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Abstract

In this thesis, the application of a subband adaptive model to characterize compression 

behaviour of five digital hearing aids is investigated. Using a signal-to-error ratio 

metric, modeling performance is determined by varying the number of analysis bands 

in the subband structure as well as consideration of three adaptive algorithms. The 

normalized least mean-squares (NLMS), the affine projection algorithm (APA), and 

the recursive least-squares (RLS) algorithms are employed using a range of parame­

ters to determine the impact on modeling performance. Using the subband adaptive 

model to estimate the time-varying frequency response of each hearing aid allows 

the Perceptual Evaluation of Speech Quality (PESQ) mean-opinion score (MOS) to 

be computed. The PESQ MOS facilitates an estimation of a subjective assessment 

of speech quality using an objective score. Initial results suggest the PESQ MOS 

score is able to differentiate speech processed by hearing aids allowing them to be 

ranked accordingly. Further work is required to obtain subjective assessments of the 

processed speech signals and determine if possible correlations exist.

Key words: hearing aid, modeling, subband, fullband, adaptive algorithm, NLMS, 

APA, RLS
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For my father.. .  Walter
’’Young Man Dies” by David Wilcox (Album: Underneath)

There’s a young man dying as he stands beside the sea.

You can see him smiling, unbelievably free: 

wind in his hair, light in his eyes.

He looks a lot like you, and you look so surprised 

that he would send you on your way with no good-byes.

But he can’t go, and you can’t stay,

’cause in the years it takes to make one man wise, the young man dies. 
Meanwhile you ’re sailing, 

as you wave good-bye to shore.

You’re anticipating what these new days will hold in store.

I t ’s the mystery of the ocean, 

but now h e’s in over his head.

This is no place for the young man, 

he’s got to send you on instead.

And still you’re looking so surprised 
that this change has come as prophesied 

but the years won’t compromise,

’cause in the years it takes to make one man wise, the young man dies. 

The young man: He was such a lonely boy.

Yeah, but he could dream, all right.

He could picture you a perfect sunrise 

in the middle of your darkest night.

And he could take a sip from someday, 

like he had a secret well.

He could listen to the voices calling 

from a distant time will tell.

I t ’s you in that picture where you’re looking far away 

like you hear a whisper o f the things 

you’ll know someday.

But back then your heart was hungry 

for something hard to find; you were 

just holding out for someday, 

but you’ve left that pain behind 
’cause he walked you through those mountains, 

for as long as he could bear.

He never reached the fountain, 
but he could take you there.

The young man’s dying

’cause in the years it takes to make one man wise, 
the young man dies.

IV
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Chapter 1

Introduction

1.1 Hearing

Understanding of key areas of the sensation of hearing is critical to its assessment 

and development of techniques to overcome its loss. This chapter highlights several 

of these areas.

1.1.1 The Physiological Process of Hearing

The physiological process of hearing is complex, involving several mechanisms that 

facilitate the conversion of acoustical sound energy into nerve impulses the brain uses 

for the perception of hearing. Each aspect of this highly developed process is in and 

of itself highly specialized. Figure 1.1 illustrates the anatomy of the human ear (2).

The anatomy of the human ear can be segmented into three regions, each with its 

own unique contribution to the overall process of hearing. The outer ear, the middle 

ear, and the cochlea are these three regions. A brief description of the anatomy of 

each region and how it contributes to the sense of hearing is described in the following 

sections.

1



Fig. 1.1: Anatomy of the Human Ear (From Tissues and Organs: A Text-Atlas of 
Scanning Electron Microscopy, by R.G. Kessel and R.H. Kardon. W.H. Freeman and 
Company. Copyright 1979)

1.1.1.1 Outer Ear

The outer ear consists of a partially cartilaginous flange called the pinna, which 

includes a resonant cavity called the concha, and together with the ear canal, or 

external auditory meatus, lead to the eardrum or the tympanic membrane (2). It has 

two noteworthy characteristics. First, the overall resonant properties of the outer ear 

alter the sound pressure at the tympanic membrane. And second, the anatomy of the 

outer ear aids in sound localization.

1.1.1.2 Middle Ear

The middle ear consists of a set of three small, interconnected bones collectively 

referred to as the ossicles. The malleus, incus, and stapes facilitate the coupling of 

sound energy from the auditory canal to the cochlea. Figure 1.2 shows the malleus, 

incus, and stapes bones of a chinchilla.

The unique shape and relative placement of the malleus, incus, and stapes aid 

in matching the low acoustical impedance of the auditory canal with the higher im-

2
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pedance cochlear fluids. Without this transformation, most of the acoustical energy 

entering the outer ear would be reflected (2).

Fig. 1.2: Middle Ear Ossicles of Chinchilla (From Auditory Science Lab - Sick Kids, 
The Hospital for Sick Children, Toronto, Ontario, Canada)

1.1.1.3 Inner Ear

The inner ear, or cochlea, is one of the most developed and highly specialized 

organs in the human body. It is an extremely small, spiral-shaped structure within 

the temporal bone of the skull, about the size of the nail on the little finger (3). 

The cochlea converts acoustical energy entering the outer ear, conducted through the 

middle ear ossicles, into auditory nerve impulses that are transmitted to the brain.

Figure 1.3. A illustrates the internal structure of the cochlea using a cross-sectional 

view. The cochlea is bored out of the temporal bone and is divided into three distinct 

regions: the Scala Vestibuli (sv), the Scala Media (sm), and the Scala Tympani (st). 

Figure 1.3.B provides a more detailed view of the relationship between these three 

regions.

Figure 1.4.A elaborates on the cross-sectional views of Figures 1.3.A and B by 

showing a simplified cross-sectional view of the cochlea unfolded. The stapes bone

3



Helicotremo

Fig. 1.3: (A) In a transverse section of the whole cochlea, the cochlear duct is cut 
across several times as it coils round and round. Abbreviations: sv - scala vestibuli; 
sm - scala media; st - scala tympani. (B) The three scalae and associated structures 
are shown in a magnified view of a cross-section of the cochlear duct. From Fawcett 
(1986, Fig. 35.11).
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A

B Tectorial membrane

Fig. 1.4: (A) The path of vibrations in the cochlea is shown in a schematic diagram 
in which the cochlear duct is depicted as unrolled. (B) Detailed cross-section of the 
organ of Corti. From Ryan and Dallos (1984, Fig. 22-4, slightly modified).
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meets the cochlea at the oval window. The scala vestibuli and scala tympani form 

one continuous space, connected to each other at the helicotrema. The scala media 

divides this volume along the complete length of the cochlea. Cochlear fluids fill these 

compartments.

The basilar membrane forms the boundary between the scala tympani and the 

scala media, as depicted in Figure I.3.B. It runs the length of the cochlea, from base 

to apex. Unfolded, end-to-end, it is approximately 24 to 35 mm in length (2).

Unlike the temporal bone shell of the cochlea that becomes narrower towards 

the apex, the basilar membrane widens. The basilar membrane is wider, flaccid, 

and has more mass at the apex. It is narrower, rigid, and has less mass at the 

base. Due to these physical properties, the basilar membrane has varying resonance 

characteristics along its length, with sensitivity to high frequencies near the base 

and lower frequencies towards the apex. As shown in 1.4.B, the basilar membrane 

supports two special types of hair cells, the inner and outer hair cells.

There are approximately 3,000 inner hair cells and approximately 12,000 outer 

hair cells inside the human cochlea (3). Attached to both types of cells are hair-like 

projections called stereocilia.

The stereocilia of the outer hair cells (OHC) extend into the bottom of the tectorial 

membrane. They receive messages from the superior olivary nuclei in the lower brain­

stem (and probably higher centres as well), telling them to either elongate or shrink. 

This mechanical action changes the mechanical properties of the basilar membrane 

at specific spots (3).

The stereocilia of the inner hair cells (IHC) do not touch the tectorial membrane 

and are mostly afferent, sending information to the brain. As noted by (3), a person 

with IHC damage may have difficulty understanding speech in quiet environments 

and especially with background noise (4).

6



1.1.1.4 Hearing Dynamics

Sound energy entering the outer ear, and conducted through the middle ear, is 

coupled to the cochlea through the stapes at the oval window. Excitation of the oval 

window transfers energy to the cochlear fluid common to the scala vestibuli and the 

scala media. As the hard surface of the temporal bone forms the outer surface of 

the cochlea, fluid motion is restricted. Some fluid motion is possible because of the 

round window, a membranous window located at the base in the scala tympani. This 

restricted motion results in a standing wave being created in the scala media. The 

displacement of the scala media by a traveling wave peak bends regions of the scala 

media, stimulating a particular location. Low frequency sounds are heard when stim­

ulation occurs at the apex of the cochlea, while high frequency sounds are associated 

with regions near the base of the cochlea.

OHC have two critical functions in this complex process. For soft sounds, less 

than 40 to 60 dB hearing level, the OHC pull the tectorial membrane closer to the 

IHC, allowing them to sense the shearing action of the tectorial membrane caused by 

the standing wave. OHC also ” sharpen” the peak of the traveling wave to improve 

frequency sensitivity of the IHC along the entire length of the basilar membrane. For 

more intense sounds, the OHC elongate to protect the IHC from damage.

Damage to the outer hair cells can result in a moderate hearing loss (5). Severe 

hearing loss is usually attributable to damage of the inner hair cells in addition to 

the outer hair cells.

1.1.2 Hearing Sensitivity and its Measurement

As the two previous sections detail, the physiological process of hearing involves 

intricate associations between the outer ear, middle ear, and cochlea. As a result, 

hearing sensitivity varies with frequency and accurate assessment of hearing ability 

is critical to determine the underlying problems and the proper remedial action.
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Presbycusis, the loss of hearing sensitivity at higher frequencies due to aging, is the 

most common type of hearing loss. This is attributable to damage or loss of outer 

hair cells in the cochlea.

Hearing sensitivity is a function of frequency, mid-range frequencies being most 

easily heard. This phenomenon is graphically depicted by a set of curves referred 

to as the Fletcher-Munson curves. The vertical axis represents the sound pressure 

intensity measured at the tympanic membrane in units of dB sound pressure level 

(SPL, referenced to 20 ¿¿Pa). Figure 1.5 illustrates these curves.

Frequency • Hz

Fig. 1.5: Equal Loudness Contours or Fletcher-Munson Curves (6)

The Fletcher-Munson curves are equal-loudness contours for the human ear. They 

represent measures of sound pressure, over the frequency spectrum, for which a lis­

tener perceives a constant loudness.

Pure tone audiometry is a standardized test procedure used to measure hearing 

sensitivity using pure tone test frequencies. The results of this test are shown visually 

in a graph known as an audiogram. It captures a person’s ability to hear the softest
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sounds possible as a function of frequency. Figure 1.6 shows a typical audiogram 

characterizing normal, left ear hearing thresholds.

FREQUENCY IN HERTZ (Hz)

Fig. 1.6: Typical Audiogram - Normal Hearing (Crosses represent air conduction 
thresholds for the left ear and right-pointing arrows represent associated bone con­
duction thresholds. Used with permission from the Audiology Awareness Campaign.)

The horizontal axis represents the frequency of a pure tone stimulus and the 

vertical axis its intensity in decibels hearing level (dB HL). The dB HL measure is 

used to normalize nonlinear pressure sensitivity of the human ear to sound pressure. 0 

dB HL on an audiogram denotes the absolute threshold of hearing at that frequency.

Air conduction is tested by using earphone-inserts in each ear that are attached to 

an audiometer, a calibrated device that creates pure tones with the correct intensity. 

As tones are presented, the patient is asked to indicate when they are heard. The 

minimum intensity required demarcates the respective threshold. With a bone oscil­

lator, placed against the mastoid bone behind each ear, bone conduction behaviour 

can be measured. This test helps distinguish hearing loss contributions from either 

one or both conductive and sensorineural factors.

As shown in Figure 1.6, blue crosses and right-pointing arrows mark air and bone 

conduction thresholds for the left ear, respectively. Red circles and left-pointing
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arrows mark air and bone conduction thresholds for the right ear, respectively. These 

are usually shown on the same audiogram.

1.1.3 Normal Hearing

Relatively flat air and bone conduction thresholds characterize normal hearing 

across the entire frequency testing range. Figure 1.6 illustrates a typical normal 

audiogram. Audiograms of this sort, with thresholds between 0 and 20 dB HL, 

indicate normal hearing ability.

1.1.4 Hearing Loss

Several congenital and acquired factors influence different portions of ear physi­

ology, resulting in hearing loss. Where and how these factors influence the hearing 

process is reflected in the air and bone conduction thresholds discussed previously. 

Of primary relevance to this thesis is hearing loss attributable to damage or loss of 

cochlea hair cells. The resulting mild-to-moderate and moderate-to-severe hearing 

losses are characterized by reduced dynamic range and increased loudness growth. 

Congenital hearing loss factors include, but are not limited to,

• Aplasia - An irregularity of or complete absence of the cochlea.

• Chromosomal Syndromes - Inherited genetic defects (no concise data supporting 

this factor presently exists).

• Cholesteatoma - A tumour-like mass usually occurring in the middle ear or 

mastoid region.

Acquired hearing loss factors include, but like congenital factors, are not limited 

to,
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• Presbycusis - An age related hearing loss starting in the higher frequency range 

(typically in the 4 to 8 kHz region of the normal 20 to 20 kHz range) and 

progressing to lower frequencies.

• Noise Induced - Prolonged exposure to loud noise resulting in hearing loss, 

typically mid-to-high frequencies.

• Ototoxicity - This factor is closely associated with commonly occurring drugs 

that damage cochlea hair cells due to their extreme sensitivity to oxygen de­

privation. Examples include salicylates found in aspirin and amino glycosides 

found in broad-spectrum antibiotics, like streptomycin.

A sensorineural hearing loss is indicated when air conduction and bone conduction 

thresholds are at the same relative, elevated level, as shown in Figure 1.7.

FREQUENCY IN HERTZ (Hz)
125 250 500 1000 2000 4000 NOOO

Fig. 1.7: Typical Audiogram - Sensorineural Hearing Loss ( Used with permission from 
the Audiology Awareness Campaign.)

A conductive hearing loss is indicated when air conduction thresholds show a 

hearing loss, but the bone conduction thresholds are normal as shown in Figure 1.8. 

In this case, a middle ear condition, such as Cholesteatoma, exists.
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FREQUENCY IN HERTZ (Hz)
125 25» 50» 1000 2000 4000 8000

Fig. 1.8: Typical Audiogram - Conductive Hearing Loss {Used with permission from 
the Audiology Awareness Campaign.)

A complex combination of air and bone conduction thresholds, as shown in Figure 

1.9, suggests a more significant hearing loss, likely due to ailments in both the middle 

ear and cochlea. For cases such as this, both air and bone conduction thresholds are 

higher. This is referred to as a mixed hearing loss.

As previously described, the cochlea’ OHC have two critical functions. First, 

they facilitate a nonlinear form of “amplification” for soft sounds by pulling the 

tectorial membrane closer to the IHC, allowing them to sense the shearing action of 

the tectorial membrane as a result of the standing wave. Second, they “sharpen” 

the peak of the traveling wave to help improve frequency selectivity. OHC damage 

results in a mild-to-moderate sensorineural hearing loss and further damage to the 

IHC results in moderate-to-severe sensorineural hearing losses. Figure 1.10 illustrates 

both normal and damaged human IHC and OHC.

