in the effort of automatically generating,
by making use of perceptual concepts, and a supervised learning algorithm driven by a genetic
algorithm, a gain matrix (G) that aims at enhancing, not only speech quality, but also speech
intelligibility perceived by the hearing aid user (Subsection 7.6.2), it is worth having a look at
the sound database used for the experiments (Subsection 7.6.1).

136 Chapter 7. Speech enhancement algorithms

7.6.1 Experimental setup

In order to carry out the experiments, we have made use of different sound databases. These
databases will be briefly described below.

• Database 1. This database contains a total of 30 speech-in-quiet files, randomly selected
from the database described in Section C.1 in Appendix C (page 211). These 30 clean
speech sentences have been degraded by additive white gaussian noise at SNRs 0 dB, 5
dB, 10 dB and 15 dB. These values of SNRs have been taken from [Loizou, 2007]. The
sentences have been sampled at 8 kHz, and the number of bits per sample is 16. The
database includes utterances by American English male and female speakers. For properly
training and testing the learning process, it is necessary for the database to be divided into
two different sets. For this reason, 7 files (25 %) have been picked randomly as training
data, and the remaining, 23 (75 %) files have been used for the purpose of testing. This
division has been made ensuring that the relative proportion of files of each category is
preserved for each set.

• Database 2. It is composed of 30 IEEE clean speech sentences, extracted from the noisy
speech corpus (NOIZEUS) available in [Loizou, 2007]. These clean speech sentences have
been degraded by additive white gaussian noise at different SNRs, ranging from 0 dB to 15
dB in steps of 5 dB. These sentences were recorded in a sound-proof booth using Tucker
Davis Technologies recording equipment. The sentences were produced by three males and
three females (five sentences per speaker). This IEEE database has been used because
it contains phonetically balanced sentences with relatively low word-context predictability.
The aforementioned sentences have been selected from the IEEE database so as they include
all phonemes in the American English language. The sentences were sampled at 8 kHz and
the number of bits per sample is 16.

• Database 3. This database is composed of the same 30 IEEE clean speech sentences
used to design the previous database (“database 2”), but in this case, these clean speech
sentences have been corrupted by eight different real-world noises at SNRs 0 dB, 5 dB, 10
dB and 15 dB. The sampling frequency is 8 kHz with 16 bits per sample. The real-world
noises were taken from the AURORA database [Hirsch and Pearce, 2000], and include
suburban train noise, multi-talker babble, car, exhibition hall, restaurant, street, airport,
and train-station noise. This database is compiled by Loizou [Loizou, 2007].

• Database 4. This database contains a total of 20 speech-in-quiet files (10 files by Amer-
ican English male speakers and 10 files by American English female speakers), randomly
selected from the database described in Section C.1 in Appendix C (page 211). For properly
training and testing, this database has been divided into two subsets, “training” and “test”
subsets. These sets contain 10 files (50 %) for training and 10 files (50 %) for testing. This
division has been done randomly, ensuring the relative proportion of files of each category
is preserved for each set.

Regarding the parameters involved in the gain matrix (G), it is worth mentioning that we
have utilized a single GA that computes those parameters vq, the gain matrix depends on, that
maximize the PESQ or SII measure (the objective function here) for the patterns available in a
design phase. With this in mind, any individual is thus a real-number vector with the structure
I ≡ [v1, v2, v3, . . . , v6]. Figure 7.9 aims at illustrating what each element vq in the aforementioned
vector represents.

7.6. Experimental work and results 137

pg m1g m2g C11g C22gC12g

Figure 7.9: Schematic representation of an individudal that encodes a trial solution of the param-
eters the gain matrix G depends on. For the sake of clarity, it shows an individual that encodes a
solution in the easiest situation to represent in which g = 1 (that is, only 1 gaussian has been used
for the GMM). In this picture, pk represents the probability density function of the GMM, m1g and
m2g designate the mean elements, and finally, C11g, C12g and C22g label the covariance elements.

Having a look at the figure, it seems clear to notice that v1 designates the probability density
function of the gaussian mixture (that is, pg), v2 and v3 represent the mean elements (that is,
m1g and m2g, respectively) and finally, v4, v5 and v6 label the covariance elements, (that is,
C11g, C12g and C22g, respectively). With this in mind, the goal of the GA is to find the best
individual Ibest ≡ [vbest1, vbest2, vbest3, . . . , vbest6] that is “best fitted”, or in other words, the one
that maximizes the fitness score. Please note that the individual shown in the picture encodes
a solution in the easiest situation to represent in which g = 1 (that is, only 1 gaussian has been
used for the GMM). When the mixture consists of a greater number of components, such as, for
instance, g = 2 gaussian components, the dimension of the individual would be 12 (the first six
parameters would define one gaussian component and the following six parameters would define
the second gaussian component) and so on. The complete GA operates as clearly explained in
Appendix D.

We have summarized in Table 7.3 the main design parameters the GA makes use of. These
values have been found to be reaching an adequate balance between training time and good
results in the batches of experiments carried out.

Parameters Value
Initial population (p0) 100× g
Crossover probability (pc) 0.8
Mutation probability (pm) 0.1
Max. no. of generations 50
Max. no. of iterations in which the score remains unchanged 20

Table 7.3: Summary of the design parameters the GA makes use of for automatically generating a
gain function (G) that aims at not only enhancing the speech quality perceived by the hearing aid
user, but also the speech intelligibility. In this table, g designates the number of gaussian components
used in the mixture.

Regarding the fitness function, it is worth noting that it will be different depending on the
objective measure chosen. On the one hand, when the approach makes use of the PESQ measure,
since the PESQ score ranges from −0.5 to 4.5, the fitness function has been found to be:

ffitness = 1− PESQ_score + 0.5
5

. (7.18)

On the other hand, when the approach makes use of the SII measure, taking into account
that SII score ranges from −0 to 1, the fitness function has been found to be:

ffitness = 1− SII_score. (7.19)

138 Chapter 7. Speech enhancement algorithms

Completing this description of the batches of experiments demands to mention that the
experiments have been repeated 10 times. The best of these realizations in terms of fitness score
computed over the patterns available in a design phase has been selected. Perhaps the reader
may wonder why we have repeated this batch of experiments only 10 times and not more times.
In this respect, it is important to point out that the variance of the results obtained by 10 runs of
the genetic algorithm is kept below 0.013 and 0.001 for the case in which the approach makes use
of the PESQ measure and SII measure, respectively. Therefore, aiming at saving computational
resources, it is not worthwhile to run the experiments a large number of times. The results we
have illustrated below correspond to the test set.

7.6.2 Numerical results

In the effort of studying the efficiency achieved by the approach proposed here in the sense
of improving not only speech quality but also speech intelligibility in hearing aids, we have
considered two different scenarios depending on the objective measure used.

In the first set of experiments, we have considered the particular case in which the approach
intends for improving speech quality, and consequently, it makes use of the PESQ measure (see
for further details Figure 7.7). To carry out the experiments, we have made use of “database 1”.
The speech-in-quiet files included in this database have been “contaminated” with additive white
gaussian noise at SNR = 0 dB. We have chosen this value of SNR because this case represents the
situation in which: 1) the energy of the speech signal and that corresponding to noise exhibits
the same level, and 2) white noise is uniformly distributed in all frequencies, and consequently,
is especially hard to be detected and removed.

Figures 7.10, 7.11 and 7.12, represent, the mean value and the standard deviation of the
computed PESQ score as a function of SNR, when the number of gaussian components in the
obtained gain matrix (G) has been found to be g = 1, 2, and 3, respectively.

The solid lines in this sequence of figures correspond to the mean value and the standard
deviation of the PESQ scores computed over the patterns available in a test phase at different
SNRs. Note that these results correspond to the scenario in which the hearing aid implements
the gain matrix created by the aforementioned algorithm. For comparative purposes, the dashed,
monotonously increasing lines in the figures correspond to the situation in which the hearing aid
does not implement the aforementioned gain matrix and the gain function programmed in it is
based on a standard 3-piecewise linear approximation for each frequency band.

Figures 7.10, 7.11 and 7.12 provide the following valuable information:

1. The computed, perceptual-based gain matrix (G), makes the hearing aid reach better results
in terms of speech quality, regardless the number of gaussian components (g) used.

2. Regardless the SNR, the results obtained with g = 3 gaussian components are always better
than those when using only g = 1 or 2 gaussian components.

3. These figures clearly illustrate to what extent the proposed method enhances the speech
quality, especially in the complicated scenario in which the level of noise equals the level
of speech (that is, SNR= 0 dB).

In the effort of clearly showing to what extent the proposed method achieves to enhance
speech, not only in terms of speech quality, but also in terms of speech intelligibility, Table 7.4
lists the mean speech quality improvement (%) and the mean speech intelligibility improvement
(%), as a function of the number of gaussian components used (g). It seems clear to note that
the best result is reached with g = 3 components, leading to speech quality improvement equal

7.6. Experimental work and results 139

Figure 7.10: Mean value and standard deviation of the PESQ score computed as a function of the
SNR (dB) for g = 1 gaussian component in the mixture. These results have been computed over the
patterns available in a test phase, after having trained the algorithm by using files at SNR = 0 dB.

Figure 7.11: Mean value and standard deviation of the PESQ score computed as a function of the
SNR(dB) for g = 2 gaussian components in the mixture. These results have been computed over the
patterns available in a test phase, after having trained the algorithm by using files at SNR = 0 dB.

to 14.5 % and speech intelligibility improvement equal to 10.9 %. Even for g =1 (G consists of
a single gaussian component), speech quality is enhanced in 10.5 % and speech intelligibility is
enhanced 5.7 %. The results listed in this table correspond to the scenario in which the algorithm
has been trained by using speech-in-noise files at SNR = 0 dB.

In order to explore the influence of other SNRs, we have carried out a similar batch of

140 Chapter 7. Speech enhancement algorithms

Figure 7.12: Mean value and standard deviation of the PESQ score computed as a function of the
SNR(dB) for g = 3 gaussian components in the mixture. These results have been computed over the
patterns available in a test phase, after having trained the algorithm by using files at SNR = 0 dB.

Gaussian components Improvement (%)
(g) Speech quality Speech intelligibility
1 10.3 5.7
2 11.4 8.9
3 14.5 11.9

Table 7.4: Mean speech quality improvement (%) and mean speech intelligibility improvement
(%), as a function of the number of gaussian components used (g). These results correspond to the
situation in which the algorithm has been trained by using speech-in-noise files at SNR = 0 dB.

experiments in which the training process is carried out with sets of files containing speech-in-
noise at SNR = 5 dB. The system has been ulteriorly tested with sets of files at different SNRs.
Table 7.5 shows the mean speech quality improvement (%) and the mean speech intelligibility
improvement (%) for different SNRs when using g = 1, 2 or 3 gaussian components. Note
that, as in the former batch of experiments, the best result is achieved when g = 3 gaussian
components are used in the mixture model, with speech quality improvement of 15.1 % and
speech intelligibility improvement of 12.3 %. The speech quality enhancement exceeds 10 % even
with g = 1 gaussian.

Gaussian components Improvement (%)
Speech quality Speech intelligibility

1 11.0 6.8
2 14.7 9.6
3 15.1 12.2

Table 7.5: Mean speech quality improvement (%) and mean speech intelligibility improvement
(%), as a function of the number of gaussian components used (g). These results correspond to the
situation in which the algorithm has been trained by using speech-in-noise files at SNR = 5 dB.

7.6. Experimental work and results 141

Finally, and for comparative purposes in order to complete this first set of experiments, and to
evaluate the influence of the database used, we have tested the results obtained with “database
1” using now “database 2” and “database 3”. The results shown in the following two figures
correspond to those obtained when the system was trained with speech-in-noise files at SNR = 5
dB and g = 3, since this gaussian mixture has been found to be the scheme that provides the
best result in terms of speech enhancement for the patterns available in the test phase. Figure
7.13 represents the mean value of the PESQ scores obtained when using “database 2”. The mean
speech improvement quality has been found to be 15.0 %. This is a very significant enhancement.
On the other hand, Figure 7.14 illustrates the mean value of the PESQ scores obtained when
using “database 3”, which includes speech-in-real-noises. In this case, the mean speech quality
enhancement has been found to be about 8.0 %.

Figure 7.13: Mean value of the PESQ score computed as a function of SNR (dB). These results
correspond to those obtained by using “database 2” (speech degraded with gaussian noise). The
algorithm has been trained with files containing speech-in-noise at SNR = 5 dB. The mixture has
been found to have g = 3 gaussian components.

In the second batch of experiments, we have considered the particular case in which the
approach attempts for improving speech intelligibility, and consequently, it makes use of the SII
measure (see for further details Figure 7.8). To carry out this batch of experiments, we have
made use of “database 4” discussed in Subsection 7.6.1.

Figure 7.15 illustrates, for the subset of the 4 real subjects under study (or in other words,
subjects that suffer from mild, moderate, severe and profound hearing loss), the mean speech
intelligibility curves, calculated over the speech files available in a test phase, as a function of
the input signal level (dB SPL), ranging from 0 to 120 dB SPL. For the sake of simplicity and
using the lowest number of computational resources, the gaussian mixture gain (G) makes use of
g = 1 component.

The green lines in this sequence of figures correspond to the mean value and the standard
deviation of the SII scores computed in the scenario in which the subject wears a hearing aid
that implements the gain matrix obtained by using the algorithm proposed in this chapter. For

142 Chapter 7. Speech enhancement algorithms

Figure 7.14: Mean value of the PESQ score computed as a function of SNR (dB). These results
correspond to those obtained by using “database 3” (speech degraded with real noises). The algorithm
has been trained with files containing speech-in-noise at SNR = 5 dB. The mixture has been found
to have g = 3 components.

comparative purposes, the blue lines in the same sequence of figures correspond to the situation
in which the subject does not wear any type of hearing aid. Error bars here denote ±1 standard
deviation.

This figure provides the following valuable information:

1. Obviously, the computed, perceptual-based gain matrix (G) always makes the hearing aid
reach better results in terms of speech intelligibility, regardless the degree of subject’s
acoustic loss.

2. In particular, it is important to highlight that, for the subjects that suffer from moderate
and severe hearing loss, the hearing aid that implements the gain matrix obtained by using
the algorithm proposed here, achieves a significant improvement in the speech intelligibility
perceived by the user of 60 %, with respect to the situation in which these subjects do not
wear any type of hearing aid.

Figure 7.16 aims at showing in an comprehensive way the results we have obtained in the effort
of validating the approach in terms of speech intelligibility. We have chosen a representation that
intends for clearly illustrating such results of the mean and standard deviation of the SII scores
attained by the hearing aid designed with the gain matrix proposed here and the hearing aid
designed with a typical compression system based on a standard 3-piecewise linear approximation
for each frequency band (labelled “conventional HA” in the picture).

The key points to note here in Figure 7.16 are:

1. The conventional hearing aid performs worst than the hearing aid that implements the
gain matrix obtained with the novel strategy proposed here: the conventional hearing aid

7.6. Experimental work and results 143

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Mild hearing loss

Without HA
With HA with gain function

(a)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Moderate hearing loss

Without HA
With HA with gain function

(b)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Severe hearing loss

Without HA
With HA with gain function

(c)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Profound hearing loss

Without HA
With HA with gain function

(d)

Figure 7.15: Mean speech intelligibility index (SII) (green line), computed over the available test-
patterns, as a function of the input signal level (dB SPL) for the subset of 4 real study-case subjects:
mild hearing loss subject, moderate hearing loss subject, severe hearing loss subject, and finally,
a profound hearing loss subject. It is also shown the mean SII score for the situation in which
these patients do not wear any type of hearing aid (blue line). Error bars here denote ±1 standard
deviation.

generally exhibits lower intelligibility curves than those achieved by the hearing aid that
implements the gain matrix created by using the aforementioned algorithm.

2. For the case of mild hearing loss, the conventional hearing aid behaves slightly better
than the hearing aid designed with the novel strategy for low input signal levels (about
0 − 50 dB SPL). However, as far as conversational speech is concerned, normal face-to-
face communication is in the range of 53 dB SPL (soft speech conversation) to 80 dB
SPL (raised speech conversation)[Firzst, 2010]. In this range, the hearing designed with
the novel approach performs better, being 58 dB SPL (normal speech conversation) the
optimum level for greatest speech intelligibility.

3. Although the novel approach assists the hearing aid in increasing the mean SII score, it
sometimes achieves this at the expense of increasing the standard deviation when compared
to that of the conventional hearing aid.

For illustrative purposes, Figure 7.17 aims at representing the gain matrix obtained in the
experiments (with g = 3 gaussian components) for the subject that suffers from severe hearing

144 Chapter 7. Speech enhancement algorithms

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Mild hearing loss

Without HA
With conventional HA
With HA with gain function

(a)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Moderate hearing loss

Without HA
With conventional HA
With HA with gain function

(b)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Profound hearing loss

Without HA
With conventional HA
With HA with gain function

Severe hearing loss

(c)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input signal level (dB SPL)

M
ea

n
SI

I

Profound hearing loss

Without HA
With conventional HA
With HA with gain function

(d)

Figure 7.16: Mean speech intelligibility index (SII) score (green line), computed over the patterns
available in a test phase, as a function of the input signal level (dB SPL) for the subset of the 4 real
study-case subjects: mild hearing loss subject, moderate hearing loss subject, severe hearing loss
subject, and finally, a profound hearing loss subject. It is also shown the mean SII score, computed
over the the same test files, when these subjects do not wear any type of hearing aid (dark blue line)
and the mean SII score obtained when these subjects wear a conventional hearing aid (light blue
green). Error bars here denote ±1 standard deviation.

loss. As depicted, this gain matrix basically aims at enhancing medium speech sounds (≈ 80 dB
SPL) for mid-high frequencies. This makes sense since this particular subject suffers from high
frequency hearing loss. See row “P9” in Table C.2 in Appendix C (page 212) for further details.

Finally, we complete this second batch of experiments by summarizing in Table 7.6, the
most important numerical results considered as representative enough of the feasibility of our
approach. This table represents the mean speech intelligibility improvement (%) and the mean
speech quality improvement (%) achieved by the hearing aid that implements the gain matrix
obtained by using the approach proposed here with respect to the situation in which the gain
provided by the hearing aid is based on a standard 3-piecewise linear approximation for each
frequency band, for the four study-case subjects and making use of g = 1, 2 and 3 gaussian
components.

Having a look at the mentioned table, it is important to note that the results show that for the
subjects that suffer from mild and moderate hearing loss, the speech intelligibility improvement,
for conversational speech, could be considered to be very close. However, for the subject that

7.6. Experimental work and results 145

(a) (b)

Figure 7.17: An illustrative representation of the gain matrix (with g = 3 gaussian components)
obtained with the algorithm proposed in this thesis for the subject that suffers from severe hearing
loss. As depicted, this gain matrix basically aims at enhancing medium speech sounds (≈ 80 dB SPL)
for mid-high frequencies. This makes sense since this particular subject suffers from high frequency
hearing loss.

Subject’s hearing loss
Improvement (%)

Speech intelligibility Speech quality
g = 1 g = 2 g = 3 g = 1 g = 2 g = 3

Mild 5.1 5.8 5.9 3.4 3.6 3.6
Moderate 3.7 3.7 -1.8 -1.9 -1.4 -2.1
Severe 14.7 14.7 21.0 10.2 11.1 13.4
Profound 19.6 19.6 21.4 10.4 11.0 14.9

Table 7.6: Mean speech intelligibility improvement (%) and mean speech quality improvement
(%), for the subset of four study-case subjects, achieved by the hearing aid that implements the
gain matrix obtained by using the approach proposed here with respect to the situation in which
the gain provided by the hearing aid is based on a standard 3-piecewise linear approximation for
each frequency band. In this table, g labels the number of gaussian components that compose the
mixture.

suffers from severe hearing loss, the speech intelligibility is improved up to 21 % by making use
of the hearing aid designed with our gain matrix (with g = 3 gaussian components), with respect
to the case in which a conventional hearing aid is used, leading to a global improvement of about
60 % with respect to the situation in which the subject does not wear any kind of hearing aid (note
that this last figure is not shown in the table). For the subject that suffers from profound hearing
loss, it can be observed that better results are also reached by the hearing aid that implements
the gain matrix obtained by using the algorithm proposed here, with an improvement of 21.4 %
with respect to the conventional hearing aid (also with g = 3 gaussian components).

An extremely important point to note regarding this table is that the speech quality perceived
by the hearing-impaired subjects under study is not always increased. This can be clearly noticed
by having a look at the speech quality perceived by the subject that suffers from moderate
hearing loss. Regardless the number of gaussian component used (g), the speech quality is
always degraded when compared to that perceived by the subject when he or she makes use
of a hearing in which the gain is based on a typical 3-piecewise linear approximation for each
frequency band.

146 Chapter 7. Speech enhancement algorithms

This assists us in elucidating the following key conclusion: when the algorithm designed in
this chapter makes use of a fitness function based on the PESQ measure (Expression 7.18), which
intends for quantitatively measuring the speech quality, not only the speech quality perceived
by the subject is improved but also the speech intelligibility when compared to the situation in
which the subject makes use of a conventional hearing that implements a gain function based on
3-piecewise linear approximation for each frequency band. However, when the approach makes
use of the of a fitness function based on the SII measure (Expression 7.19), which intends for
quantitatively measuring the speech intelligibility, the speech intelligibility is always increased
but the speech quality is not always enhanced. This leads to design the approach, illustrated
in Figure 7.6, by using the PESQ measure as objective measure, what makes it more speech
enhancement-efficient.

7.7 Conclusions

This chapter focuses on a novel approach aiming at speech enhancement in hearing aids. It ba-
sically consists in creating -by exploiting perceptual concepts, and a supervised learning process
driven by a genetic algorithm- a gain matrix (labelled G) that enhances not only the speech
quality, but also the speech intelligibility perceived by the user. To what extent this is enhanced
is measured by the algorithm itself by using a scheme based on an objective measure. In this
respect, it is important to highlight that the main purpose of many algorithms of speech en-
hancement proposed in the literature is to improve speech quality while preserving, at the very
last, speech intelligibility. In this sense, only a few number of algorithms have been evaluated by
using intelligibility tests, and in those studies, only a single speech enhancement algorithm was
evaluated in different noisy environments. Aiming at properly validating the speech enhance-
ment approach proposed in this chapter, not only in terms of speech quality, but also in terms
of speech intelligibility, we have made use of two different standardized objective measures: the
perceptual evaluation of speech quality (PESQ) and the speech intelligibility index (SII), which
aim to evaluate speech quality and speech intelligibility, respectively.

The proposed algorithm creates the enhanced gain matrix, G, by using a gaussian mixture
model driven by a genetic algorithm, and does not use any initial information but that related
to “perceptual concepts”, or in other words, just those that can be iteratively quantified by the
PESQ measure (that is, the fitness function is based on the PESQ measure) or SII measure (or
equivalently, the fitness function depends on the SII measure). This gain matrix under construc-
tion (and, in turns, the PESQ or SII scores) depends on a number of parameters. In this respect,
the GA computes the “optimized” parameters that maximize these scores and consequently, the
speech “perceived by the human auditory system”.

The results show that the computed, perceptual-based gain matrix (G) makes the hearing
aid reach better results in terms of speech quality and speech intelligibility perceived by the user
(regardless the number of gaussian components -g- used in the mixture and the subject’s hearing
loss) than those obtained when the subject makes use of a hearing aid in which the gain is based
on a 3-piecewise linear approximation for each frequency band. Regarding the speech quality, it
is worth mentioning that it is is improved up to 14.5 % and the speech intelligibility is enhanced
11.9 % (using g = 3 gaussian components in the mixture) in the complicated scenario in which
the algorithms is trained by using a database that contains speech-in-noise files at SNR= 0 dB.
Concerning the speech intelligibility, it is worth pointing out that, for instance, for a subject that
suffers from severe hearing loss, the speech intelligibility is boost up to 21.0 % (by using g = 3
gaussian components in the mixture). A key point to note is that when the approach makes use
of the fitness function based on the PESQ measure, not only the speech quality perceived by

7.7. Conclusions 147

the user is improved but also the speech quality. However, when the approach makes use of the
fitness function based on the SII measure, the speech intelligibility is always increased regardless
the subject’s hearing loss, but the speech intelligibility is not always enhanced. This leads to
design the approach designed in this thesis by using the PESQ measure as objective measure,
what makes it more speech enhancement-efficient.

These results point out to a new field of research in the jointly use of perceptual and arti-
ficial intelligent concepts applied on speech enhancement in hearing aids. Besides the obvious
improvement in the quality and intelligibility of speech perceived by the user, the key point, very
appreciated from the scientific and technological perspective, consists in its lower computational
cost. This is because, once the computed, perceptual-based gain matrix G is programmed in
the DSP, the hearing aid saves a great amount of computational resources since it is no longer
necessary to run any other noise reduction algorithm. This is of crucial importance because of
the inherent limitations of the DSP the hearing aid is based on. Note that the hearing aid has to
work at a very low clock frequency in order to minimize power consumption and thus maximize
the battery life.

Chapter 8

Hardware implementation

8.1 Introduction

As mentioned in the introductory chapter, the purpose of this thesis is to design a prototype
for a digital hearing aid, which aims to automatically recognize the acoustic environment its
user is in and choose the amplification program that best fits such environment. The practical
implementation of this type of hearing aid demands, at least, the programming of the following
three functional blocks in the DSP:

1. A multiband compressor-expander algorithm: put it very simple, this block, the very core
of a hearing aid, amplifies the input audio signal to a level that allows a hearing impaired
person to hear the sounds that otherwise he or she would not able to hear.

2. A feature extraction stage: this block plays the key role of processing the input audio
signal, after a sequence of operations carried out in the data processing block (for the
sake of simplicity, this latter block is also included in the implementation of the feature
extraction block itself), aiming at extracting some kind of relevant, essential information
that characterizes the audio signal for further classification.

3. A classifying algorithm: this classifier, based on the features extracted from the input audio
signal in the previous stage, makes a decision on the audio class (speech, music and noise,
in our case) to which the input signal belongs to.

The previous chapters discussed the overall classification system that best performed for dis-
tinguishing among speech, music and noise in hearing aids. In this respect, it is worth mentioning
that the features arranged in the vector Fpractical, which will be finally implemented in the DSP,
have been experimentally found to be the mean and variance of the features listed below:

• The two novel, low-complexity spectral centroid-based features, which we have labelled ŜC
and S̃C.

• The two novel, low-complexity voice2white-based features, which we have labelled V̂2W
and Ṽ2W.

• The two novel, low-complexity spectral flux-based features, which we have labelled ŜF.

• The short-time-energy feature, labelled STE.

149

150 Chapter 8. Hardware implementation

With this in mind, the sound signal-describing vector that feeds the classifier has been found
to be:

Fpractical = {Ê[ŜC], σ̂2[ŜC], Ê[S̃C], σ̂2[S̃C], Ê[V̂2W], σ̂2[V̂2W],

Ê[Ṽ2W], σ̂2[Ṽ2W], Ê[ŜF], σ̂2[ŜF], Ê[STE], σ̂2[STE]}.T
(8.1)

Note that the dimension of the feature vector is thus dim(Fpractical) = 12.
Among the classifiers evaluated in this thesis, we have chosen a multilayer perceptron (a

particular kind of neural network), which had to be properly designed for being constrained to
the hardware requirements of the DSP used by our platform to carry out the experiments. The
key reason that compelled us to choose the MLP approach is that, as shown in the results obtained
in Chapter 5, multilayer perceptrons are able to learn from appropriate patterns available in a
design phase, and properly classify other patterns that have never been found before. This
ultimately leads to very good results, as a balance between percentage of correct classification
and computational cost, when compared to those from other popular algorithms evaluated in
this thesis, such as, for instance, the mean square error (MSE) linear classifier, the k-nearest
neighbor algorithm, or even, a radial-basis function (RBF) network. As mentioned in Chapter
5, an important issue when designing an MLP-based classifier is the selection of the number of
hidden neurons (M). In this sense, and thanks to the growing and pruning algorithms proposed
in this thesis, the appropriate number of hidden neurons, when the abovementioned 12-feature
vector (Fpractical) feeds the MLP, has been found to be 20 (that is, M = 20). Note that the
number of input neurons (L) represents the number of features selected for feeding the classifying
algorithm, or in other words, the dimension of the feature vector Fpractical (that is, L = 12)
and the number of output neurons (C) is related to the three classes we are interested in (or
equivalently, C = 3).