The dynamic range of normal hearing is defined as the region bound by the thresh­

old of hearing and the uncomfortable listening level (UCL), the point at which dis­

comfort or pain is experienced. On average, a 100 dB difference separates these
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FREQUENCY IN HERTZ (Hz)
125 250 500 1000 2<MMI 4000 8000

750 1500 3000 6000

Fig. 1.9: Typical Audiogram - Mixed Hearing Loss ( Used with permission from the 
Audiology Awareness Campaign.)

(a) Healthy Hair Cells (b) Damaged Hair Cells

Fig. 1.10: Normal and Damaged Inner and Outer Hair Cells ( Top and bottom three 
rows in each image, respectively. From "The Biology of Hearing and Deafness”, (pg. 
21), by R. Harrison, 1998)



boundaries across the nominal frequency range of hearing. This arrangement facili­

tates what is known as normal perception of loudness growth. Figure 1.11 graphically 

illustrates this concept.

Fig. 1.11: Loudness Growth Curves (3) Length of arrows indicate level amplification 
required to restore normal loudness perception.

With normal loudness growth, a linear relationship between the perceived loudness 

and the actual sound intensity exists. However, a sensorineural hearing loss attributed 

to loss of OHC reduces the overall dynamic range, typically at higher frequencies. This 

alters the relationship between the perceived loudness and actual sound intensity as 

shown in Figure 1.11. The nonlinear relationship results from a psycho-acoustic 

phenomenon known as recruitment.

The most common form of intervention for hearing losses are hearing aids. They 

attempt to restore normal loudness growth using gain and amplitude compression in 

several sections or channels across the frequency range of importance. The arrows 

shown in Figure 1.11 indicate the amplification required to restore normal loudness 

growth.
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Modern multichannel, nonlinear hearing aids use complex digital signal processing 

algorithms to provide the features needed to restore normal loudness growth. Because 

of algorithm complexity, and the need to keep hearing aids compact in size, digital 

circuitry is commonly used.

The next section of this chapter will provide a brief overview of digital hearing 

aids.

1.2 Digital Hearing Aids

Unlike analog and digitally-programmable analog hearing aids (both referred to 

as analog devices from herein), full digital hearing aids allow more effective and effi­

cient implementation of complex digital signal processing (DSP) algorithms yet allow 

hearing aid size to be kept small with minimal power consumption (7). DSP-based 

hearing aids readily scale traditional methods of analog signal processing, including 

amplification, frequency response shaping, compression in two or three bands, and 

output limiting. Many of today’s digital hearing aids are referred to as “intelligent” 

devices, independently managing the processing features of the hearing aid.

1.2.1 General Structure

Figure 1.12 shows a generic block diagram of a digital hearing aid.

As noted by (7), the processing path through the hearing aid extends from the 

microphone to the receiver, while the upper three blocks, Clock, Logic, and Memory 

items are auxiliary control functions. For completeness, a brief description of each 

functional block shown in Figure 1.12 follows.

Microphone - Converts acoustical sound energy into an analog electrical signal.

Preamplifier - In order to improve the working signal-to-noise ratio, amplification 

is applied. Ranging anywhere from 10 to 30 dB, amplification is used to offset
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Fig. 1.12: Generic block diagram of digital signal processing hearing aid (7)

the perception of internally generated noise from the hearing aid. Compression 

may also be applied to control transient inputs and saturation.

A /D  Converter - Of all the functional blocks, this one is the most critical. The 

analog-to-digital converter is responsible for converting the amplified analog 

signal from the microphone into an equivalent digital representation. The most 

common type of converter is the sigma-delta converter.

Digital Signal Processor - This block implements the complex speech processing 

algorithms. These include: filtering, gain, compression, and noise reduction.

D /A  Converter - The final digital representation of the processed signal is con­

verted back into an equivalent analog form. The D /A  converter and Class D 

output amplifier, as denoted by the outlined box, can be removed allowing the 

processed signal to enter directly into the output driver transistors. This is 

done to minimize the introduction of additional noise components associated 

with these elements.

Output Driver Transistors - This is the final stage that drives the receiver with 

the processed, analog electrical signal.
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Receiver - Converts the amplified and processed electrical signal into its equivalent 

audible, acoustical sound pressure.

Three auxiliary control blocks, common to digitally programmable hearing aids, 

include,

Clock - The clock generates a series of periodic timing pulses used to step the digital 

signal processor through the algorithm instruction set. It also forms the basis 

of control for all the digital logic of the device.

Logic - It performs a set of functions controlling sequences of operations within 

the hearing aid that facilitate necessary function (i.e. communicate with the 

programmer, route data into and out of the process and memory, etc.).

Memory - Provides storage of the processing algorithm and other instructions that 

instruct the digital signal processing block how to process the incoming sig­

nal. There are typically two types of RAM, volatile memory and non-volatile 

memory. Temporary processing data is stored in volatile memory. The speech 

processing algorithms and other critical data is stored in non-volatile memory.

1.2.2 Bands and Channels

Two processing concepts important for the restoration of normal loudness growth 

due to a sensorineural hearing loss are bands and channels. Figure 1.13 shows the 

relationship between these two elements.

A band refers to a frequency range in which a gain adjustment can be made. 

Splitting the working frequency range into several independent processing regions 

allows more precise gain adjustments to be made. Implementation of these frequency 

bands depends on a manufacturer’s rationale and the bands may be uniform, one-third 

octave, or some other variation.
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lows vims mens

1 2 3 4 5 6 7 8  9 10
Band Number

Fig. 1.13: Relationship between Bands and Channels Frequency increases from left to 
right. (7)

A channel refers to a collection of consecutive frequency bands to which the same 

type of signal processing is applied. The number of channels can be equal to or less 

than the number of frequency bands. As shown in Figure 1.13, for the ten bands, 

there are three processing channels. Bands 1, 2, 3, and 4 are associated with a “low- 

frequency” processing channel; bands 5, 6, and 7 with a ” mid-frequency” channel; 

and bands 8, 9, and 10 are associated with a ” high-frequency” channel.

As already noted, how the working frequency range is divided into bands and how 

these resulting bands are grouped into channels depends on a given manufacturer’s 

philosophy. Regardless of the final working arrangement between these structures, 

they serve to attempt to restore normal loudness growth to individuals with mild-to- 

moderate sensorineural hearing losses.

1.3 Compression

As discussed by (8) and (9), a common observation of individuals with sen­

sorineural hearing losses is the recruitment phenomenon or the occurrence of a steeper- 

than-normal loudness growth function across frequency, together with an elevated 

absolute upper threshold known as the upper comfort level (UCL). In an attempt
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to restore a normal loudness growth function, hearing aids use nonlinear compressor 

circuits. Compressors provide higher gain for softer sounds than for louder sounds. 

Because of the frequency dependence of this loudness growth, as noted earlier, it is 

necessary to have several independent channels of compression.

This chapter provides a basic definition of compression, its working parameters, 

and a brief summary of the philosophies behind its various forms of implementation.

1.3.1 Compression

Amplitude compression, in essence, is a nonlinear transfer function used to re­

duce the dynamic range of a signal. Unlike a linear transfer function, which applies 

a constant amount of gain regardless of input level, compression provides varying 

amounts of gain that is dependent on the input level of the applied signal. Figure 

1.14.A illustrates a basic input-output (I/O) curve illustrating this concept.

Fig. 1.14: A.) A Simple Static Input-Output Curve, B.) Associated Gain Curve (10)

Figure 1.14.A shows three distinct linear regions; each region has a different level 

of gain. The degree of gain as a function of input level can also be graphed as shown 

in Figure 1.14.B. For input levels up to 60 dB SPL, 30 dB of gain is applied. Once 

the input level is above 60 dB SPL, the amount of gain decreases with input, which
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is a fundamental property of compression. Further input level increases beyond 90 

dB SPL result in a further decrease in gain.

1.3.2 Compression Characteristics

Compression characteristics can be controlled by parameters that can be classified 

into two broad categories: static parameters and dynamic parameters.

1.3.2.1 Static Parameters

Compression Threshold (CT) - Represents the lowest input sound pressure at 

which the hearing aid begins to reduce its gain. In Figure 1.14.A this value is 

60 dB SPL. The compression threshold is also referred to as the compression 

knee-point (TK).

Compression Ratio (CR) - Represents the ratio of change in input level to the 

corresponding change in output level. In Figure 1.14.A, the change in input is 

30 dB SPL with a corresponding 15 dB SPL change in output, yielding a ratio 

of 2:1.

Compression Range - The range of input SPL values over which compression is 

actively applied.

1.3.2.2 Dynamic Parameters

Compression circuits operate through the use of feedback loops and, as a result, 

time constants determine the effective rate of application of gain reduction and gain 

reduction removal. The two important values here are the attack time and the release 

time.

Attack Time (AT) - As defined by the ANSI S3.22 (2003) standard, attack time 

is the time required for hearing aid compression to change from linear gain to
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within 3 dB of the final, compressed steady state after applying a calibrated 

signal.

Release Time (RT) - As defined by the ANSI S3.22 (2003) standard, release time 

is the time required for hearing aid compression to change from the compressed 

steady-state to within 4 dB of the linear steady-state after the application of a 

calibrated signal.

1.3.3 Application and Efficacy of Compression

Choosing the working parameters to achieve different results can alter compression 

behaviour. In this section three key applications will be briefly discussed, relative to 

the characteristics of linear gain. One or two brief notes on respective efficacy will be 

made where appropriate.

1.3.3.1 Linear Gain

As noted earlier, linear gain refers to the application of the same amount of gain 

across a range of inputs. Applying gain in this manner preserves the relative intensity 

differences of the input signal, retaining important speech cues for patients with more 

than a moderate degree of hearing loss (11)(12). In order to control the level of gain, 

a volume control on the hearing aid can be adjusted.

A critical problem associated with the use of linear gain occurs for high-input 

level sounds (>  70 dB SPL). With moderate to high levels of gain, sounds may be 

uncomfortably loud. This is often addressed by peak clipping the resulting sound. 

This affects speech sound quality and intelligibility because of high distortion levels.

1.3.3.2 Compression Limiting

Compression limiting (CL) is an approach used to limit hearing aid output without 

creating distortion such as peak clipping. CL is characterized by a moderately high
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compression threshold (>  70 dB SPL), a high compression ratio (> 8:1), and a short 

attack time (< 10 ms).

A linear hearing aid with CL provides the same fixed gain up to a relative high 

level beyond which gain is drastically reduced due to the high compression ratio. This 

action prevents loud sounds from becoming too loud and saturation of the hearing 

aid. As noted by (8), compression limiting is preferable over peak clipping and is 

likely because distortion is minimized, with the temporal and spectral integrity of the 

signal being maintained most of the time (13).

1.3.3.3 Wide Dynamic Range Compression (W DRC)

Wide dynamic range compression (WDRC) is used to ensure audibility and com­

fort without the continual need for volume control adjustment. WDRC is character­

ized by a low compression threshold (< 60 dB SPL), a low compression ratio (<  4:1), 

and a short attack (< 10 ms) and release time (<  50 ms).

Hearing aids implementing WDRC typically provide more gain than linear hearing 

aids for soft sounds, ensuring soft sounds are heard. With a lower threshold (less 

than 60 dB SPL) and a low compression ratio (less than 4:1), risk of saturation is 

minimized, but still possible. As noted by (10), the choice of attack time and release 

time on a WDRC hearing aid is critical. Physiological data of the outer hair cell 

functions and basilar membrane suggest a very fast, active compression mechanism 

in the healthy cochlea (14).

Dillon’s literature survey (15) concluded that WDRC improved speech recognition 

in quiet conditions over a linear hearing aid at a low input level and when subjects 

were not allowed to adjust the volume control on the hearing aids.

1.3.3.4 Automatic Volume Control (AVC)

Automatic volume control is characterized by moderate compression thresholds 

(between 65 and 75 dB SPL), low to moderate compression ratios (4-6:1), long attack
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(>  20 ms.) and release (>  1 second) times. The working parameters for AVC are very 

similar to those of WDRC. The primary difference is the longer attack and release 

times.

Providing more gain to soft sounds and less gain to loud sounds with longer 

time constants results in reduction of intensity contrasts in the speech signal. These 

contrasts are referred to as smearing artefacts.

1.4 Hearing Aid Performance Verification

Verification of hearing aid performance can be done at one of several different 

levels. Prom the manufacturers who design and fabricate hearing aids, to the au­

diologists and hearing-aid practitioners who select and fit them, the need to assess 

and ensure correct operation is important to each of these groups of professionals for 

different reasons. The ultimate goal is to determine whether the device is of benefit 

to the patient in terms of speech intelligibility and quality.

The current document (16) on hearing aid verification techniques is the American 

National Standards Institute (ANSI) standard, “Specification of Hearing Aid Char­

a c te r is t ic s commonly referred to by its abbreviation, ANSI S3.22 (2003)(17). This 

standard is used as a tool for assessing hearing instrument functionality and consists 

of a number of well defined tests, promoting the following,

• A common set of definitions and tests allowing comparisons throughout the 

hearing aid industry, thereby providing a standard for performance measure­

ment.

• Policing of manufacturer’s products to ensure specifications are met, thereby 

regulating the hearing aid manufacturing industry.

The last point helps create an initial understanding of how ANSI S3.22 (17) aids 

the professional groups mentioned earlier. To further clarify the standard’s intended
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scope, two noteworthy limitations are,

• The primary test signals are pure tones and broadband noise. As noted by (16), 

these are not representative of what hearing aids are expected to amplify.

• A growing disparity between what the standard is able to properly characterize 

and continued introduction of new processing technologies.

The ANSI S3.22 standard provides very little information on how hearing aid 

processing affects the intelligibility and quality of more important complex acoustical 

signals like speech. Researchers are beginning to examine the potential for evaluating 

hearing aids using more complex stimuli in predicting benefits to speech intelligibility 

and quality.

1.5 Objective Speech Quality Measures

Beyond ANSI S3.22 (2003), several objective quality measures hold significant 

potential to aid further understanding and support verification procedures in predict­

ing how complex signal processing affects intelligibility and quality of speech. These 

measures include,

• Speech Intelligibility Index

• Coherence Measures

• Perceptual Evaluation of Speech Quality

1.5.1 Speech Intelligibility Index

The Speech Intelligibility Index (SII) (ANSI S3.5, 1997) defines a method for 

computing a physical measure that is highly correlated with the intelligibility of speech 

as evaluated by subjective speech perception tests.
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1.5.2 Coherence Measures

Several coherence measures (18) (19) (20) (21) are frequency-domain measures of 

the degree to which the output of a system is linearly related to its input.

1.5.3 PESQ Mean Opinion Score

The Perceptual Evaluation of Speech Quality (PESQ) (22) is an objective method 

for assessing end-to-end speech quality of narrow-band telephone networks and speech 

Coders-Decoders (CODECS).

The field of telecommunications has made several significant contributions to the 

topic of objective speech quality measures. These measures have been traditionally 

applied to communication systems assessment and, under certain conditions, they 

exhibit good correlation with respective assessments of subjective speech quality (23). 

Due to innumerable types of distortion and the psycho-acoustic complexities of the 

hearing process, no one objective measure is all encompassing in its ability to predict 

subjective speech quality. Despite limitations, objective measures may hold promise in 

assessing speech quality of hearing aids (24). One approach, which has had significant 

consideration in our research group, is the Perceptual Evaluation of Speech Quality 

(PESQ) (22).

As noted by (23), research was undertaken in order find objective fidelity measures 

which were both highly correlated with subjective measures over all possible distor­

tions and compactly computable. This was accomplished by following the flowchart 

shown in 1.15.

(23) summarizes the critical relationship between the hearing process and types 

of distortion that make determination of a single, all encompassing objective measure 

difficult to find,

Although the speech perception process is poorly understood, it is appar­
ent that the human listener is an active perceiver, responding to prag­
matic, semantic, prosodic, syntactic, and talker related information as
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Fig. 1.15: Objective Measures Analysis (23)
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well as to phonemic content. In short, he uses his vast knowledge of the 
language in the speech perception process. The acoustic correlates of the 
various hierarchically structured elements of the language in the speech 
signal are simultaneously overlapping and redundant. This means that 
certain very small distortions or the semantic content could cause com­
plete loss of intelligibility, while other more extensive distortions might 
hardly be perceivable. Hence, it can be argued that objective fidelity 
measures that do not use high level or language related information could 
never accurately predict the quality of speech over a wide ensemble of 
coding systems.

Despite such limitations, objective measures have shown promise in estimating 

subjective measures of speech quality. In (24), the researchers applied time and 

frequency measuring normalizing blocks (MNBs) to objectively assess hearing aid 

processed speech. MNBs model human judgement of speech quality by employing 

temporal and spectral transformations of the applied speech. It was found that these 

measures correlated highly with subjective measures undertaken by the researchers.

One measure, which has been actively considered by our research group, is the 

Perceptual Evaluation of Speech Quality (PESQ) (22) measure. This is an objective 

method for assessing the end-to-end speech quality of narrow-band telephone networks 

and speech CODECS. Like the measuring normalizing blocks, it also uses a cognitive 

model to assess speech quality. 1.16 illustrates a high-level overview of how the PESQ 

measure is applied.

In the upper half of 1.16, a human subject assesses the quality of the degraded 

speech signal in order to provide a subjective interpretation of the overall quality 

of the processed speech signal. A computer model of the subject, consisting of a 

perceptual and a cognitive model, is used to compare the degraded output of the 

device under test with its respective input. These two assessments are compared to 

render a degree of correlation between the estimates.

The lower half of 1.16 provides additional high-level implementation details of the 

model. The three functional blocks provide the following functionality,
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• Perceptual Model - As noted in (22), this involves a transformation of both the 

original and degraded signals to an internal representation that is analogous 

to the psychophysical representation of audio signals in the human auditory 

system, taking into account perceptual frequency (Bark) and loudness (Sone).

• Time Alignment - The perceptual model is susceptible to time offsets between 

the original and degraded signals. Time alignment is used to mitigate these 

negative impacts.

• Cognitive Model - The cognitive model is responsible for assigning an appro­

priate objective measure based on the internal differences of the original and 

degraded signals. It does so by considering several factors, which include: loud­

ness scaling, internal cognitive noise, asymmetry processing, and silent interval 

processing (the reader is referred to (25) for further details on this topic).

The output of PESQ is a prediction of the perceived quality that would be given 

to the degraded signal by subjects in a subjective listening test.

Advances in technology, with respect to processing techniques and smaller form- 

factors, will introduce greater levels of distortion and noise in hearing aid processed 

speech; reducing intelligibility and quality of the resulting amplified speech. Objective 

measures of sound quality are of primary importance due to the negative impact of 

distortion on speech quality [KaKo94, Kuk96].

Objective measures like these are helping to further the understanding of how 

hearing aids alter the intelligibility and quality of speech. Like the ANSI S3.22 stan­

dard, however, they have limitations.

In order to apply the aforementioned objective measures, hearing aid behaviour 

must be modeled using a system identification approach. This allows hearing aids to 

be tested using real-world signals such as speech and music, and direct comparisons 

between hearing aids based on the respective objective measure (24), (26).
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Fig. 1.16: PESQ Overview (22)
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1.6 System Identification

Previous studies with analog hearing aids have shown that the speech quality 

metrics derived using a system identification approach correlated well with perceptual 

judgements of speech quality, both by normal and hearing-impaired listeners (24).

In this method, the hearing aid is modeled as a linear time-varying system and 

its response to speech and music stimuli is predicted by using a linear adaptive filter. 

The key to this technique is that the error residual of the linear model is mainly 

composed of distortion and noise components of the hearing aid being tested.

The relative level of distortion and noise can be quantified using a simple metric 

such as a signal-to-error ratio (SER) or by a more sophisticated metric like the Per­

ceptual Evaluation of Speech Quality objective measure.

1.7 Motivation and Objectives

The central contribution of this thesis is the application and validation of the 

system identification approach (24) for modern digital hearing aids, a majority of 

which employ multi-channel compression among other advanced signal processing 

features.

This thesis contributes to existing research in this field in several other important 

ways, including,

• Showing that subband adaptive modeling can be effectively used to characterize 

modern digital hearing aid responses to complex stimuli like speech.

• Validating the need to have the working number of analysis filter bank bands 

equal to or larger than the number of compression channels in the hearing aid 

being testing.

• Further investigation of adaptive filtering to model nonlinear hearing aid be­

haviour.
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• Ensure stochastic-gradient and least-squares based algorithms, which are used 

to update adaptive filter coefficients, perform adequately in learning and track­

ing the statistical nature of the processed speech signals.

• Application of the Perceptual Evaluation of Speech Quality (PESQ) mean- 

opinion score to validate modeling performance. This serves to help address a 

critical lack of objective hearing aid testing procedures that use natural acousti­

cal stimuli to capture the processing abilities of current digital hearing aids.

• Selection of hearing aid pre-screening based on individual hearing loss.

• Holding potential to develop test procedures that use complex acoustical stim­

uli found in everyday hearing situations to supplement the set of standardized 

(ANSI S3.22) testing procedure used for quality control and hearing aid perfor­

mance verification.

• Extending the existing testing methods used to extract the processing architec­

ture of a hearing aid.

1.8 Thesis Contents

With the necessary background, motivation, and objectives of this research out­

lined, the remainder of this thesis is structured as follows.

Chapter 2 contains an introduction and detailed discussion of the subband adap­

tive model. This includes the rationale supporting a subband approach as well as 

details on the adaptive algorithms considered. This chapter concludes with an analy­

sis of the tracking behaviour of these algorithms.

Chapter 3 presents details of the simulated hearing aid used to investigate the 

potential application of a subband model to characterize modern digital hearing aids. 

Modeling results for simulated hearing aids with four and eight channels of active
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compression are presented. This chapter concludes with a description and initial 

results of an experimental procedure developed by (27) to determine the hearing aid 

processing architecture.

Chapter 4 describes the test methodology. This chapter describes the procedure 

used to program the digital hearing aids and how hearing aid responses to speech 

stimuli are captured and modeled. Also, the quality measures used to characterize 

modeling performance are described.

Chapter 5 contains modeling results for five digital hearing aids considered in this 

research. Results of modeling performance are presented with a discussion of the 

limitations associated with the three adaptive algorithms.

This thesis concludes with Chapter 6 with comments on the subband modeling ap­

proach and a discussion of its limitations. Items for future consideration and possible 

development are noted.
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Chapter 2

Subband Adaptive Modeling

2.1 Introduction

System modeling or identification is one of several key applications of adaptive 

filter theory. With their richer theoretical treatment, linear models have been pre­

dominately used in this area (28), but other, relatively newer historically, approaches 

are also relevant. The underlying problem of system modeling is one of choosing that 

particular model structure that provides an adequate description of the system for 

the intended purpose without being excessively complicated. This latter property is 

referred to as the principle of parsimony.

As noted by Niedzwiecki (29), modeling is based on process identification and 

the form of the resulting model is, to a certain degree, arbitrary and its coefficients 

are determined experimentally using statistical procedures similar to curve fitting. 

These models are not phenomenologically justified and therefore their coefficients 

have no physical significance. However, this approach has several practical advan­

tages. They are easy to build and update without the need for physical insights and, 

more importantly, due to their relative simplicity they allow mathematically tractable 

formulations and solutions for many important problems.

The focus of this research is on validating the application of linear adaptive filter-
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ing applied in subband architectures to model compression characteristics associated 

with today’s current market digital hearing aids. In addition, it is desirable to confirm 

the postulate that the subband adaptive model must have an equal or greater number 

of analysis bands than the number of channels in which compression is applied in the 

hearing aid.

With these goals firmly in mind, the following sections will cover the concepts 

of system modeling or identification, a full band model, and an extension of the full 

band model to a subband model. In addition, the adaptive algorithms used to update 

the tap weights or coefficients will be presented in detail.

2.2 Adaptive Modeling of Hearing Aids

2.2.1 System Modeling

Fig. 2.1 illustrates how linear adaptive filter theory is applied to model or identify 

a complex process or system.

Fig. 2.1: System Identification Block Diagram (1)

For this case, an input sequence, x(n), is fed into the “unknown” system or hearing 

aid, h[n], to be identified or modeled, and the adaptive filter, Wn(z). The adaptive 

filter produces an estimate, d[n], of the hearing aid response, d[n], or the desired
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sequence in the presence of a disturbance, v(n). This estimate is subtracted from the 

desired response of the hearing aid to determine the error in the estimate, e[n]. An 

appropriate adaptive filtering algorithm updates the coefficients of the adaptive filter, 

Wn(z).

Adaptive filters typically use stochastic or non-deterministic input and desired 

sequences. Since no a-priori knowledge is assumed regarding these sequences, the 

adaptive filter uses estimates of their statistical properties to minimize a cost or 

performance function, typically the power of the error residual signal as this is a 

mathematically tractable function and has a single local minimum. The minimization 

will occur when the adaptive filter characterizes the “unknown” system to the best 

of its abilities.

Modeling the non-linear compression behavior of a digital hearing aid by the 

application of a linear, time-varying adaptive filter allows the degree of distortion 

and noise inherent in the aid’s processing to be quantitatively measured. This is the 

fundamental postulate of the modeling approach (30): that the model’s residual error 

is composed primarily of distortion and noise components of the hearing aid under 

test.

The effectiveness of the system identification approach in quantifying hearing aid 

distortion and noise depends on three important items. These are,

Adaptive Model Structure - This refers to the digital filtering structure employed 

for modeling. Finite-impulse response (FIR) and infinite-impulse response (HR) 

filters, in addition to Lattice filters, can be considered.

Parameter Estimation Algorithm - This refers to one of several, standard algo­

rithms used to update the tap-weights or coefficients of the model structure.

Quality Metric - This refers to a measure that quantifies the amount of hearing 

aid distortion and noise. There are several well-known measures, for example, 

the Perceptual Evaluation of Speech Quality (PESQ) mean-opinion score. See
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(23) for a comprehensive treatment.

The next section describes a full band model based on the finite-impulse response 

(FIR) structure.

2.2.2 Full Band Modeling

Finite-impulse response, or non-recursive, filters are routinely used in adaptive 

modeling applications. Fig. 2.2 shows a direct-form finite-impulse response (FIR) 

adaptive filter.

*(«)

{p)f . ' f  d(n)

------c
din)

Fig. 2.2: A Direct-form FIR Adaptive Filter (31)

The filter’s estimate, d(n), of the desired sequence, d(n), from an input signal, 

x(n), is a weighted sum of delayed samples from the input signal. This can be 

written as,

p
d(n) =  ^  wn(k)x(n — k) =  w^x(n) (2.1)

k=0
where p is the number of weights or filter length.

As indicated earlier, x(n) and d(n) are not deterministic, having time-varying 

statistical properties.
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The objective is to find the coefficient vector, wn, at time index n, which minimizes 

the variance of the mean-square error of the error residual, e(n). This can be expressed 

using the statistical expectation operator in the following way,

t(n) =  E  {\e(nf\} (2.2)

where the error residual is,

e{n) — d(n) — d(n) — d(n) — w^x(n) (2.3)

As noted by (31), the solution to this minimization problem is found by setting 

the derivative of the mean-square error variance with respect to u>* equal to zero for 

k =  0 ,1 ,.. .  ,p. The result of this is,

E {e(n)x*(n — &)} =  0, for k =  0 ,1 ,.. .  ,p. (2-4)

This result indicates that the error residual and the tap-inputs at time index n 

are not correlated. No further adjustment to filter coefficients will extract additional 

information from the input sequence, x(n), in the estimate of the desired sequence, 

d(n).

Further rearrangement of the above equation results in a set of p +  1 unknowns. 

This can be expressed as,

v
wn{l)E {x{n — l)x*(n — &)} =  E {d(n)x*(n — k)}  , for k =  0 ,1 ,.. .  ,p. (2.5)

¿=o

This may also be expressed in vector form,

Rx(^)wn =  r dx(n) (2.6)

where R x is the auto-correlation matrix and r̂ x is the cross-correlation vector of 

the tap-input vector, x(n — /c), and the desired sequence, d{n).
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If the input, x(rc), and desired, d(n), sequences are jointly wide-sense stationary, 

a solution of w  =  wfl would exist, representing the optimal linear solution. This 

solution is independent of the time index and is commonly referred to as the Wiener- 

Hopf solution.

In cases where the input and desired sequences are not jointly wide-sense station­

ary, with statistical properties that vary with n, iterative approaches based on the 

Method of Steepest-Descent, Newton’s Method, and least-squares can be employed to 

estimate the filter’s coefficients. The adaptive algorithms used to estimate the filter’s 

coefficients will be discussed later in this chapter.

Dividing the working frequency range into smaller regions or bands can optimize 

this full band modeling approach further. The benefits of this approach include 

shorter computational time and lower modeling residual for a dynamic system over 

the full band approach. This method is described in the next section.

2.3 Subband Adaptive Filters

2.3.1 Introduction and Motivation

There are several benefits of using a full band modeling approach based on the 

finite-impulse response (FIR) adaptive filter. First, ensuring the full band model’s 

coefficients are bounded easily controls stability. Second, there are several efficient 

algorithms for the update of the coefficients. Third, the performance of these al­

gorithms, based on the mean-squared error cost or performance function, is well 

understood in terms of convergence and stability properties (31). However, attempts 

to apply this technique to complex systems requiring a large order model is plagued 

by slow convergence and large numbers of numerical computations. These limitations 

could be addressed using adaptive infinite-impulse response (IIR) structures. But un­

like the FIR-based adaptive filters, IIR approaches have several local minima rather
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than one global minimum for the solution of the filter coefficients.

Subband adaptive filters use FIR-based filtering structures to facilitate faster con­

vergence, reduced computational complexity, and stability. Furukawa (1984) and 

Kellermann (1984) introduced the concept of subband adaptive filtering, applying 

the technique in acoustic echo cancellation systems.

The premise behind subband adaptive filtering is the decomposition of the work­

ing frequency spectrum of the input and desired sequences into several segments, 

commonly referred to as subbands (1). This is accomplished by applying the in­

put and desired sequences to a designed filter bank. The resulting sets of sequences 

may be decimated to reduce the number of working samples, expanding each band’s 

filtered sequence across the full working spectrum. Standard adaptive filtering can 

than be applied in each subband before the final, full band output is reconstructed. 

If decimation operations are performed, a synthesis filter bank must be used on the 

adapted data to prevent aliasing. This approach facilitates parallel computation us­

ing smaller amounts of data. In addition, the number of coefficients for each adaptive 

filter can be smaller and processing data using a subband approach reduces the over­

all computation time. There are, however, limitations associated with this processing 

technique.

In general, the analysis and synthesis filters must satisfy certain conditions in order 

that the reconstructed full band signals have no, or at least insignificant distortion 

(11). In order to realize a reconstructed full band output signal with no distortion 

using subband adaptive filtering, the combined responses of the analysis and synthesis 

filters should be that of a strictly complementary (SC) filter bank (11). In essence, 

this implies that, if a sequence is split into several subband signals using SC analysis 

filters, the filter outputs can be added to get the original sequence with no distortion, 

just a delay (11). However, the use of analysis and synthesis filter banks not meeting 

the SC condition may also be used. In these cases, knowledge as to what distortions 

will occur due to aliasing should be kept in mind.
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The use of static filter structures for decomposition does not take into consid­

eration the time-varying dispersion of the spectral content of the sequences. For 

sequences with critical spectral characteristics, static and adaptive non-uniform filter 

structures have been investigated and applied by several researchers (32; 33; 34; 35).