With these ideas in mind, the structure of this chapter is as follows. Section 8.2 depicts
the particular way the compressor-expander approach proposed in this thesis is implemented
in the DSP, showing also the computation time (in clock cycles) and CPU-load average (in %)
required for its implementation. Section 8.3 clearly explains the way the feature vector Fpractical
is programmed in the DSP. It is also shown the computation time (in clock cycles) and CPU-
load average (in %) demanded for its computation. Section 8.4 describes the way the multilayer
perceptron obtained in the experiments is implemented in DSP, along with the computation time
(in clock cycles) and CPU-load average (in %) needed for its practical implementation. Section
8.5 depicts the consumption of the functional hearing aid implemented in this thesis, one of the
crucial aspects when designing these devices. Finally, Section 8.6 discusses the key conclusions
obtained in the implementation of the prototype for the hearing aid.

8.2 Implementation of the multiband compressor-expander

8.2.1 Introduction

Instead of programming in our DSP a multiband compressor-expander algorithm strictly speak-
ing, we have proposed in this thesis, taking advantage of the fact that the WOLA filterbank pro-
vides at its output the time/frequency decomposition of any input sound frame (with NB = 64
frequency bands), a novel approach consisting in a gain matrix G (sometimes named as “gain
table”), which assists us in estimating the gain value to apply to the input audio signal, as clearly
explained in Section 7.5 in Chapter 7 (page 130). Deepening a little more in this design strategy,
Figure 8.1 illustrates the conceptual representation of the mentioned gain matrix. As shown,
this table, stored in memory available in the DSP, basically includes the “tabulated” gain values
to apply as a function of both the input signal level (dB SPL) and the number of frequency

8.2. Implementation of the multiband compressor-expander 151

band. Note that, since the number of acoustic environments to recognize in this thesis are three
(speech, music and noise), this obviously requires to design three different gain matrixes, one for
each audio classes considered.

g11

Input signal level (dB SPL)

Fr
eq

ue
nc

y
b

an
d

g12

g21

g31

gN 1B

g
L1N

g
L N NB

G =

Figure 8.1: Picture illustrating the gain matrix G used in this thesis to estimate the gain value to
apply to the input audio signal from a hardware implementation point of view. It consists of a table
stored in data-memory available in the DSP, which basically includes the “tabulated” gain values to
apply as a function of both the input signal level (dB SPL) and the frequency band.

The motivation for exploring this strategy is to significantly reduce the number of instruc-
tions per second demanded to implement the typical compressor-expander algorithm based on
a standard 3-piecewise linear approximation for each frequency band. Once we have explained
the compression-expansion strategy proposed in this thesis, the question emerging here is: what
is the most adequate way of implementing these gain matrixes in the DSP? At a first glance,
the most feasible approach, which significantly could reduce the computational cost required for
implementing any gain matrix, is as follows: 1) computing the gain values to apply offline (in
the laboratory); 2) tabulating these gain values for any input signal level (dB SPL) and any
frequency band; and 3) storing the tabulated gain values in the memory available in the DSP.
We propose this approach instead of, for instance, computing the gain values directly in the DSP
which involves high computational cost. In other words, note that the key point that exhibits
the greatest relevance in this first approach resides on the fact that the gain values are computed
offline. Only when these values have been computed in the laboratory, they are stored in the
memory available in the DSP. The main advantage of this approach is that it requires much
lower computational cost at the expense of increasing the amount of memory used. However,
as will be shown throughout this chapter, this stronger use of data-memory is perfectly feasible
and does not exceed the restrictions imposed by the DSP used by our platform to carry out the
experiments.

Thus, using this approach, the reader may wonder the subsequent questions: how many differ-
ent input signal-levels (NL) and frequency bands (NB) should be considered? And consequently,
how many different values of gain should we consider? As stated beforehand, the WOLA filter
bank provides at its output 64 frequency bands (and consequently, NB = 64), and since the
16-bit ADC and DAC converters, included in the DSP used by our platform, exhibit a dynamic

152 Chapter 8. Hardware implementation

range of 96.3 dB, we have set the dynamic margin ranging from 1 to 96 dB for the input signal
level, in steps of 1 dB, which has been found in our experiments as having enough precision (that
is, NL = 96). Within this framework, the total number of tabulated values for each gain matrix
to be stored in the data-memory has been found to be NL ×NB = 96× 64 = 6144.

With these considerations in mind and in an effort of putting this compression-expansion
strategy in a more in-depth way, we can proceed further in describing the sequence of operations
carried out in the DSP aiming to obtain the gain value.

1. Computation of the average power of the input frame i-th at each frequency band k-th
(labelled Pavgi

(k)), as will be explained in Subsection 8.2.2. Please note that, within our
framework, k = 1, . . . , NB is the index over the NB frequency components of the WOLA
filter bank, while i = 1, . . . , Nframes labels the one over the Nframes frames into which any
sound signal is segmented.

2. Searching the gain value, in the corresponding gain matrix, as a function of the input
signal level (dB SPL) and the number of frequency band. This task will be described in
Subsection 8.2.3.

3. Applying the gain values to the corresponding input frame at each frequency band, as will
be shown in Subsection 8.2.4.

Prior to describing the way we have programmed this complete functional block, it is indis-
pensable to have a look at the design restrictions imposed by the DSP used by our platform to
carry out the experiments. As mentioned, digital hearing aids habitually suffer from inherent
design limitations that make difficult the practical implementation of the aforementioned gain
matrixes in the DSP. Among these limitations, memory and computational cost (this latter is
naturally related to the number of assembler instructions demanded to implement the gain ma-
trixes) still remain certainly a big problem. To better understand this, these limitations are
explained in-depth in the paragraphs that immediately follow.

• Computational cost limitation:
As stated beforehand, for any analysis frame, we need to obtain a gain value for each of
the NB = 64 frequency bands. Within our framework, since the input block size is R = 64
samples, the interrupt IO_BLOCK_FULL is activated when 64 new samples of the input audio
signal are arranged in the input buffer1. With this scenario in mind and taking into account
that the sampling frequency is 16 kHz, the maximum number of interrupts per second to
attend has been found to be:

16000 samples/s
64 samples/interrupts

= 250 interrupts/s.

Since the clock frequency of the DSP used by our platform to carry out the experiments is
1.92 MHz, the number of clock cycles per interrupt is:

1.92 · 106 cycles/s
250 interrupts/s

= 7680 cycles/interrupt.

1Note that, within the application at hand, the analyze window length is L = 256 samples, but the input
block size is R = 64 samples, what, in turns, means that these 64 samples and the latter 192 samples from the
previous frame comprising the current input frame (see for further details Appendix B).

8.2. Implementation of the multiband compressor-expander 153

Bearing in mind that we need to carry out this operation for each of the NB frequency
bands available in the DSP (NB = 64, in our case), the number of clock cycles per frequency
band adopts the following expression:

7680 cycles/interrupt
64 bands/interrupt

= 120 cycles/band.

This figure illustrates that the maximum number of clock cycles available in the DSP to
obtain the gain value, for each of the frequency bands obtained at the output of the WOLA
filter bank for the analysis frame, has been found to be 120. Taking into account that most
of instructions demand, at least, 1 clock cycle for their implementation, the fact of including
a new instruction in the design involves an additional CPU-load of approximately 0.83 %,
which clearly shows the severe computational cost limitations the complete system suffers
from.

• Memory limitation:
As previously mentioned, within our framework, the number of tabulated gain values com-
prising each gain matrix has been found to be 64 × 96 = 6144, which involves that 6144
values need to be stored in the memory available in the DSP. Bearing in mind that we need
to store a gain matrix for each of the acoustic environments considered (speech, music and
noise, in our case), the total number of tabulated values to be stored in memory, within
the particular application at hand, has been found to be 3 × 6144 = 18432. Since the
program-memory capacity of the DSP is 12 kwords, and the data-memory capacity is 8
kwords, we are also strongly constrained to the restrictions imposed by the DSP in terms
of memory capacity for the practical implementation of the aforementioned gain matrixes.

8.2.2 Average power computation

Although not clear at first glance, it is worth noting that the task of estimating the power of
an input signal (or being more precise, of an input frame) is relatively easy and simple within
our framework, by taking into account that the WOLA coprocessor provides at its output the
spectrum of such input signal (or such input frame).

We shall mathematically define the computation of the power of a signal X(t) as depicted
below:

P (k) = |χ(k)|2 (8.2)

where χ(k) labels the k-th frequency band of the spectrum of signalX(t), being k = 1, . . . , NB
the index over the NB frequency bands (NB = 64 bands, in our case). Bearing in mind that the
input signal is segmented into Nframes frames within our framework, or in other words, Xi(t),
i = 1, . . . , Nframes, Nframes being the number of frames into which the signal is divided, we shall
rewrite Expression 8.2 as shown below:

Pi(k) = |χi(k)|2 (8.3)

where i = 1, . . . , Nframes labels the index over the Nframes frames into which the input signal
X(t) is segmented.

It is important to note that the computation of the power of a frame as shown in Expression
8.3 does not designate the average power of such frame. The key point to understand this is
that the power computed as shown in the mentioned expression labels the power corresponding

154 Chapter 8. Hardware implementation

to the “short” time slot between two input frames. This could be better understood if the reader
remembers that, within our framework, each analysis frame length is L = 256 samples, being
R = 64 samples of the input signal and the remaining 192 samples of the previous frame. With
this in mind and considering that the sampling frequency of our DSP is 16 kHz, the time slot
between two adjacent frames can be computed as follows:

64 samples/frame
16000 samples/s

= 4 ms/frame.

The computation of the power, according to Expression 8.3, labels thus a power that is
computed every 4 ms within the application at hand. This is basically the reason why we refer
to such power as the “instantaneous power” of the signal (and not as the “average power” of the
signal). For the sake of clarity, we label it “Pins”.

With this in mind, the reader, perhaps, may wonder the way the average power of a signal
is exactly computed. Answering this question demands to mention that the computation of the
average power, that we have labelled Pavg, demands to calculate some instantaneous powers.
To be more precise, the total number of instantaneous powers needed to compute the average
power will depend on the length of the time slot in which we would like to calculate such average
power. Obviously, the higher the time slot length is, the higher computational load becomes. In
the effort of reducing such computational load, instead of calculating the average power strictly
speaking, we have computed an “estimation” of the average power of a frame i-th by means of
the following expression:

Pavgi
(k) =

βr · (Pavgi−1

(k)− Pinsi(k)) + Pavgi−1
(k) if Pinsi(k) < Pavgi−1

(k)

βa · (Pinsi(k)− Pavgi−1
(k)) + Pavgi−1

(k) if Pinsi(k) > Pavgi−1
(k)

where:

• Pavgi−1
(k) represents the k-th frequency band of the average power for the previous frame

i− 1-th,

• Pinsi(k) represents the k-th frequency band of the instantaneous power for the analysis
frame i-th,

• Pinsi−1(k) represents the k-th frequency band of the instantaneous power for the previous
frame i− 1-th,

• βa labels the “attack compressor time”, and finally,

• βr depicts the “release compressor time”.

Both βa and βr constants must be a negative power of two, such as, for instance, 0.5, 0.25,
0.125 and so on. Aiming at clearly understanding this latter restriction, it is worth mentioning
that a multiplication by a number that is an exact power of two can be made simply by a
shift operation in the DSP, which significantly reduces the computational load. For instance,
multiplying a number by 2 is equivalent to shift the number left by one bit. Similarly, multiplying
a number by 0.5 is equivalent to shift the number right by one bit.

Figure 8.2 will assist us in illustrating the main concepts involved in the sequence of operations
carried out for properly computing the average power. The average power is represented by a
32-bit fixed-point format and its 16 most significative bits are stored in data-memory for further
computation of the feature vector as will shown later on. Please note that this sequence of
operations is carried out for each of the frames into which the input signal is segmented.

8.2. Implementation of the multiband compressor-expander 155

- 2*D_BLOCK_EXP_DATA - 7(scale factor FFT)
- β
- β

Starting routine
Store registers
 in stack

Initializing pointers
- D_WOLA_RESULT_BASE: Re{k}, Im{k}
- Average power
- Instantaneous power

 Initializing shift registers

a

r

A (Re{k} + Im{k})2 2

P (k)= A << (2*Exp-7)

16 bit MSB
 P (k)

P (k)avgi-1

NoYes

 P (k)avgi

 k=k+1
¿k>64?

Yes

 Next step:
 Gain table

No

ins i

ins i

P (k)avgi-1
¿P (k) - >0? ins i

βa

βr

P (k) = ((-) >>) + P (k)avgi-1avgi-1
P (k)ins i

βa P (k)avgi-1

(P (k) -) >> P (k)avgi-1ins i
(P (k) -) >> P (k)avgi-1ins i

Figure 8.2: An illustrative flowchart representing the main concepts involved in the sequence of
operations carried out for properly computing the average power (Pavg) in the DSP. In this picture,
k = 1, . . . , NB labels the index over the NB frequency bands, whereas i = 1 . . . , Nframes depicts the
one over the Nframes frames into which any sound signal is segmented within our framework. Note
that this sequence of operations is carried out for each of the frames into which the input signal is
segmented.

156 Chapter 8. Hardware implementation

8.2.3 Gain-search in the gain matrix

Undoubtedly, this second step represents the very core of the compression-expansion approach
proposed in this thesis and thus, we have put special emphasis in its implementation. To better
explain the scheme we have programmed, let us imagine that we are interested in obtaining the
gain value to apply for the following scenario:

• The acoustic environment the hearing aid user is in is classified, among the listening condi-
tions considered in this thesis (that is, speech, music and noise), as a “music” environment.

• The study-case frequency is 125 Hz, which involves k = 1.

• The average power in that frequency band, that is, Pavg(1), is found to be:
Pavg(1) =0×16EA = 0001 0110 1110 1010 = 0.179016.

Please note that we have not included the i-th index in the average power expression, because
this study is carried out only for one input frame.

Once we have defined the scenario, we can proceed further with the sequence of operations
involved in the search of the gain value in the corresponding gain matrix, which works as follows:

1. Selection of the gain matrix as a function of the acoustic environment.
As mentioned, there is a gain matrix programmed in the DSP for each of the three audio
classes to classify in this thesis. Depending on the decision returned by the classifier, the
base address of the corresponding gain matrix is loaded in the pointer Gain_pointer. In
the particular case at hand, since the acoustic environment the user is in has been classified
as “music”, the base address of the music gain matrix is loaded in the mentioned pointer,
as clearly illustrated in Figure 8.3.

0x0200 0101 1010 0110 1101
0x0201 1100 1000 1101 0101
0x0202 1010 1110 1000 0001
0x0203 1000 1111 0011 1110
0x0204 1000 0001 0100 1110
...
0x09FF 1000 0001 0100 1110

Speech Gain Matrix Music Gain Matrix Noise Gain Matrix

0x0A00 1110 1100 0110 1110
0x0A01 1010 1011 1001 0001
0x0A02 0110 1100 0100 1101
0x0A03 1011 1101 0010 0001
0x0A04 0001 1101 0110 1010
...
0x11FF 0111 1101 1001 1001

0x1200 1101 1000 0011 0100
0x1201 0110 0010 0111 0001
0x1202 1000 1110 1100 1101
0x1203 1010 1110 0100 0100
0x1204 1000 1111 0011 1110
...
0x19FF 0000 1111 1000 1110

Classifier
Gain_pointer

Figure 8.3: Depending on the decision returned by the classifier, the base address of the corre-
sponding gain matrix is loaded in the pointer Gain_pointer. For the particular example at hand,
since the acoustic environment the hearing aid user is in has been classified as “music”, the base
address of the music gain matrix is loaded in the mentioned pointer.

2. Gain pointer location in the gain matrix as a function of the number of fre-
quency band.
Since each gain matrix consists of 64 “blocks”, one for each of the available frequency bands
in the DSP, the next step is to locate the aforementioned pointer (that is, Gain_pointer)
in the block corresponding to the case-study frequency band. In the example at hand, since

8.2. Implementation of the multiband compressor-expander 157

the study-case frequency is 125 Hz (or equivalently, the number of frequency band is 1),
the pointer is located at the block corresponding to such frequency band, as clearly shown
in Figure 8.4. Please note that each block in the picture consists of 32 words of 16-bit each.

Music Gain Matrix

0x0A00 1110 1100 0110 1110
0x0A01 1010 1011 1001 0001
...
0x0A1F 0110 1100 0100 1101

0x0A20 1011 1101 0010 0001
0x0A21 0000 0101 0110 0010
...
0x0A3F 0001 1101 0110 1010
...
...
...

0x11E0 1001 1101 1000 0000
0x11E1 1110 0001 0100 0000

0x11FF 0111 1101 1001 1001

Gain_pointer

Band 0

Band 1

Band 63

Figure 8.4: Each gain matrix consists of 64 “blocks”, one for each of the available frequency
bands in the DSP. The pointer Gain_pointer is located in the block corresponding to the analysis
frequency band. For the particular example at hand, since the study-case frequency is 125 Hz (or
equivalently, the number of frequency band is 1), the pointer is located at the block corresponding
to such frequency band (named as “Band 1” in the picture).

3. Conversion of average power (a fixed-point number) into a floating-point num-
ber.
Once we have identified the corresponding block in the gain matrix, the next step consists
in locating the gain pointer (Gain_pointer) in the exact row in the block. To achieve
this, it is convenient for the average power (a fixed-point number) to convert it into a
floating-point number, what involves computing the base (we label it B) and the exponent
(we label it E) of it by making use of the two expressions shown below, respectively:

E[Pavg(k)] = blog2(Pavg(k))c (8.4)

B[Pavg(k)] = Pavg · 2−E(Pavg(k)). (8.5)

For the particular example at hand, since Pavg(1) ≡ 0×16EA, the corresponding exponent
(E) and base (B) are computed as follows:

E[Pavg(1)] = blog2(Pavg(1))c = −2 (8.6)

B[Pavg(1)] = Pavg · 2−E(Pavgi (1)) ≡ 0× 5BA8
≡ 0101101110101000
≡ 0.716064.

(8.7)

158 Chapter 8. Hardware implementation

The negative value of the exponent, in the case at hand, −E[Pavg(1)] = +2, is used to
locate the pointer Gain_pointer in the exact row in the block labelled “Band 1”. With
this in mind, since the negative value of the exponent is +2, the gain pointer is located in
the third row. Perhaps the reader may wonder why in the third row and why not in the
second one. Please note that the first row correspond to a negative value of the exponent
equal to 0, the second row to a value of 1 and so on.

4. Obtaining the exponent of the gain
The gain value, stored in the DSP memory, is a floating-point number and thus, it consists
of a base and an exponent. As mentioned beforehand, the words that compose each block
consist of 16 bits, in which the 7 most significant bits (or more precisely, <15:9>), codify
the value of the exponent of the gain value.

For the particular example at hand, having a look at the third row in the block corre-
sponding to the frequency band 1, it seems clear to note that the corresponding word is
0000 0111 1001 1100, and thus, the 7 most significative bits have been found to be 0000 011
(base 2) or equivalently, 3 (base 10), which means that the exponent of the gain value to
apply is 3. In the effort of better understanding this latter sequence of operations, we
have included Figure 8.5, which clearly shows the way the exponent of the gain value to
be applied is obtained.

Music Gain Matrix

...

0x0A20 1011 1101 0010 0001
0x0A21 0000 0101 0110 0010

...
0x0A3F 0001 1101 0110 1010
...

Gain_pointer

Band 1

0x0A22 0000 0111 1001 1100

−E[Pavg(1)] = +2

+2

0000 0111 1001 1100

Gain exponent
 E(G) = 3

Figure 8.5: Picture depicting the way the exponent of the gain value to be applied is obtained
for the example at hand. The 7 most significant bits (or more precisely, <15:9>) of the words in
each block codify the exponent of the gain value to apply. For the particular example at hand, the
corresponding word is 0000 0111 1001 1100, and thus, the 7 most significative bits have been found
to be 0000 011 (base 2) or equivalently, 3 (base 10), which means that the exponent of the gain value
to apply is 3.

5. Obtaining the base of the gain
As previously mentioned, the 7 most significant bits of each word are used to codify the
exponent of the gain value. Perhaps, the reader may wonder if the remaining 9 bits of each
word, that is, the 9 lowest significant bits are used to obtain the value of the base of the
gain value to apply. The answer to this question is that the reader is not exactly right.
This will be better understood later on.

For the purpose of obtaining the base of the gain value, the 9 least significant bits are
firstly arranged into 3 groups of 3 bits each, as shown in Figure 8.6. The question arising

8.2. Implementation of the multiband compressor-expander 159

here is: which 3-bit group should we use to obtain the base of the gain to apply?

0000 0111 1001 1100
 Gain
exponent

 Group
 1

 Group
 2

 Group
 3

 LSB

 MSB

Figure 8.6: The 9 lowest significant bits of each word are arranged into 3 different groups (3 bits
per group) in the aim of further obtaining the base of the gain value to be applied.

The group of bits to be used depends on the value of the base of the average power for
the each particular frequency band (B[Pavg(1)], in our case). Aiming at identifying which
3-bit group we should use, we have defined three different intervals, labelled I1, I2 and I3,
according to the values of thresholds TH1 (0×50D7) and TH2 (0×65B9) , as described
below:

I1 ≡ [0000, 50D7]
I2 ≡ [50D8, 65B9]
I3 ≡ [65BA, 7FFF].

Intuitively, if the numerical value of the base of average power value belongs to the interval
I1, the 3-bit group to be used is “group 1” (or more precisely, bits <2:0>of the word).
Similarly, if it belongs to the interval I2, the 3-bit group to be used is “group 2” (or more
precisely, bits <5:3>of the word) and finally, if it belongs to the interval I3, the 3-bit group
to be used is the “group 3” (or more precisely, bits <8:6>of the word). For illustrative
purposes, we have included Figure 8.7 that clearly represents this scenario.

0000 0111 1001 1100
 group
 1

 group
 2

 group
 3

 LSB

 MSB

B(Pavg)

0000

50D7

65B9

7FFF{ {
{I1

I3

..

.

..

.

{..
.

I2

Figure 8.7: An illustrative representation of the way of selecting the corresponding 3-bit group as
a function of the numerical value of the base of average power value (B(Pavg)). If this value belongs
to the interval I1, the 3-bit group to be used is “group 1”. Similarly, if it belongs to the interval I2,
the 3-bit group to be used is “group 2” and finally, if it belongs to the interval I3, the 3-bit group to
be used is the “group 3”.

160 Chapter 8. Hardware implementation

In the study-case at hand, the numerical value of the base of the average power value has
been found to be 0 × 5BA8 as depicted in Expression 8.7. This value belongs to interval
I2 and thus, the 3-bit group to be used is “group 2” (or in other words, bits <5:3>).

Each 3-bit group codifies a numerical value ranging from 0 to 7 (base 10). This number does
not represent the base of the gain value, it does represent an index that we use to search
in a block of 8 words the value of the base of the gain. Aiming at better understanding
the way it works, we have included Figure 8.8 that shows for the particular example at
hand, the value of the base of the gain to be applied. As illustrated, the 3-bit group to be
used consists of the bits 011 (base 2) or equivalent 3 (base 10). This data is used to search
in the block of 8 words, the corresponding value of the base of the gain to be applied.
In particular, this numerical value indicates exactly the row in the block that codifies the
value of the base of the gain. As shown in this figure, this value has been found to be
0×3A1F.

0000 0111 1001 1100
 LSB

 MSB

 Base block

0x0026 4749
0x0027 3F5E
0x0028 55DE

0x0030 61B4
0x0031 6E8B
0x0032 7EA2
0x0033 3A1E

0x0029 3A1F

Figure 8.8: The corresponding 3-bit group to be used codifies a numerical value ranging from 0 to
7 (base 10). This number is used to search in a block consisting of 8 words the corresponding value
of the base of the gain value. In particular, this numerical value indicates exactly the row in the
block that codifies the value of the base of the gain.

With this in mind, we can finally conclude that the gain value for the analysis frame at the
frequency band 1 (or in other words, k = 1) has been found to be:

G(1) =
{
E[G(1)] ≡ 0× 0003
B[G(1)] ≡ 0× 3AF1 .

Please note that this sequence of operations should be carried out for the remaining 63
frequency bands of the analysis frame.

8.2.3.1 Practical implementation

As stated beforehand, this is probably the most complex task involving the compression-expansion
approach. Prior to illustrating the flowchart of its implementation in the DSP, it is important
to mention that:

• Apart from obtaining the numerical values of both the base and the exponent of gain
values for the NB = 64 frequency bands available in the DSP, this routine also computes,
among all the gain exponent values obtained, the maximum value of them and stores this
numerical value in the variable Max_exp. For the sake of clarity, we have labelled it “the

8.2. Implementation of the multiband compressor-expander 161

block exponent” (Eblock), and as will be clearly explained in the subsection that follows, it
will be used in the next routine. Note that the numerical value of the block exponent is
stored in the variable D_GAIN_EXP_DATA.

• Despite there is a conditional jump instruction and consequently, there are two alternative
paths of the program flow, the total loop length is the same in both cases. This is achieved
by means of using some waiting loops such as, for instance, the instruction NOP, which has
no effect in the code.

Finally, for properly completing this subsection, Figure 8.9 will assist us in showing the main
concepts involved in the sequence of operations carried out for properly searching the gain value
in the corresponding gain matrix.

8.2.4 Base adjustment

As advanced in the previous subsection, for each analysis input frame, we have computed the
maximum value of the 64 gain exponent values obtained (one for each frequency band available
in the DSP), that we have named as “the block exponent” (Eblock). The reason is as follows. The
WOLA filterbank demands that the 64 exponents of the gain values are exactly the same and
just in this respect, the value of the block exponent is used as the common exponent for the 64
gain values.

The fact of using the block exponent as the common exponent for the 64 gain exponents
demands, in an effort ensuring gain values consistency, to shift right a determined number of bits
in those gain base values whose exponents differ from the block exponent value. For illustrative
purposes, let us imagine a scenario in which, for the sake of simplicity, the total number of
frequency bands available in the DSP are only NB = 2, or equivalently, k = 0 and 1. With
this in mind, let us suppose that the numerical value of the gain base and gain exponent for the
frequency band 0 are, for instance, 0×45E2 and −1, respectively, as depicted below:

B(G(0)) ≡ 0100010111100010 ≡ 0× 45E2
E(G(0)) ≡ −1.

Now, let us suppose that the numerical value of the gain base and the gain exponent for the
frequency band 1 are, for example, 0×701F and +4, respectively, as shown as follows:

B(G(1)) ≡ 0111000000011111 ≡ 0× 701F
E(G(1)) ≡ 4.

In this particular example at hand, the maximum gain exponent is +4, and consequently,
the exponent block is set to be Eblock = +4. Since this is the common gain exponent for both
gain values, we should shift the gain base value corresponding to the frequency band 0 (0×45E2)
right by five bits, as clearly depicted below:

B(G(0)) ≡ 0000001000101111 ≡ 0× 022F.

With these considerations in mind, the final gain base values for the frequency band 0 and 1
have been found to be:

B(G(0)) ≡ 0× 022F
B(G(1)) ≡ 0× 701F

being their gain exponent value as shown in the next page:

162 Chapter 8. Hardware implementation

Initializing pointers
- Pavg
- Temp_gain
- GainTables
- BaseTables

¿B[P (k)]>TH1?avg i

Yes

 k=k+1
¿k>64?

P (k)avg i

Input data

Exp_max = 0 i

Computation:
E[P (k)]avg i

M[P (k)]avg i

A GainTables(k,E[])P (k)avg i

A>>3

¿B[P (k)]>TH2?avg i

A>>3

B[G (k)]>BaseTables(A<2:0>)i

E[G (k)]>GainTables(k,E[])<15:9>i P (k)avg i
B[G (k)],E[G (k)] Temp_gaini i

¿E[G (k)]>Max_exp ?i i

 Next step

Max_exp = E[G (k)]i i

 NOP instruction

No

Yes

No

Figure 8.9: An illustrative flowchart representing the main concepts involved in the sequence of
operations carried out for properly searching the gain value in the corresponding gain matrix. In
this picture, k = 1, . . . , NB labels the index over the NB frequency bands, whereas i = 1, . . . , Nframes
depicts the one over the Nframes frames into which any sound signal is segmented. Note that this
sequence of operations is carried out for each of the frames into which the input signal is segmented.

E(G(0)) ≡ +4
E(G(1)) ≡ +4.

8.2. Implementation of the multiband compressor-expander 163

Finally, for properly completing this section, Figure 8.10 will assist us in showing the main
concepts involved in the sequence of operations carried out for properly implementing the base
adjustment process in the DSP.

Input data
G (k)i

Exp_max iD_GAIN_EXP_DATA

D_GAIN_BASE (k) M[G (k)] >> Exp_max - E[G (k)]i i i

Temp_gain

 k=k+1
¿k>64?

Yes

No

Register restoration

End routine

Figure 8.10: An illustrative flowchart representing the main concepts involved in the sequence of
operations carried out for properly implementing the base adjustment process in the DSP. In this
picture, k = 1, . . . , NB labels the index over the NB frequencies, whereas i = 1, . . . , Nframes depicts
the one over the Nframes frames into which any sound signal is segmented.

8.2.5 Computational cost

Once we have explained the way the complete compression-expansion approach works, the ques-
tion arising here is: What is the total computational cost required for implementing this approach
in the DSP used by our platform to carry out the experiments? Aiming at answering this ques-
tion, we have included Table 8.1 that depicts, in a very detailed way, the computational cost (in
clock cycles) and the CPU-load average (in %) demanded by our DSP to implement each of the
aforementioned blocks, that is, 1) the “average power computation” block, 2) the “gain-search in
the gain matrix” block and 3) the “base adjustment” block.

Understanding Table 8.1 demands to mention the following four comments:

• Apart from representing the computational cost required for implementing the three afore-
mentioned blocks, this table also depicts the computational cost of the assembler instruc-
tions involved in the implementation of the compression-expansion approach. These in-
structions are as follows: Push and Pop assembler instructions, which aim to store and to
recover data from the registers, Call assembler instruction that allows us to call a subrou-
tine and finally, Ret assembler instruction, which basically assists us in returning from a
subroutine or interrupting a service routine (see for further details [Dspfactory, 2002a,b]).

• The column labelled “Fixed” designates the fixed cost (in clock cycles), or in other words,
the computational cost associated to each block or instruction that does not depend on

164 Chapter 8. Hardware implementation

Block or instruction
Computational cost CPU-load

(clock cycles) average
Fixed Variable Total (%)

Call 2 0 2 0.026
Push 21 0 21 0.273

Average power computation 15 17 1103 14.36
Gain-search in the gain matrix 18 35 2258 29.40

Base adjustment 12 8 524 6.822
Pop 21 0 21 0.273
Ret 2 0 2 0.026
Total 91 60 3931 51.18

Table 8.1: Computational cost (in clock cycles) and CPU-load average (in %) demanded by our
DSP to program the three main functional blocks, along with the assembler instructions, involved in
the implementation of the compression-expansion approach proposed in this thesis. Note that the
total computational cost (that we label it Ctotal) is computed as a function of both the “fixed” cost
(that we label it Cfixed) and the “variable” cost (that we label it Cvariable) and adopts the following
formulation: Ctotal = Cfixed + Cvariable ·NB, being NB the number of frequency bands available in
the DSP (NB = 64, in our case).

the number of frequency bands (NB). With this in mind, this computational cost basically
corresponds to that involved in the initialization of address registers or counter variables.
For the sake of clarity, we label it Cfixed.

• The column labelled “Variable” labels the variable cost (in clock cycles), or equivalently,
the computational cost demanded by our DSP to process the sequence of operations carried
out for each of the NB frequency bands separately. Please note that the number of clock
cycles listed in this column correspond to those required for only one frequency band. For
the sake of clarity, we label it Cvariable.

• The column labelled “Total” summarizes the total computational cost (in clock cycles)
required by our DSP to implement each block or instruction. It is computed as a function
of both the fixed cost and the variable cost, and adopts the following formulation:

Ctotal = Cfixed + Cvariable ·NB (8.8)

where:

– Ctotal is the total computational cost

– Cfixed represents the fixed computational cost

– Cvariable labels the variable computational cost

– NB is the number of frequency bands available in the DSP (NB = 64, in our case).

Thanks to Table 8.1, we can now answer the question that we have asked at the very beginning
of this subsection: what is the computational cost required for implementing the compressor-
expander approach in the DSP? Having a look at the mentioned table, it seems clear to note
that the total computational cost has been found to be 3931 clock cycles. With this figure in
mind, the reader may wonder: is it a large number of clock cycles? Aiming at answering this

8.3. Implementing the feature extraction 165

question, we have also computed the CPU-load average (in %), that we label it Laverage, by
means of the expression stated below:

Laverage =
CU

CT
· 100 (8.9)

where:

• CU is the number of clock cycles (CU = 3931 cycles, in our case), and

• CT labels the total number of clock cycles.

In this work, the total number of clock cycles (CT) adopts the following formulation:

CT =
fCPU
fps

(8.10)

where:

• fCPU represents the clock frequency of the DSP (fCPU = 1.92 MHz, in our case) and,

• fps labels the number of sound frames analyzed per second, that is, 16000 samples/ 64
samples per frame = 250 s−1.

With these considerations in mind, the total CPU-load average has been found to be:

Laverage =
3931 [cycles] · 250 [1/s]

1.92 · 106 [cycle/s]
· 100 = 51.18 %. (8.11)

Note that this the CPU-load average, that is, Laverage ≈ 51.2 % represents the total computa-
tion time required by the DSP to implement the system involved in compensating the particular
acoustic loss a hearing aid user suffers from by using the approach proposed in this thesis. As
final remark, we can say that there is still left about 50 % of the DSP resources available for
implementing other algorithms, such as, for instance, those involved in self-adaptation, as will
be explained below.

8.3 Implementing the feature extraction

8.3.1 Introduction

In the aim of selecting the features that properly characterize any input sound for a further
classification, Chapter 4 assisted us in discussing those features, with a constrained maximum
number of assembler instructions, best suited for being finally programmed in the DSP. Note
that “best suited” means here those features, with a constrained maximum number of assem-
bler instructions, that make the classifier work as accurately as possible. As mentioned in the
Introduction, this set, that we label it SF, consists of the mean and variance of the following
features:

SF = {ŜC, S̃C, V̂2W, Ṽ2W, ŜF, STE}.
With this in mind, the number of features arranged in the feature vector to be finally pro-

grammed in the DSP, labelled Fpractical, has been found to be dim(Fpractical) = 12. For illustra-
tive purposes, this practical feature vector is shown below:

166 Chapter 8. Hardware implementation

Fpractical = {Ê[ŜC], σ̂2[ŜC], Ê[S̃C], σ̂2[ŜC], Ê[V̂2W], σ̂2[V̂2W] . . .

. . . Ê[Ṽ2W], σ̂2[V̂2W], Ê[ŜF], σ̂2[ŜF], Ê[S̃TE], σ̂2[ŜTE]}.
In the effort of efficiently programming these features in the DSP, we have established a set

of strategies and techniques that consists in the use of three “building blocks”, included in Table
4.3 (page 67). In particular, the three building blocks we have made use of are the following
ones: BB(1), BB(4) and BB(6). They help us analytically define the features included in the
set SF as a function of them, as clearly explained in the aforementioned chapter. Although will
be explained later on, we can say in advance that the basic reason underlying the programming
of these building blocks is that, the features included in the set SF can be easily calculated by
means of the aforementioned building blocks (which do not demand high computational cost)
and some mathematical operations, such as, for instance, addition or multiplication operations,
which are both efficiently implemented in the DSP and thus, it can reduce the computational
cost demanded by the DSP for programming the feature vector Fpractical.

To better illustrate this, we have included the following subsections that aim to clearly explain
the way the features included in the set SF are programmed in the DSP used by our platform to
carry out the experiments.

8.3.2 Obtaining the building blocks

Although not clear at first glance, it is worth noting that, for each analysis frame i-th, these
building blocks, which are calculated for any of the NB frequency bands available in the DSP,
basically depend on the instantaneous power of such frame (that is, Pinsi). The importance of
this dependence could be better understood if the reader remembers that the WOLA filterbank
provides, at its output, both the real and imaginary parts of the spectrum of an input frame,
and thus, according to Expression 8.3, computing the instantaneous power is a relatively easy
task, as shown below:

Pinsi(k) = Re{χi(k)}2 + Im{χi(k)}2 = |χi(k)|2 (8.12)

where:

• Pinsi(k) labels the k-th frequency band of the instantaneous power at frame i-th,

• χi(k) represents the k-th frequency band of the spectrum at frame i-th, and finally,

• Re{ } and Im{ } depict the real and imaginary parts of the number contained in brackets,
respectively.

Deepening a little more in the programming of these building blocks in the DSP, it is worth
mentioning three comments:

• They are computed every 64 new samples (note that the input block size is R = 64 samples).

• They are represented using signed floating-point precision (16-bit base and 16-bit exponent)
in the aim of avoiding saturations or lack of precision in the operations of the DSP.

• In concordance with the programming language used in the DSP, we have labelled these
building blocks “BB_XXXi”, where “BB” simply labels building block, and “XXX” basically
refers to name of the feature. As an illustrative example, “BB_STEi−1” would represent
the short-time-energy (STE) feature for the frame i− 1-th.

8.3. Implementing the feature extraction 167

In the effort of simplifying even more the calculation of these building blocks in the DSP, or in
other words, reducing the number of assembler instructions, we have mathematically “modified”
the mentioned building blocks. To better understand this, we illustrate below the particular
expression of the building blocks, for each analysis frame i-th and each frequency band k-th,
finally implemented in the DSP.

Prior to stating these expressions, it is worth mentioning that we assume that,

• Pinsi(k) labels the k-th frequency band of the instantaneous power at frame i-th,

• χi(k) represents the k-th frequency band of the spectrum at frame i-th,

• NB represents the number of frequency bands (NB = 64, in our case), and finally,

• M1 andM2 designate the indexes that limit the speech band (300-3600 Hz), or equivalently,
from a practical implementation point of view, M1 = 2 and M2 = 32.

With these assumptions in mind, we can proceed further with the expressions:

• BB_SSCi: this building block is based on the feature S̃Ci described in Expression 4.2 (page
60), but the difference here is that, for avoiding register saturations, we have divided the
expression of the feature S̃Ci into the value 2 ·NB. With this in mind, the building block
BB_SSCi can be computed as follows:

BB_SSCi =
NB−1∑
k=0

k

2 ·NB
· |χi(k)|2 =

NB−1∑
k=0

k

2 ·NB
Pinsi(k). (8.13)

• BB_V2Wi: this block building is exactly the same as the Ṽ2Wi feature described in
Expression 4.4 (page 61) and thus, it adopts the following formulation:

BB_V2Wi =
M2∑

k=M1

|χi(k)|2 =
M2∑

k=M1

Pinsi(k). (8.14)

• BB_STEi: this last building block is exactly the same as the STE feature described in
Expression 3.7 (page 38). In the aim of helping the reader remember the expression, we
show its formulation below:

BB_STEi =
NB−1∑
k=0

|χi(k)|2 =
NB−1∑
k=0

Pinsi(k). (8.15)

8.3.3 Obtaining the features included in the set SF

Similarly, the features included in the set SF that, for the sake of generality and clarity we have
named “compound features”, are computed every 64 new samples (note that the input block size
is R = 64 samples). They are also represented using signed floating-point precision (16-bit base
and 16-bit exponent) in the aim of avoiding saturations or lack of precision in the operations of
the DSP.

In the same line of reasoning as that in the building blocks, we have labelled the features
included in the set SF “CF_XXXi”, where “CF” simply labels compound feature, and “XXX” ba-
sically refers to the name of the feature. As an illustrative example, “CF_SSFi” would represent
the spectral flux feature for the frame i-th.

168 Chapter 8. Hardware implementation

Although we explained in Chapter 4 the way these features can be computed as a function
of the building blocks, in an effort of making this chapter stands itself, we express below these
compound features as a function of the building blocks by using the same labels as those used
in their practical implementation in the DSP. For the expressions shown below, we assume that,

• χi(k) represents the k-th frequency band of the spectrum at frame i-th,

• NB is the number of frequency bands available in the DSP, that is, NB = 64 in our case,
and finally,

• M1 and M2 label the indexes that limit the speech band (300-3600 Hz), or equivalently,
from a practical implementation point of view, M1 = 2 and M2 = 32.

Once mentioned these assumptions, we can proceed further with the expressions.

• CF_NSCi: this feature is based on the feature ŜCi described in Expression 4.1 (page 60)
and can be written as:

CF_NSCi =

NB∑
k=1

k · |χi(k)|2

NB∑
k=1

|χi(k)|2
≈ BB_SSCi

BB_STEi
. (8.16)

Please note that instead of using the equality sign (=), we have used the approximately
symbol (≈). This could be better understood if the reader remembers that the expression
of BB_SSCi does not exactly represent the same expression as that shown in the numerator
of CF_NSCi, because we have included a division operation in BB_SSCi in the aim of
avoiding some register saturations.

• CF_NSCi: this feature is exactly the same feature as S̃Ci feature depicted in Expression
4.2 (page 60), and thus is defined as follows:

CF_SSCi =
NB∑
k=1

k · |χi(k)|2 ≈ BB_SSCi. (8.17)

• CF_NVWi: this feature is exactly the same feature as V̂2Wi feature, described in Expres-
sion 4.3 (page 60), and thus is given by:

CF_NVWi =

M2∑
M1

|χi(k)|2

NB∑
k=1

|χi(k)|2
=

BB_V2Wi

BB_STEi
. (8.18)

• CF_SVWi: this feature adopts the same formulation as the Ṽ2Wi feature described in
Expression 4.4 (page 61), and thus can be determined as follows:

CF_SVWi =
M2∑

k=M1

|χi(k)|2 = BB_V2Wi. (8.19)

8.3. Implementing the feature extraction 169

• CF_SSFi: this feature is exactly the same feature as the ŜFi feature depicted in Expression
4.5 (page 61), and thus can be computed by means of:

CF_SSFi =
NB∑
k=1

|χi(k)|2 − |χi−1(k)|2 = BB_STEi − BB_STEi−1. (8.20)

• CF_STEi: this last feature labels the feature STEi described in Expression 3.7 (page 38)
and adopts the following formulation:

CF_STEi =
NB∑
k=1

|χi(k)|2 = BB_STE. (8.21)

8.3.4 Statistical characterization

As stated in Chapter 3, each of the available features fk ∈ SF is applied to each of the frames into
which the input audio signal has been segmented to be processed. We complete the statistical
characterization of the random vector Fk by estimating its mean value, Ê[Fk], and its vari-
ance, σ̂2[Fk]. Finally, this statistical characterization must be done for all the available features
fk ∈ SF. The feature extraction algorithms ends in generating a feature vector that is just the
signal-describing vector that finally feeds the classifier. Note that this feature vector is the one
mentioned in the Introduction that, for the sake of clarity, we have labelled Fpractical.

With this in mind, perhaps the reader may wonder: how often are the mean and variance
operations carried out? or equivalently, how often is the classification process carried out? The
answer to this question is intuitively related to the time interval to make and return a decision by
the classifier, that is, the length of the time slot. Just in this respect, the batches of experiments
carried out in this thesis have been done with files of 2.5 seconds and 20 milliseconds, that is, the
time slot for the classifier to make and return a decision has been configured to be 2.5 seconds
and 20 milliseconds. According to the results obtained in Chapter 6, the fact of using files of 2.5
seconds was found to exhibit very good results when compared to those obtained for the case of
files of 20 milliseconds.

Assuming that the length of files is 2.5 seconds, and consequently, the time slot is 2.5
seconds, a key point to note here is that the number of frames (Nframes) per slot time (or
equivalently, file) to be processed by the DSP should be a number power of two, that is,
Nframes = 1, 2, 4, 8, 16, 32, 64 . . . in an effort of significantly reducing the computational cost
associated to the calculation of the mean and variance operations in the DSP. In this sense, the
subsequent questions arising are: how many frames are included in files of 2.5 seconds? and
consequently, is that number of frames a power of two?

Answering this question demands to mention that, for files of 2.5 seconds, the number of
samples per file or time slot is given by:

2.5 s/time slot× 16000 samples/s = 40000 samples/time slot,

and thus, the number of frames per time slot is:

Nframes =
40000 samples/time slot

64 samples/frame
= 625 frames/time slot.

By using the abovementioned number of frames per time slot shown above (Nframes = 625)
and thanks to estimating the logarithm base-2 of that number of frames, we can now answer the

170 Chapter 8. Hardware implementation

question previously stated: is the number of frames included in files of 2.5 seconds a power of
two? Since log2(625) = 9.2877 is not an integer number, we can say that Nframes = 625 is not a
power of two.

In the effort of estimating the number of frames per time slot for the practical implementation
of the classifier in the DSP, we have rounded 9.2877 towards the nearest lower integer, that is,
b9.2877c = 9, and consequently, the number of frames per time slot has been found to be:

29 = 512 frames/time slot

what, in turns, means that the number of samples per time slot is:

512 frames/time slot× 64 samples/frame = 32768 samples/time slot

and consequently, the length of the practical time slot is:

32768 frames/time slot
16000 samples/s

= 2.048 s/time slot. (8.22)

Please note that, although in our practical implementation the classifier returns a makes and
returns a decision every 2.048 seconds, or equivalently, each 512 frames, it is worth mentioning
that this number of frames per time slot can be easily modifiable in the assembler code that we
have implemented by any other number provided this number is a power of two.

In this respect, perhaps the reader may wonder whether the fact of using files of 2.048 seconds,
instead of files of 2.5 seconds, degrades the percentage of correct classification. In this sense,
it has been shown that the fact of using files of 2.048 seconds does not degrade the quality of
the system to distinguish among speech, music and noise when compared to that obtained when
using files of 2.5 seconds [Fernández-Cruza, 2009].

Turning again our attention to the implementation of the abovementioned statistical oper-
ators, it is worth mentioning that all the operations are carried out by using a 32-bit signed
floating-point precision, and the 16 bits most significative will be those that finally feed the
classifier. In concordance with the programming language for the DSP, we have labelled these
statistical measures FM_YYY_XXX, where “FM” simply labels feature measure, and XXX is
the feature in which the statistical operator is applied, and finally, YYY represents the statistical
operator applied, that is, AVG for the mean or VAR for the variance. With these considerations
in mind, we shall mathematically define these both statistical measures as shown below:

• Average operator:

FM_AVG_XXX =
1

2Nframes

2Nframes−1∑
i=0

CF_XXXi (8.23)

• Variance operator:

FM_VAR_XXX =
1

2Nframes

2Nframes−1∑
i=0

(CF_XXXi − FM_AVG_XXX)2

=

 1
2Nframes

2Nframes−1∑
i=0

CF_XXXi

− FM_AVG_XXX2
i

(8.24)

8.3. Implementing the feature extraction 171

8.3.5 Practical implementation

We shall explain here the main concepts involved in the feature extraction approach implemented
in the DSP in an effort of clearly understanding the assembler source code designed. For further
details, we refer the reader to Appendix E.

8.3.5.1 Preprocessor code

Despite the fact of using a feature set consisting of a determined number of features, it is
convenient to design a source code that is adaptable to the compiler options aiming at simplifying
future implementations, in which, for instance, we would like to make use of a new spectral feature
or just a different feature set.

The fact of designing a configurable assembler code for the feature extraction task involves
programming a source code that includes many preprocessor directives. Aiming at having a
more structured code, we have created a file including only the definitions of constants and
preprocessor variables (we label it const_features.inc). The objective of these constants or
labels is just that the code automatically generates itself in order to include only the part of
assembler code strictly necessary to execute the routines.

Additionally, as in all critical code sections implemented in this thesis (we say critical in
the sense of computational cost), we have defined two preprocessor variables as clearly depicted
below:

• FEATURES_CYCLES: this variable contains the number of clock cycles required to carry out
a time-critical routine.

• FINAL_CYCLES: this variable contains the number of clock cycles required to carry out a
non time-critical routine.

8.3.5.2 Routines

The feature extraction task is carried out in the DSP by means of the following two routines:

• a priority routine, that we label it Features, and

• a non-priority routine, that we label it Final_features.

Intuitively, we say a priority or non-priority routine in the sense whether it is a time-critical
or non time-critical routine, respectively. The basic idea underlying the implementation of
these two routines is that, although most of computations need to be carried out for all the
frames comprising the time slot, there are few calculations that need to be carried out only for
a low number of frames. In this respect, we have implemented a non-priority routine (labelled
Final_features) that carries out these latter calculations and thus, it reduces the computational
complexity associated to the priority routine (labelled Features). Despite its presumably high
use of data-memory storage, it is worthwhile including this non-priority routine because it reduces
significantly the computation load associated to the time-critical sections. As will be shown later
on, this use of data-memory storage does not exceed the restrictions imposed by the DSP used
by our platform to carry out the experiments.

We describe in a more detailed way both routines in the paragraphs that immediately follow.

• Priority routine
This priority routine, that we label it Features, is the very core of the feature extraction

172 Chapter 8. Hardware implementation

task implemented in the DSP. It is run at each analysis frame update, and since the
input parameters to this routine are the instantaneous powers (Pins) computed at each of
the NB frequency bands available in the DSP, this routine must be finished before the
instantaneous powers corresponding to the following frame, that is, the frame i + 1-th,
are computed and thus, these new values replace the instantaneous powers computed at
frame i-th, before this routine had finished its execution. Note that the assembler code
included in this routine is severely dependent on the labels defined in the abovementioned
file const_features.inc, in the sense that only the necessary building blocks demanded
to calculate the features included in the feature set SF will be computed.

This routine basically consists of three different steps clearly distinguished, as illustrated
below:

1. Computation of the building blocks defined in Subsection 8.3.2.

2. Computation of the mean and variance of the feature vector.

3. Since the classifier returns a decision every 512 frames, depending on:

– If the analysis frame is the 512-th frame, we can proceed further with:
∗ copying the feature measures obtained in the statistical measure block (vari-

ables FM_AVG_XXX and FM_VAR_XXX), which will be the input pa-
rameters to the non-priority routine,
∗ reseting the variables FM_AVG_XXX and FM_VAR_XXX for being used

for the next time slot, and finally,
∗ calling to the non-priority routine (whenever there are no interrupts to be

handled).
– If the current frame is not the 512-th frame, we execute waiting loops aiming at

the function length being the same. Note that the hearing aid is a hard real-time
system, in which one of the key parameters is the execution time. Therefore,
guaranteeing that all the functions are the same length, we will make sure that
the priority routines are always executed.

• Non-priority routine
This non-priority routine, labelled Final_features, basically runs a sequence of instruc-
tions aiming to compute some calculations demanded for the priority routine in order to
compute the feature vector that feeds the classifier. Aiming at clearly understanding the
difference between both routines, we can mention that, whereas the Features routine com-
putes the average of mean-square value of the random feature vector, Final_features just
subtracts the average mean-square value from the average square feature vector for the
further computation of the feature vector variance.

An extremely difference to note here is that this routine is executed every 512 analysis
frame updates, whereas the priority routine is executed at each analysis frame update.

8.3.5.3 Computing the statistical measures

At a first glance, implementing in the DSP the assembler code demanded to compute the statis-
tical measures of a vector, that is, the average and variance, could be approached from the two
points of view that follow.

The first approach consists in storing in data-memory all the features computed for each
frame composing the time slot and computing the statistical measures. The main advantage of

8.3. Implementing the feature extraction 173

this approach is that requires lower computational cost. The very serious associated drawback
here is, however, that it is very difficult its implementation because it requires an intensive use
of data-memory storage. In particular, this approach would require:

512 frames× 6 features/frames× 2 words/features = 6144 words. (8.25)

The second, feasible approach, which significantly reduces the use of data-memory storage for
computing the statistical measures, consists in making use of macros that are run just after
extracting the feature for the corresponding frame in the slot time. Or in other words, note that
the key point in this second approach resides on the fact that not all features need to be stored
in data-memory. Therefore, the main advantage of this second approach is that it requires a
much lower use of data-memory storage at the expense of increasing the computational cost.
However, as will be shown in the paragraphs below, this requirement of computation time is
perfectly feasible and does not exceed the restrictions imposed by the DSP. These are basically
the reasons why we have chosen this approach as a case-study illustrating the feasibility of its
implementation.

8.3.5.4 Implementation

Aiming at clearly understanding the implementation of feature extraction process in the DSP,
Figure 8.11 represents an illustrative flowchart of it. It is represented the flowchart corresponding
to the priority routine (Features routine). As shown, there are three different blocks clearly
distinguished. Within the application at hand, the first block computes the three building blocks
(labelled BB_x, where x is the number of building block computed, ranging from 1 to 3), the
second one is the block that not only does it compute the features included in SF (CF_y, where y
is the number of feature computed, ranging from 1 to 6) but also its statistical measures, that is,
the average and the variance, and finally, the third block is the one that stores in data-memory
the feature statistical measures if the current analysis frame is the 512-th frame composing the
time slot, or otherwise, it runs waiting loops in the aim of all time-critical routines being the
same length.

8.3.6 Computational cost

In the effort of reducing the computational cost demanded by the DSP to implement the feature
extraction block, it is worth mentioning three comments:

• The sequence of operations demanded to call and return from a subroutine requires 4 clock
cycles (see for further details [Dspfactory, 2002a,b]), which would involve high computa-
tional cost because it is very common the programming of subroutines to implement short
codes. In this respect, instead of using this sequence of operations to call and return from
a subroutine, we have made use of macros for the same purpose. The main advantage of
using macros is that it requires much lower computational cost at the expense of increasing
the amount of data-memory usage. However, this use of data-memory is perfectly feasible
and does not exceed the restrictions imposed by the DSP.

• The building blocks and the statistical measures calculated are stored in the data-memory
available in the DSP in a sequential way, aiming at reducing the number of redundant
memory accesses. Although this sequential access way increases the average memory access
time, it strongly reduces the computational cost by means of using post-increase and post-
decrease instructions [Dspfactory, 2002c].

174 Chapter 8. Hardware implementation

Starting routine
Store registers
 in stack

i¿N_frames<Max_frames? No

Yes

BB_1

BB_2

BB_3

FM_1_AVGCF_1 FM_1_VAR

CF_2 FM_2_VAR

CF_6 FM_6_AVG FM_6_VAR

N_frames = 0

End_feature FM_BASE
FM_BASE 0

End_feature=1

Waiting
 loops

Register restoration

End routine

Figure 8.11: An illustrative flowchart representing the way the feature extraction task is pro-
grammed in the DSP. It is represented the flowchart corresponding to the priority routine, that we
label it Features. As shown, there are three different blocks clearly distinguished. The first one, is
the block that computes the three simple features (labelled BB_x , where x designates the number
of the building block computed, ranging from 1 to 3), the second one is the block that computes the
statistical measures, that is, the average and variance of the features (CF_y , where y is the number
of novel feature computed, ranging from 1 to 6) used for further classification, and finally, the third
block is the one that stores in data-memory the feature statistical measures if the current analysis
frame is the 512-th frame comprising the time slot, or otherwise, it runs waiting loops aiming at all
time-critical routines are the same length.