2.3.2 General Structure

The general structure of the subband adaptive filter is shown in Fig. 2.3.

Fig. 2.3: Subband Adaptive Filter Structure (1)

The excitation sequence, x(n), is applied to the system to be modeled or identified, 

W0(z), and one of two analysis filter banks. The outputs of analysis filter bank ” B” 

form the set of reference sequences, x0{k) —* for respective adaptive filters,

W Q(z) —► W m - i(z). The output of the system, d(n), is applied to analysis filter bank
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” A” . The resulting set of sequences, dQ(k) —> d,M-i(k) form the desired sequences for 

the adaptive filters. The output of each adaptive filter, yQ —> yM_i(A:), is applied to 

the synthesis filter bank that adds the resulting filtered sequences into the final, full 

band output, y(n).

Several approaches exist for the design of the analysis and synthesis filter banks 

(11; 1). For the sake of completeness of this work, the computationally efficient, 

over-sampled Discrete Fourier Transform (DFT) filter bank is described next.

As detailed by (1), Fig. 2.4 illustrates the steps required to partition the input 

sequence, x(n), into M equally spaced subbands.

x ( n )

► x 0( k )

■+> x {( k )

►  * a/-i ( k )

Fig. 2.4: DFT Analysis Filter Bank (1)

A prototype low pass filter, H(z), applied to the input sequence, x(n), extracts 

the low frequency region of its spectrum. To extract other spectral segments of x(n), 

the desired spectral segment is shifted into the base-band region (centered around 

w =  0) by multiplying x{n) by a complex sinusoid. The low pass filter can then be 

applied to extract the desired portion of the spectrum. The number of bands, M, is 

arbitrary, determined by the application at hand. The resulting set of sequences can
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is no longer carried out. This case is called an over sampled system. The latter 

system is used in this research.

It should be noted that in the preceding discussion the assumption is made that 

the analysis and synthesis filter banks are uniform in nature, dividing the full band 

spectrum into M linearly spaced regions on a linear frequency axis. Also, the proto­

type low pass filters, H(z)  and G(z), are complementary, yielding a delayed output 

with no distortion.

2.3.3 Uniform and Non-uniform Filter Banks

Filter banks are a key element of subband adaptive filter structures, which can be 

classified into the two broad categories of uniform and non-uniform implementations. 

Their primary objective is to divide the working spectrum into several separate re­

gions or bands, ideally with no overlap between non-adjacent, and more importantly, 

between adjacent bands. Significant overlap may result in distortions to the processed 

signals due to aliasing artefacts and other contributions. Various design approaches 

offer a range of filtering specifications with associated implementation and compu­

tational costs. Quadrature Mirror Filters were one of the first filtering structures 

offering near ideal performance, but was limited to only two bands. More generalized 

approaches followed to facilitate several uniform bands, allowing more flexibility in 

their application. Less stringent design approaches followed, such as cosine-modulated 

filter banks, yet still offered acceptable performance within the frameworks of certain 

application.

The fundamental premise of filter banks is to divide a working spectrum into 

several separate bands. In doing so, the resulting sequences may be decimated and 

processed at a lower effective sampling frequency before interpolating and filtering to 

obtain the final signal. Fig. 2.6 illustrates this concept.
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Fig. 2.6: I th Band of M-Channel Analysis/Synthesis Filter Bank (1)

2.3.4 Quadrature Mirror Filters

Quadrature Mirror Filters (QMF’s), introduced in the mid-70s, were one of the 

first implementations of this general approach. This structure allowed a full band 

signal to be divided into two overlapping half-band signals. The properties of QMF 

filters allowed these two half-band signals to be decimated by a factor of two and still 

be reconstructed correctly later. This found significant use in speech coding appli­

cations (37). Fig. 2.7 illustrates a quadrature mirror filter bank and the frequency 

magnitude responses of the analysis filters.

Magni tude
response

(b)
> < " .

0 K (0

Fig. 2.7: (a) Quadrature Mirror Filter Bank, and (b) Frequency Magnitude Responses
( i i )

Careful consideration and design of the four filters, as shown by (38), allowed
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perfect reconstruction where the output was a scaled, delayed version of the input. 

As noted by (11), several authors made significant advances in techniques to generalize 

the subband splitting ideas for the M-channel QMF filter banks. Further research lead 

to the development of the cosine modulated filter bank (39; 40; 41; 42) that is used 

in this research.

Cosine modulated filter banks are a class of QMF banks in which all filters are 

derived from cosine-modulated versions of a single low-pass filter prototype. As noted 

by (11), the primary benefits of cosine modulated filter banks are,

• The computational cost of the analysis bank is equal to that of the low pass 

prototype filter design and modulation. Consequently, the synthesis filters have 

the same cost.

• Only the filter coefficients for the low pass prototype filter need to be optimized.

The design approach developed by (43) was used in our research in order to 

minimize the complexity of the design of the filter banks. This approach uses a 

Kaiser window method to design the low pass prototype filter. With this technique, 

the design is determined through a limited number of selectable parameters. The 

working parameters are the transition bandwidth, A lj, and the stop-band attenuation, 

As.

Fig. 2.8 illustrates the resulting prototype filter for a 4-band, uniform filter bank 

using a transition bandwidth of 0.07 radians/sample and a stop-band attenuation of 

100 dB.

The resulting full band distortion due to aliasing is shown in Fig. 2.9. Overall 

distortion levels are less than -110 dB, which is negligible for this application.

The application of the uniform cosine-modulated filter bank structure in our re­

search had several benefits. First, as previously noted in this section, this approach 

greatly simplifies the design of the analysis filter bank. This approach requires that 

the number of bands, degree of stop-band attenuation, and the transition bandwidth
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Prototype Filter Frequency Magnitude Characteristic, |P(e**)| (dB)

Fig. 2.8: Kaiscr-based Lowpass Prototype Filter (Au; = 0.07 radians/sample, As = 100 dB)

Aliasing Distortion (See Eq. (8.2.10) in [Va93]

Fig. 2.9: 4 Band Uniform Filter Bank Fullband Distortions
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be chosen by the designer, readily allowing fast implementation of filter structures 

with an arbitrary number of bands. The amount of distortion introduced due to 

adjacent band overlap is, for this application, acceptable. Secondly, decimation of 

resulting sequences from the analysis filter bank is not required. This approach is re­

ferred to as the over-sampling implementation and allows the adaptive filter outputs 

and error residual sequences to be summed directly to determine the full band equiv­

alent sequences. Not decimating simplifies implementation at the cost of additional 

computational time. This is not a concern at this point of the research, but obviously 

should be considered if this and future research warrants faster implementation.

As noted by (33), the spectral properties of the system to be modeled or identified 

are not exploited in uniform subband portioning. Spectral regions of the system to 

be modeled or identified, which may be stationary or slowly time varying, with small 

variation, will often be split over one or, very possibly, several bands. Regions with 

significant spectral variation would be better modeled with multiple filters acting on 

smaller bandwidths.

Several authors have investigated the application of non-uniform filter bank struc­

tures in order to improve modeling performance of uniform structures (32; 35; 34; 

33; 44; 45). One critical drawback of the application of uniform subband adaptive 

modeling to stationary and slowly non-stationary systems (with respect to the time 

constant of the model) is the increased mean-square modeling error (33). As noted by 

(34; 33), a full band model of a stationary system, a band-stop filter in this particular 

case, has a smaller mean-square error than both a uniform and non-uniform sub­

band adaptive model of the same system. The primary benefit in applying subband 

adaptive models is to reduce the time to characterize an unknown system.

The appropriate application of non-uniform filters reduces the modeling mean- 

square error compared to the uniform case, however, it does not reduce it to full 

band levels. This behaviour is attributable to the whitening of the adaptive filter 

input (1). As noted by (33), equalizing energy across a given subband decreases

47



the eigenvalue spread of the input covariance matrix, which in turn, decreases the 

effective mean-square error for the respective band.

With the concept of non-uniform filter banks in mind and the desire to model 

hearing aid performance, potential questions about the application of non-uniform 

filter banks that take into account the critical bands of the cochlea should be ad­

dressed. Two important, interrelated considerations need to be discussed in order 

to provide insight on this topic. First, hearing aid manufacturers choose to design 

and manufacture different filter bank structures. The Phonak Perseo 311 dAZ Forte, 

for example, uses a critical band structure while the Triano S has a uniform band 

structure. The Syncro V2 has a non-uniform band structure, however, it is not based 

on the critical bands of the cochlea. Because of this disparity, modeling with uniform 

bands that are easily adjusted to approximate the non-uniform structures appears to 

be the best approach. Second, characteristics of filter banks based on critical bands 

have significant overlap between non-adjacent bands in addition to adjacent bands 

(45). It is difficult to say at this point what potential impacts this would have on the 

modeling performance of the subband adaptive filter.

2.4 Adaptive Algorithms

In this section the adaptive algorithms used to update the filter tap-weights, or 

coefficients, of each finite-impulse response filter of the subband adaptive model are 

described in detail. The use of Hearing in Noise Test, or HINT, speech sequences 

(House Ear Institute of Los Angeles, CA, USA) to elicit a hearing aid response for 

the purpose of modeling captures the true nature of the function a hearing aid is 

designed to accomplish. However, complete knowledge of the underlying signal sta­

tistics of speech is difficult to model, let alone truly characterize. As a result, adaptive 

algorithms that learn and track the time-varying or stochastic properties of speech 

sequences must be applied.
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The adaptive algorithms considered in this research include the Normalized Least- 

Mean-Squares (NLMS) algorithm, the Affine Projection (APA) algorithm, and the 

Recursive Least-Squares (RLS) algorithm. Each algorithm has a unique approach 

to estimating the instantaneous statistical measures required to compute an optimal 

linear least-mean squares estimate of the filter coefficients. As a result, each ap­

proach has an associated level of computational complexity. Several good references 

indicating each algorithm’s degree of computational complexity exist (46; 1; 47).

These algorithms exhibit two critical behaviours that allow them to be applied 

to this application. As noted by (1), a learning mechanism allows each method 

the ability to estimate the necessary signal statistics of the applied sequences and a 

tracking mechanism to track these statistics with time.

2.4.1 Normalized Least-Mean-Squares (e-NLMS)

The normalized least-mean-squares algorithm considered in this thesis is an exten­

sion of a regularized form of the steepest-desccnt approach called Newton’s recursion 

(46). With reference to Fig.2.2, the direct-form FIR adaptive filter described pre­

viously in this chapter, with constant regularization and step-size terms, Newton’s 

recursion may be expressed in the following form,

Wi =  W i - i  +  n  [el +  R x p 1 [r̂ x -  R ^ - i ]  (2.7)

where Wi is the tap-weight vector at time index z, Wi-i is the tap-weight vector 

at time index i — 1, \i is the step-size parameter, e is the regularization factor, R x is 

the auto-correlation matrix of the tap-input vector, and is the cross-correlation 

vector between the tap-input vector, x(n  — &), and the desired sequence, d(n).

Instantaneous approximations for the (£l-f-Rx) and ( r ^ - R x ^ - i )  terms may be 

substituted,
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s i  +  Rx —■> s i  +  x*Xi

*dx ~  -*  X* [d(i) -  XiWi-i] (2.8)

With the resulting equation being,

= Wi-1 +  \x [el +  x*x/] 1 x* [d(z) -  XiWi-1] (2.9)

This recursive equation is an indexed update for the tap-weight vector using in­

stantaneous approximations for the auto-covariance matrix of the filter input sequence 

and cross-covariance between the filter input and the desired sequence (46).

In this form, the inversion of the matrix (el +  x*x/), is to be computed at every 

single iteration. The length of the finite-impulse response filter-input vector, x̂ , also 

referred to as the regressor vector due to the least mean-square basis, determines the 

order of the matrix. It follows that using a higher order filter results in a larger matrix 

to be inverted which is more computationally expensive. The necessary inversion can 

be simplified by taking advantage of the fact that £l +  x*x* is a rank-one modification 

of a multiple of the identity matrix.

Applying the matrix inverse lemma (47) we arrive at,

( 2. 10)

Multiplying this equation by x* from the right we have,

2

(2 .11)
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Substituting this result into Eq. 2.9 above finalizes the derivation of the regular­

ized, normalized least-mean squares recursion formula,

Wi W i - l  + -x* [(d{i) — XiWi-i] with i >  0
£+\\Xi\\^1 L“ VV ~ ™ J ......... (2‘12)

Due to the use of regularization, the above equation will be referred to as the 

regularized, normalized least-mean square(e:-NLMS) algorithm.

The primary working parameter for this algorithm is the step-size, , which is 

selected from the range 0 < [i <  2 (46; 47; 31). The regularization parameter, s, is a 

small, positive constant and was set to 0.001.

An inherent attribute of speech sequences is the significant variation in signal 

level that occurs over time. As a result, the use of any adaptive algorithm that 

uses an estimate of the power in the updating of the tap-weights or coefficients is 

susceptible to gradient noise. The Least-Mean-Square (LMS) algorithm is a first 

order approximation using an instantaneous statistical estimate and is prone to this 

limitation. NLMS solves this problem by normalizing the step-size parameter by the 

power of the instantaneous input vector as shown in Eq. 2.12.

2.4.2 Affine Projection Algorithm ( s-APA)

The affine projection algorithm is a generalization of the normalized least-mean 

squares (NLMS) algorithm (46; 48). Like the NLMS algorithm, the affine projection 

algorithm uses an instantaneous estimate for both the covariance matrix, R^, and 

the cross-covariance vector, !■<&.. However, the affine projection algorithm uses an 

estimate of greater complexity, which is more computationally expensive.

Like the NLMS algorithm, the affine projection algorithm can be derived from the 

steepest-descent, Newton’s recursion equation (46). This will be the starting point 

for the derivation presented here and will follow the steps as outlined in (46).

Newton’s recursion equation, with a fixed step-size, //, and regularization constant,
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£, is expressed as,

î/̂ 2 — Wi—i 4“ [s I “h R#] [̂ *dx Ræ^i—l] (2.13)

A positive integer, AT, is selected that is less than or equal to the number of 

tap-weights or filter coefficients, M, and the estimates for the covariance matrix and 

cross-covariance vector are replaced with the following instantaneous approximations,

Rr = K E
Kj=i-K+1

X j X j

rdx K \j=i-K+1

(2.14)

(2.15)

These equations indicate that at each iteration, i, the K  most recent regressors 

or set of tap-inputs and the K  most recent desired values or observations,

{Xi, £ ¿ -1 ,..., Xi-K+1} , {d(i), d(i -  1 d ( i -  K  +  1)} (2.16)

are used to determine the estimates for the auto-covariance matrix, R x, and the 

cross-covariance vector, r x̂.

Vector notation can be used to reduce the complexity of the above summations. 

Letting e =  s'/K , the K  x M  block data matrix may be introduced,

Xi =

and the K  x 1 data vector,

dì —

Xi

Xi-1 

Xi-K+1

d{i)

d(i — 1) 

d(i -  K  +  1)

(K  x M )

( K x  1)
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yielding the following compact forms for each respective estimate,

R* =  ± x ; X i  (2.17)

r dx =  j f X f r  (2.18)

With these compact forms, Newton’s recursion takes the following form,

Wi =  Wi—\ +  n (el +  X fX i ) -1 X* [di -  XiWilx] (2.19)

At this point, not unlike with the derivation of the e —N LM S  algorithm, the affine 

projection algorithm necessitates the inversion of a M x M  matrix, (el +  X*Xi) at 

each iteration.

As noted by (46), the matrix inversion lemma may be applied in the following 

manner,

{el +  X 'X i ) -1 X* =  X* (el +  X^X*)-1 (2.20)

and the resulting equation becomes,

Wi =  Wi. ! +  fix*  (el +  X iX * )-1 [di -  X m -x l  (2.21)

This is the affine projection algorithm and, in this form, requires the inversion of 

the usually smaller K  x K  matrix at each iteration.

Like the e — NLM S  algorithm, the affine projection algorithm depends on the 

step-size parameter in addition to the projection order, K. The step-size is typically 

selected from the working range of 0 < [i <  1, while the projection order is less than 

the order of the filter (i.e. K  <  M ). The offset for the input-signal covariance matrix, 

£, was set to 0.0001.
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2.4.3 Recursive Least Squares

The third adaptive algorithm considered is the recursive least-squares algorithm. 

Like the affine projection and normalized least-mean-squares algorithms, the recur­

sive least-squares algorithm is derived from the steepest-descent, Newton’s recursion 

equation (46). This will be the starting point for the derivation presented here and 

will follow the steps as outlined in (46).

The regularized form of Newton’s recursion is as follows,

Wi =  +  fi(i) [e(i)I +  Rz]-1 [r<fc -  R x ^ -i]  (2.22)

with the last term being replaced by its equivalent instantaneous approximation,

Wi =  i +  [e(z)I +  Rr]” 1 x* [di -  XiWi-i] (2.23)

The next step is to replace the estimate of the auto-covariance matrix of the filter 

input or reference signal by the exponentially weighted sample average,

1 _ P
R x =  ------ Al~^x*Xi, where 0 < A <  1 (2.24)

* +  1 j=o
A is called the forgetting-factor. When A is set to unity, the above equation 

computes the average outer-product of all tap-input vectors up to time index, i. 

Selecting a value for A that is less than unity introduces a finite memory behaviour 

into this estimation. This relationship is depicted in Fig. 2.10.

As illustrated in Fig. 2.10, small forgetting-factor values places more emphasis on 

recent regressor values than on past values. It is intuitive to suggest that use of a 

small forgetting-factor is better for non-stationary sequences like speech.

Continuing further with the derivation, the step-size is chosen from,

A*(0  =  P r  (2-25)i +  1
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Fig. 2.10: Memory Characteristic of the RLS Algorithm

and the regularization factor is chosen as,

e(i) =  Ai+1— > 0 (2.26)

From Eq. 2.26, it is clear that the regularization factor disappears as time, i, 

progresses.

With the above modifications and approximations, the regularized Newton’s re­

cursion equation becomes,

-1 - l
Wi =  Wi. + V 2-t-l

^ i + E A
j = 0

l ~3 x{ Xi x* [d{i) -  X iW i- (2.27)

As noted by (46), this recursion is not convenient because it requires all previous 

and present data be combined in the matrix form,

=  ^Ai+1el +  ^ 2  J (2-28)

and then inverted. However, the above definition of <E>* satisfies the general recur-

sion,
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=  \ $ i - i  +  x*Xi , $_1 =  el (2.29)

Letting Pi =  1 and applying the matrix inversion lemma to the above equation

yields,

(2.30)

This recursion requires only knowledge of the current regressor vector. In this 

form, the recursive least-squares algorithm only needs access to a subset of data, 

{u;i_i,d(z),Xi,Pi_i}, in order to determine {u^P*}.

The working parameter for the recursive least-squares algorithm is the forgetting- 

factor, which is taken from the range 0 <  A <  1.

2.4.4 QRD Recursive Least-Squares (QRD-RLS)

Unlike the standard RLS algorithm, the QR decomposition-based RLS algorithm 

works directly with the incoming data matrix via a QR decomposition rather than a 

time-average correlation matrix of the input data (47).

Despite this different computational approach, the QR-RLS algorithm retains the 

key traits of the standard RLS algorithm as noted in (47),

... all three QR-RLS algorithms preserve the desirable convergence properties 
of the standard RLS algorithm, namely, a fast rate of convergence and in­
sensitivity in the eigenvalue spread of the correlation matrix of incoming 
data.

The reader is referred to (47) for the details of this algorithm.

2.5 Tracking Behaviour of Adaptive Algorithms

The ability of an adaptive filter to follow the statistical variations of an unknown 

system is characterized by its tracking behaviour. Most of the current literature on
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this topic (46; 29; 1; 47) derives theoretical results for restricted cases using several 

assumptions to guide the derivations. Our work on this topic will follow the same 

approach. The model we used for tracking analysis will consider a stationary, broad­

band stepped-input signal that will be compressed by a single full band compressor 

with short attack and release time constants. Completed simulations suggest the al­

gorithms considered in this research are capable of tracking the dynamic behaviour 

of the applied compression algorithm with attack and release time constants (based 

on the respective definitions found in the ANSI S3.22 (2003) standard) on the order 

of those found in today’s digital hearing aids. An attack time of 1 msec, and release 

time of 50 msec, are used (49).

2.5.1 Tracking Model

In order to examine the tracking behaviour of the adaptive algorithms considered 

in this research, we used the system illustrated in Fig. 2.11.

Fig. 2.11: Tracking Model

A stationary, broadband excitation sequence, x[n], is applied to a shaping function 

that applies a step-wise amplitude to this sequence. The resulting sequence is then 

applied to a compression channel with an appropriate set of parameters, producing the 

final compressed sequence, y[n]. x[n] and y[n] are the reference and desired sequences, 

respectively, of a five-tap adaptive filter. One of the three adaptive algorithms updates 

these tap values.

In order to put this model into the appropriate context, Section 6.15.2, Dynamic 

AGC Characteristics, of the ANSI S3.22 (2003) standard was consulted in order to
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define the conditions of the step-wise shaped noise and the compression channel. 

These conditions are as follows,

• The step-wise shaped, broadband noise should have levels relative to the 55 to 

90 to 55 dB SPL levels associated with the pure tone signals used by the ANSI 

S3.22 (2003) standard.

• The attack time is defined as the time between the abrupt increase from 55 to 

90 dB SPL and the point where the level has stabilized to within 3 dB of the 

steady value for the 90 dB input SPL.

• The release time is defined as the interval between the abrupt drop from 90 to 

55 dB SPL and the point where the signal has stabilized to within 4 dB of the 

steady-state value for the 55 dB input SPL.

• The attack time constant is set at 1 msec.

• The release time constant is set at 50 msecs.

• The compression ratio is set to 4.

Under these conditions, several simulations were completed in order to visually 

characterize the tracking behaviour of the normalized least-mean squares, the affine 

projection, and the recursive least-squares algorithms.

2.5.2 Bias and Variance

The adaptive algorithms discussed in this research are referred to as finite memory 

estimators, due to the characteristic feature that they gradually ’forget’ information 

from the remote past as new data is considered. Despite this apparent limitation, 

finite memory parameter tracking algorithms are able to compromise between esti­

mation accuracy (variance) and awareness (bias) of parameter changes (29).
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One or two comments that characterize the properties of variance and bias will 

be made a long the way as the simulation results are presented and discussed in the 

following section.

2.5.3 Simulation Results

The step-wise shaped broadband noise sequence, s[n], and the compressed real­

ization of this sequence, j/[n], are applied to a transversal adaptive filter as shown in 

Fig. 2.12.

Compressedt Shaped Excitation

y[n]

Fig. 2.12: Adaptive Filter Implementation for Tracking Analysis

An ensemble average of the tracking behaviour was established using 100 experi­

ments for each of the three adaptive algorithms. For each algorithm, an appropriate 

set of parameters was selected and used in the simulation to determine a working 

set for modeling. Simulation results for each algorithm are outlined in the following 

sections of this chapter.

It should be noted at this point that the selection of the working parameters for 

each respective adaptive algorithm is highly dependent on the statistical properties 

of the applied signals. As a result, the values obtained based on this simulated 

tracking analysis will not provide the optimal estimates for these parameters for
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hearing aid modeling. However, they can be treated as initial estimates from which 

more appropriate values can be selected through empirical measures.

2.5.3.1 Normalized Least-Mean Squares

The theoretical range for the NLMS step-size parameter is 0 < n < 2. From this 

range, step-sizes of 0.1 and 1.0 were used in conjunction with a filter order of 20 for 

tracking performance simulations. Fig. 2.13 shows the average tracking performance 

of the NLMS algorithm for the considered step-sizes along with the gain envelop (ideal 

trend) that it is attempting to track.

N LM S Coefficient Convergence - Attack Time =  1 ms, Rel. Time = 50 ms (16 kHz)

Fig. 2.13: NLMS Tracking Performance

Fig. 2.14 and Fig. 2.15 illustrate the attack and release regions, respectively, in 

greater detail.

It can be seen in Fig. 2.14 that the NLMS algorithm is better able to track the 

gain envelope with larger step-sizes. At a step-size value of 0.1, there is a readily 

observable significant bias; there is less awareness by the algorithm to changes in the 

parameter it is attempting to track. With this in mind, there is more accuracy in its

60



N LM S Coefficient Convergence - Attack Region

Fig. 2.14: NLMS Tracking Performance, Attack Region

Tap Value

N LM S Coefficient Convergence - Release Region

Fig. 2.15: NLMS Tracking Performance, Release Region
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estimate in steady-state regions.

2.5.3.2 Affine Projection Algorithm

Similar in nature to the NLMS algorithm, the generalized affine projection al­

gorithm (APA) has a step-size that is typically selected from the working range of 

0 < / i <  1. In addition, the projection order, which is typically less than or equal to 

the filter order, K  <  M, must be selected. For this work, the projection-order was 

set at 5 with the same filter order as in the NLMS simulations.

Fig. 2.16 shows the average tracking performance of the APA algorithm.

APA Coefficient Convergence - Attack Time = 1 ms, Rei. Time = 50 m s (16 kHz)

Fig. 2.16: APA Tracking Performance

Fig. 2.17 and Fig. 2.18 illustrate the attack and release regions, respectively, in 

greater detail. Based on these results, a larger value of [i is appropriate given the 

time-varying statistical nature of the compressed speech signals.
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APA Coefficient Convergence - Attack Region

Fig. 2.17: APA Tracking Performance, Release Region

APA Coefficient Convergence - Release Region

Fig. 2.18: APA Tracking Performance, Release Region
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2.5.3.3 Recursive Least Squares

The recursive least-squares (RLS) forgetting-factor is selected from the working 

range of 0 A <  1. Fig. 2.19 and Fig. 2.20 show the ensemble averaged tracking 

performance of the RLS algorithm for the attack and release regions respectively.

R L S  Coefficient Convergence - Attack Region

Fig. 2.19: RLS Tracking Performance - Attack Region

Referring to Fig. 2.19 and Fig. 2.20, the effect of the forgetting-factor can be seen. 

A smaller forgetting-factor gives current samples more importance than past samples 

in the updating of the tap-weights. In addition to current samples, larger forgetting- 

factors give greater importance to past samples, thereby decreasing tracking ability. 

This result suggests small values are more appropriate for modeling dynamic systems 

like a digital hearing aid excited by a speech signal.

2.5.4 Final Comments on Tracking Performance

Based on these tracking results, each of the three adaptive algorithms are likely 

to perform appropriately for the intended subband modeling application using larger
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R LS  Coefficient Convergence - Release Region

Fig. 2.20: RLS Tracking Performance - Release Region

step-sizes for the NLMS and APA algorithms and smaller forgetting-factors for the 

RLS algorithm. It is important to note that each algorithm’s tracking behaviour, 

like that of its respective steady-state convergence properties, is dependent on the 

statistical nature of the system they attempt identify.

The intent of this section is to suggest that an extensive tracking performance 

analysis of complex systems is a substantial undertaking and, in a suitable fashion, 

attempt to justify the applicability of the adaptive algorithms considered in this 

thesis.

Several factors make a complete tracking analysis difficult: the non-stationary 

statistical properties of the Hearing in Noise Test (HINT) speech sequences used to 

excite the hearing instruments; the dependence of the application of compression on 

the intensity level of the applied speech signal; the resulting compression channel 

parameters determined from the applied fitting method.

Simulation results of the model considered suggest that the adaptive algorithms 

are capable of tracking the time-varying compression characteristics of digital hearing
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aids. From these empirical observations, working parameters for the algorithms can 

be chosen and applied in the subband adaptive models.

2.6 Summary of Chapter 2

System modeling or identification using subband adaptive filtering is a practi­

cal approach to handle the difficulties of characterizing the compression behaviour 

of digital hearing aids. In this regard, several important factors must be carefully 

considered: the type of adaptive filter structures implemented and the respective 

algorithm to update the coefficients; the number of bands; the application of dec- 

imation/interpolation governing the need for a corresponding synthesis filter bank; 

whether the bands will be uniform or non-uniform in nature.

Finite-impulse response (FIR) digital filters are commonly used for the adaptive 

filter structures because they are inherently stable and readily facilitate the devel­

opment of mathematically tractable performance equations having a single optimal 

performance point. The associated tap-weights may be updated using one of several 

algorithms that estimate the tap-input covariance matrix and the cross-covariance 

vector associated with the desired sequence and the tap-input vector. The normalized 

least-mean squares algorithm, the affine projection algorithm, and the recursive least- 

squares algorithm are three possible adaptive algorithms. Because of their properties, 

they possess the two important behaviours of learning and tracking the underlying 

statistics of the applied sequences.

Employing numerous bands in a subband adaptive model allows the full band 

spectral characteristics of the system being modeled to be separated into several 

independent adaptive filters of smaller order. Decimation lowers the effective sampling 

frequency of each band, decreasing the number of samples to be processed. This allows 

complex, large order systems to be modeled adequately and in a timely manner. When 

the decimation factor is equal to the number of bands, the subband adaptive model

6 6



is said to be critically decimated. The other extreme where no decimation is applied 

is called over-sampled. Interpolation is required when decimation occurs and the 

synthesis minimizes possible aliasing effects.

Several design approaches are available to select the parameters of the analysis 

and synthesis filter structures. The choice of structure depends on the application and 

computational time required for implementation. We used an over-sampled uniform 

subband adaptive filter model based on a cosine-modulated filter bank structure (43).

Standard adaptive algorithms may be used in each band’s adaptive filter to update 

the tap-weights of the filter structure. The NLMS, APA, and RLS (along with the 

QRD RLS implementation) algorithms have varying degrees of computational com­

plexity. The NLMS algorithm makes use of a normalized instantaneous estimate for 

updates to filter tap-weights, while the APA and RLS algorithms use past data for im­

proved estimates. Overall performance of each algorithm has significant dependence 

on the statistical nature of the applied signals.

Results of the last section of this chapter show the difficulty of completing a 

comprehensive tracking analysis for complex systems. References on the subject (46; 

47) typically use a simplified model in order to facilitate a rigorous treatment. In this 

thesis we considered a simplified model based on ANSI S3.22 (2003) and concluded 

that the NLMS, APA, and RLS algorithms exhibit adequate tracking behaviour in 

this context with suitable parameters.
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Chapter 3

Simulations

3.1 Introduction

Using controlled simulations we hope to confirm two key postulates of this re­

search,

1. The applicability of the subband adaptive model investigated by (24) to today’s 

digital hearing aids.