• The division operation cannot be carried out directly in the DSP because, it requires, at
least, 1) a function to compute the inverse of a number and 2) a function to carry out the
multiplication among two numbers. Aiming at clearly understanding this, let us imagine

8.3. Implementing the feature extraction 175

Building Computational cost CPU-load average Priorityblock (clock cycles) (%)
BB_SSC 78 1.02 X
BB_STE 76 0.98 X
BB_V2W 45 0.59 X
Total 199 2.59 X

Table 8.2: Computational cost (in clock cycles) and CPU-load average (in %) demanded by the
DSP, used in the experiments, to program the three building blocks considered in the final imple-
mentation, that is, BB_SSC, BB_STE and BB_V2W. It is also shown whether their execution is
priority or not, or in other words, if the data involved in their computation are volatile or not. Please
note that the symbol X designates that the building block execution is priority, whereas the symbol
7 labels that the building block execution is not priority.

Compound Computational cost CPU-load average Priorityfeature clock cycles (%)
CF_NSC 17 0.221 X
CF_SSC 7 0.091 X
CF_NVW 17 0.221 X
CF_SVW 7 0.091 X
CF_SF 16 0.208 X
CF_STE 7 0.091 X
Total 71 0.924 X

Table 8.3: Computational cost (in clock cycles) and CPU-load average (in %) demanded by the
DSP, used in the experiments, to program the six features considered in the final implementation,
that is, CF_NSC, CF_SSC, CF_NVW, CF_SVW, CF_SF and CF_STE. It is also shown whether
their execution is priority or not, or in other words, if the data involved in their computation are
volatile or not. Please note that the symbol X designates that the execution is priority, whereas the
symbol 7 labels that the execution is not priority.

that we would like to calculate x1/x2. Firstly, the inverse of x2, or in other words, x−1
2

is computed, and after that, the multiplication operation between x1 and x−1
2 is carried

out, that is, x1 · x−1
2 With this in mind, the DSP firmware includes a function that inverts

a number, but it requires 13 clock cycles. In the effort of reducing this number of clock
cycles, we have tabulated the inverse function so that the number of clock cycles is drastically
reduced to only 5 assembler instructions, and, what is of key importance, without degrading
the results.

With these considerations in mind, we can proceed further in explaining the computational
cost demanded by the DSP to implement the feature extraction block. On the one hand, Table
8.2 and 8.3 show the computation time (in clock cycles) and the CPU-load average (in %)
required to program in the DSP the three building blocks involved in the final implementation
(that is, BB_SSC, BB_STE and BB_V2W) and the features included in the set SF (that is,
CF_NSC, CF_SSC, CF_NVW, CF_SVW, CF_SF and CF_STE), respectively. For both the
building blocks and the features, it is also shown whether their execution is priority or not, or
in other words, if the data involved in their computation are volatile or not. Note that the
priority code is run in the routine Features, whereas the non-priority code is run in the routine
Final_features. In the aforementioned table, the symbol X designates that the building block
execution is priority, whereas the symbol 7 labels that the building block execution is not priority

On the other hand, Table 8.4 shows the computational cost (in clock cycles) and the CPU-
load average (in %) required to compute in the DSP the abovementioned statistical operators,

176 Chapter 8. Hardware implementation

Statistical Computational cost CPU-load average Prioritymeasure (clock cycles) (%)
AVERAGE 9 0.117 X
VARIANCE 12 0.156 X
VAR_FINAL 11 0.0002 7

Table 8.4: Computational cost (in clock cycles) and CPU-load average (in %) demanded by the
DSP, used in the experiments, to compute the statistical operators considered in the experiments,
that is, the mean and variance measures. It is also shown whether their execution is priority or not,
or in other words, if the data involved in their computation are volatile or not. Please note that the
symbol X designates that the execution is priority, whereas the symbol 7 labels that the execution
is not priority.

Block or Computational cost CPU-load average
instruction (clock cycles) (%)

Call 2 0.06
Push 13 0.17

Register preparation 13 0.17
Building blocks 199 2.59

Features 71 0.92
Statistical measures 126 1.64
Return a decision 108 1.41

Pop 13 0.17
Ret 2 0.06
Total 547 7.12

Table 8.5: Total computational cost (in clock cycles) and CPU-load average (in %) demanded by
the DSP, used in the experiments, to implement the priority routine labelled Features, which assists
us in computing the feature vector that finally feeds the classifying algorithm. Note that this routine
is a time-critical routine.

that is, the mean and variance measures. In the same line of reasoning as that in the building
blocks as in the compound features, it is also shown whether their execution is priority or not.

Having a look at the mentioned tables, it is quite remarkable how low the computational cost
demanded by the DSP to program the feature extraction task is, especially when compared to
that required, for instance, to implement the approach that assigns the gain value to be applied
to the input signal.

It is important to note that the figures illustrated do not represent the total computation time
and CPU-load average demanded to compute the feature vector in the DSP. It is also necessary
to take into account the number of clock cycles related to run some stack instructions, such as,
for instance, push, pop, call or ret instructions, which aim to store and to recover data from the
registers, to call a subroutine and to return from a subroutine or to interrupt a service routine
(see for further details [Dspfactory, 2002a,b]), respectively. Table 8.5 and 8.6 will assist us in
addressing this stated issue. They show the total computational cost (in clock cycles) and the
CPU-load average (in %) of both priority and non-priority routines, which assist us in computing
the feature vector that finally feeds the classifying algorithm.

Thanks to these two tables, we can now say that about 7.13 % represents the total CPU-
load average required by the DSP to program the blocks involved in the feature extraction task.
Having a look at Table 8.6, one can notice that the computational cost required by the DSP
to compute the non-priority routine is extremely low. In this respect, perhaps the reader may
wonder whether it is worthwhile including this routine or not. The answer to this question is that

8.4. Implementing a multilayer perceptron-based classifier 177

Block or Cost CPU-load average
instruction (cycles) (%)

Call 2 0.00005
Push 12 0.00030

VAR_FINAL 66 0.00168
Storage 76 0.00193

Other instructions 13 0.00033
Pop 12 0.00030
Ret 2 0.00005
Total 183 0.00465

Table 8.6: Total computational cost (in clock cycles) and CPU-load average (in %) demanded by
the DSP, used in the experiments, to implement the non-priority routine labelled Final_features,
which assists the priority routine (labelled Features) in carrying out some calculations that are not
strictly necessary to be computed in the priority routine. Note that this routine is a non time-critical
routine.

the fact of not implementing this routine would require that the priority routine carried out the
sequence of operations included in the non-priority routine, which would involve an additional
CPU-load average associated to the priority routine of about 2.4 %.

8.4 Implementing a multilayer perceptron-based classifier

8.4.1 Introduction

As mentioned in Chapter 5, a multilayer perceptron, which is a particular kind of neural network,
has been found to exhibit very good results in terms of higher percentage of correct classification
when compared to those from other popular algorithms evaluated in this thesis, such as, for
instance, the mean square error (MSE) linear classifier, the k-nearest neighbor algorithm, or
even, a radial-basis function (RBF) network. One question that may arise regarding multilayer
perceptrons is whether an MLP-based classifier can be implemented in real-time on an in-the-
market, average-performance device. Elucidating this is just the objective of this section.

Although not clear at first glance, it is worth mentioning that despite its presumably high
computational cost, its implementation has been proven to be the functional block, among the
three main blocks involved in the design of the hearing aid (that is, the compression-expansion
approach, the feature extraction task and the classifier itself), that demands the lowest compu-
tational cost, as will be shown throughout this section. Although will be explained in detail later
on, we can say in advance that this is basically due to two main reasons: 1) this task is run every
2.048 seconds, whereas other tasks, such as, for instance, the compression-expansion approach is
run for each analysis frame update (or in other words, each 4 ms) and 2) most of the operations
needed to run this task are addition-multiplication operations, which are optimized in any DSP.

8.4.2 Creating a multilayer-perceptron

In the effort of implementing an MLP-based classifier in the DSP used by our platform to carry
out the experiments, we have designed a versatile source code. We say “versatile” in the sense
that the fact of adding new neurons to the hidden layer or programming a different activation
function for any of the hidden or output neurons is not a complex task. To achieve this, we
have programmed a module that includes a macro (that we label it LAYER), which intends for
automatically generating the necessary assembler code required to implement a layer of neurons

178 Chapter 8. Hardware implementation

with an arbitrary number of neurons and any activation function in each neuron. Intuitively,
this code will depend on some input user-specific parameters, such as, for instance, the number
of neurons or the number of inputs to each neuron.

With this in mind, we shall define this macro as follows:

#macro LAYER (Name,n_inputs,n_neurons,Input_pointer_X, ...
... , Weight_pointer_Y,Output_pointer_X,ACTIVATION_FUNCTION_MACRO)

As clearly shown, this macro demands 7 input arguments, which will be explained in a
detailed way in the paragraphs that immediately follow.

• Name: this first input parameter is the layer’s name. This parameter assist us in naming
the labels and compiler variables created for each layer of neurons, which basically allows
us to avoid any confusion with the labels and variables corresponding to any other different
layer. By using this input parameter, the names of compiler variables adopt the following
nomenclature:

Variable1_##Name.

For illustrative purposes, let us imagine that we make use of the macro in the following way:
CAPA(First,...). In this case, the aforementioned variable would adopt the nomenclature
Variable1_First (see for further details [Archelon, 1994]).

• n_inputs: this second parameter labels the number of inputs to each neuron comprising
the layer. At this respect, it is worth mentioning that the bias is also taken into account as
one input. Please note that this number of inputs is the same for each neuron comprising
the layer.

• n_neurons: this third parameter intuitively labels the number of neurons composing the
layer.

• Input_data_pointer: this pointer points at the input data, which are stored in the X
memory available in the DSP. Note that the data are 16-bit signed floating-point precision
numbers.

• Weight_data_pointer: this pointer points at the layer’s weights, which are stored in the
Y memory available in the DSP. It is worth mentioning that all the weights corresponding
to a neuron are located in a contiguous way, as shown below:

Weight_Input1_Neuron1
Weight_Input2_Neuron1
...
Weight_InputN_Neuron1
Weight_Input1_Neuron2
Weight_Input2_Neuron2
...
Weight_InputN_Neuron2
Weight_Input1_NeuronM
Weight_Input2_NeuronM
...
Weight_InputN_NeuronM

8.4. Implementing a multilayer perceptron-based classifier 179

in an effort of reducing the number of redundant memory accesses.

• Output_data_pointer: this pointer intuitively points at the network outputs, which will
be stored in the X memory available in the DSP.

• MACRO_ACTIVATION_FUNCTION: this last input parameter designates the activation function
used in each neuron comprising the layer.

Figure 8.12 will assist us in better explaining the sequence of operations carried out in the
aforementioned macro labelled LAYER.

Regarding the activation function of the hidden and output neurons, we have implemented
the logarithmic sigmoid function (see for further details Section 3.4.4.2). To achieve this, we
have made use of a table stored in the data-memory available in the DSP, which includes 2N

“tabulated” 16-bit values, being N a configurable parameter. Note that, intuitively, the imple-
mentation of this table requires storing 2N memory words. The computational cost demanded
by the DSP for implementing this function has been found to be 13 clock cycles.

8.4.3 Running a multilayer-perceptron

Once we have explained in detail the macro LAYER that automatically generates the assembler
code strictly necessary for creating a layer of neurons in a multilayer perceptron, we can proceed
further in explaining the sequence of operations, included in the routine Execution_MLP, that
we have performed to run the multilayer perceptron.

1. Saving the registers used by the macro LAYER, and those used by the routine MLP_Execution,
for their running.

2. Running the macro LAYER to generate the necessary assembler code to create a layer of 20
hidden neurons. Note that the final MLP implemented in the device consists of only one
hidden layer of 20 neurons and this is the reason why we create only one hidden layer.

3. Running the macro LAYER to generate the assembler code necessary to create a layer of 3
output neurons.

4. Computing the output of the MLP to make a decision. This basically assists us in se-
lecting the correct gain matrix according to the classifier decision. Note that, since there
are 3 output neurons, the MLP will return 3 output values. In this sense, the variable
P_Table_Gain_X_L will point at the gain matrix corresponding to the greater output neu-
ron value. To better explain this, let us imagine that the values returned by the MLP
are as follows [0.3454, 0.6543, 0.7534], since the greater value corresponds to the third out-
put neuron, the variable P_Tabla_Gan_X_L will point at the “noise gain matrix”. On the
other hand, if the values returned by the MLP are: [0.9123, 0.2019, 0.3221], the variable
P_Table_Gain_X_L will point at the “speech gain matrix”. Finally, if the values returned by
the MLP are: [0.1498, 0.8765, 0.2312], the variable P_Tabla_Gan_X_L will intuitively point
at the “music gain matrix”.

5. Reseting the bit used to call the routine Execution_MLP from the main loop.

6. Restoring the value of registers previously saved.

180 Chapter 8. Hardware implementation

 i= 0
Output = 0

Initializing pointers
- Input data
- Weights
- Output data

A = A + Input (i)⋅Weight (i,j)

i=i+1

¿i > number of inputs?
No

Yes

Yes

 To routine
 MLP_execution

No

 From the routine
 MLP_execution

 Activation Function
 A=ActivationF (A)

Output (j) A

j=j+1

¿j > number of neurons?

Figure 8.12: An illustrative flowchart that assist us in explaining the sequence of operations carried
out in the macro labelled LAYER, which basically intends for creating a layer of neurons in a multilayer
perceptron.

As stated beforehand, this routine is called from the main loop and is run with the enabled
interrupts. This makes this routine a low-priority task and thus, it will be run when there are

8.4. Implementing a multilayer perceptron-based classifier 181

no other critical routines waiting to be run.
For properly completing this section, we have included Figure 8.12 that assist us in explaining

the sequence of operations carried out in the aforementioned macro routine MLP_EXECUTION.

Starting routine
Store registers in stack

LAYER macro
(hidden layer)

Hidden layer weights

Hidden layer outputs

LAYER macro
(output layer)

Output layer weights

Gain_pointer MAX(outputs) Hidden layer outputs

Flag_Network = 0

Register restoration

End routine

Figure 8.13: An illustrative flowchart that assist us in explaining the sequence of operations
carried out in the macro labelled MLP_EXECUTION, which basically intends for running a multilayer
perceptron.

8.4.4 Computational cost of multilayer perceptron (MLP)

Turning again our attention to the important constrains that digital hearing aids suffer from,
it is very convenient to evaluate the computational complexity, or in other words, the number
of assembler operations per second required by the DSP, used by our platform to carry out the
experiments, to implement an MLP-based classifier. In this respect, it is very important to point
out that, only the computational load needed by the DSP to implement the MLP once it has been
trained, has been considered. The reason is as follows. The computational complexity associated
with the MLP training is not a critical parameter in real-time applications because this network
learning is carried out offline making use of the all available resources in the laboratory. Only
when these network parameters have been computed in the laboratory, they are stored in the
data-memory available in the DSP.

Bearing in mind that the final MLP-based classifier implemented in this thesis consists of a
single hidden layer, we can realistically assume that the MLP consists of L input neurons, M
neurons in the hidden layer and C output neurons, one for each audio class to classify (note that,
within the context of the application at hand, speech, music and noise have been considered as
the audio classes to distinguish, what, in turns, means that C = 3).

182 Chapter 8. Hardware implementation

With these assumptions in mind, Table 8.7 will assist us in explaining the computational
cost (in clock cycles) required by the DSP to implement an MLP- based classifier whose design
parameters have been computed offline [Fernández-Cruza, 2009]. We have chosen a representa-
tion that intends for clearly illustrating such computation. In this respect, this table shows the
computational cost demanded to implement a layer comprising an arbitrary number of neurons
as a function of both 1) the number of input parameters to each neuron (I) and 2) the total
number of neurons comprising the layer (N).

Input parameters (I) Computational cost
(clock cyles)

2 9+(6+CAF)·N
3 11+(7+CAF)·N
4 11+(8+CAF)·N
5 11+(9+CAF)·N

I(I > 6) 11+(5+I+CAF)·N

Table 8.7: Computational cost (in clock cycles) demanded by the DSP, used in the experiments,
to implement a layer comprising an arbitrary number of neurons (N). In this table, I represents the
number of input parameters to each neuron in the layer considered, or equivalently, for the hidden
layer, I = L + 1, labeling 1 the bias input, and for the output layer, I = M + 1. CAF represents
the computational cost, that is, the number of clock cycles required to implement the activation
function. In the particular application at hand, the activation function used in this thesis is the
logarithmic sigmoid function, which demands 13 clock cycles for its implementation.

Understanding Table 8.7 requires, at least, three comments:

• I represents the number of input parameters to the each neuron comprising the layer. This
basically means that if the layer under study is the hidden layer, the number of input
parameters to each single neuron can be computed as I = L + 1, being L the dimension
of the feature vector and 1 designating the bias weight. Similarly, if the layer under study
is the output layer, then I = M + 1, being M , in this case, the number of hidden neurons
and 1 the bias weight. It is also worth mentioning that those neurons corresponding to the
input layer have not been considered in the computation since these neurons label just the
initial feature vector that feeds the classifier and thus no operations are carried out in this
layer.

• CAF represents the computational cost required to implement the activation function. In
our particular case, the activation function of the MLP is the logarithmic sigmoid function,
which demands 13 clock cycles for its implementation [Fernández-Cruza, 2009].

• N represents the number of neurons comprising the case-study layer, what, in turns, means
that N is set to be N = M for the hidden layer or is set to be N = C for the output layer.

Now, with all these expressions we have described, we can proceed to define the formulation
for computing the total computational cost. For this purpose, we also have to take into account
the number of clock cycles required to compute the MLP, or equivalently, to make a decision. This
final decision is taken by comparing the outputs of the neural network and looking for the greatest
values. The number of clock cycles needed to carry out this process can be mathematically written
as 7 · C, being C the number of output neurons [Fernández-Cruza, 2009].

8.5. Hearing aid consumption 183

With this in mind, the number of clock cycles required by, a MLP-based classifier based on a
multilayer perceptron with a single hidden layer, to produce one output, can now be written as:

CMLP = Chidden layer + Coutput layer + 7 · C (8.26)

• Practical case-study
For illustrative purposes, we complete this section by computing the computational cost
of the particular MLP-based classifier implemented in the DSP. Let us consider an MLP-
classifier with L = 12 inputs, M = 20 hidden neurons and C = 3 output neurons, intercon-
nected by links with adjustable weights, whose values have been optimized offline. Then,
what is the computational cost required by the DSP, used in the experiments, to implement
this MLP-based classifier? As stated in Expression 8.26, the total computational cost can
be computed as:

CMLP = Chidden layer + Coutput layer + 7 · C

where:

– the computational cost of the hidden layer (Chidden layer) is:

Chidden layer = 11 + (5 + I + CAF) ·W
= 11 + (5 + 13 + 13) · 20
= 631 clock cycles

– the computational cost of the output layer (Coutput layer) is:

Coutput layer = 11 + (5 + I + CAF) · C
= 11 + (5 + 21 + 13) · 3
= 128 clock cycles

– and finally, the computational cost required to evaluate the greatest neuron is:

L = 7 · C
= 7 · 3
= 21 clock cycles

So the total computation cost is:

L = 631 + 128 + 21 = 780 clock cycles (8.27)

or equivalently, it requires a CPU-load average of ≈ 0.02%.

8.5 Hearing aid consumption

One of the crucial aspects when designing and implementing a real-time hearing aid is the battery
life. Although hearing aid users expect that batteries have a longer “working life”, battery life
may range anywhere from 4 to 7 days, depending on the hearing aid type, as clearly shown in
Table 2.2 (page 29).

184 Chapter 8. Hardware implementation

This probably makes the reader wonders what is the battery life of the hearing aid designed
in this thesis? Aiming at answering this question, we show here the relationship between the
hearing aid current consumption (in mA) and the CPU-load average (in %). With these two
numerical values, we can proceed further in calculating the battery life (in hours). Obviously,
the lower the CPU-load average is, the lower the hearing aid consumption is and consequently,
the higher the battery life is.

In order to calculate the CPU-load average, it is necessary for the assembler code to include
an additionally instruction that attempts to count how many times the main loop is run. If
we know the main loop length and we count the times that it is run, we can proceed further
in calculating the time the processor is not running (or in other words, the time the processor
is not active) and consequently, the CPU-load average. Please note that we send the processor
into the “sleep mode” until an interrupt occurs. By using this latter and the battery monitor
function available in our DSP, we can calculate the hearing aid consumption and consequently,
the battery life of our hearing aid.

In the batches of experiments carried out in this thesis to calculate the battery life of our
hearing aid, we have considered four different situations as follows:

1. Situation 1: the gain approach and the feature extraction block are not programmed in
the DSP, that is, only the WOLA filterbank, the input/output processor and the core with
minimum load are active. With this idea in mind, this basic hearing aid would be a linear
system, in which we could program the gain for each frequency band available in the DSP.
Please note that, within this particular situation, the hearing aid would work as an audio
equalizer.

2. Situation 2: the gain approach is implemented but the feature extraction block is not
implemented in the DSP. With this scenario in mind, the hearing aid performs the com-
pression of input sound signals, but it cannot automatically recognize the acoustic listening
the person wearing the device is in, and consequently, it cannot select the amplification
program that best fits for such environment.

3. Situation 3: both the gain approach and feature extraction functional block are implemented
in the DSP. Note that this scenario is just the purpose of this thesis, that is, the situation
in which not only does the hearing aid perform the compression of input sound signals but
also recognizes the acoustic listening the person wearing the hearing aid is in and selects
the amplification program that best fits to that situation.

4. Situation 4: the processor is not sent into “sleep mode” in the main loop. This situation
illustrates the hearing aid consumption when the processor is always running, or in other
words, the processor is always active. To achieve this, we simply comment the line in
the assembler code that sends the processor into “sleep mode”, or equivalently, into a low-
consumption current mode, until some event occurs.

Once we have summarized the set up of the experimental work, Table 8.8 shows the CPU-
load average (in %), the current consumption hearing aid (in mA) and the battery life (in hours)
obtained for the four aforementioned situations.

Please note that the CPU-load average 71 % represents the total computation load required
by the DSP to implement “situation 3”, which involves programming the gain approach, the
feature extraction and classification functional blocks, the very core of this thesis. The hearing
battery life for this scenario has been found to be 140 hours, or in other words, approximately 6

8.6. Conclusions 185

Situation CPU-load average Current consumption Battery life
(%) [mA] (hours)

Situation 1 1 0.5 182
Situation 2 57 0.63 143
Situation 3 71 0.65 140
Situation 4 100 0.71 128

Table 8.8: Numerical values of CPU-load average (%), current-consumption (mA) and battery life
(hours) corresponding to the digital hearing aid implemented in this thesis for four different scenarios
considered in the experiments. “Situation 1” labels the scenario in which both the gain approach and
the feature extraction functional blocks are not implemented in the DSP. “Situation 2” represents the
case in which the gain approach is implemented but the feature extraction block is not implemented
in the DSP. “Situation 3” illustrates the scenario in which both the compressor-expander and feature
extraction functional blocks are implemented in the DSP, and finally, “situation 4” depicts the case
in which the processor is always active (it is never sent to “sleep mode”).

days, being a reasonably value when compared with that corresponding to current in-the-market
hearing aids. Even for “situation 4” (the worst case in terms of CPU-load average) the hearing
aid battery life has been found to be 128 hours, or equivalently, 5 and a half days.

Furthermore, the results shown in the table “agree” with the manufacturer’s data. Clearly,
this can be inferred by comparing the nominal power consumption of integrated circuit, when the
core is always active, provided by the manufacturer and whose value has been found to be 0.47
mA, with that corresponding to that illustrated in the table for situation 4, which has been found
to be 0.71 mA. Although not clear at first glance, it is worth mentioning that results provided
by the manufactures are obtained for a clock frequency of the DSP of 1.28 MHz, whereas the
results depicted in the aforementioned table are obtained for a clock frequency of the DSP of
1.92 MHz. Therefore, the current consumption of the hearing aid provided by the manufacturer
for a clock frequency of the DSP of 1.92 MHz is given by:

0.47mA · 1.92 MHz
1.28 MHz

= 0.705 mA ≈ 0.71 mA (8.28)

that leads our results make sense.
Finally, we can deduce a practical expression for the relationship between the current con-

sumption of our hearing aid and the CPU-load average, as illustrated below:

Consumption = 0.21 · CPU-load average (%)
100

(mA). (8.29)

8.6 Conclusions

This chapter has been motivated by the fact that implementing an automatic sound classification
system in DSP-based hearing aids is strongly limited in terms of computational capacity, memory
and battery. In this respect, we have shown here that the hardware implementation of the three
main blocks involved in the design of a digital hearing that automatically recognizes the acoustic
environment its user is in and selects the amplification program that best fits that situation
(that is, the compression-expansion algorithm, the feature extraction task and the classifying
algorithm) has been proven to be feasible. The experimental work carried out in this thesis leads
to the following conclusions:

• We have proposed here a novel compression-expansion approach that significantly reduces
the CPU-load average required for its implementation. In particular, this approach de-

186 Chapter 8. Hardware implementation

mands a CPU-load average of about 52 %, which involves there is still left about 50 % of
the DSP resources available for implementing both the feature extraction and classification
functional blocks. The only drawback here consists in the fact of the large amount of
memory required. However, this stronger use of data-memory is perfectly feasible and does
not exceed the restrictions imposed by the DSP.

• The number of clock cycles required for implementing in the DSP the feature extraction
functional block has been found to be 734, which represents a CPU-load average of about
7.13 %.

• Despite the presumably high computational cost associated to implement a multilayer per-
ceptron in the DSP, it has been found that its implementation is the functional block that
requires the lowest CPU-load average. In particular, the CPU-load average demanded for
programming the particular MLP-based classifier considered in the hardware implementa-
tion has been found to be about 0.02 %.

• The idea of “tabulating mathematical functions”, such as, for instance, the function that
computes the inverse of a number, has been proven to reduce drastically the computational
cost without degrading the results. As an illustrative example, we can mention that the
function that computes the inverse of a number, provided by the DSP firmware, requires
13 clock cycles, whereas the “tabulated” inverse function that we have designed requires 5
clock cycles.

• The battery life of the real-time digital hearing aid implemented in this thesis has been
found to be 140 hours, or in other words, approximately 6 days. This is a very reasonable
value when compared with that corresponding to current in-the-market digital hearing aids.

The final, global conclusion is that the real-time implementation of a digital hearing aid that
automatically recognizes the acoustic environment its user is in and selects the amplification
program that best fits that situation is perfectly feasible, and what is of key importance, there
is still left about 30 % of the DSP resources available for implementing other algorithms such as,
for instance, those involved in sound source localization or acoustic feedback reduction.

Chapter 9

Conclusions

9.1 Introduction

The overall aim of this thesis was to design and implement a prototype for a digital hearing aid,
which aimed at automatically classifying the acoustic environments that surrounded its user into
three classes: speech, music and noise, and selected the “amplification program” best adapted to
such environments (“self-adaptation”), in an effort of improving, not only the speech intelligibility,
but also the sound quality perceived by the hearing aid user. These three acoustic environments
(speech, music and noise) were found to be the most important ones for the majority of hearing-
impaired people in their quotidian life.

The motivation of this thesis basically arose from the fact that the sound classifier for self-
adaptation was deemed as very appreciated by most of hearing aid users, specially by those
eldest, because the “manual” approach (in which the user had to identify the acoustic listenings
that surrounded him or her and then choose the most appropriate program) was very uncom-
fortable, and very often exceeded the abilities of many hearing aid users. This illustrated the
necessity for hearing instruments to automatically classify the acoustic environment the user
was in. Intuitively, this type of hearing aid could help the user improve speech intelligibility,
increasing his or her comfort level, and allowing him or her to lead a normal life. This social
demand was what compelled us to develop in this thesis an automatic sound classifier embedded
in a self-adapting hearing aid that aimed at classifying sounds into the three mentioned classes:
speech, music and noise.

With this idea in mind, the current chapter summarizes the findings of this thesis, “revisit-
ing” the research objectives shown in the introductory chapter. First, Section 9.2 describes the
contents of this study, outlining the main conclusions that were obtained from each chapter. The
main contributions of this thesis in sound classification in real-time digital hearing aids are listed
in Section 9.3. Recommendations for future lines of research, in the sense of how to progress
with this research study, are discussed in Section 9.4. Additionally, the final section includes a
list of published works occurred during the course of candidature of the degree.

9.2 Summary

As advanced in the introductory chapter, the problem of implementing an automatic sound clas-
sifier in a digital hearing aid was that the DSP it is based on has generally very considerable
constraints in terms of computational capability, memory and especially battery life1. Addition-

1Note that the hearing aid has to work at low clock rates in order to minimize the power consumption and
thus, maximize the battery life.

187

188 Chapter 9. Conclusions

ally, these restrictions become stronger because a considerable part of the DSP computational
capabilities is already being used for running the algorithms aiming to compensate the particular
hearing loss the user suffers from. Therefore, the implementation of any automatic sound classi-
fier is strongly constrained to the use of the remaining resources of the DSP. This restriction in
number of operations per second enforced us, throughout this entire thesis, to put special em-
phasis on designing signal processing techniques and algorithms tailored for properly classifying
sounds in hearing aids while using a reduced number of assembler instructions.

In the effort of facilitating the reader’s comprehension of this thesis, Chapter 3 described
the blocks involved in a typical automatic sound classification system for hearing aids, which
basically include the data processing stage, the feature extraction block and, finally, the classi-
fying algorithm itself. For the sake of clarity, the basic concept underlying the data processing
stage, along with the cornerstone ideas describing the feature extraction block and the classifying
algorithm were described in-depth in the mentioned chapter. With this in mind, this chapter
presented a summary of a set of classical, spectral features proposed in the literature that have
been widely-used for the purpose of sound classification in hearing aids. Regarding the classi-
fying algorithms, this chapter also described in a clear way a variety of widely-used classifiers
that exhibit good performance in sound classification in hearing aids. These classifiers include
the mean square error (MSE) linear classifier, the k-nearest neighbor (k-NN) classifier and two
particular kinds of neural networks: multilayer perceptrons (MLPs) and radial basis function
(RBF) networks.

As detailed in Chapter 4, some of the features proposed in the literature, in particular, spec-
tral centroid, voice2white, spectral flux and short-time-energy, were used in this thesis aiming to
design a set of novel, low-complexity features, based on the variation of the aforementioned ones
for a given input frame. Although other spectral features (such as, for instance, Mel-frequency
cepstral coefficients features) could have been used, we deliberately restricted the study to the
variation of the aforementioned ones because they are well-known in hearing aid applications,
and they can be computed on them with low computational cost. Turning again our attention to
the set of novel, low-complexity features, it is worth mentioning that the key point that exhibited
the greatest relevance of those features, when contrasted with the original ones, was that some
complex mathematical operations (or in other words, operations that demanded high computa-
tional cost), such as, for instance, the division or the square root operations, were not needed
for their calculation, what, in turns, meant that the computational cost associated to their com-
putation in the DSP was drastically reduced. Regarding their classification performance, the
preliminary classification results obtained in this chapter clearly proved that these novel features
achieved similar results, in terms of percentage of correct classification, than those obtained with
the original ones.
Alternatively, in an double effort of both 1) reducing the number of features to be programmed in
the DSP, and 2) selecting the proper features that contained the kind of audio signal information
that allowed the classifier to properly distinguish among the mentioned three classes, Chapter 4
also described a feature-selection approach proposed in this thesis for searching the best feature
vector H that helped the classification system perform a proper classification (or equivalently,
maximize the percentage of correct classification) with a constrained maximum number of as-
sembler instructions demanded by the DSP to compute the vector H. The experiments carried
out in this chapter illustrated that the features chosen by our approach, for scenarios in which
the maximum computational cost allowed was relatively low, were the mean and variance of the
novel features proposed here, along with the mean and variance of short-time-energy feature.

Concerning the classifying algorithm itself, we chose, among a variety of classifiers explored
in Chapter 3, a multilayer perceptron (a particular kind of neural network), commonly known

9.2. Summary 189

as MLP, which was properly designed for being constrained to the hardware requirements of the
DSP used by our platform to carry out the experiments. The key reason that compelled us to
choose the MLP approach is that multilayer perceptrons are able to learn from an appropriate
set of training patterns, and properly classify other patterns that have never been found before.
This ultimately leads to very good results, as a balance between percentage of correct classifica-
tion and computational cost, when compared to those from other popular algorithms evaluated
in this thesis, such as, for instance, the MSE linear classifier, the k-NN algorithm, or even, an
RBF network.
Nevertheless, one argument against the feasibility of multilayer perceptrons for being used in
DSP-based hearing aids consisted in its, a priori, high computational complexity, which among
other topics, was intimately related to the network size. To be more precise, this complexity
depended on the number of weights that needed to be adapted, and consequently, on the number
of neurons that composed the multilayer perceptron, that is, the number of input neurons (L),
the number of hidden neurons (M) and the number of output neurons (C). In the particular
case at hand, the number of input and output neurons seemed to be clear: the input neurons
designated the dimensionality of the feature vector inputting the network, which had been ex-
perimentally found to be dim(F) = 12, and the number of output neurons was the number of
acoustic environments to classify, being in our case, speech, music and noise (and thus, C = 3).
With these considerations in mind, it seemed evident that the only way to reduce the compu-
tational cost demanded to implement the MLP in the DSP consisted in determining the proper
number of neurons in the hidden layer. In this respect, Chapter 5 depicted a simple approach
that made use of both growing and pruning algorithms proposed in this thesis, and aimed to
estimate the appropriate number of hidden neurons in a multilayer perceptron. The batches of
experiments carried out in this chapter illustrated that the suitable number of hidden neurons,
when the abovementioned 12-feature vector fed the MLP-based classifier, had been found to be
M = 20.
Another important point to note here was that a topic that played a key role in reducing the
computational cost associated to the implementation of a multilayer perceptron in the DSP was
the “simplification” of the activity function used in each of the hidden and output neurons. To
better understand this, it is worth mentioning that the activation function used in our experi-
mental work was the logarithmic sigmoid function, commonly known as “logsig” which, in order
to be implemented in the DSP required a proper approximation (since it demanded 25 assem-
bler instructions for its practical implementation in the DSP) and that was the reason why we
also explored in this chapter some “approximations” for this activation function. In particular,
we proposed two approximations that were based on a piecewise linear approximation, these
being: 1) a 5-piece linear approximation and 2) a 3-piece linear approximation. Additionally,
we explored the benefits of using two more approximations: 3) the so-called hard-limit function
that could be seen as a “2-piece linear approximation” and 4) a null function, which helped us
prune unnecessary hidden neurons. The practical point to note here was that the “5-piece linear
approximation” and the “3-piece linear approximation” required for its implementation 5 and 4
assembler instructions, respectively, whereas the hard-limit function demanded only 1 instruction
and the null function intuitively needed 0 instructions. Note that the additional bonus regarding
these approximations consisted in that the number of instructions had been drastically reduced
when compared to that of the original activation function. In the effort of automatically selecting
the most appropriate approximation (among the proposed ones) for each of the hidden and out-
put neurons composing the MLP, we proposed a method that aimed at automatically selecting
the approximation “best suited” to each of the mentioned neurons. The feasibility of the method
was proven by comparing the results obtained with the “approximated” MLP with those obtained

190 Chapter 9. Conclusions

with the “exact” MLP. In this respect, we can say that the “3-piece linear approximation” was the
approximation that led to the lowest average decrease in the percentage of correct classification,
and thus, this was the approximation selected for the practical implementation in the DSP of
the activation function of each of the hidden and output neurons. As previously mentioned, this
method also helped us prune unnecessary hidden neurons in the MLP, what, in turns, meant
that the computational cost required for implementing such network was also reduced since it
was not necessary for the MLP to be implemented all its hidden neurons and their associated
weights.

Generally, many algorithms that are designed for being further programmed in DSPs are
firstly designed using no-quantization, double floating-point precision, which usually offers both
large dynamic range and high precision for each numerical computation. However, from the prac-
tical implementation point of view, the “final model” barely makes use of no-quantization, double
floating-point precision formats, and consequently, these algorithms need to be “redesigned” for
being implemented in some quantized finite-precision format.
In this respect, Chapter 6 clearly quantified the effects of the finite-precision limitations on the
performance of the automatic sound classification system for the hearing aid. In particular, this
chapter detailed the effects of finite-precision word length for the sound signal-describing features
and the weights of the MLP. Bearing in mind that the DSP used by our platform to carry out
the experiments makes use of a 16-bit-word-length Harvard Architecture, we used a 16-bit fixed-
point format in the batches of experiments carried out in this thesis. With this format in mind,
the numbers are usually represented by using the so-called Qx.y format, x being the number of
bits used to represent the 2’s complement of the integer part of the number, and y representing
the number of bits used to represent the 2’s complement of the fractional part of such number.
The results obtained in this chapter confirmed that the lowest relative increase in the error per-
centage was achieved by using the Q5.11 quantization scheme. Making use of this quantization
scheme, we quantified the aforementioned 12-feature vector and the weights of the MLP-based
sound classifier, and the results obtained clearly proved that the quantized MLP-based classifier
achieved perceptually the same efficiency as that reached by the “exact” MLP (without quan-
tization), or in other words, the performance of the classification system that would be further
programmed in the DSP had not appreciably degraded.
This chapter also illustrated the influence of using different time slots for returning a classifica-
tion decision by the classification system. It was shown that the fact of employing relatively large
time slots, such as, for instance, files of 2.5 seconds, exhibited very good results when compared
with those obtained for shorter time slots, such as, for instance, files of 20 milliseconds.

Chapter 7 presented a novel approach aiming at speech enhancement perceived by hearing
aids users, not only in terms of speech quality but also in terms of speech intelligibility. As
shown in this chapter, the approach basically consisted in automatically generating -by making
use of perceptual concepts, and a supervised learning process driven by a genetic algorithm- a
gain matrix that aimed at enhancing speech perceived by hearing aid users. To achieve this, we
made use of two different standardized objective measures: the perceptual evaluation of speech
quality (PESQ) and the speech intelligibility index (SII), which aim to evaluate speech quality
and speech intelligibility, respectively. To be more precise, the proposed algorithm created the
enhanced gain matrix by using a gaussian mixture model driven by a genetic algorithm, and did
not use any initial information but that related to “perceptual concepts”, or in other words, just
those that could be iteratively quantified by the PESQ measure (that is, the fitness function
was based on the PESQ measure) or SII measure (or equivalently, the fitness function depended
on the SII measure). This gain matrix under construction (and, in turns, the PESQ or SII
scores) depended on a number of parameters. In this respect, the GA computed the “optimized”

9.3. Contribution to knowledge 191

parameters that maximized these scores and consequently, the speech “perceived by the human
auditory system”. The results obtained in this chapter depicted that the computed, perceptual-
based gain matrix made the hearing aid reach better results in terms of speech quality and speech
intelligibility perceived by the user (regardless the number of gaussian components used in the
mixture and the user’s hearing loss) than those measured when the user made use of a hearing
aid in which the gain is based on a piecewise linear approximation for each frequency band. A
key point to note here was that when the approach made use of the fitness function based on
the PESQ measure, not only the speech quality perceived by the user was improved but also
the speech intelligibility. However, when the approach made use of the fitness function based
on the SII measure, the speech intelligibility was always increased regardless the user’s hearing
loss, but the speech quality was not always enhanced. This led to design the approach by basing
the fitness function of the genetic algorithm on the PESQ measure, what made it more speech
enhancement-efficient.

Finally, Chapter 8 depicted the feasibility of implementing the MLP-based sound classification
system in the DSP used by our platform to carry out the experiments. The implementation of
this classifier basically involved implementing the following three basic functional blocks: the
compression-expansion algorithm, the feature extraction block and the MLP-based classifier. In
this respect, it is important to highlight that the practical implementation of the compression-
expansion algorithm did not involve implementing the typical compression system, which is based
on a the aforementioned piecewise linear approximation for each frequency band. In the effort of
reducing the computational cost demanded for its implementation, we made use of a completely
different approach, consisting of a table stored in data-memory available in the DSP, which
contained “tabulated” values of gain to be applied as a function of both the input signal level
(dB SPL) and the frequency band. The key point to note here was that this approach required
about 51.2 % of the DSP resources for its implementation. Concerning the feature extraction
block and the classifying algorithm itself, it is worth mentioning that the computational cost
demanded for their implementation was found to be 7.13 % and 0.022 %, respectively. Regarding
the battery life, the most important constraint for designing advanced algorithms in hearing aids,
it is worth mentioning that it was found to be 140 hours, or equivalently, approximately 6 days.
This was a very reasonable value when compared with those corresponding to other medium-
cost hearing aids in the market. These figures clearly illustrated the feasibility of designing a
prototype for a digital hearing for automatically classifying acoustic environments, and what is
of key importance, there was still about 30 % of the DSP resources available for implementing
other algorithms, such as, for instance, those involved in sound source separation or acoustic
feedback reduction.

9.3 Contribution to knowledge

This section illustrates how this research work has contributed to the design of a prototype for a
digital hearing aid that aims to automatically classify the acoustic environments that surround
its user and select the amplification program that is best adapted to such environment. This
basically involves the implementation of a compression-expansion algorithm, a feature extraction
block and the classifying algorithm itself in the DSP used by our platform to carry out the
experiments. The contributions are listed as follows:

• A set of novel, low-complexity features inspired by four spectral features (spectral
centroid, voice2white, spectral flux and short-time energy), which are widely-used for sound
classification in hearing aids. The key point of the greatest relevance to note here is that the

192 Chapter 9. Conclusions

computational cost associated to their computation in the DSP is drastically
reduced when compared to that of the original ones, and what is of key importance,
feeding the complete classification system with these low-complexity features
does not degrade the classification performance.

• A feature-selection approach for sound classification in hearing aids through re-
stricted search driven by genetic algorithms. We presented in Chapter 4 an approach
that illustrates the benefits of using a genetic algorithm that restricts the space search for
the mentioned feature selection. To be more precise, given F the set of available, general-
purpose features, the goal consists in finding a subset H ⊆ F that maximizes the percentage
of correct classification with a constrained maximum number of instructions required to
program the feature vector H in the DSP. This may permit these selected features to be
programmed in the DSP that the hearing aid is based on, and to make efficient use of
the limited computational capabilities.

• A combined growing-pruning method for multilayer perceptrons training. The
explored method allows us to design a reduced multilayer perceptron without degrading
the ability of the system to classify among the three acoustic listenings considered in this
thesis. The experimental comparison between the results obtained with a methodol-
ogy proposed in the literature for the same purpose and those achieved with the method
proposed in this thesis shows that our method made the multilayer perceptron
reach better results in terms of classification performance with the added bonus
of reducing the computational cost on the DSP the hearing aid is based on. This
method was presented in Chapter 5.

• A piecewise linear approximation for the logarithmic sigmoid activation func-
tion. In an effort of reducing the computational cost associated to the programming of
the activation function of each of the hidden and output neurons composing a multilayer
perceptron, Chapter 4 illustrated that the use of a piecewise linear approximation as ac-
tivation function made the multilayer perceptron achieve very similar results than
those obtained when using the original activation function, with the additional
advantage of reducing the computational cost. In particular, the “3-piece linear
approximation” is the approximation that leads to the lowest relative decrease in the per-
centage of correct classification.

• An algorithm for automatically selecting, among the approximations proposed in this
thesis, the “approximated” activation function best suited for each of the hidden
and output neurons comprising a multilayer perceptron was proposed in Chapter
5. The feasibility of this algorithm was proven by comparing the classification results
obtained with the MLP that makes use of the original logarithmic sigmoid function with
those obtained with the “approximated” MLP (or in other words, the MLP that makes use
of the approximated activation functions). Additionally, this algorithm also helps us
“prune” unnecessary hidden neurons in the multilayer perceptron, what, in turns,
means that the computational cost required for implementing such MLP is reduced
even more since it is not necessary for the MLP to be implemented all its hidden neurons
and their associated weights.

• An approach aiming at speech enhancement in hearing aids, not only in terms of
speech quality but also in terms of speech intelligibility. As illustrated in Chapter 7,
this approach basically consists in automatically generating -by making use of perceptual

9.4. Future work 193

concepts, and a supervised learning process driven by a genetic algorithm- a gain matrix
that aims at enhancing speech perceived by hearing aid users. The results obtained in
this chapter clearly depict that the computed, perceptual-based gain matrix makes the
hearing aid reach better results in terms of speech quality and speech intelligibility
perceived by the user (regardless the user’s hearing loss) than those measured when
the user makes use of a hearing aid in which the gain is based on a 3-piecewise
linear approximation for each frequency band.

• An approach that aims at “simplifying” the implementation of the compression-
expansion algorithm (the very core of a hearing aid) in the DSP. This approach
has been proven to be very advantageous in the sense that it demands lower com-
putational cost for its implementation than that demanded to program the typical
compression-expansion algorithm, which is based on a piecewise linear approx-
imation for each frequency band. The practical implementation of our approach
consists in storing in the data-memory of the DSP a table containing “tabulated” values
of the gain to be applied as a function of both the input signal level (dB SPL) and the
frequency band.

• The last contribution, but not the least important, is that, the practical implementation
of an automatic sound classification in a digital hearing aid has been found to be
feasible. The total computational load demanded for implementing such automatic sound
classification system has been found to be approximately 70 %, and thus, there is still 30 %
of the DSP resources available for implementing other algorithms. Regarding the battery
life, it has been found to be 140 hours, or equivalently, approximately 6 days.

Additionally, it has been shown in this thesis that:

• The fact of quantizing the sound signal-describing features that feed the classifying
algorithm and the parameters of the classifier does not cause a degradation in the
performance of the classification system. Or in other words, the “quantized” complete
classification system (or equivalently, the classification system to be programmed in the
DSP) achieves perceptually the same efficiency as that reached by the “exact” classification
system (that is, without quantization).

• The fact of using relatively large time slots for the classifier returns a decision such
as, for instance, files of 2.5 seconds, exhibits very good results when compared with
those obtained for shorter time slots, like, for example, files of 20 milliseconds.

9.4 Future work

Following the investigations described in this thesis, the main lines of research that remain open,
roughly speaking, are listed below:

• Throughout this thesis, we have not taken into account the “acoustic feedback problem”
in the hearing aid performance. Acoustic feedback appears when part of the conveniently
amplified output signal produced by the device returns through the auditory canal, and
enters again this device, being thus anew amplified. Sometimes, feedback may cause the
hearing aid to become unstable, producing irritating howls. Therefore, an interesting line
of research would be to explore whether it is worthwhile or not to include the effects of

194 Chapter 9. Conclusions

this distortion (caused by the feedback problem) in the training process of a multilayer
perceptron-based classifier.

• Deepening a little more in this line of research, the questions arising here could be as
follows: what is the effect of feedback reduction algorithms on the classification process?
Additionally, these algorithms may increase the overall gain significantly before feedback
effect is occurred. Would the classifier implemented in the device have to select different
feature sets based on the presence or absence of feedback? Obviously, addressing these
complex questions in detail would require a new line of study.

• This thesis has not focused on binaural speech localization in hearing aids. Binaural source
localization is the problem of determining the location of a sound source of interest by using
both signals entering the two ears. In particular, it would be interesting to focus on the
binaural localization of the speech signal (the preferred one for most of the users that wear
two hearing aids) and by means of “spatial filtering”, suppressing the background noise
and enhancing the speech source. The main drawback here is that, the automatic binaural
source localization of the interesting speech source is a difficult problem, not only because of
the complexity of the problem in itself (background noise and the wealth of sound sources
mixing simultaneously), but also because of some critical design restrictions that limit the
design of advanced algorithms in DSP-based hearing aids.

• Since the main problem of implementing complex algorithms in DSP-based hearing aids
is that they have very important constraints in terms of computational capability and
memory, it would be very convenient to design low-complexity acoustic feedback reduction
and speech source localization algorithms, in order to be further implemented in the DSP.

9.5 List of publications

The following paragraphs present a list of published work produced during the course of can-
didature for the degree. None of these publications have previously formed a part of another
thesis. These publications are listed below:

• International journals

– L. Álvarez, L. Cuadra, E. Alexandre, R. Gil-Pita and M. Rosa-Zurera, “Speech en-
hancement in hearing aids via gaussian mixture perceptual-based gain driven by ge-
netic algorithms”, Artificial Intelligence in Medicine, Elsevier. Accepted with minor
changes.

– R. Gil-Pita, L. Cuadra, E. Alexandre, D. Ayllón. L. Alvarez and M. Rosa-Zurera,
“Enhancing the energy efficiency of wireless-communicated binaural hearing aids for
speech separation driven by soft-computing algorithms”, Applied Soft Computing,
2011,
doi: 10.1016/j.asoc.2011.03.022.

– L. Cuadra, E. Alexandre, R. Gil-Pita, R. Vicen-Bueno and L. Álvarez, “Influence of
acoustic feedback on the learning strategies of neural network-based sound classifiers
in digital hearing aids”, EURASIP Journal on Advances in Signal Processing, vol.
2009, Article ID 465189, 10 pages, 2009. doi:10.1155/2009/465189.

9.5. List of publications 195

– E. Alexandre, L. Cuadra, L. Álvarez, M. Rosa-Zurera and F. López-Ferreras, “Two-
layer automatic sound classification system for conversation enhancement in hearing
aids”, Integrated Computer Aided Engineering, vol. 15, no. 1, 2008.

– E. Alexandre, L. Cuadra, L. Álvarez, M. Rosa-Zurera and F. López-Ferreras, “Auto-
matic sound classification for improving speech intelligibility in hearing aids using a
layered structure”. Lecture Notes in Computer Science, 2006.

• International book chapters

– E. Alexandre-Cortizo, L. Álvarez-Pérez, L. Cuadra-Rodríguez, M. Rosa-Zurera and
F. López-Ferreras, "Automatic sound classification algorithm for hearing aids using a
hierarchical taxonomy", in New Trends in Audio and Video, A. Dobrucki, A. Petrovsky
and W. Skarbek, Eds., vol. 1, Politechnika Bialostocka, 2006.

• International conferences

– L. Álvarez, C. Llerena, E. Alexandre, R. Gil-Pita and M. Rosa-Zurera, “Selection of
approximated activation function in neural network-based sound classifiers for digital
hearing aids”, in AES 130th Convention, London (United Kingdom), 2011.

– R. Ahmed, R. Gil-Pita, D. Ayllón and L. Álvarez, “Speech source separation using a
multi-pitch harmonic product spectrum based algorithm”, in AES 130th Convention,
London (United Kingdom), 2011.

– L. Álvarez, L. Vaquero, E. Alexandre, L. Cuadra and R. Gil-Pita, “Evaluation of
speech intelligibility in digital hearing aids”, in AES 128th Convention, London (United
Kingdom), 2010.

– L. Álvarez, E. Alexandre and M. Rosa-Zurera, “Pruning algorithms for multilayer
perceptrons tailored for speech/non-speech classification in digital hearing aids”, in
AES 126th Convention, Munich (Germany), 2009.

– E. Alexandre, L. Álvarez-Pérez, R. Gil-Pita, R. Vicen-Bueno and L. Cuadra, “On
the design of automatic sound classification systems for digital hearing aids”, in AES
126th Convention, Munich (Germany), 2009.

– L. Álvarez, E. Alexandre, R. Vicen, L. Cuadra and M. Rosa, “A constructive algorithm
for multilayer perceptrons for speech/non-speech classification in hearing aids”, in
124th AES Convention, Amsterdam (Netherlands), 2008.

– E. Huerta, E. Alexandre, R. Gil-Pita, L. Álvarez and J. Amor, “Analysis of the ef-
fects of finite precision in sound classifiers for digital hearing aids”, in 124th AES
Convention, Amsterdam (Netherlands), 2008.

– J. Amor, E. Alexandre, R. Gil-Pita, L. Álvarez and E. Huerta, “Music-inspired har-
monic search algorithm applied to feature selection for sound classification in hearing
aids”, in 124th AES Convention, Amsterdam (Netherlands), 2008

– L. Cuadra, E. Alexandre, L. Álvarez and M. Rosa-Zurera, “Reducing the computa-
tional cost for sound classification in hearing aids by selecting features via genetic
algorithms with restricted search”, in IEEE International Conference on Audio, Lan-
guage and Image Processing (ICALIP), Shanghai (China), 2008.

196 Chapter 9. Conclusions

– E. Alexandre, R. Gil-Pita, L. Cuadra, L. Álvarez and M. Rosa-Zurera, “Speech-
/music/noise classification in hearing aids using a two-layer classification system
with MSE linear discriminants”, in 16th European Signal Processing Conference (EU-
SIPCO), Lausanne (Switzerland), 2008.

– L. Álvarez, E. Alexandre, L. Cuadra and M. Rosa-Zurera, “On the training of multi-
layer perceptrons for speech/non-speech classification in hearing aids”, in 122nd AES
Convention, Viena (Austria), 2007.

– E. Alexandre, L. Cuadra, L. Álvarez and M. Utrilla, “Exploring the feasibility of a two-
layer NN-based sound classifier for hearing aids”, in 15th European Signal Processing
Conference (EUSIPCO), Poznań (Poland), 2007.

– E. Alexandre, L. Cuadra, L. Álvarez and M. Rosa-Zurera, “NN-based automatic sound
classifier for digital hearing aids”, in IEEE International Symposium on Intelligent
Signal Processing (WISP), Alcalá de Henares (Spain), 2007.

– R. Vicen-Bueno, R. Gil-Pita, M. Utrilla-Manso and L. Álvarez-Pérez, “A hearing
aid simulator to test adaptative signal processing algorithms”, in IEEE International
Symposium on Intelligent Signal Processing (WISP), Alcalá de Henares (Spain), 2007.

Appendix A

Digital signal processor

The digital signal processor (DSP) used in this thesis to carry out the experiments is Toccata
Plus [Dspfactory, 2002a,b], currently manufactured by ON Semiconductor. This small DSP is
one of the most widely-used in hearing aid applications.

This DSP is basically composed of two coprocessors operating concurrently, as schematically
illustrated in Figure A.1.

 WOLA
 Filterbank
 Coprocessor

 Core
 Coprocessor

OS

IS

Microphone

Loudspeaker

 Memory

Xi(t)

χi(k)

Figure A.1: Simplified architecture diagram of the DSP used by our platform to carry out the
experiments. For the sake of clarity, it only shows the two coprocessors that operate concurrently.
The WOLA filter bank coprocessor computes |χi(k)|2, χi(k) being the k-th frequency bin of the
spectrum of a given sound frame Xi(t), while the core coprocessor deals with the remaining signal
processing tasks. In this picture, IS and OS represent, respectively, the input and output stages.