2. The number of bands in the subband adaptive model must be at least equal to 

the number of hearing aid compression channels to ensure adequate modeling 

performance.

In addition, we reviewed a bias-tone with broadband excitation method developed 

by (27) as a possible approach to determine the number of compression channels 

employed in a hearing aid.

3.1.1 Overview of Hearing Aid Model

A software-based simulated hearing aid was implemented to investigate the effect 

of channel-mismatch on modeling performance. The term channel-mismatch indicates
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that the number of bands used in the model may be different than the actual number 

of hearing aid channels.

A block-form representation of this model is shown in Fig. 3.1.

x[n] y[n]

Fig. 3.1: Simulated Hearing Aid

A Hearing In Noise Test (HINT - House Ear Institute of Los Angeles, CA, USA) 

speech sequence, x[n], is applied to a frequency shaping filter (FSF). This filter pro­

vides gain compensation for a steeply sloping, moderate-to-moderately severe hearing 

loss (50). Fig. 3.2 shows an audiogram typical of this type of hearing loss.

125 250 500 1000 2000 4000 8000

F re q u e n cy  (Hertz)

Fig. 3.2: Steeply Sloping Moderate-to-moderately Severe Audiogram

In actual hearing aids, gain compensation is applied on a per band basis (i.e. at 

the filter level with respect to Fig. 3.1) rather than in one processing block. Gain
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Frequency (Hz) 250 500 750 1000 1500 2000 3000 4000 6000 8000
dB (HL) 50 50 55 55 65 70 80 90 90 90

Tabic 3.1: Steeply Sloping, Moderate-to-Severe Audiogram Thresholds

compensation was applied using the single FSF to minimize the complexity of the 

model.

The gain compensated, fullband speech sequence is applied to a uniform, N- 

band cosine-modulated filter bank (43). Each band has a respective amplitude 

compression channel with independently set compression parameters. The resulting 

fullband, compressed sequence, y[n], is the sum of the individual branch sequences, 

x c f \ [n] —► x c f n [u ]•
Aside from compression, no other signal dependent processing features were in­

cluded (e.g. adaptive time constants, noise reduction, and so forth).

3.1.2 Gain Compensation

In our model, gain compensation is realized by normalizing the frequency magni­

tude spectrum of the speech sequence to offset the hearing loss characterized by the 

specified audiogram. This is accomplished by applying a minimum, mean-square-error 

(MMSE) designed finite-impulse response filter (FIR) (51) to place more emphasis on 

higher frequencies than lower frequencies. Additional gain beyond the initial spec­

trum shaping was not applied for the numerical simulations.

The standard frequency-sampling method was applied in order to determine the 

FIR filter coefficients. By selecting an appropriate filter order and providing the 

normalized frequency values with the respective normalized magnitude values, this 

function produces the desired filter coefficients. The data required for this calculation 

is available from the considered audiogram and presented in Table 3.1.

In order to obtain the normalized magnitude values, threshold values in dB were
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converted to a linear scale and normalized by the largest value of the resulting set. To 

obtain the normalized frequency values, each frequency in Table 3.1 is divided by the 

considered Nyquist frequency. In our work a sampling frequency of 16 kHz is used, 

providing a Nyquist frequency of 8 kHz. An additional column was added to Table 

3.1 with a frequency of 8 kHz and threshold value of 90 dB HL. These values must 

exist for the application of the FIR2 function.

The Matlab Signal Processing Toolbox function, FIR2, allows an arbitrary FIR 

filter of order, A , to be designed using a set of sampled frequency-magnitude values. 

In addition to this data, the FIR2 function allows the filter order to be specified. The 

output of the FIR2 function is a set of filter coefficients providing an approximate fit 

to the given data.

At each filter order, the corresponding frequency magnitude characteristic is deter­

mined from the filter coefficients and plotted against the desired response to provide 

a visual indication of how well the designed filter matches the required response. Fig.

3.3 shows the fit of a 16i/l order FIR filter and the required response acquired from 

the audiogram. This result allows a root-mean-square (RMS) difference or error to 

be calculated in order to select and set an acceptable filter order.

Figure 3.4 shows the relationship between the RMS error and the FIR filter order. 

With increasing filter order, the fitting error decreases indicating a better overall fit 

with respect to the given normalized magnitude values. The asymptotic characteristic 

suggests a practical working order for the filter of 16. This is the filter order we used 

for the FSF filter in the hearing aid model. The frequency-phase characteristic is 

linear.

3.1.3 Uniform Filter Bank

A Kaiser-window based, cosine-modulated design technique was used to imple­

ment the uniform filter bank (43). The stop band attenuation is 100 dB and the 

transition bandwidth is 0.07 radians per sample. This technique allows uniform filter
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Fig. 3.3: 16i/l Order FIR Fit with Desired Frequency Magnitude Response

G: Steeply sloping - Mod. to severe

Fig. 3.4: RMS Error Versus FIR Order
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banks with an arbitrary number of bands to be implemented quickly and efficiently.

3.1.4 Amplitude Compression

Amplitude compression for the hearing aid model is based on a DirectX plug­

in that is available for commercial sound processing software packages (52). Several 

compression algorithms are available (53), but a Matlab version of the DirectX plug-in 

was used in our research.

Our work focused on four fundamental compression parameters based on nom­

inal working values associated with current digital hearing aids. These include the 

compression threshold, the compression ratio, and the attack and release times. Table

3.2 shows settings for each of these parameters and respective working ranges for the 

implemented compression algorithm.

Feature Range Settings Used
Compression Ratio 

Compression Threshold 
Attack Time 
Release Time 

Hold Time 
Attack Curve 
Release Curve 
Output Gain 
Auto Makeup

1:1 to 20:1 
-96.0 dB to 0.0 dB 

0 to 1000 milli-seconds 
10 to 10,000 milli-seconds 
0 to 5,000 milli-seconds 
Fast, Slow, and Linear 
Fast, Slow, and Linear 

-30 dB to 30 dB 
Off /  On

1:1 to 4:1
<See Text for Further Details > 

5 to 10 milli-seconds 
10 to 1,000 milli-seconds 

0 milli-seconds 
Fast 
Fast 
0 dB 
Off

Table 3.2: Compression Settings for Simulated Hearing Aid

3.1.5 Model Justification

Present day hearing aids normally implement either uniform or non-uniform filter 

banks for gain compensation, with groups of adjacent bands applied to one of several 

discrete compression channels. In addition to this fundamental structure, manufac-
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turers offer a broad range of proprietary digital signal processing features and options 

that their research indicates are beneficial to users of their products. Given the pro­

prietary nature of these processing features, it would be a difficult task to accurately 

incorporate these features into a comprehensive software-based research model.

3.2 Channel Offset Modeling

Channel offset modeling was used to validate the impact on subband adaptive 

modeling performance when the number of bands of the analysis filter bank in the 

subband adaptive model is different than the number of compression channels in the 

hearing aid being modeled. A key postulate of this research is that optimal subband 

adaptive model performance occurs only when the number of bands in the analysis 

filter bank is equal to or greater than the actual number of compression channels.

The channel-offset modeling approach is based on the subband adaptive model 

structure, which is illustrated in Fig. 3.5.

Fig. 3.5: Subband Adaptive Model

Rather than using a fixed number of analysis filters, M, the channel-offset modeling
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approach implements varying numbers of analysis filters ranging over a number of 

bands that spans the number of hearing aid model channels (M  =  1 —» M  »  

number o f  channels). At each discrete configuration, a signal-to-error ratio (SER) is 

calculated from the ratio of the covariance of the filtered hearing aid model response, 

y[n], to the covariance of the associated error residual, residual[n], for each respective 

band as noted by Equation 4.1.

/  cov(Net Model Output) \ 
^10 \ cov(Net Model Error) )

(3.1)

Plotting SER against the number of analysis bands offers a visual determination 

of the optimal number of discrete sub-bands required to effectively model the hearing 

aid model’s compression characteristics.

Fig. 3.6 illustrates this result for our hearing aid model with all four channels in 

compression (indicated by the vertical red bar). SER metric values increase asymp­

totically with additional increments to the number of analysis bands. These results 

were obtained using the APA algorithm with a step-size of 1, projection-order of 15, 

and 64 taps.

Fig. 3.7 shows the output of the simulated hearing aid with all four channels in 

compression with the associated subband response using 4 analysis bands. A SER 

value of 23.5 was obtained.

Similar results were found for models implementing two, three, or more than four 

compression channels. In the event compression is not active, the subband adaptive 

filter structure models the static frequency shaping of the frequency-shaping filter.

No specific conclusions can be reached regarding the number of subbands re­

quired to effectively model the hearing aid model with all four channels in an active 

compression state. However, the performance of the model improves as the number 

of subbands increases. As noted in Chapter 2, in the section on uniform and non- 

uniform filter banks, additional bands improve the whitening of the spectral regions, 

which in turn reduces the eigenvalue spread of the input covariance matrix resulting
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SER  (dB)

Channel-Offset Modeling - 4 Active Compression Channels

Fig. 3.6: Four Channel Model
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Simulated Hearing Aid Output

Fig. 3.7: Model of Simulated Hearing Aid Output 

in improved convergence behaviour.

Real systems often have noise sources that diminish the overall effectiveness of 

the applied model. With regards to our modeling efforts of digital hearing aids, these 

devices have non-linear behaviours and noise contributions for which the subband 

adaptive model cannot model due to its linear nature.

3.3 Bias Tone with Broadband Excitation

3.3.1 Introduction

The bias-tone with broadband excitation procedure developed by (27) facilitates 

determination of a hearing aid’s underlying processing structure. Despite limited 

practical application of this technique, which appears to be only theoretical at the 

time of this writing, we concluded it may be effectively used prior to modeling of
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the hearing aid in order to select an appropriate number of bands in the subband 

adaptive model.

As noted by (27), hearing aid processing architecture may be ascertained by ob­

serving how a hearing aid’s response to a frequency-swept, bias-tone modifies a broad­

band noise frequency-magnitude response. A swept-tonc places the hearing aid into 

a non-linear processing state and the associated broadband excitation is modified 

accordingly. Used in conjunction with the applied broadband excitation, the altered 

broadband signal is used to determine the corresponding frequency-magnitude re­

sponse, from which an appropriate set of FIR coefficients is calculated. A set of 

frequency-magnitude plots is created by performing this operation at fixed intervals 

of the swept-bias tone. The resulting set of plots is used to create a three dimen­

sional plot illustrating regions of gain variation, sweep-frequency and frequency form 

the x-axis and y-axis, respectively, and gain forming the z-axis. A two-level, gain- 

threshold conversion is applied to convert this three-dimensional gain profile into a 

two-dimensional plane representation that retains the sweep-frequency and frequency 

axes. This two-dimensional representation of the hearing aids response is then cor­

related or “scored” against a set of standard representations. Fig. 3.8 illustrates 

identification patterns for several types of hearing aid processing. Dark regions indi­

cate gain reduction or the presence of compression.

Even within its theoretical context, (27) successfully applied this processing type 

test in hearing aid simulations to detect several common processing architectures. As 

shown in Fig. 3.8, these include,

Linear - Due to the linear basis of this test approach, the resulting patterns will not 

show gain alterations.

Automatic Signal Processing (ASP) - Monitors a characteristic of the incom­

ing signal and alters device performance in real-time. In this pattern, as the 

swept frequency increases, the cut-off frequency of the high-pass filter decreases

78



S'
s
s1

Response Frequency 
Linear

Response Frequency 
Automatic Signal 
Processing (ASP)

Response Frequency 
Automatic Gain Control 

Input (AGC-I)

Fig. 3.8: System Identification Patterns

resulting in equal gain across the spectrum.

Automatic Gain Control Input (AGC-I) - Like ASP, this approach monitors 

the input level and actives gain reduction, or clipping, once the input level is 

larger than a set threshold.

A SP /A G C -I - This is a combination of the automatic signal processing and auto­

matic gain control processing approaches.

Compression - The lower two patterns illustrate those associated with a device 

having one or two channels in active compression, respectively.

3.3.2 Procedure

In (27), the author makes the assumption that multi-band hearing aids employing

analog filter designs typically employ bands uniformly spaced on a logarithmic fre-
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quency scale and those employing digital filter designs use bands uniformly spaced on 

a linear frequency scale. Given that our research focuses on digital hearing aids, and 

as noted earlier in the section on uniform and non uniform filter banks, we consider 

uniform bands spaced on a linear frequency scale. With this consideration in mind, 

changes in gain and frequency response are determined from 222 to 9,500 Hz; 222 

Hz is onc-third octave below 315 Hz as noted and applied in (27). A total of 53248 

samples at a sampling frequency of 20 kHz are used for processing.

The composite test signal applied to the hearing aid model consists of the swept 

bias-tone and the long-term average speech spectrum (LTASS) shaped broadband 

noise. The sequences are scaled so the LTASS shaped broadband noise sequence is at 

a -30 dB with a linearly swept sinusoid at -10 dB, relative to the noise.

The resulting composite sequence was applied to the hearing aid model, using 

nominal compression parameters, and stored. In addition, model responses to the 

swept-tone and broadband noise alone were capture and stored. This set of three 

sequences were applied to a paired-filter adaptive noise cancellation system, shown in 

Fig. 3.9, in order to estimate changes in the hearing aid’s frequency response.

Error

Fig. 3.9: Paired Filter Adaptive System

The bias-and-noise response, x[n\, is applied to an N/2 delay block, forming the
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desired sequence for both of the adaptive algorithms, 51 and 52. The bias response, 

s[n], is applied to an N-tap adaptive filter, 51, which removes the bias-tone component 

from the desired response. The noise response, r[n], is applied to the paired adaptive 

filter, 52, which removes the noise component.

Extracting the tap-weights of 52 at periodic intervals allows the frequency-magnitude 

characteristic of the hearing aid to be determined. This set of magnitude responses 

captures a time-varying response that models the underlying linear response of the 

hearing aid (54). The residual error is attributed to non-linear distortions introduced 

by compression (30; 24; 55). No portion of this error is due to inherent noise that 

exists in actual hearing aids, since no noise was included in our model.

A threshold is applied to the resulting set of frequency-magnitude characteristics 

to generalize the data presentation to a two-level representation. Magnitude values 

larger than an applied threshold represent frequency regions where gain is present, 

indicating the absence of compression. Magnitudes below the threshold represent fre­

quency regions where gain has been reduced, indicating the presence of compression. 

Plotting this transformed set of responses, as documented in the introduction, offers 

a visual indicator that suggests the underlying processing type of the hearing aid.

3.3.3 Experimental Results

The bias tone with broadband excitation technique scaled quite easily using more 

than two compression channels (27) in the simulated hearing aid. However, several 

issues developed. These will be discussed in the next section.

Fig. 3.10 illustrates the results for two hearing aid models, one with four channels 

and the other with eight, both have all channels in compression.
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Fig. 3.10: Experimental and Ideal System Identification Patterns
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3.3.4 Discussion

From our preliminary results, which were applied to hearing aid models differ­

ent than the one implemented in (27) and in a controlled environment, the bias-tone 

with broadband excitation method may have benefit in providing an estimation of the 

number of bands for the subband adaptive model to ensure adequate modeling. With 

further consideration, this approach may allow time-varying compression characteris­

tics to be extracted for an arbitrary excitation sequence. On the other hand, results 

of significance were not obtained when the technique was applied to real hearing aids.

Given the positive model experimental results, several caveats should be high­

lighted,

• Similar to our investigations, Kate’s original application was restricted to mod­

els of linear and compression based hearing aids under controlled conditions. 

No body of experimental evidence exists on the application of this approach to 

real digital hearing aids.