The first one is the Weighted Overlapp-Add (WOLA) filter bank coprocessor, which performs
the time/frequency decomposition of a given sound frame Xi(t) with NB frequency bands. Or
in other words, it provides the matrix χi = [χi(1), χi(2), . . . , χi(NB)], NB being the number of
frequency bands available in the DSP (NB = 64, in our case). Please note that χi(k) simply
labels the k-th frequency bin of the spectrum of a sound frame Xi(t), where k = 1, . . . , NB is
the index over the NB frequency bands. The second coprocessor is the core coprocessor dealing
with the remaining tasks, such as, for instance, compensating the hearing loss, classifying the
acoustic environment [Alexandre et al., 2006a, 2008b], noise reduction schemes, and so on. In
that picture, IS and OS represent, respectively, the input and output stages.

197

198 Appendix A. Digital signal processor

The 16-bit, programmable, fixed-point Toccata Plus DSP - which additionally integrates
not only the two aforementioned coprocessors, but also two 16-bit ADCs, two 16-bit DACs,
having both a dynamic range of 96.3 dB, the RAM, ROM and EPROM memories, and some
input/output ports - has to work at a very low clock frequency (1.92 MHz, in our case) to
minimize power consumption (∼ 600 µA at 1.4 V) and thus maximize battery life. Note that
the power consumption must be low enough to ensure that neither the size of the battery pack
nor the frequency of the battery changes will annoy the user.

Roughly speaking, the computational power available in this DSP does not exceed 3 MIPS,
with only 32 Kbytes of internal memory. It must be considered that only the WOLA filter bank
requires about 33 % of the computation time of the DSP. With this in mind, around 2 MIPS
being thus free for implementing other algorithms.

Appendix B

Hearing aid simulator

B.1 Introduction

In the effort of evaluating the performance of the different hearing-aid processing algorithms
proposed in this thesis, prior to their circuit design and their development in the DSP used by
our platform to carry out the experiments, we have developed a “digital hearing aid simulator”
[Vicen-Bueno et al., 2007]. Although will be explained in detail later on, we can say in advance
that this hearing aid simulator basically works as a filter that takes a sound file and generates
hearing-aid affected sounds like those the person wearing the hearing aid finally hears in his/her
daily life.

Roughly speaking, the design of this digital hearing aid simulator involves several important
aspects, such as, for instance, the selection of the signal processing techniques to be applied, the
selection of the models that simulate the acoustic feedback or the noise reduction techniques.
Aiming at better understanding the way it works, we describe in a detailed way throughout this
appendix the functional blocks that compose the hearing aid model that we have designed in
this thesis.

Completing this brief section demands to mention that this hearing aid simulator, which
offers the benefit of a great flexibility in controlling some important parameters like, for example,
hearing thresholds, compression range or attack/release times, has been proven to be a valuable
simulation tool in creating realistic sounds as the ones that enter into the real patient’s ear after
suffering effects from the hearing aid [Gil-Pita et al., 2009].

B.2 Digital hearing aid model

The digital hearing aid model used for the design of the hearing aid simulator implemented in
this thesis is schematically depicted in Figure B.1. Although not clear at first glance, it is worth
mentioning that it consists of three main functional blocks, which are listed below:

• The acoustic feedback equivalent (AFE) path.

• The hearing aid core, whose main component is the Weighted Overlapp-Add (WOLA) filter
bank.

• The gain evaluation stage, which includes both audio level compression and noise reduction.

These three functional blocks will be explained in depth throughout this section because of its
relevance in the hearing aid design. Prior to the description of these functional blocks, it is worth

199

200 Appendix B. Hearing aid simulator

xi(t) +
x(t)

A/D
x[n] Hearing

Aid Core
y[n]

y(t)x(m)

In
pu

t B
uf

fe
r

O
ut

pu
t B

uf
fe

r

Synchronization

Digital Hearing Aid

Acoustic Feedback
Equivalent

(AFE)

xf (t)

D/A

Lo
ud

sp
ea

ke
r

M
ic

ro
ph

on
e

y(m)

Figure B.1: Schematic diagram of the digital hearing aid model used for the purpose of designing
the “digital hearing aid simulator”. Any input sound xi(t) is filtered by the system that generates
a hearing-aid affected sound y(t) similar to that the person wearing the hearing aid finally hears in
his/her daily life.

having a look again at Figure B.1 because one can notice that, apart from the aforementioned
blocks, this hearing aid also consists of:

• A microphone to convert the input sound into an electric signal.

• A 16-bit analog-to-digital converter (ADC) that transforms the analog electrical signal into
a digital signal.

• A 16-bit digital-to-analog converter (DAC) that backs the amplified digital signal into an
analog signal.

• A small loudspeaker to convert the electrical signal back to sound.

Both ADC and DAC have a quantification noise level of 96.3 dB SPL.
Concerning the buffers shown in the figure, the “input buffer” accumulates R samples (a

block of samples, x(m)) to pass to the “hearing aid core” or equivalently, to the WOLA filter
bank, whereas the “output buffer” takes the R hearing aid core output samples (y(m)) to pass
the samples sequentially to the DAC at the sampling rate fs (fs = 16 kHz, in our case). This
block of samples at the WOLA output is delayed one block because the hearing aid core does
not give the output block since another input block is available at the hearing aid input. This
means that the time for a sound at the hearing aid input to be presented again at its input due
to the feedback effect (labelled tAFE) is mathematically defined as follows:

tAFE =
R

fs
+ T (B.1)

where:

• R is the number of samples,

• fs labels the sampling frequency, and finally,

B.2. Digital hearing aid model 201

• T represents the propagation time of the sound from the loudspeaker to the microphone
(measured at the sound velocity in the air), which is slightly higher than the time between
two samples.

The core of this hearing aids is the WOLA filter bank because it establishes the way of
working. This filter bank is explained in depth in the section that immediately follows.

B.2.1 Hearing aid core: the WOLA filter bank

As previously mentioned, the hearing aid core is the WOLA filter bank (sometimes named “DFT-
filter bank”), which is a complex-modulation filter bank that has been successfully used in many
hearing aid many applications [Alexandre et al., 2008a; Schneider et al., 1999; Vicen-Bueno et al.,
2009].

As schematically represented in Figure B.2, this filter bank is divided into three blocks: 1)
an analysis stage, 2) a gain stage (where the gain to apply is computed considering, among
other parameters, the patient’s acoustic loss and the audio level compression and noise reduction
parameters), and 3) the synthesis stage. These three stages will be explained in a detailed way
in the subsections that follow.

It is important to note that the WOLA filter bank has been implemented using a configurable
arithmetic types like, for example, fixed-point, floating-point and block-floating-point with a
variable number of bits for both the data and the operations. This configurable arithmetic
is applied in the different parts of the hearing aid simulator with its own properties (fixed or
floating-point and number of bits) according to necessities of each part. This fact allows us to
test different hardware architectures for design purposes.

B.2.1.1 The analysis stage

In this first stage, the sequence of input R samples (x(m))) is multiplied by a L samples length
Hamming window in order to provide better frequency resolution. Bearing in mind that L = n·R
(with n = 1, 2, . . . , N), the reader may wonder how it is possible to multiply the input block,
which contains R samples, by a L samples length Hamming window in case L 6= R. Answering
this question demands to mention that not only is the R samples block considered as the input
samples to the WOLA filter bank but also the L − R previous samples, or in other words,
(L−R)/R previous blocks are considered. This is clearly represented in the “WOLA filter bank
analysis stage” shown in Figure B.2.

Regarding the WOLA filterbank [Schneider et al., 1999], it is based on DFTs of N frequency
samples of the “windowed input”, where even stacking is selected. This is basically the reason
why in Figure B.2, the DFT and its inverse transform, the IDFT are done with N/2 points,
which leads to reduce the computational cost in the implementation of both transforms. This
DFT is usually implemented using algorithms of fast computation, such as, for instance, the Fast
Fourier Transform (FFT).

Finally, it is important to note that an oversampling factor OS = N/R is considered, which
is necessary to adjust the filter bank bands without aliasing and improving resolution.

B.2.1.2 The gain stage

Although will be explained in a more detailed way in Section B.2.3, we can say that the main
purpose of this second stage is to apply the gain to each of the N/2 frequency bands in order to
compensate the particular patient’s acoustic losses. As stated beforehand, this value of gain is

202 Appendix B. Hearing aid simulator

x(m−(L−R)/R)...x(m) x(m−1) Analysis Windowx

...

+

x(m)

DFT (N/2 points)

Gain Evaluation
Stage

Gain
WOLA Filter Bank
 Gain Stage

WOLA Filter Bank
 Analysis Stage

x

IDFT (N/2 points)

...

Synthesis Windowx

y(m−L/R+1)...y(m)

y(m)

+

WOLA Filter Bank
 Synthesis Stage

0 0 ... 0 0

1 R

1 R R+1 2R ... L-R+1 L 1 L

1 N L-N+1 L

1 N

1 N/2

1 N

1 N L-N+1 L

L L-R+1 ... 2R R+1 R 1

R 1

R-zero Feed L1

Figure B.2: Conceptual description of the hearing aid core, which is basically composed of the
WOLA filter bank. This filter bank consists of three blocks: 1) an analysis stage, 2) a gain stage
(where the gain to apply is computed considering, among other parameters, the patient’s acoustic
loss and the audio level compression and noise reduction parameters), and 3) the synthesis stage.

B.2. Digital hearing aid model 203

computed taking into account, among others parameters, the patient’s acoustic losses, the audio
level compression and noise reduction parameters.

B.2.1.3 The synthesis stage

In this third stage, a decimation factor (DF) determines how much the analysis window is
decimated to generate the synthesis window. In our model, we have considered DF = 1, which
involves both windows have the same length. It is important to note that this stage is the inverse
stage of the analysis one, and as depicted in the “WOLA filter bank synthesis stage” represented
in Figure B.2, its corresponding inverse operations are carried out.

According to the WOLA filter bank configuration, the filter bank group delay (GD) can be
obtained by means of the following expression:

GD =
(
L

2
+

L

2 ·DF +R

)
· 1
fs
. (B.2)

B.2.1.4 Practical implementation: WOLA filter bank parameters

In order to carry out the batches of experiments by using the hearing aid simulator, the param-
eters that we list below have been selected for the WOLA filter bank:

• Sampling frequency: fs = 16 kHz.

• Input block size: R = 64 samples.

• Analysis/synthesis window length: L = 256 samples.

• FFT size: N/2 = 64 points.

• Oversampling factor: OS = N/R = 2.

• Decimation factor: DF = 1.

With this sampling frequency in mind, it is important to note that NB = 64 frequency bands
(spaced 125 Hz) in the range of 0− 8 kHz are obtained.

Concerning the architecture, the simulator have been configured for a 16-bit word length
Architecture with a Multiplier/ACcumulator that multiplies 16-bit registers and stores the result
in a 40-bit accumulator.

B.2.2 AFE paths in hearing aids

As stated beforehand, this block represents the second key functional block in the hearing aid
simulator design. In particular, we have considered here a new single path, the AFE path, whose
effect is equivalent to the combination of all the feedback factors in a hearing aid.

A variety of empirical studies have found that the acoustic feedback path frequency responses
of the different categories of hearing aids have common properties [Hellgren et al., 1999]. In this
respect, the frequency response of the AFE path magnitude is approximately “flat” from low
frequency to 2 kHz and presents a peak with low quality factor around 4 kHz and a dip around
7 kHz. The phase response is practically linear all over the frequency range, except at high
frequencies where the response suffers from a slight phase change.

204 Appendix B. Hearing aid simulator

With this in mind, the AFE path of a variety of hearing aid styles can be modeled by its
transfer function in the Laplace domain using the following expression [Hellgren et al., 1999]:

HAFE(s) = Ke−sTp · (s− z1)(s− z2)(s− z∗2)
(s− p1)(s− p∗1)(s− p2)(s− p∗2)

(B.3)

where:

• K is the gain factor used to control the magnitude,

• Tp is the propagation time from the loudspeaker to the microphone,

• z1 and z2 are the positions of the zeros of the transfer function in the Laplace domain, and
finally,

• p1 and p2 are the position of its poles.

The zero (z∗2) and the poles (p∗1, p∗2) denote the complex conjugate of the zero (z2) and the
poles (p1, p2), respectively. The single zero (z1) and a complex conjugate poles pair (p1, p∗1) are
used to control the slope up to 4 kHz. The second complex conjugate poles pair (p2, p∗2) is used
to obtain a peak at middle frequency. Thus, they should be placed closer to the imaginary axis
in order to provide a higher quality factor to this peak. Finally, the complex conjugate zeros
pair (z2, z∗2) is used to give the dip at high frequencies.

The question arising here is: which are the optimal zeros and poles positions? The answer
to this question is as follows. The process of optimizing the zeros and poles positions of the
AFE transfer function is divided into several steps, which are described in detail in [Hellgren
et al., 1999]. We have briefly described these steps here in the effort of making this section
stand itself. First, the AFE path frequency response is normalized in magnitude, and after that,
an optimization algorithm based on an equation error method searches the best model of the
frequency response. Then, the used equation error method is divided into two steps. In the
first step, a variant of the algorithm proposed in [Levi, 1959] is applied. Whereas, the second
step is based on a damped Gauss-Newton method for iterative search [Jr. and Schnabel, 1983].
Note that the first algorithm is applied in the first iteration of the algorithm and the second
algorithm is applied during the remaining iterations until a maximum of iterations is reached or
the minimum of error function is found.

B.2.2.1 Practical implementation: AFE paths

For illustrative purposes, the digital hearing aids models selected in this study to carry out the
batches of experiments are the ITC, the ITE, the BTEA2 and BTEB models [Hellgren et al.,
1999]. According to Expression B.3 and the frequency responses of the hearing aids for the
considered models, the hearing aid AFEs can be computed by means of the suitable establishment
of the poles (p1, p2 and their conjugates) and zeros (z1, z2 and their conjugates), the gain factor
(K) and the propagation time from the loudspeaker to the microphone (Tp). For these kinds of
models, it is worth mentioning these two comments:

• The gain factors are computed according to the losses of the returning path.

• The propagation time of the sound, from the loudspeaker to the microphone, at the sound
velocity in the air is equivalent to the time to cover the average distance of 17.6 mm at 340
m/s, which results in 51.76 µs.

B.2. Digital hearing aid model 205

Model Zeros Poles
z1 z2 p1 p2

ITC - 800000 -60000+26400j -5000+22600j -500+37700j
ITE -1500000 -40000+31400j -4500+25000j -900+44000j

BTEA2 -150000 -65000+39000j -7500+25000j -1500+44000j
BTEB -300000 -40000+29000j 4500+25000j -900+44000j

Table B.1: Appropriate zero-pole configuration of the AFEs filters of a variety of hearing aid models
that include the ITC, the ITE, the BTEA2 and BTEB models.

With this in mind, the appropriate value of the zeros and the poles of the considered hearing
aid models are shown in Table B.1.

Finally, for properly completing this section, Figure B.3 illustrates the magnitude response
of the AFE filters for the four considered hearing aids. As depicted in this figure, the AFE
magnitude of BTE model is slower, which involves that the maximum gain without feedback is
higher.

	

Figure B.3: Representation of the AFE path-magnitude frequency response for the hearing aid
models considered: the ITC, the ITE, the BTEA2 and the BTEB.

B.2.3 Gain evaluation stage: audio level compression and noise reduction

The gain evaluation stage is based on a multi-level and multi-frequency compressor-expander
algorithm, in which the gain value to apply by the hearing aid, also named “insertion gain”,
basically depends on the average input sound level (dB) in each frequency band.

Perhaps the reader may wonder how this gain value is exactly computed. Answering this
question demands to mention that this gain value is based on some gain curves, which are
properly designed in an effort of fulfilling the requirements specified by the FIG6 prescription
method [Dillon, 2001]. This method basically specifies the amount of gain required to normalize
the loudness for different levels of the input sound signal. In other words, for any study-case
patient, whose hearing losses are Hk (dB HL) at the k-th frequency band, the aforementioned
method sets that the required insertion gain at this frequency (labelled IGk) for the following

206 Appendix B. Hearing aid simulator

three input audio levels: 40 dB SPL (labelled IG40k), 65 dB SPL (labelled IG65k) and 95 dB
SPL (labelled IG95k) as shown below:

IG40k =

0 if Hk ≤ 20
Hk − 20 if 20 < Hk ≤ 60
0.5Hk + 10 if 60 < Hk

(B.4)

IG65k =

0 if Hk ≤ 20
0.6(Hk − 20) if 20 < Hk ≤ 60
0.8Hk − 23 if 60 < Hk

(B.5)

IG95k =
{

0 if Hk ≤ 40
0.1(Hk − 40)1.4 if 40 < Hk

. (B.6)

For comparative purposes, Figure B.4 shows the insertion gains for the three aforementioned
input signal levels as a function of the hearing losses. Note that these gain curves are obtained for
a particular k-th frequency band. As clearly shown, the insertion gain to apply by the hearing
aid varies depending on the input signal level in the sense that low sounds are less amplified
than quiet sounds. This makes definitely the use of audio level compression techniques very
appropriate for hearing aids applications because “hearing aid output saturation” is controlled,
preventing thus possible hearing damage.

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

50

55

Hearing losses (dB HL)

In
se

rti
on

 g
ai

n
(d

B)

 IGk (40 dB SPL)

IGk (65 dB SPL)

IGk (95 dB SPL)

Figure B.4: Illustrative representation of the insertion gain curves for the following three input
audio levels: 40 dB SPL (labelled IG40k), 65 dB SPL (labelled IG65k) and 95 dB SPL (labelled
IG95k) as a function of the hearing losses at the k-th frequency band. These gain curves are obtained
according to FIG6 prescription method [Dillon, 2001].

Once IG40k, IG65k and IG95k values are obtained (please note that these values are ob-
tained at the particular k-th frequency band), it is necessary to establish a set of strategies and
techniques for efficiently designing the gain curves that achieve the desired insertion gains. In
this respect, an input-to-gain mapping model, based on a standard 3-piece linear approximation
as the one represented in Figure B.5, is used here to design the gain curve at each k-th frequency
band.

B.2. Digital hearing aid model 207

Nk Ck4000 65 95

IG65k

IG40k

IG95k

IG
k = α

kP
k + M

k

IGk = Gk

Expansion Linear gain Compression

IG
k
=

P k
G k

/N
k

Average input level, P (dB SPL)k

In
se

rt
io

n
ga

in
, G

 (
d

B
)

k

Figure B.5: Representation of the input-to-gain mapping model, based on a standard 3-piece linear
approximation, used here to design the gain curves at each k-th frequency band.

Having a look at this figure, one can notice that there are three different input regions clearly
distinguished:

• The expansion region that deals with low average input sound levels, where the insertion
gain to apply starts with 0 dB for an input level of 0 dB SPL, and increases linearly until
the input level reaches the configurable level Nk (dB SPL). In this case, Nk is selected in
the sense that the gain applied to the majority of quiet background noises, such as, for
instance, fan noise, is not too high aiming at avoiding the loss of quality in the interesting
speech source or audio signal.

• The linear gain region that deals with medium average input sound levels, where the
insertion gain to apply, regardless the input level within this region, is always a constant
value. This insertion gain is applied to average input sound levels between Nk (named
“noise reduction threshold”) and Ck (named “compression threshold”).

• The compression region deals with high average input levels, where the insertion gain
applied decreases as the input sound level increases. This is the key “working region” of
the curve because it allows to yield different gain values for input levels between 65 dB
SPL and 95 dB SPL, although it is not strictly restricted to this range.

With this compression level and noise reduction schemes in mind, the insertion gain applied
at k-th frequency band, that is, IGk, is calculated as a function of the corresponding average
input level, labelled Pk (dB SPL), as shown below:

IGk =

PkGk/Nk if Pk < Nk

Gk if Ck ≥ Pk > Nk

αkPk +Mi if Pk > Ck

(B.7)

where:

• Gk labels the maximum gain applied by the hearing aid, and

• αk and Mk are the parameters that define the compression region.

208 Appendix B. Hearing aid simulator

The question arising here is: how are αk and Mk parameters determined? These parameters
are computed by using the insertion gains given by IG65k and IG95k, as shown in the expressions
that immediately follow:

αk =
IG95k − IG65k

30
(B.8)

Mk =
19 · IG65k − 13 · IG95k

6
. (B.9)

With respect to the remaining parameters, that is, Gk, Ck and Nk, it is worth mentioning
three last comments:

1. The maximum gain value (Gk) has been found to be Gk = IG40k, or in other words, it
has been found to be the gain value in the linear gain region.

2. Bearing in mind the continuity of the curves, the expression of the compression threshold
Ck is given by:

Ck =
IG40k −Mk

αk
. (B.10)

3. The upper average input level of the expansion region, or equivalently, the lowest average
input level of the linear gain region is adjusted according to the input noise level that the
hearing aid has to reduce or minimize. Please note that this level must be always lower
than Ck that is controlled by the insertion gain constraints (IG40k, IG65k and IG95k),
which basically depend on the particular hearing losses the patient suffers from.

In the effort of avoiding “fast changes” in the gain applied by the hearing aid to the input
signal, the average input level (Pk) is evaluated by time averaging of the instantaneous input
signal level (Xk). To achieve this, an IIR-based average estimation of the input level is used
taking into account the instantaneous input levels of different frames. Being thus P (m−1)

k the
estimated input signal level obtained in the (m − 1)-th frame, the actual input level Pk(m) is
obtained by means of the expression shown below:

P
(m)
k =

{
(1− βa)P (m−1)

k + βaXk if Xk > P
(m−1)
k

(1− βr)P (m−1)
k + βrXk if Xk < P

(m−1)
k

(B.11)

where:

• Xk is the input level signal at k-th frequency,

• Pk(m) represents the k-th frequency bin of the average power at frame m-th,

• P (m−1)
k is the k-th frequency bin of the instantaneous power at frame m− 1-th,

• βa labels the attack compressor time, and finally,

• βr depicts the release compressor time.

Perhaps the reader may wonder what βa and βr exactly mean. In this respect, it is worth
noting that a compressor amplifier is characterized by its temporal dynamic characteristics.
Roughly speaking, most of compressor amplifiers require a short period of time to react to an

B.2. Digital hearing aid model 209

increase in input signal level. This time is known as “attack time” and we label it βa1. A similar
scenario happens when the input signal decreases in level. The “release time” is the time need
for the compressor to react to a decrease in the input level2. We label it βr. Note please that the
stability of this IIR-based average estimation is fulfilled when the attack and release parameters
are always greater than 0 and lower than 2, that is, 0 < βa < 2 and 0 < βr < 2.

It is important to highlight that the insertion gain is applied in the hearing aid core and thus
we must take into account the responses of both the microphone and the loudspeaker. In this
respect, the model of microphone implemented in this simulation tool is characterized at each
frequency, fk, where k = 1, . . . , N/2 is the index over the N/2 frequency components, by its both
frequency responses for linear and saturation conditions, labelled M lin

k and M sat
k , respectively.

Saturation conditions here involve that the sound pressure level, at the input of the hearing aid,
is the maximum input level considered in our studies. Therefore, the input signal to the hearing
aid core, labeled Xcore

k , being Xk the input audio level, is given by:

Xcore
k =

{
Xk +M lin

k if Xk < M sat
k

M sat
k +M lin

k if Xk > M sat
k

. (B.12)

In the same line of reasoning, the loudspeaker is also characterized by its frequency responses
for linear and saturation conditions at each k-th frequency band, labelled Llink Lsatk , respectively.
In this case, the linear condition establishes the relationship between the level of the signal at
the output of the hearing aid core, labelked Y core

k , and the sound pressure level at the output of
the hearing aid (Yk) at the k-th frequency band. On the other hand, the saturation condition
sets its maximum output audio level that can be achieved and its corresponding hearing aid core
output level, which can be determined by means of the following expression:

Yk =
{
Y core
k + Llink if Y core

k + Llink < Lsatk

Lsatk if Y core
k + Llink > Lsatk

. (B.13)

Bearing in mind that 1) the usual work region of both, the loudspeaker and microphone, is
the linear region, and 2) the insertion gain relates the input audio level and the output level in
the hearing aid in the sense that IGk = Yk −Xk, it is possible to relate the insertion gain that
must be achieved by the hearing aid, that is, IGk (depicted in Expression B.14), to the insertion
gain that must introduce the hearing aid core, labelled IG

(core)
k , by means of the expression

shown below:

IGk = Y core
i + Llink −Xcore

k +M lin
k = IGcorek + Llink +MLin

k . (B.14)

In this case, IGcorek considers the effects of the microphone and loudspeaker, as shown below:

IGcorek = IGk − Llink −M lin
k (B.15)

1Specifically, it is defined as the time needed for the output of the compressor to come within 3 dB of its
steady state level after abrupt increase in input signal level.

2Specifically, it is defined as the time needed for the output of the compressor to come within 3 dB of its new
steady state level after an abrupt decrease in input signal level.

Appendix C

Databases

This appendix aims at describing the two databases used in this thesis to carry out the batches of
experiments. These databases include the database of sounds and the database of real patients,
which have been clearly described in Sections C.1 and C.2, respectively.

C.1 Database of sounds

An appropriate database of sounds is needed to evaluate a classification system. Since there are
diverse types of listening environments the real patients inevitably face in their everyday life,
the database has to be carefully designed. In this respect, we have created a database of sounds,
labelled D, which contains a total of 7299 audio files, including speech-in-quiet, speech-in-noise,
speech-in-music, vocal music, instrumental music and noise, each of 2.5 seconds length. It is
worth mentioning that, within the context of the application at hand, the class silence has not
been considered because it has been found to be easy to distinguish and consequently, it would
not make sense to include audio files consisting basically of quiet only.

The database has been manually labelled, leading to a total of 807 files of speech-in-quiet,
1615 of speech-in-noise, 2440 of music (including both vocal and instrumental music) and 2437
of noise. Each sound file represents exactly one of the aforementioned sound classes, or in other
words, class changes do not occur within the file. Please note that, speech-in-music files have
been also categorized as speech-in-noise sources in the experiments, since emphasis is placed here
on improving speech intelligibility when the patient is immersed in background noise and, in this
respect, in an effort of reducing data to be stored in RAM memory, the “amplification program”
fitted to these both different listening conditions can be considered as the same amplification
program.

Turning again our attention to audio files included in the database, it is convenient to mention
that these files are monophonic, have been sampled with a sampling frequency of 16 kHz, and
have been coded with 16 bits per sample. Both speech and music files were provided by D. Ellis,
and were recorded by Scheirer and Slaney [Scheirer and Slaney, 1997]. This database [Scheirer,
2006] has already been used in a number of different works [Scheirer and Slaney, 1997; Williams
and Ellis, 1999]. The designers made a strong attempt to collect a data set which represented as
much of the breadth of available input signals as possible as follows:

• Speech was recorded by digitally sampling FM radio stations, using a variety of stations
content styles and levels, and was recorded from a uniformly distributed set of male and
female speakers. The sound files exhibit different input levels, with a range of 30 dB
between the lowest and the highest, which allows us to test the robustness of the systems
explored against different sound input levels.

211

212 Appendix C. Databases

• Music sounds include samples of jazz, pop, country, salsa, reggae, classical, various non-
Western styles, various sorts of rock, and new age music, both with and without vowels.

Concerning noise files, it is worth mentioning that noise samples contain sounds from the
following diverse environments: aircraft, bus, cafe, car, kindergarten, living room, nature, school,
shop, sports, traffic, train, and train station. These sources of noise have been artificially mixed
with those of speech files (with varying grades of reverberation) at different signal-to-noise ratios
(SNRs) ranging from 0 to 10 dB to create speech-in-noise files. In a number of experiments, these
values have been found to be representative enough of the following fact related to perceptual
criteria: lower SNRs could be treated by the hearing aid as noise, and higher SNRs could be
considered as clean speech.

In the same line of reasoning, the sources of instrumental music have been artificially mixed
with those of speech files (with varying grades of reverberation) at different SNRs ranging from
0 to 10 dB to obtain speech-in-music files.