• We were not able to determine a system identification pattern that would be 

associated with a Siemens Triano S with 4 channels in compression. In light of 

our unsuccessful attempts with actual devices, it is suggested that proprietary 

processing of hearing instruments may skew or inhibit the application of the 

processing-type test. For example, long-term application of excitation sequence 

may be required in order to place the hearing aid in the desired state prior 

to measurement. Determination of the necessary excitation signal to overcome 

this issue may be very difficult or impossible.

• Due to the linear nature of the underlying adaptive filtering processing, hearing 

aids using a linear processing strategy will not demonstrate changes to their 

frequency magnitude characteristic (27).

• Significant work is required to optimize this technique. One particular item is
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the determination and setting of the required threshold used in the application 

of the two-level threshold transformation of the frequency-magnitude set. In 

our work, this was done visually to provide adequate results. Again, prior 

knowledge of the model configuration may influence this selection. A more 

objective, optimized approach is very much needed.

3.4 Summary of Chapter 3

A hearing aid model was developed in order to investigate two techniques used to 

determine the most beneficial number of bands to effectively model real hearing aids 

using the subband adaptive model with uniform band structure. Our model imple­

mented gain compensation using a single frequency-shaping filter with a uniform filter 

bank, each band having a respective compression channel. Channel-offset modeling 

and the bias-tone with broadband excitation techniques were applied to this model. 

Both approaches provide estimates for the number of bands required for the subband 

adaptive model.

Unlike real hearing aids, our model employed a single frequency-shaping filter to 

normalize the gain for a typical steeply sloping hearing loss. Suitable gain compen­

sation in actual hearing aids is applied on a per band basis. We chose to apply gain 

in this manner to reduce the complexity of the model.

Band structures in real hearing aids typically employ either a uniform or a non- 

uniform distribution. Adjacent groups of bands are then grouped and applied to 

one of several compression channels. Our model had a one-to-one ratio of bands to 

compression channels.

Channel-offset modeling employs the actual structure used by the subband adap­

tive model. By using a number of bands that spans the possible number of active 

compression channels in the hearing aid, modeling effectiveness can be determined 

and reported as a signal-to-error (SER) ratio. Given the asymptotic behaviour of SER
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versus the number of analysis bands, it is not obvious how many bands should be 

selected to realize effective modeling. The application of objective measures, as done 

with our actual hearing aid measurements and discussed in the next chapter, could 

provide a suitable indicator for estimating this number. Selecting a large number of 

bands would offer more effective modeling, but it may not be required and result in 

lengthened modeling times.

The bias-tone with broadband excitation technique developed by Kates (27) did 

facilitate the determination of the number of bands required within the confines of our 

modeling and a controlled simulation environment. Given the vast nature of possible 

process features offered by today’s digital hearing aids that are proprietary in nature, 

and the lack of experimental evidence with real hearing aids, of which our own testing 

proved inconclusive, it not possible to judge the effectiveness of the technique at this 

time.
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Chapter 4

Methodology

This chapter provides details of the five digital hearing aids used in this re­

search; an overview of the experimental system and measurement procedure; and 

the modeling results for these hearing aids.

Modeling results obtained for each of the three considered adaptive algorithms 

are presented in their own section with associated comments. Chapter 5 will note 

comparative conclusions between all three sections of results.

4.1 Digital Hearing Aids

Five current market digital hearing aids were selected for this study in order to de­

termine the applicability of a uniform subband adaptive model to the characterization 

of the compression behaviour of these instruments.

Due to noteworthy differences in the nature of each instrument’s band structure, 

the number of these bands, and the number of compression channels, efforts were 

made to obtain detailed data on each hearing aid. However, due to the proprietary 

nature of this information and disparity in the hearing aid industry in terms of how the 

concepts of band and channel are used, it was not possible to present comprehensive 

information in a standardized fashion across all of the hearing aids considered. As
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a result, information on each instrument was compiled using corporate web-sites in 

addition to contacting representatives from each company directly. This information 

is presented here.

All hearing aids used in this research are behind-the-ear (BTE) devices. In alpha­

betical order of manufacturer the set includes,

• Bernafon, Symbio X T  110 BTE

• Oticon, Syncro V2

• Phonak, Perseo 311 dAZ Forte

• Siemens, Triano S

• Sonic Innovations, Natura 2 SE

The subsequent sub-sections describe each hearing aid.

The Bernafon Symbio XT BTE 110 is the first channel-free hearing instrument. 

The stated working frequency range extends from 100 to 5,900 Hertz (ANSI S3.22 

2003).

Bernafon’s approach with this device is to handle sounds as a whole rather than 

processing them using a frequency-domain approach based on frequency bands and 

compression channels. It is Bernafon’s reasoning that this approach results in clear, 

natural sound, offering optimal speech quality.

Bernafon’s on-line literature suggests signals processed using multi-channel strate­

gies may present an apparent high quality signal at the output of an electro-acoustic 

amplification system, but an impaired cochlea has less ability to use this signal than 

does a healthy cochlea.

4.1.1 Bernafon Symbio X T  BTE 110

As noted by O’Brien (56), the following aspects support a channel-free processing 

approach,
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• In addition to loss of sensitivity to less intense or soft sounds, sensorineural 

hearing loss also results in the broadening of critical auditory filters, with the 

perceptual consequence of reduced frequency selectivity (57).

• Internal representation of acoustic signals for hearing impaired listeners for 

acoustic signals has a lower signal-to-noise ratio than for normal hearing in­

dividuals (58). Multi-channel compression will effectively bombard the cochlea 

with sound having less spectral contrast; spectral contrast is important for 

speech understanding (59).

• Impaired cochlear frequency resolution means spectral cues may still not be 

useful to the listener despite audibility (60).

The ChannelFree™ technology analyzes and makes gain adjustments 16,000 times 

per second to the whole signal. Bernafon refers to this processing strategy as Con­

tinuously Adaptive Speech Integrity (CASI) and is illustrated in Fig. 4.1.

Fig. 4.1: CASI Block Diagram

This processing strategy retains the natural signal structure, facilitating quicker 

patient adaptation to this instrument than for those that employ multi-channel am­

plification.
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4.1.2 Oticon Syncro V2

The Oticon Syncro V2 is an 8-channel programmable digital hearing aid. The 

stated working frequency range extends from 130 to 6,900 Hertz (ANSI S3.22 2003).

The eight compression channels are independent, but make use of a coupling 

process to avoid large distortions that may occur because of narrow band signals. 

Applied attack and release times for each channel depend on which Oticon rationale 

or “Identity” is used to configure the instrument. Table 4.1 presents the five Oticon 

Identities and the respective attack and release times. As noted by a Oticon repre­

sentative, the technique used to measure the attack and release times influences the 

values obtained.

Identity Attack Time (milliseconds) Release Time (milliseconds)
Energetic 5 - 10 80
Dynamic 5 - 10 80 - 320
Active 5 640 640
Gradual 5 1,280

Calm 10-20 2,560

Table 4.1: Oticon Syncro V2 Identities with Respective Attack and Release Times

The Syncro V2 uses a non-uniform filter bank to facilitate the actions of filtering, 

gain compensation, and compression. It is unknown if the design of the Oticon filter 

bank is based on the behaviour of the cochlea’s critical band structure.

4.1.3 Phonak Perseo 311 dAZ Forte

The Phonak Perseo 311 dAZ Forte is a 20-channel programmable digital hearing 

aid. The stated working frequency range extends from 100 to 6,000 Hertz (ANSI 

S3.22 2003).

The Perseo 311 dAZ Forte employs a processing strategy Phonak refers to as 

Digital Perception Processing (DPP2). This approach attempts to adhere to the way
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sounds are perceived by a healthy cochlea by modeling its natural behaviour. A key 

aspect of this behaviour is how the basilar membrane is stimulated by sound.

Pure tone stimulation of the basilar membrane stimulates not only the locus of the 

membrane associated with the applied frequency, but also excites a wider surrounding 

area. As noted in (61), this effect can be described as a band pass filter with a distinct 

center frequency and variable roll-off, with several of these bands spread along the 

length of the cochlea’s basilar membrane. These bands are commonly referred to as 

the critical bands. Fig. 4.2 illustrates the relationship between the cochlea and the 

critical bands of the Forte.

C o ch le a

30 mm le n g th

20 Bark C la ro  c r i t ic a l  b ands

10 kHz f r e q u e n c y

Fig. 4.2: Critical Bands, Relationship to Cochlea (Phonak, “Claro, Digital Perception 
Processing”)

Critical filter bandwidth is dependent on both frequency (being approximately log­

arithmically scaled) and excitation level. Because of this dependency, bands overlap 

resulting in interactions and dependencies in the firing patterns of auditory neurons. 

Fig. 4.3 illustrates the dependency of critical band bandwidth with center frequency 

and the coupling relationship between critical bands.

Critical band shape also depends on the level of the excitation signal, as illustrated 

in Fig. 4.4.

Due to these dependencies the overall excitation pattern is related to the maximum

excitation occurring from all frequency components of a complex signal. Fig. 4.5
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Fig. 4.3: Critical Band Structure of the Human Ear (Phonak, “Claro, Digital Per­
ception Processing”)

Fig. 4.4: Critical Band Shape Versus Excitation Level (Phonak, “Claro, Digital Per­
ception Processing”)
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illustrates this behaviour for a simplified three-tone signal.

Frequency [kHz]

Fig. 4.5: Overall Excitation Pattern (Phonak, “Claro, Digital Perception Processing”)

Once normally perceived sounds are established, loudness is controlled using the 

principle of loudness summation. Digital Perception Processing applies a psychoa­

coustic model to determine the perceptual patterns created by the normal cochlea 

(62; 63; 64). This controls the loudness in the twenty critical bands. These percep­

tion patterns are also used to limit output levels.

In addition to controlling loudness using perception patterns of a normal cochlea, 

the Perseo 311 dAZ Forte incorporates an instantaneous, physically based compression 

limiting system with an adaptive recovery time. This helps manage excessive sound 

levels and prevents receiver saturation.

4.1.4 Siemens Triano S

The Siemens Triano S is a 4-channel programmable digital hearing aid. The stated 

working frequency range extends from 100 to 5,500 Hertz (ANSI S3.22 2003).

The Triano S has 16 bands (160, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 

2500, 3200, 4000, 5000, 6300, and 8000 Hertz) linearly spaced across the working
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frequency. Each band has an attenuation of 42 dB per octave for the application of 

gain compensation.

The bands are grouped into 4 contiguous compression channels with the frequency 

ranges of 100 to 550 Hz, 550 Hz to 1400 Hz, 1400 Hz to 3500 Hz, and 3500 Hz to 6500 

Hz. Each channel has independently adjustable compression thresholds, compression 

ratio, and compression method. Two compression methods are available: Dual or 

Syllabic.

With the Dual compression method, the level of the input signal is actively moni­

tored using two different criteria (referred to as a “level-meter” ) that apply respective 

attack and release times. The first or fast level-meter provides immediate reduction 

in gain for high-level, intense sounds with an attack time of 5 ms and an associated 

release time of 90 ms. The second or slow level-meter monitors the average level of the 

input signal and applies an attack time of 900 ms and a release time of 1.5 seconds.

The Syllabic compression method adjusts the applied gain to instantaneous fluc­

tuations of the incoming signal using the fast-level meter with an attack time of 9 ms 

and a release time of 90 ms.

The Triano S utilizes 16 discreet automatic gain control circuits that compress the 

input signal (AGC-I). With this implementation, there are 16 working compression 

channels controlled through a set of 4 pseudo controlling channels. In order to obtain 

the input level for each circuit, which determines the application of compression, the 

weighted values of immediately adjacent channel levels are added. For the Triano 

S, as noted by a Siemens representative, the AGC-I input level for channel 2 would 

be one-quarter of the channel 1 input level added to one-half of the channel 2 input 

level added to one-quarter of the channel 3 input level. This approach aids in ensur­

ing continuity of the processed signal, which minimizes the introduction of potential 

harmful auditory artefacts.

This instrument also uses an automatic gain control circuit at the output (AGC- 

O). The attack time is less than 0.5 ms and a release time of 100 ms.
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Hearing Aid Number of 
Channels

Number of 
Bands

ANSI S3.22 1 
Attack

'ime Constants 
Release

Symbio XT 110 BTE 
Syncro V2

Perseo 311 dAZ Forte 
TViano S 

Natura 2 SE

Cham
8
20
4
9

lei Free™
8, Non-uniform 

20, Critical 
16, Uniform 
9, Critical

N/A 
N/A 
6 ms 

0.5 ms
5 ms (2 kHz)

N/A 
N/A 

60 ms 
100 ms

11 ms (2 kHz)

Table 4.2: Hearing Aid Structure Summary

4.1.5 Sonic Innovations Natura 2 SE

Sonic Innovations Natura 2 SE is a 9-channel programmable digital hearing aid. 

The stated working frequency range extends from 220 to 5,000 Hertz (ANSI S3.22 

2003).

As stated in Sonic Innovations on-line literature, the Natura 2 SE uses a 9-band, 

critical-band structure with 9 independent compression channels. Each compression 

channel uses a low compression threshold and moderate compression ratio or wide- 

dynamic range compression (WDRC) approach. No additional information could be 

found on band or channels for this instrument.

4.2 Hearing Aid Summary

Table 4.2 summarizes the compression parameters for each instrument considered 

in this research. Additional information may be found in the manufacturers data­

sheets located in Appendix A.

4.3 Hearing Aid Test System

The Hearing Aid Test System (HATS) developed at the National Centre for Audi­

ology was used to record hearing aid responses. A block-diagram of the HATS system 

is illustrated in Fig. 4.6.
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Fig. 4.6: Hearing Aid Testing System (HATS)

4.3.1 Overview

The following sections detail the HATS system in three sections: Programming, 

Excitation, and Recording.

4.3.1.1 Programming

Each hearing aid was programmed using its respective proprietary software module 

provided by the manufacturer via the Hearing Instrument Manufacturers’ Software 

Association (HIMSA) NOAH software application that executes on the personal com­

puter (PC). A GN Otometrics HI-PRO Universal Programming Interface facilitates 

communication through serial port COM2 of the PC to the hearing instrument us­

ing a proprietary programming cable. The programming cable is positioned in the 

acoustically sealed passage of the anechoic test box.

A description of the programming rationale used to configure each hearing instru­

ment considered in the research is presented in Section 4.4.
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4.3.1.2 Excitation

Each speech sequence was digitally streamed from the PC over a USB 2.0 con­

nection to a Sound Devices USBPre device that converted the digital sequence to an 

analog signal. The resulting analog signal was applied to a Tucker Davis PA5 Pro­

grammable Attenuator and then fed into a Carver PM420 amplifier, energizing the 

anechoic test box speaker. Attenuation introduced by the programmable attenuator 

was set by the HATS software to provide the desired average dB SPL presentation 

level to the hearing aid being tested. A system calibration procedure is required 

prior to making measurements. Further information on this procedure is presented 

in Section 4.3.2, Calibration.

4.3.1.3 Recording

Each hearing aid was placed in a Bruel & Kjaer Type 1̂ 232 Anechoic Test Box 

(serial number 2357535) with the hearing aid microphone located within the measur­

ing plane (as marked by a round piece of blue foam by manufacturer). This location 

provides constant sound pressure level conditions with low acoustic distortion.

Two Bruel & Kjaer Type 4192 1/2” Pressure Response Microphones, with asso­

ciated Type 2669 Falcon Range 1/2” Microphone Preamplifiers, were used to record 

the acoustic signal presented to the hearing aid (reference signal) and its response. 