For properly training, validation, and testing, the sound database has to be partitioned
into three different subsets. We formally write this as D = P ∪ V ∪ T, where P, V and T,
represent, respectively, the “training”, “validation”, and “test” subsets. These sets contain 2905
files (≈ 39.8 %) for training, 985 files (≈ 13.5 %) for validation, and 3409 (≈ 46.7 %) files for
testing. This partitioning has been made such that each set covers entire sound classes. Since
there is no clear rule in how to make this choice [Büchler, 2002], the division of the complete
database has been randomly, ensuring that the relative proportion of files of each category is
preserved for each set.

For the sake of clarity, Table C.1 summarizes the number of sound files for each class belonging
to “train”, “validation” and “test” sets.

Class Train Validation Test Total
Speech-in-quiet 299 105 403 807
Speech-in-noise 342 113 345 800
Speech-in-music 327 105 383 815

Music 969 331 1140 2440
Noise 968 331 1138 2437
Total 2905 985 3409 7299

Table C.1: Summary of the sound database created in this thesis to carry out the experiments. It
is shown the number of sound files for each class belonging to “training”, “validation” and “test” sets.

Completing this section requires to mention that each sound file belonging to D has been
properly modified by the “hearing aid simulator” modeled in [Vicen-Bueno et al., 2007] and
described in-depth in Appendix B, by using data from “real” hearing-impaired people.

C.2 Database of patients

In order to carry out “realistic” simulations on the performance of the hearing aid, or in other
words, aiming at creating sounds similar to those hearing aids users are used to hear in their
everyday life, we have considered in the experiments some important hearing aid users’ parame-
ters. These parameters rely on several factors that basically depend upon: 1) the specific hearing
loss any patient suffers from and 2) the type of hearing aid. In the effort of considering the influ-
ence of these factors on the sound learning, we have studied and modeled the hearing loss of 18
well-selected “real” different patients whose main characteristics have been listed in Table C.2.

C.2. Database of patients 213

Hearing loss (dB) as a function of frequency (Hz)
Pi HA 125 250 500 1k 2k 3k 4k 6k 8k
P1 ITE 35 35 45 45 55 55 55 70 85
P2 ITE 55 55 55 60 55 60 55 60 65
P3 ITE 75 75 45 55 50 60 75 67 60
P4 ITC 35 35 40 40 60 60 65 63 60
P5 ITC 25 25 25 40 40 55 60 62 65
P6 ITC 35 35 35 30 15 35 40 60 70
P7 ITE 30 30 30 45 55 45 60 63 65
P8 BTE 80 80 85 95 90 75 85 85 85
P9 BTE 75 75 70 75 65 60 75 78 80
P10 BTE 70 70 70 90 80 80 95 95 95
P11 ITC 30 30 25 40 50 55 50 65 65
P12 ITC 13 13 12 30 70 78 76 75 75
P13 ITE 60 60 45 35 40 30 40 50 65
P14 ITE 50 50 45 35 45 55 70 80 95
P15 ITE 55 55 60 60 65 75 75 75 75
P16 ITE 60 60 35 50 80 80 80 80 80
P17 ITC 40 40 45 55 50 50 50 50 50
P18 ITC 35 35 35 35 60 65 65 65 65

Table C.2: Fundamental parameters for the 18 real patients that have been found to be sufficiently
representative. Pi represents a “representative” patient in group i. The second column, labeled “HA”,
lists the type of hearing aid (HA), ITE, ITC, and BTE meaning, respectively, “in the ear”, “in the
canal” and “behind the ear”. Those columns labeled “125 . . . 8k” list the loss-level (dB) in any of
these bands (from 125 Hz to 8 kHz).

We say “real” in the sense that the data illustrated in this table have been extracted from
real people who participated in this study. For the sake of generality and making our analysis
independent of particular details, we have named the number of patients throughout this thesis
as Npatients (Npatients = 18, in this case).

Note that when we say “patient” we refer indeed to the pair formed by the patient and his/her
hearing aid (HA). In this respect, the two first columns in Table C.2 reflect this fact: for any
patient Pi in column “1” we have detailed in column “2” the model of his/her hearing aid: in the
ear (ITE), in the canal (ITC) and behind the ear (BTE).

For each P-HAi (Pi, henceforth) in Table C.2, we have focused on one important parameter
on the application at hand. This parameter is related to the specific hearing loss level (dB) the
patient suffers from. Such hearing loss (dB) has been measured at the nine frequencies typically
used to measure audiograms in Spain (125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 3 kHz, 4 kHz,
6 kHz and 8 kHz). Having a look at this table, one can notice that the hearing loss-level is a
function that depends on the frequency band, and models this very common fact: some patients
may suffer strong losses in some frequency bands, although they heard well in the remaining
ones.

Finally, it is worth mentioning one last comment regarding the design of the experiments
described in this thesis. It is important to notice that the different hearing loss cases are only
measured for a reduced number of frequency values. In order to determine the hearing loss for
an arbitrary frequency distinct from the standard values, linear interpolation (in dB) must be
applied.

Appendix D

Genetic algorithms

D.1 Introduction

A genetic algorithm (GA) is an optimization and search technique which, inspired by the prin-
ciples of genetics and natural selection [Haupt and Haupt, 2004], exhibits useful properties for
solving certain problems that otherwise would be intractable. Among these properties, it is
worth mentioning that GAs deal with a large number of variables, provide a global solution for
multi-local extrema problems, optimize functions with continuous or discrete variables, optimize
variables with extremely complex cost surfaces and do not require derivate information. These
benefits basically arise from the fact that GAs are inspired by the way nature finds solutions
to extremely complex problems such as, for instance, the survival-of-the-fittest individual in a
changing ecosystem.

The immediate questions arising here are: What is the analogy to our problems? or How
to apply these concepts to our problems? In the problems at hand, we are looking for the
best candidate solution that is “best fitted”, or in other words, the one that minimizes the fitness
function (sometimes also called objective function). Any possible candidate vector is termed “trial
solution” (also named “individual” or simply “solution”). In this search, a group (or “population”,
using genetic terminology) of trial solutions are evaluated with the aim of minimizing this fitness
function. How well the trial solution solves the problem at hand is the so-called “fitness” of the
individual.

For this particular terminology to be understood, it is important to have a brief look at
the following two biological items: 1) genetic information codifies the external characteristics
and abilities of living organisms, and 2) evolution is the result of the interaction between the
random creation of novel genetic information and the evaluation and selection of those novel
individuals that are best adapted to the changing environment. With these two ideas in mind,
we can proceed further: prior to designing the optimization algorithm itself (Section D.1.2), it
is indispensable for our data to be represented or encoded into a more suitable form (Section
D.1.1) that allows GAs to work more efficiently.

D.1.1 Codifying the trial solution

In the biological analogy, the genetic information that encodes and causes the external charac-
teristics of a living organism (or individual) is called “genotype”. Any particular characteristic
produced by a piece of this genetic information is encoded by a “gene”, the “chromosome” being
the set of these genes. Each gene is located at a particular position on the chromosome and can
have different values, called “allele”.

215

216 Appendix D. Genetic algorithms

This strategy can be considered as transforming the real search space into another in which
working is much easier. From a mathematical viewpoint, if F is the set containing all the trial
solutions, and G is the set of chromosomes that codifies them, this representation is equivalent
of defining a bijection: ε : F→ G, in the sense that any trial solution is represented by an unique
chromosome so that C = ε(F). The importance of this bijection will be better understood in
the section that immediately follows.

Completing this section demands to mention that since data in the chromosome to be op-
timized are usually real numbers or bits, a proper way to represent this chromosome is a real-
number vector or a binary string, respectively.

D.1.2 Applying genetic mechanisms

The way a GA works is inspired by Evolution. This is the result of the interaction between the
random creation of novel genetic information and the evaluation and selection of those novel
individuals that are best adapted to the changing environment. In nature, the random creation
of novel genetic information may lead to the ability to survive. The better an individual is suited
to an environment, the higher the probability of survival is. This is the so-called “survival of
the fittest”, and the longer the individual’s life is, the higher its chances of having descendants
are. In this procreation process, the parent chromosomes are combined (“recombination”) to
provide a novel chromosome. Sporadically, and because of unavoidable errors in copying genetic
information or external factors (for instance, radiation), mutations (random variations) occur.
The consequence is the creation of a generation of living beings with some novel characteristic
which are slightly different from those of their progenitors. If the new attribute makes the
offspring, or in other words, the novel trial solutions, better suited to the varying environment,
the probabilities of survival and having descendants also increase. Part of offspring could inherit
the modified genes and the corresponding external characteristic. In this way, the population
of individuals evolves and, after a number of generations, the described process results in the
creation of individuals better adapted to the environment and in the extinction of those worst
suited.

In our problems, the creation of novel chromosomes that encode novel trial solutions for a
number of consecutive generations has been carried out as described in the paragraphs below.

1. Creating the initial population of chromosomes, Pchr,ini = {C1, . . . ,Cp0
}.

The number p0 of chromosomes in the initial population is a crucial issue for GA perfor-
mance [Goldberg, 1989; Haupt and Haupt, 2004]. On the one hand, a large population
could cause more genetic diversity (and thus, a higher search space) and, consequently,
suffer from slower convergence. On the other hand, with a very small population, only a
reduced part of the search space is explored, thus increasing the risk of prematurely con-
verging to a local extreme. In the batches of experiments carried out in this work, the initial
population size p0 has been found to be a trade-off between computational complexity and
performance.

2. To select a subpopulation of chromosomes that encode the “best suited” candidate solu-
tions.
As stated beforehand, here “best suited” means those trial solutions that minimize the fit-
ness function. Note that the fitness function, which is different for each particular problem,
is the only connection between the real problem to be solved and its genetic representation.
This means that it is necessary for a chromosome to be selected to be previously decoded
using ε−1, the inverse of the coding bijection ε.

D.1. Introduction 217

In a more detailed way, the ulterior selection process is composed of the following steps:
2.1) Estimate the fitness function of every individual composing the population p0. 2.2)
Update, if necessary, the minimum value of fitness function and store the corresponding
trial solution. 2.3) Select, using a stochastic uniform function, the mates and a small
amount of elite individuals to survive the next generation. To select the mates, a line is
laid out in which each parent corresponds to a section of the line of length proportional to
its scaled value. The algorithm moves along the line in steps of equal size. At each step,
the algorithm allocates a parent from the section it lands on. The first step is a uniform
random number less than the step size. Note that not all of the worst individuals in the
current generation are replaced. This replacement strategy, called “steady state approach”,
prevents the algorithm from prematurely converging to a local minima.

3. Recombining the parent chromosomes by making use of a “crossover” operator.
In the effort of exploring other solutions in the search space, variations are introduced into
the intermediate population. Crossover is a genetic operator that combines two pairs of
chromosomes (“parents”) picked at random from the current population to produce a new
chromosome (“offspring”). The objective is that the new chromosome be better than both
of the parents since it takes the best characteristics form each of the parents.

In particular, the crossover operator we have implemented is a stochastic function that
randomly generates a binary vector and selects the genes where the vector is “1” from
the first parent, and the genes where the vector is “0” from the second parent, combining
these genes to form the offspring. The probability that crossover operator is applied to
each individual is called crossover probability, labelled pc (pc < 1) and is a parameter to
be optimized. After a number of experiments, it has been found to be pc = 0.8. It is
important to note that not all individuals are selected for crossover.

4. To mutate or randomly change the offspring chromosome.
The main purpose of a mutate operator is to maintain diversity within the population and
inhibit premature convergence to local minima. Similarly, not all the offspring chromosomes
are mutated: the probability that the mutation operator is applied is called mutation
probability, labelled pm (pm < 1). Empirically, it has been observed that a value of pm = 0.1
gives good results.
With this in mind, a mutation operator, consisting in changing an “allele” with a probability
of pm = 0.1 (uniform distribution), has been applied.

Finally, the algorithm iterates steps 2-4 until a maximum number of generations (Ngenerations)
is reached or if the lowest fitness function value remains unchanged for a given number of iter-
ations (Niterations). Both Ngenerations and Niterations values must be found to be large enough to
allow the algorithm to properly converge in the experiments.

Appendix E

Implementing new features

This appendix aims at helping the reader understand the assembly source code programmed
in this thesis that intends for computing in the DSP, used by our platform to carry out the
experiments, the feature vector that properly characterizes the input sound signal for a further
classification.

E.1 Implementation of a new building block

In the effort of programming the computation of a new building block, labelled, for instance,
BB_XXX, the following sequence of operations need to be carried out:

1. Modifying the file def_features.inc:

• In the assembly code corresponding to the programming of the features compos-
ing the feature vector (or in other words, the features included in the set SF), if
we have implemented a feature, such as, for instance, the feature CF_YYY, that
needs for its implementation the new building block to be programmed, that is, the
building block BB_XXX, it is necessary to include the following assembly code in
the file def_features.inc, aiming at establishing a relationship between the feature
CF_YYY and the new building block BB_XXX.

#ifdef CF_YYY
#ifndef BB_ENE

#define BB_ENE
#endif

/ / Assembly code to include / /
#ifndef BB_XXX
#define BB_XXX

#endif
/ / / / / / / / / / / / / / / /

#define CF_YYY_P CF_CONT
#set CF_CONT (CF_CONT+1)

#endif

By means of this sequence of instructions, when we compile the assembly code of the
feature CF_YYY, the assembly code strictly necessary to compute the building block
BB_XXX is automatically generated.

219

220 Appendix E. Implementing new features

• In the assembly code corresponding to the programming of the building blocks, we
have defined 1) a preprocessor variable, labelled BB_CONT, that intends for counting
the number of building blocks that are compiled, and 2) a variable per each building
block, labelled BB_XXX_P, which basically points at the location of the corresponding
building block in the data-memory available in the DSP. Note that the location in
the memory of the new building block to be programmed will be determined as fol-
lows: BB_INITIAL+2*BB_XXX_P. With this in mind, the fact of programming the new
building block involves including the corresponding assembly code:

. . .
#ifdef BB_SSC
#set BB_SSC_P BB_CONT
#set BB_CONT (BB_CONT+1)

#endif

/ / Assembly code to include / /
#ifdef BB_XXX

#set BB_XXX_P BB_CONT
#set BB_CONT (BB_CONT+1)

#endif
/ / / / / / / / / / / / / / / /
. . .

2. Modifying the file features.inc:
Apart from the mentioned assembly code to be included in the file features.inc, it is
also necessary to introduce the sequence of instructions that allow us to compute this new
building block BB_XXX in the file features.inc, and, since the time for running this
routine will be increased, it is also necessary to include the preprocessor code needed to
estimate the new computational cost. Please note that we do not show here the assembly
code to be included, because this code will obviously depend on the new building block to
be programmed.

Furthermore, it is worth mentioning that we have put special emphasis on the order we
compute a building block in this thesis. In this sense, the register R0 always points at
the location in the memory available in the DSP in which the sequence of instructions
implemented to compute a building block are stored and consequently, thanks to using
post-increase instructions, it is not necessary to initialize the mentioned register for each
new instruction, which significantly reduces the computational cost.

E.2 Implementation of a new feature

Let us imagine that we would like to program a new feature labelled, for instance, CF_ZZZ. To
achieve this, the following sequence of instructions need to be performed:

1. Modifying the file def_features.inc:

• In the assembly code corresponding to the computation of the statistical measures,
that is, the average and variance measures, it is necessary to include a sequence of
preprocessor instructions in the file def_features.inc, that aims to calculate both
the average and variance measures of the new feature to program, that is, CF_ZZZ.
The assembly code to be included for this purpose is as follows:

E.2. Implementation of a new feature 221

/ / Assembly code to include / /
#ifdef FM_AVG_ZZZ

#ifndef CF_ZZZ
#define CF_ZZZ

#endif
#set FM_AVG_ZZZ_P FM_CONT
#set FM_CONT (FM_ZZZ+1)

#endif

#ifdef FM_VAR_ZZZ
#ifndef CF_ZZZ

#define CF_ZZZ
#endif
#set FM_VAR_ZZZ_P FM_CONT
#set FM_CONT (FM_ZZZ+1)

#endif
/ / / / / / / / / / / / / / / /

Please note that the variable FM_CONT simply indicates the location in the data-
memory available in the DSP in which the statistical measures of the features are
located.
• In the assembly code corresponding to the programming of the features that feed the

classifier (or in other words, the features included in the set SF), it is necessary to make
sure that the preprocessor constants corresponding to the building blocks necessary
for the computation of the new feature are defined. For illustrative purposes, let
us imagine that the new feature to be programmed depends on both the BB_SSC
and BB_STE building blocks. This scenario would involve including the following
assembly code:

/ / Assembly code to include / /
#ifdef CF_ZZZ

#ifndef BB_SSC
#define BB_SSC

#endif
#ifndef BB_STE

#define BB_STE
#endif
#set CF_ZZZ_P CF_CONT
#set CF_CONT (CF_ZZZ+1)

#endif
/ / / / / / / / / / / / / / / /

2. Modifying the file features.inc:

• In the routine Features, we include the assembly code that allows us to compute the
new feature to be programmed, that is, CF_ZZZ, as a function of the building blocks
that it depends on. After that, the macro “statistical characterization” is called.
• In the routine Final_features, we include the assembly code required to call the

necessary macros. Since in the assembly code designed for this thesis, only the macro
Final_features is implemented, the assembly code to be included is as follows:

/ / Assembly code to include / /
#ifdef FM_VAR_ZZZ

222 Appendix E. Implementing new features

VAR_FINAL(Final_features_X+(2*FM_AVG_ZZZ_P),Final_features_X+(2*FM_VAR_ZZZ_P))
#set TOTAL_CYCLES (TOTAL_CYCLES+COST_VAR_FINAL)

/ / / / / / / / / / / / / / / /

3. Modifying the file gen_constants.inc:
This file contains all the compiler options and thus, it is necessary to include in it the
compiler options that define the computation of the statistical measures of the new feature
to be programmed. This is as follows:

#define FM_AVG_NSC
#define FM_AVG_SSC
#define FM_AVG_NVW
#define FM_AVG_SVW
#define FM_AVG_STE
#define FM_AVG_SSF
#define FM_AVG_ZZZ / / Assembly code to include / /

#define FM_VAR_NSC
#define FM_VAR_SSC
#define FM_VAR_NVW
#define FM_VAR_SVW
#define FM_VAR_STE
#define FM_VAR_SSF
#define FM_VAR_ZZZ / / Assembly code to include / /

E.3 Implementation of a new statistical measure

Let us now imagine that we would like to program a new statistical measure labelled, for instance,
FM_AAA. The sequence of operations required for this purpose is as follows:

1. Modifying the file def_carac.inc:
In the assembly code corresponding to the computation of the statistical measures, it
is necessary to include the assembly code that allows us to calculate the new statistical
measure for each of the features programmed in the DSP. For the sake of clarity, we show
below the assembly code to be included to calculate this new statistical measure of the
feature labelled CF_ZZZ.

/ / Feature CF_ZZZ / /
#ifdef FM_AVG_ZZZ

#ifndef CF_ZZZ
#define CF_ZZZ

#endif
#set FM_AVG_ZZZ_P FM_CONT
#set FM_CONT (FM_CONT+1)

#endif

#ifdef FM_VAR_ZZZ
#ifndef CF_ZZZ

#define CF_ZZZ
#endif
#set FM_VAR_ZZZ_P FM_CONT

E.3. Implementation of a new statistical measure 223

#set FM_CONT (FM_CONT+1)
#endif

/ / Assembly code to include / /
#ifdef FM_AAA_ZZZ

#ifndef CF_ZZZ
#define CF_ZZZ

#endif
#set FM_AAA_ZZZ_P FM_CONT
#set FM_CONT (FM_CONT+1)

#endif
/ / / / / / / / / / / / / / / /

2. Modifying the file features.inc:

• Creating the corresponding macros: note that the computation of the statistical mea-
sures considered in this thesis (average and variance) is carried out by means of two
different macros: 1) a macro that is carried out each analysis frame update and 2) a
macro that is run when there are 512 frames. In this sense, it is possible to obtain
the new statistical measure by using only one macro.

• In the routine Features, for each feature programmed in the DSP, it is necessary to
run the macro that computes the new statistical measure, after running the sequence
of instructions that computes each feature. To understand this, we depict below the
assembly code to be included, which intends for computing the new statistical measure
for the feature labelled CF_NVW.

#ifdef CF_NVW
LDI R1, BB_INITIAL_X+(2*BB_V2W_P)+1
LDI R2, BB_INITIAL_X+(2*BB_STE_P)+1
LD AH, (R1-)
SUB A, (R2-)
ADSI A, 1
LD EXP, AH
LD AH, (R2)
SHFT 16-1-1-BITS_INV_TABLE
ROUND_UP
ADD A, INV_TABLE_POINTER_Y_L,Y
LD R5, AH
MSET (R5), (R1)
MUL A
LD (R6+), AH
LD (R6-), AL
#set FEATURES_CYCLES (FEATURES_CYCLE+16)
#ifdef FM_AVG_NVW

AVERAGE
#set FEATURES_CYCLES (FEATURES_CYCLE+AVERAGE_COST)

#endif
#ifdef FM_AVG_NVW

VARIANCE
#set FEATURES_CYCLES (FEATURES_CYCLES+VARIANCE_COST)

#endif

224 Appendix E. Implementing new features

/ / Assembly code to include / /
#ifdef FM_AAA_NVW

AAA
#set FEATURES_CYCLES (FEATURES_CYCLES+COST_AAA)

#endif
/ / / / / / / / / / / / / / / /
#endif

• In the routine Final_features, if the new statistical measure to be programmed
requires a last operation after updating all the features comprising a time slot, it
is necessary to run the macro that computes the aforementioned last operation for
each of the features in the routine Final_features. To better clearly explain this,
let us imagine that we would like to compute the new statistical measure of the
feature labelled CF_SSF, which requires this last operation. The assembly code to
be included is as follows:

/ / Assembly code to include / /
#ifdef FM_AAA_SSF

AAA_FINAL(Parameter1, Parameter2)
#set CICLOS_FINAL (CICLOS_FINAL+COST_AAA_FINAL)

#endif
/ / / / / / / / / / / / / / / /

#endif

3. Modifying the file const_gen.inc:
Aiming at the new statistical measure can be included in the feature vector that finally feeds
the classifier, it is necessary to include the following instructions in the file const_gen.inc.

#define FM_AVG_NSC
#define FM_AVG_SSC
#define FM_AVG_NVW
#define FM_AVG_SVW
#define FM_AVG_STE
#define FM_AVG_SSF

#define FM_VAR_NSC
#define FM_VAR_SSC
#define FM_VAR_NVW
#define FM_VAR_SVW
#define FM_VAR_STE
#define FM_VAR_SSF

/ / Assembly code to include / /
#define FM_AAA_NSC
#define FM_AAA_SSC
#define FM_AAA_NVW
#define FM_AAA_SVW
#define FM_AAA_STE
#define FM_AAA_SSF
/ / / / / / / / / / / / / / / /

Bibliography

M. Agarwal. A systematic classification of neural-network-based control. In Journal of Guidance,
Control and Dynamics, pages 75–93, April 1997.

E. Alexandre, Lorena Alvarez, Lucas Cuadra, Manuel Rosa, and Francisco Lopez. Automatic
sound classification algorithm for hearing aids using a hierarchical taxonomy. In Andrzej
Dobrucki, Alexander Petrovsky, and Wladyslaw Skarbek, editors, New Trends in Audio and
Video, volume 1. Politechnika Bialostocka, 2006a.

E. Alexandre, L. Cuadra, L. Alvarez, M Rosa, and Francisco Lopez. Automatic sound classifi-
cation for improving speech intelligibility in hearing aids using a layered structure. In Lecture
Notes in Computer Science. Springer Verlag, 2006b.

E. Alexandre, L. Cuadra, L. Álvarez, M. Rosa-Zurera, and F. López-Ferreras. Two-layer au-
tomatic sound classification system for conversation enhancement in hearing aids. Integrated
Computer-Aided Engineering, 15(1):85–94, 2008a.

E. Alexandre, L. Cuadra, M. Rosa, and F. López. Automatic sound classification algorithm
for hearing aids using a hierarchical taxonomy. In B. Prasad and S. M. Prassana, editors,
Speech, Audio, Image and Biomedical Signal Processing using Neural Networks, pages 145–
167. Springer Verlag, 2008b.

E. Alexandre, L. Cuadra, M. Rosa-Zurera, and F. López-Ferreras. Speech/non-speech classifica-
tion in hearing aids driven by tailored neural networks. In Speech, Audio, Image and Biomedi-
cal Signal Processing using Neural Networks, volume 83/2008, pages 145–167. Springer Verlag,
2008c.

E. Alexandre, R. Gil-Pita, L. Cuadra, L. Álvarez, and M. Rosa-Zurera. Speech/muisc/noise
classification in hearing aids using a two-layer classification system with mse linear discrim-
inants. In 16th European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland,
2008d.

Lorena Álvarez, Enrique Alexandre, Lucas Cuadra, and Manuel Rosa-Zurera. On the train-
ing of multilayer perceptrons for speech/non-speech classification in hearing aids. In Au-
dio Engineering Society Convention 122, Preprint #7136, Viena, Austria, 5 2007. URL
http://www.aes.org/e-lib/browse.cfm?elib=14121.

Javier Amor. Aplicación de algoritmos heurísticos bioinspirados a la selección automática de
características. M. S. Degree, University of Alcalá, December 2008.

Tobias Andersson. Audio classification and content description. Master’s thesis, Lulea
University of Technology, Lulea, Sweden, 2004.

225

http://www.aes.org/e-lib/browse.cfm?elib=14121

226 Bibliography

ANSI. Methods for calculation of the speech intelligibility index. Technical report, Amer-
ican National Standards Institute, 1997.

Archelon. MCPP Macro Preprocessor Version 2.10. Archelon Inc., 1994.

Kathryn Hoberg Arehart, John H. L. Hansen, Stephen Gallant, and Laura Kalstein.
Evaluation of an auditory masked threshold noise suppression algorithm in normal-
hearing and hearing-impaired listeners. Speech Communication, 40(4):575–592, 2003.

S. Asmussen. A probabilistic look at the wiener-hopf equationt. SIAM Review, 40(12):
189–201, June 1998.

S. Aviyente and W. J. Williams. Information bounds for random signals in time-frequency
plane. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 6, pages 3549–3552, May 2001.

Amanda S. Azman. Estimating the performance of sound restoration hearing protectors
using the speech intelligibility index. In Proceedings of the International Mechanical En-
gineering Congress Exposition (IMECE 2010), Vancouver, British Columbia, Canada,
2010. ASME 2010.

Neil Bauman, 2011. URL http://www.hearingaidmuseum.com/. The Hearing Aid Mu-
seum.

J. G. Beerends, A. P. Hekstra, A. W. Rix, and M. P. Hollier. Perceptual Evaluation
of Speech Quality (PESQ) The New ITU Standard for end-to-end Speech Quality As-
sessment Part II–Psychoacoustic Model. J. Audio Eng. Soc., 50(10):765–778, October
2002.

Jan A. Beerends, John G.; Stemerdink. A perceptual audio quality measure based on a
psychoacoustic sound representation. J. Audio Eng. Soc, 40(12):963–978, 1992. URL
http://www.aes.org/e-lib/browse.cfm?elib=7019.

Jan A. Beerends, John G.; Stemerdink. A perceptual speech-quality measure based on
a psychoacoustic sound representation. J. Audio Eng. Soc, 42(3):115–123, 1994. URL
http://www.aes.org/e-lib/browse.cfm?elib=6957.

E. Bennion. Antique Hearing Aids. London: Venier Press, 1994.

R. A. Bentler and M. Duve. Comparison of hearing aids over the 20th century. Ear and
Hearing, 21(6):625–639, December 2000.

C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press. Oxford, 1995.

S. F. Boll. Suppression of acoustic noise in speech using spectral subtraction. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 27(2):113–120, April 1979.

D. S. Broomhead and D. Lowe. Multivariate functional interpolation and adaptive net-
works. Complex Sytems, 2:321–355, 1998.

M.C. Büchler. Algorithms for sound classification in hearing instruments. PhD thesis,
Swiss Federal Institute of Technology, Zurich, 2002.

M.C. Büchler, S. Allegro, S. Launer, and N. Dillier. Sound classification in hearing aids
inspired by auditory scene analysis. EURASIP Journal on Applied Signal Processing,
2005(18):2991–3002, 2005.

http://www.hearingaidmuseum.com/
http://www.aes.org/e-lib/browse.cfm?elib=7019
http://www.aes.org/e-lib/browse.cfm?elib=6957

Bibliography 227

M. J. Carey, E. S. Parris, and H. Lloyd-Thomas. A comparison of features for speech, mu-
sic discrimination. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP, March 1999.

S. Chen, S.A. Billings, C. Couan, and P. M. Grant. Practical identification of narmax
models using radial basis function. In Int. J. Control, volume 52, pages 1327–1350,
1990.

W. Chou and L. Gu. Robust singing detection in speech/music discriminator design. In
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP,
2001.

S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic
features. In Machine Learning, volume 10, pages 57–78, 1993.

L. Cuadra, R. Gil-Pita, E. Alexandre, and M. Rosa-Zurera. Joint design of gaussianized
spectrum-based features and least-square linear classifier for automatic acoustic envi-
ronment classification in hearing aids. Signal Processing, 90(8):2628 – 2632, 2010. ISSN
0165-1684. doi: DOI:10.1016/j.sigpro.2010.02.024. Special Section on Processing and
Analysis of High-Dimensional Masses of Image and Signal Data.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematical
Control Signal Systems, 2:303–314, 1989.

Howard Demuth and Mark Beale. Neural network toolbox for use with matlab, 1993.

T. V. den Bogaert, S. Doclo, J. Wouters, and M. Moonen. Speech enhancement with
multichannel wiener filter techniques in multimicrophone binaural hearing aids. The
Journal of the Acoustical Society of America, 125(1):360–371, 2009.

H. Dillon. Hearing Aids. Boomerang Press; Thieme, 2001. ISBN 1588900525.

Dspfactory. Toccata Plus EDK 2.3.1 Getting Started Guide, 2002a.

Dspfactory. Toccata Plus Evaluation and Development Board Manual. Dspfactory Ltd.,
2002b.

Dspfactory. Toccata Plus Rcore Manual, 2002c.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. New
York Wiley, 1973.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-
Interscience, 2001.

Brent Edwards. The future of hearing aid technology. Trends Amplification, 11(1):31–46,
2007. URL http://tia.sagepub.com/content/11/1/31.

Koen Eneman, Heleen Luts, Jan Wouters, Michael Büchler, Norbert Dillier, Wouter
Dreschler, Matthias Froehlich, Giso Grimm, Volker Hohmann, Rolph Houben, Arne Lei-
jon, Anthony Lombard, Dirk Mauler, Marc Moonen, Henning Puder, Michael Schulte,
Ann Spriet, and Matthias Vormann. Evaluation of signal enhancement algorithms for
hearing instruments. In Proceedings of the 16th European Signal Processing Conference
(EUSIPCO’08), 2008.

B. Everitt. Cluster Analysis. New York: Halsted Press, 1974.

http://tia.sagepub.com/content/11/1/31

228 Bibliography

Claire F. Fang, Rob A. Rutenbar, and Tsuhan Chen. Fast, accurate static analysis for
fixed-point finite-precision effects in dsp designs. In Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided design, ICCAD ’03, pages 275–, Washing-
ton, DC, USA, 2003. IEEE Computer Society. ISBN 1-58113-762-1. doi: http://dx.doi.
org/10.1109/ICCAD.2003.68. URL http://dx.doi.org/10.1109/ICCAD.2003.68.

F. Fang, Tsuhan Chen, and Rob A. Rutenbar. Lightweight floating-point arithmetic:
Case study of inverse discrete cosine transform. In EURASIP Journal on Signal Pro-
cessing, Special Issue on Applied Implementation of DSP and Communication Systems,
volume 9, pages 879–892, September 2002.

J. Fernández-Cruza. Diseño e implementación de un audífono digital con capacidad de
adaptación al entorno sonoro. M. S. Degree, University of Alcalá, October 2009.

Jill B. Firzst. Effect of unilateral hearing loss on the speech-evoked auditory brainstem re-
sponse in the presence of noise. PhD thesis, Washington University School of Medicine,
2010.

P. Flandrin, R.G. Baraniuk, and O. Michael. Time-frequency complexity and informa-
tion. In IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 3, pages 329–332, April 1994.

F. Dan Foresee and Martin T. Hagan. Gauss-newton approximation to bayesian learning.
Proceedings of the 1997 International Joint Conference on Neural Networks, pages 1930–
1935, 1997.

J. Franke and E. Mandler. A comparison of two approaches for combining the votes of
cooperating classifiers. In Proceedings of the 11th International Conference on Pattern
Recognition, volume 2, pages 611–614, 1992.

N R French and J C Steinberg. Factors governing the intelligibility of speech sounds.
Journal of the Acoustical Society of America, 19(1):90–119, 1947.

J. Fukunaga and R. Beauregard. An optimal global nearest neighbor metric. IEEE
Transactions Pattern Analysis and Machine Intelligence, 3:314–338, 1984.

GAO. Deaf and hard of hearing children: Federal support for developing language and
literacy. Technical report, United States Government Accountability Office, May 2011.

R. Gil-Pita, E. Alexandre, L. Cuadra, R. Vicen-Bueno, and M. Rosa-Zurera. Analysis of
the effects of finite precision in neural network-based sound classifiers for digital hearing
aids. In EURASIP Journal on Advances in Signal Processing, volume 2009, pages 1–10,
2009.

Roberto Gil-Pita. Sistemas de Clasifiación de Blancos Radar mediante Métodos Estadís-
ticos y de Inteligencia Artificial. PhD thesis, University of Alcalá, November 2006.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley publishing, Reading, MA, 1989.

Sandra Gordon-Salant. Hearing loss and aging: new research findings and clini-
cal implications. Journal Of Rehabilitation Research And Development, 42(4 Suppl
2):9–24, 2005. URL http://www.rehab.research.va.gov/jour/05/42/4suppl2/
gordon-salant.html.

Enric Guaus and Eloi Batlle. A non-linear rhythm-based style classification for broadcast
speech-music discrimination. In AES 116th Convention, 2004.

http://dx.doi.org/10.1109/ICCAD.2003.68
http://www.rehab.research.va.gov/jour/05/42/4suppl2/gordon-salant.html
http://www.rehab.research.va.gov/jour/05/42/4suppl2/gordon-salant.html

Bibliography 229

M.T. Hagan and M.B. Menhaj. Training feedforward networks with the marquardt algo-
rithm. IEEE Transactions on Neural Networks, 5(6):989–993, 1994.

Ulrich Halka and Ulrich Heute. A new approach to objective quality-measures based on
attribute-matching. Speech Communication, 11(1):15–30, 1992.

V. Hamacher, J. Chalupper, J. Eggers, E. Fischer, U. Kornagel, H. Puder, and U. Rass.
Signal processing in high-end hearing aids: State of art, challengues, and future trends.
EURASIP Journal on Applied Signal Processing, 18:2915–2929, 2005.

M. Hansen and B. Kollmeier. Objective modeling of speech quality with a psychoacous-
tically validated auditory model. Journal Audio Engineering Society, 48:395–408, May
2000.

Randy L. Haupt and Sue Ellen Haupt. Practical genetic algorithms, 2nd Edition. John
Wiley & Sons, Inc., New Jersey, 2004.

Hear-it, 2011. URL http://www.hear-it.org/page.dsp?area=134. Hear-it.

J. Hellgren, T. Lunner, and S. Arlinger. System identiïňĄcation of feedback in hearing
aids. The Journal of the Acoustical Society of America, 105(6):3481–3496, June 1999.

M.A. Hersh and M.A. Johnson. Assistive Technology for the Hearing Impaired, Deaf and
Deafblind. Springer, London, UK, 2003. URL http://eprints.gla.ac.uk/33030/.

R. Hetch-Nielsen. Neurocomputing. Addison-Wesley, New York, 1990.

H. Hirsch and D. Pearce. The aurora experimental framework for the performance evalu-
ation of speech recognition systems under noisy conditions. In ISCA ITRW ASR2000,
pages 181–188, 2000.

M. P. Hollier, D. R. Guard, and Malcolm J. Hawksford. Characterization of communica-
tions systems using a speech-like test stimulus. In Audio Engineering Society Convention
93, 10 1992. URL http://www.aes.org/e-lib/browse.cfm?elib=6738.

M. P. Hollier, M. O. Hawksford, and D. R. Guard. Error activity and error entropy as a
measure of psychoacoustic significance in the perceptual domain. IEEE Proc. Vision,
Image and Signal Processing, 141(3):203–208, 1994.

Danoush Hosseinzadeh and Sridhar Krishnan. On the use of complementary spectral
features for speaker recognition. In EURASIP Journal on Advances in Signal Processing,
volume 2008, pages 1–10, 2008.

Yi Hu and Philipos C. Loizou. A comparative intelligibility study of single-microphone
noise reduction algorithms. The Journal of the Acoustical Society of America, 122(3):
1777–1786, 2007. doi: 10.1121/1.2766778.

Ester Huerta, Enrique Alexandre, Roberto Gil-Pita, Lorena Álvarez, , and Javier Amor.
Analysis of the effects of finite precision in sound classifiers for digital hearing aids. In
AES 124th Convention, Preprint #7420, Amsterdam, The Netherlands, May 2008.

A. Hyvaarinen, J. Karhunen, and A. Oja. Independent Component Analysis. Wiley, New
York, 2001.

ITU-R. Method for objective measurements of perceived audio quality. Recommendation
BS.1387, International Telecommunications Union, Geneva, 1998.

http://www.hear-it.org/page.dsp?area=134
http://eprints.gla.ac.uk/33030/
http://www.aes.org/e-lib/browse.cfm?elib=6738

230 Bibliography

ITU-T. Review of validation tests for objective speech quality measures. Document COM
12-74, International Telecommunications Union, Geneva, 1996a.

ITU-T. Report of the question 13/12 rapporteur’s meeting, solothurn, switzerland. Doc-
ument COM 12-117, International Telecommunications Union, 2000.

ITU-T. Telecommunication objective objective speech quality asessment. Document COM
12-34, International Telecommunications Union, 1997.

ITU-T. Mean opinion score (MOS) terminology. Recommendation P.800.1, International
Telecommunications Union, Geneva, 2001a.

ITU-T. Objective quality measurement of telephone-band (300–3400 Hz) speech codecs.
Recommendation P-861, International Telecommunications Union, Geneva, 1996b.

ITU-T. Perceptual evaluation of speech quality (pesq), an objective method for end-to-
end speech quality assessment of narrowband telephone networks and speech codecs.
Recommendation P-862, International Telecommunications Union, Geneva, 2001b.

Ozgur Izmirli. Using spectral flatness based feature for audio segmentation and retrieval.
Technical report, Center for Arts and Technology, Department of Mathematics and
Computer Science, Connectucut College, 1999.

N. S. Jayant and Peter Noll. Digital Coding of Waveforms - Principles and Applications
to Speech and Video, page 688. Kai Fa Book Company, Taipei, Taiwan, 1990.

I.T. Jolliffe. Principal Component Analysis. Wiley, New York, 1986.

J.E. Dennis Jr. and R.B. Schnabel. Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.

J. M. Kates. Digital Hearing Aids. Plural Publishing Inc., 2008.

G. Keidser. Selecting different amplification for different listening conditions. J. of the
American Academy of Audiology, 7:92–104, 1996.

Mead C. Killion. Snr loss: I can hear what people say, but i can’t understand
them. The Hearing Review, 4(12):8–14, 1997. URL http://www.etymotic.com/pdf/
erl-0037-1997.pdf.

F. Kimura and M. Shridhar. Handwritten numerical recognition based on multiple algo-
rithms. Pattern Recognition, 24(10):969–983, 1991.

Josef Kittler, Ieee Computer Society, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas.
On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(3):226–239, March 1998.

S. Kochin. Marketrak vi: Consumers rate improvements sought in hearing instruments.
The Hearing Review, 2002.

S. Kochin. 25-year trends in the hearing health market. The Hearing Review, 11(16):11–31,
2009. URL http://www.betterhearing.org/pdfs/M8_hearing_loss_trends_2009.
pdf.

S. Kochkin. Why my hearing aids are in the drawer: The consumer’s perspective. The
Hearing Journal, 2(53):34–42, February 2000. URL http://www.betterhearing.org/
hia/publications/MR41.PDF.

http://www.etymotic.com/pdf/erl-0037-1997.pdf
http://www.etymotic.com/pdf/erl-0037-1997.pdf
http://www.betterhearing.org/pdfs/M8_hearing_loss_trends_2009.pdf
http://www.betterhearing.org/pdfs/M8_hearing_loss_trends_2009.pdf
http://www.betterhearing.org/hia/publications/MR41.PDF
http://www.betterhearing.org/hia/publications/MR41.PDF

Bibliography 231

R. Kohavi and G.H. John. Wrappers for features subset selection. Int. Journal Digit.
Libr., 1:108–121, 1997.

T. Kohonen. Self-organizing maps. Springer Series in Information Sciences, New York,
3rd extended edition, 2001.

K. Kumar, K. Chanwoo, and R. Stern. Deltra-spectral cepstral coefficients for robust
speech recognition. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), May 2011.

E. C. Levi. Complex-curve fitting. In IRE Transactions on Automatic Control, volume
AC-4, pages 37–44, 1959.

Dongge Li, Ishwar K. Sethi, Nevenka Dimitrova, and TomMcGee. Classification of general
audio data for content-based retrieval. Pattern recognition letters, pages 533–544, 2001.

J. S. Lim. Evaluation of a correlation subtraction method for enhancing speech degraded
by additive white noise. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26:471–472, 1978.

Philipos C. Loizou. Speech Enhancement: Theory and Practice. CRC PRESS LLC, 2007.

Lie Lu, Hong Jiang Zhang, and Hao Jiang. Content analysis for audio classification
and segmentation. IEEE Transactions on speech and audio processing, 10(7):504–516,
October 2002.

A. Mancuso, L. Picinale, and G. Vercellesi. Evaluation of the perceived quality of hearing
aids, 2006. DSP Application Day.

J. M. Martínez. Mpeg-7 overview (version 10). MPEG Document ISOIEC
JTC1SC29WG11, 6828, 2004. URL http://www.chiariglione.org/mpeg/
standards/mpeg-7/mpeg-7.htm.

Karl Mathia. A variable structure learning algorithm for multilayer perceptrons. Intelli-
gent Engineering Systems Through Artificial Neural Networks, 14:93–100, 2004.

G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.

J. Moody and C. J. Darken. Fast learning in network of locally-tuned processing units.
Neural Computing, 1:281–294, 1989.

B.C. J. Moore. Information extraction and perceptual grouping in the auditory system. In
Human and Machine Perception: Information Fusion, pages 1–12. Plenum, New York,
1997.

Brian C. J. Moore. An Introduction to the Psychology of Hearing, Fifth Edition. Academic
Press, April 2003. ISBN 0125056281.

Brian C.J. Moore. An introduction to the psychology of hearing. Academic Press, third
edition, 1989.

Arulkumaran Muthukumarasamy. Impact of microphone positional errors on speech in-
telligibility. Master’s thesis, University of Kentucky, 2009.

D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural network by
choosing initial values of the adaptative weigths. In Proceedings of the IEEE First
International Joint Conference on Neural Networks, volume 3, pages 21–26, 1990.

http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm

232 Bibliography

NHIS, 2002. URL http://www.nidcd.nih.gov/health/statistics/begins.htm. Na-
tional Health Interview Survey.

NIH, 2008. URL http://www.noisehelp.com/degrees-of-hearing-loss.html. Na-
tional Institute of Health, News & Events.

P. Nordqvist. Sound Classification in Hearing Instruments. PhD thesis, Royal Institute
of Technology (KTH), Stockholm, Sweden, 2004.

P. Nordqvist and A. Leijon. An efficient robust sound classification algorithm for hearing
aids. J. Acoustic Soc. Am., 115(6):3033–3041, 2004.

Billie Yevonne Pearce. Implementation of a variable structure neural network. Master’s
thesis, Auburn University, 2001.

Tomaso Poggio and Federico Girosi. Networks for approximation and learning. Proceedings
of the IEEE, 78(9):1481–1497, 1990. URL http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=58326.

Jill. E. Preminger and Dianne J. van Tasell. Quantifying the relation between speech
quality and speech intelligibility. Journal of Speech and Hearing Research, 38(3):714–
725, June 1995.

Arunan Ramalingam and Sridhar Krishnan. Gaussian mixture modeling of short-time
fourier transform features for audio fingerprinting. IEEE Transactions on Information
Forensics and Security, 1(4):457–463, December 2006.

A. W Rix, M. P. Hollier, A. P. Hekstra, and J. G. Beerends. Perceptual Evaluation of
Speech Quality (PESQ) The New ITU Standard for end-to-end Speech Quality Assess-
ment Part II–Time-Delay Compensation. J. Audio Eng. Soc., 50(10):755–764, October
2002.

Antony Rix, Richard Reynolds, and Mike Hollier. Perceptual measurement of end-to-end
speech quality over audio and packet-based networks. In Audio Engineering Society
Convention 106, 5 1999. URL http://www.aes.org/e-lib/browse.cfm?elib=8307.

Antony W. Rix, Michael P. Hollier, John G. Beerends, and Andries P. Hekstra. Pesq-the
new itu standard for end-to-end speech quality assessment. In Audio Engineering Society
Convention 109, 9 2000. URL http://www.aes.org/e-lib/browse.cfm?elib=9078.

A.W. Rix and M.P. Hollier. The perceptual analysis measurement system for robust
end-to-end speech quality assessment. Acoustics, Speech, and Signal Processing, IEEE
International Conference on, 3:1515–1518, 2000. doi: http://doi.ieeecomputersociety.
org/10.1109/ICASSP.2000.861935.

RNID. Breaking the sound barrier. Technical report, Royal National Institute for Deaf
People, 1999.

S. J. Roberts, D. Husmeier, L. Rezek, and W. Penny. Bayesian approaches to gaussian
mixture modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(11):1133–1142, 1998. ISSN 0162-8828.

T. Rohdenburg, V. Hohmann, R. Huber, and B. Kollmeier. Quality aspects of digital
hearing aid algorithms, 2006. ITG–Fachtagung.

http://www.nidcd.nih.gov/health/statistics/begins.htm
http://www.noisehelp.com/degrees-of-hearing-loss.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=58326
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=58326
http://www.aes.org/e-lib/browse.cfm?elib=8307
http://www.aes.org/e-lib/browse.cfm?elib=9078

Bibliography 233

Y. D. Rubinstein and T. Hastie. Discriminative vs. informative learning. In Proceed-
ings of the Third International Conference on Knowledge Discovery and Data Mining,
volume 3, pages 49–53. AAAI Press, 1997.

D. Rumelhart, G. Hinton, and R. Williams. Learning representation by back propagating
errors. Nature, 323:533–536, 1986.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. New York:
McGraw-Hill, 1983.

Robert E. Sandlin. Handbook of hearing aid amplification. College-Hill Press, Boston,
1990. ISBN 0316770272 (v.2).

E. Scheirer. http://labrosa.ee.columbia.edu/sounds/musp/scheislan.html, 2006. The
Music-Speech Corpus.

Eric Scheirer and Malcom Slaney. Construction and evaluation of a robust multifeature
speech/music discriminator. In ICASSP, 1997.

Todd Schneider, Robert Brennan, Peter Balsiger, and Re Heubi. An ultra low-power
programmable dsp system for hearing aids and other audio applications. In Proc.
ICSPAT 1999, pages 1–4, Orlando, Florida, USA, November 1999.

Bridget Shield, 2006a. URL http://spanish.hear-it.org/page.dsp?page=5770. Hear-
it.

Bridget Shield. Evaluation of the social and economic costs of hearing impairment. Tech-
nical report, Hear-it, October 2006b.

A. Spriet. Adaptative filtering techniques for noise reduction and acoustic feedback can-
cellation in hearing aids. PhD thesis, Katholieke Univ Leuven, Leuven, 2004.

A. Spriet, G. Rombouts, M. Moonen, and J. Wouters. Adaptative feedback cancellation
in hearing aids. Journal of the Franklin Institute, 343:545–573, 2007.

A. Spriet, K. Eneman, M. Moonen, and J. Wouters. Objective measures for real-time eval-
uation of adaptive feedback cancellation algorithms in hearing aids. In 16th European
Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, 2008.

M. D. Srinath, P. K. Rajasekaran, and R. Viswanathan. Introduction to statistical signal
processing with applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.
ISBN 0-13-125295-X.

S. Takeuchi, M. Yamashita, T. Uchida, and M. Sugiyama. Optimization of voice/music
detection in sound data. Proceedings of the CRAC, September 2001.

T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends,
C. Colomes, M. K., G. Stoll, K. Brandenburg, and B. Feiten. PEAQ - The ITU stan-
dard for objective measurement of perceived audio quality. Journal Audio Engineering
Society, 48(1/2):3–29, January/February 2000.

K. Torkkola. On feature extraction by mutual information maximization. In IEEE
ICASSP, pages 821–824, 2002.

K. Torkkola and W.M. Campbell. Mutual information in learning feature transformations.
In 17th Int. Conf. Mach. Learning, pages 1015–1022, 2000.

http://spanish.hear-it.org/page.dsp?page=5770

234 Bibliography

D. E. Tsoukalas, J. N. Mourjopoulos, and G. Kokkinakis. Speech enhancement based on
audible noise suppression. IEEE Transactions on Speech Audio Processing, 5:479–514,
1997.

George Tzanetakis and Perry Cook. Musical genre classification of audio signals. IEEE
Transactions on speech and audio processing, 10(5):293–302, July 2002.

Raúl Vicen-Bueno, Roberto Gil-Pita, Manuel Utrilla-Manso, and Lorena Álvarez-Pérez.
A hearing aid simulator to test adaptive signal processing algorithms. Proceedings
of the IEEE International Symposium on Intelligent Signal Processing (WISP), pages
619–624, October 2007.

Raul Vicen-Bueno, Almudena Martinez-Leira, Roberto Gil-Pita, and Manuel Rosa-
Zurera. Modified lms-based feedback-reduction subsystems in digital hearing aids based
on wola filter bank. IEEE Transactions on Instrumentation and Measurement, 58(9):
3177–3190, 2009.

S. Voran. Objective estimation of perceived speech quality – Part I: Development of
measuring normalizing block technique. IEEE Transactions on Speech and Audio Pro-
cessing, 7(4):371–382, July 1999a.

S. Voran. Objective estimation of perceived speech quality – Part II: Evaluation of
measuring normalizing block technique. IEEE Transactions on Speech and Audio Pro-
cessing, 7:383–390, July 1999b.

Shihua Wang, Andrew Sekey, and Allen Gersho. An objective measure for predicting
subjective quality of speech coders. IEEE Journal on Selected Areas in Communications,
10(5):819–829, 1992.

P. J. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral
sciences. PhD thesis, Harvard University, 1974.

J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature
selection for svms. In NIPS, pages 668–674, 2000.

Gethin Williams and Daniel P. W. Ellis. Speech/music discrimination based on posterior
probability features. In Proceedings of the 6th European Conference on Speech Commu-
nication and Technology (EUROSPEECH), Budapest, Hungary, September 1999.

Randall D. Wilson and Tony R. Martinez. Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research, 6:1–34, 1997. URL http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.48.9623.

Eberhard Zwicker and Hugo Fastl. Psychoacoustics: Facts and Models (Springer Series
in Information Sciences) (v. 22). Springer, 2nd updated ed. edition, April 1999. ISBN
3540650636.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9623
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.9623

	Contents
	List of Figures
	List of Tables
	List of Symbols
	Glossary
	Introduction and scope
	Background
	Motivation
	Objective
	Organization

	Hearing aids
	Introduction
	Hearing loss
	Description of human auditory system
	Hearing loss classification
	Degrees of hearing loss
	Problems faced by hearing-impaired people

	A brief history of hearing aids
	The acoustic era
	The carbon era
	The vacuum tube era
	The analog era
	The digital era

	Hearing aids models

	Overview of automatic sound classification systems
	Introduction
	Data processing
	Feature extraction
	Introduction
	Classical spectral features

	Classifying algorithm
	Introduction
	Mean square error (` =9 MSE) linear classifier
	k-nearest neighbor (k-NN) classifier
	Artificial neural networks
	Introduction
	Multilayer perceptrons (MLPs)
	Radial basis function (RBF) networks

	Proposed feature extraction and selection algorithms
	Introduction
	Low-complexity features
	Mathematical expression of the low-complexity features
	Mathematical characterization of the feature extraction process
	Preliminary classification results

	Fundamentals of feature selection
	An intuitive approach
	How should the feature selection algorithm work?
	Practical implementation
	Computational cost of classical and low-complexity features
	Computational cost of MFCCs and MFCCs
	Computational cost of statistical operators

	Experimental work and results
	Experimental setup
	Numerical results

	Conclusions

	Implementation and optimization of classifying algorithms
	Introduction
	Comparative analysis
	Introduction
	Description of the experimental work
	Numerical results
	One-layer structure
	Two-layer structure
	Combination of multiple classifiers

	Conclusions

	Optimization of multilayer perceptron parameters
	Introduction
	Appropriate number of hidden neurons
	Growing algorithm
	Pruning algorithms
	Combination of growing and pruning algorithms

	Simplification of the activation function
	Piecewise linear approximations
	Activation function selection algorithm

	Conclusions

	Conclusions

	Analysis of the effects of finite precision
	Introduction
	The quantization problem
	Experimental work and results
	Experimental setup
	Numerical results

	Conclusions

	Speech enhancement algorithms
	Introduction
	Measuring the speech quality
	Perceptual evaluation of speech quality
	Introduction
	Description of PESQ model

	Speech intelligibility index
	Introduction
	Description of SII

	Blind modeling of the gain function by using gaussian mixtures
	Gaussian mixture model
	The approach at work

	Experimental work and results
	Experimental setup
	Numerical results

	Conclusions

	Hardware implementation
	Introduction
	Implementation of the multiband compressor-expander
	Introduction
	Average power computation
	Gain-search in the gain matrix
	Practical implementation

	Base adjustment
	Computational cost

	Implementing the feature extraction
	Introduction
	Obtaining the building blocks
	Obtaining the features included in the set SF
	Statistical characterization
	Practical implementation
	Preprocessor code
	Routines
	Computing the statistical measures
	Implementation

	Computational cost

	Implementing a multilayer perceptron-based classifier
	Introduction
	Creating a multilayer-perceptron
	Running a multilayer-perceptron
	Computational cost of multilayer perceptron (MLP)

	Hearing aid consumption
	Conclusions

	Conclusions
	Introduction
	Summary
	Contribution to knowledge
	Future work
	List of publications

	Digital signal processor
	Hearing aid simulator
	Introduction
	Digital hearing aid model
	Hearing aid core: the WOLA filter bank
	The analysis stage
	The gain stage
	The synthesis stage
	Practical implementation: WOLA filter bank parameters

	AFE paths in hearing aids
	Practical implementation: AFE paths

	Gain evaluation stage: audio level compression and noise reduction

	Databases
	Database of sounds
	Database of patients

	Genetic algorithms
	Introduction
	Codifying the trial solution
	Applying genetic mechanisms

	Implementing new features
	Implementation of a new building block
	Implementation of a new feature
	Implementation of a new statistical measure

	Bibliography