A 2cc coupler was connected to the hearing aid in order to provide a standardized 

response measure (coupler signal). The Type 4192 1/2” Pressure Response Micro­

phones have serial numbers of 2337046 for the reference microphone and 2337047 for 

the 2cc coupler microphone.

The reference and 2cc coupler recording channels form channel 1 and channel 2 

inputs, respectively, of a Bruel & Kjaer Nexus 2-Channel Microphone Conditioning 

Amplifier that is manually adjusted by the operator. The conditioned analog signals 

were then applied to the Sound Devices USBPre device and recorded at a sampling
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frequency of 32 kHz at 16-bit resolution.

The HATS software stores each recorded sequence in a single stereo-WAV file and 

in two separate mono-WAV files, one with the reference signal and the other with the 

2cc coupler signal.

4.3.2 Calibration

Prior to using the HATS measurement system, calibration procedures were per­

formed to ensure the system was presenting excitation signals at the desired sound 

level (in units of dB SPL) to the instrument being tested. This was done by a pure- 

tone calibration procedure followed by a frequency calibration procedure.

For pure-tone calibration, a Bruel & Kjaer Type 4231 Sound Level Calibrator 

(serial number 2191799 with a UC 0210 1/2" diameter adaptor), producing a 1 kHz, 

94 dB SPL test signal, was attached to the reference microphone. A recording of 

this test signal was made and used to determine and then set a system-scaling factor 

based on the root-mean-square value of the recorded digital signal. Subsequent digital 

signals were scaled appropriately in order to realize the necessary dB SPL presentation 

level.

For frequency calibration, the frequency response of the reference and coupler 

recording channels are computed and normalized with respect to each other. A pink- 

noise signal is delivered through the built-in speaker of the anechoic test box and 

recordings are made using both the reference and 2cc coupler channels. From each 

recording, the respective frequency response is determined in l /3 rd octave bands using 

a 1024-point FFT with Hamming window scaling. Using the coupler and reference 

microphone frequency responses, an equalization filter is derived to compensate for 

the differences between them.

The equalization filter is a 512-tap FIR filter designed using a windowing method 

based on the differences between the coupler and reference microphone spectra. The 

equalization filter ensures that the transfer function between the coupler and refer-
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Frequency (Hz) 125 250 500 750 lk 1.5k 2k 3k 4k 6k 8k

Type
“F” 50 50 50 55 55 65 70 80 90 90 90
up 90 90 90 90 90 90 90 90 90 90 90

Table 4.3: Theoretical Audiograms

ence microphones is flat across the audio bandwidth of 20 Hz to 20,000 Hz. With 

the equalization filter in place, hearing aid gain characteristics can be computed di­

rectly by taking the difference between the coupler and reference microphone spectra 

(in dB). Frequency compensation also ensures hearing aid responses are accurately 

obtained when system identification procedures are applied.

4.4 Hearing Aid Programming

Due to the proprietary nature of each manufacturer’s design and implementation 

of their instruments, in addition to the inability to separate the control of band gain 

and channel compression parameters in the programming software, it was necessary 

to established a standardized testing framework. Two theoretical audiograms and a 

standard hearing aid fitting method were chosen to accommodate this need.

Two theoretical audiograms were selected in order to obtain different degrees of 

hearing aid compression behaviour. As discussed in Chapter 1, these audiograms 

are typical of commonly occurring sensorineural hearing losses. A steeply sloping, 

moderate-to-severe or Type “F” audiogram and a flat, severe or Type “I” audiogram 

were considered. The respective audiometric thresholds, in dB HL units, are summa­

rized in Table 4.3 for each audiogram.

The fitting method employed to program each instrument was the Desired Sensa­

tion Level Input/Output (DSL [i/o]) method. The procedure used to configure each 

instrument included, •

• Consulting suggested fitting regions to ensure audiograms fit within these areas
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of nominal operation.

• Visual inspection to ensure standard set of mechanical components.

• Installation of a new battery.

• A “first fit” configuration of the hearing aid using the desired audiogram and 

the DSL [i/o] fitting method.

• Disabling processing features not associated with compression.

• Using an omni-directional microphone setting.

• Saving configuration to hearing aid in addition to being saved in the NOAH 

database for future reference.

Each programmed hearing aid was placed in the anechoic test-box and its response 

was recorded using the HATS system.

One final comment should be made at this point for the sake of completeness. 

Despite the fact that several independent fitting methods are provided in each manu­

facturer’s NOAH programming module, these are not independently verified to ensure 

the fitting targets specified by the fitting methods are met. It is known that the DSL 

[i/o] targets are not met by several vendors’ software. While this is an issue for 

patient fittings, this will not impact the significance of this work; we are trying to es­

tablish the modeling potential of a uniform subband adaptive model in characterizing 

compression behaviour across a range of different hearing aids.

4.5 Response Measurement

A sequence of ten concatenated Hearing in Noise Test (HINT) speech sequences 

(1-1, A Boy fell From the Window.”; 1-10, “The car is going too fast.”; 10-10, “The 

truck made it up the hill.”; 11-1, uThe neighbours boy has black hair.”; 11-2, uThe
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rain came pouring down.”; 11-3, “The orange is very sweet.”; 11-4> “He took the dogs 

for a walk. ”; 11-5, “Children like strawberries. ”; 11-6, “Her sister stayed for lunch. ”; 

11-7, “The train is moving fast.”) was created to excite each hearing aid. This 

sequence was generated with a 32 kHz sampling frequency and a 16-bit resolution 

and stored locally on the HATS computer.

Using the HATS software, this sequence was scaled and presented to each hearing 

aid at 65 dB SPL within the uniform sound field of the desktop, anechoic test box. 

This level is representative of the average sound pressure level of the long-term average 

speech spectrum for normal conversational speech in a noise free environment.

Recordings of the reference and 2cc coupler microphone signals were made and 

stored locally on the computer’s hard drive. These sequences were manually parsed 

off-line and stored individually as stereo WAV files with the 2cc coupler recording in 

the left-channel and the reference recording in the right-channel.

4.6 Modeling

The uniform subband adaptive model was applied to each pair of recorded se­

quences across an incrementally increasing number of analysis bands (1, 2, 4, 8, 16, 

and 20) using a fixed-set of parameters for each of the three adaptive algorithms.

A signal-to-error ratio (SER) metric was calculated to monitor modeling perfor­

mance. In addition to SER, the Perceptual Evaluation of Speech Quality (PESQ) 

mean-opinion score (MOS) was calculated as a second objective measure of perfor­

mance.

4.6.1 Subband Adaptive Modeling

Figure 4.7 illustrates the subband adaptive model structure used in this research.

Before application to the model, each recorded sequence is decimated by a factor 

of two to use the full bandwidth of 0 to 8 kHz, approximately. This facilitates an
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Parameter
Algorithm Step Size /  Forgetting Factor Projection Order Number of Taps

APA 0.1, 0.5, 1.0 5, 10, 15
NLMS 0.1, 0.5, 1.0 n/a 64, 128, 256
RLS 0.5, 0.725, 0.95 n/a

Table 4.4: Adaptive Algorithm Parameters

effective sampling frequency of 16 kHz. The decimated reference and 2cc coupler 

sequences are filtered using identical uniform analysis filter banks. The resulting 

filtered sequences form, respectively, the reference and desired sequences for each 

adaptive filter in the model.

Fig. 4.7: Subband Adaptive Filter Structure

For each number of analysis bands considered the hearing aid’s compression behav­

iour is modeled using the Affine Projection (APA) algorithm, the Normalized Least 

Mean Squares (NLMS) algorithm, and Recursive Least Squares (RLS) algorithm with 

a set of parameters, see Table 4.4.

Parameters were selected in order to investigate a broad range of modeling per-
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formance and should not be considered optimal in any sense. Further work would be 

required to extract a general set of optimal parameters for each algorithm.

The overall model output and residual sequences were obtained by adding the 

respective sequences from each adaptive filter.

4.6.1.1 Signal-to-Error Ratio

An effectual signal-to-error ratio (SER) was calculated using the model’s accumu­

lative output and residual sequences and is noted in Eq. 4.1.

( cov(Net Model Output) \ , *
°^10 \ cov(Net Model Error) )

This value provides an objective measure of modeling performance (23). A high 

SER value, on the order of 30 dB or greater, indicates an acceptable level of modeling 

performance. A value less than 30 dB suggests that the configuration (i.e. number 

of analysis bands, number of adaptive filter coefficients, and/or working parameters 

of the adaptive algorithm) of the modeling system is incapable of capturing com­

plex interactions of the non-stationary speech excitation and respective time-varying 

compression behaviour of the hearing aid or the probability of distortion and noise.

An important benefit of an overall SER value is that it captures and reflects the 

modeling performance of the three adaptive algorithms.

4.6.1.2 PESQ Mean Opinion Score

In addition to the standard signal-to-error ratio (SER) performance measure com­

monly associated with adaptive modeling investigations, the Perceptual Evaluation 

of Speech Quality (PESQ) Mean Opinion Score (MOS) was also calculated using 

Version 1.2 (August 2, 2002) of the International Telecommunications Union P.862 

software.

The PESQ P.862 standard is an internationally recognized and accepted measure 

of predicting a subjective interpretation of speech quality that is typically used to
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Hearing Aid Number of 
Channels

Number of 
Bands

ANSI S3.22 1 
Attack

dme Constants 
Release

Symbio XT 110 BTE 
Syncro V2

Perseo 311 dAZ Forte 
Triano S 

Natura 2 SE

Chan
8
20
4
9

lei Free5 M 
8, Non-uniform 

20, Critical 
16, Uniform 
9, Critical

N/A 
N/A 
6 ms 

0.5 ms 
5 ms (2 kHz)

N/A 
N/A 

60 ms 
100 ms

11 ms (2 kHz)

Table 4.5: Hearing Aid Structure Summary

assess telecommunication systems. Using this measure, along with the SER metric, 

we hope to determine which linear adaptive algorithm provides the best modeling 

performance.

4.7 Summary

Five programmable digital hearing aids, representative of the current hearing aid 

market, are described with respect to their respective band, channel, and ANSI S3.22 

time constants. Table 4.2 presents this information.

Each of these devices is programmed with the DSL [i/o] fitting method using a 

first-fit approach using two theoretical audiograms. The response of each instrument 

to 10 HINT sentences, presented at 65 dB SPL, is recorded using the HATS systems 

developed at the National Centre for Audiology. Two calibration procedures are com­

pleted prior to making measurements to ensure hearing aid responses are accurately 

obtained when system identification procedures are applied, as it the case for this 

research.

Recorded sequence sets, consisting of the hearing aid excitation signal and the 

associated 2cc coupler signal (hearing aid response), are used as the reference and 

desired sequences of an over-sampled, uniform subband adaptive model. Modeling 

is completed using six different numbers of analysis bands (1, 2, 4, 8, 16) and three 

adaptive algorithms. The NLMS, APA, and RLS algorithms were all implemented
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using a set of parameters to investigate performance ranges.

The PESQ mean-opinion score, in addition to the signal-to-error ratio, is deter­

mined to assess modeling performance.
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Chapter 5

Modeling Results

The primary objective of this research is to assess the potential application of a 

uniform subband linear adaptive filter model to characterize the compression behav­

iour of five digital programmable hearing aids. With this in mind, a signal-to-error 

ratio (SER) metric will be used to assess the overall performance of this model based 

on several factors that include: the number of analysis bands, the adaptive algorithm 

used to update the coefficients of the tap-delay filter structure, and a corresponding 

set of parameters. The mean-opinion score (MOS) metric is also computed to inves­

tigate the potential success of using a subband model in conjunction with objective 

measures to estimate subjective assessments of speech quality.

The standard recursive least-squares algorithm from the Mathworks Matlab Filter 

Design Toolbox was initially used in the modeling process. However, due to numerical 

instabilities of the input-signal covariance matrix, an orthogonal matrix triangular- 

ization, or QR decomposition, implementation based on (65) was used.

Due to the large body of data collected in this research, results for the Oticon 

Syncro V2 are presented in detail. Results for this instrument are, in general, rep­

resentative of those obtained for the other four hearing aids. Appendix C, Modeling 

Results, presents graphical results for these instruments.

The contents of this chapter are presented in the following order,
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General Modeling Performance of the Oticon Syncro V2

• NLMS Results

• APA Results

• QRD RLS Results

Modeling Performance Summary of the Oticon Syncro V2

• Audiogram ” F”

• Audiogram ” 1”

Fullband and Subband Model Performance Summary - All Hearing Aids

• Audiogram ” F”

• Audiogram ” 1”

5.1 General Modeling Performance of the Oticon 

Syncro V2

In this section modeling results for the Oticon Syncro V2 hearing aid are presented 

for each of the three adaptive algorithms. This is done using each algorithm’s para­

meters associated with the “best” modeling performance based on a signal-to-error 

ratio (SER) performance metric. This rationale is consistent with the fundamental 

research objective of this thesis of applying a subband adaptive model to characterize 

compression behaviour of digital hearing aids and using this model as a basis for ob­

jective speech quality measures such as PESQ. It also helps manages the large body 

of data developed by this research. Modeling results for the remaining algorithm 

parameters for the Syncro V2 and complete results for the other four hearing aids are 

presented in Appendix C, Modeling Results.
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From an initial review of the modeling results, the parameters for each algorithm 

giving the best performance are noted in Table 5.1.

Algorithm Parameters
NLMS
APA

QRD RLS

Step-size of 1.0
Step-size of 1.0; projection-order of 15 

Forgetting-factor of 0.5

Table 5.1: Best Modeling Parameters

Modeling results associated with these parameters are presented for each algorithm 

in three types of graphs,

1. A double y-axis plot with average SER and MOS values

2. SER mean with standard error bar

3. MOS mean with standard error bar

The number of analysis bands is the independent variable for each of these graphs 

with trends for 64, 128, and 256 filter coefficients shown. Results for both type ” F” 

and ” 1” audiograms are presented.

5.1.1 NLMS Results

The results in this section are for an NLMS step-size of 1.

Fig. 5.1 illustrates the mean SER and mean MOS values obtained by averaging 

discrete SER and MOS results over the 10 HINT sentences used on a per band basis 

for audiogram “F” , a steeply sloping, moderate-to-severe hearing loss.

As the number of analysis bands of the subband adaptive model is increased, both 

the averaged SER and averaged MOS values increase in an asymptotic manner. At 

20 bands, the largest SER value is approximately 21 dB and the largest MOS value 

is approximately 4.25 on a scale of 1.0 (worst) to 4.5 (best).
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NLM S Model -» Device: SyncroV2, Sentence: 65F, Step-size: 1

Fig. 5.1: NLMS Averaged SER and MOS, Audiogram F

With respect to the number of taps used in the tap-delay filter, there is a modeling 

improvement as the number of bands increases. With a larger number of bands, 128 

taps provides the highest SER, followed by 256 taps and then 64 taps.

Fig. 5.2 illustrates the mean SER and mean MOS values for audiogram “I” , a 

flat, severe hearing loss. Asymptotic trends are still present, but less pronounced 

when compared to the type “F” audiogram results. The MOS trends exhibit more 

variability when a smaller number of analysis bands are used.

At 20 bands, the largest SER value is approximately 16 to 17 dB and the largest 

MOS value is approximately 4.1.

With respect to the number of taps, with a larger number of bands, 128 taps 

provides the highest SER, followed by 256 taps and the 64 taps.

Fig. 5.3 illustrates the SER error mean and error bar using one standard deviation 

for audiogram “F” . This was obtained by averaging discrete SER results over the 10 

HINT sentences used on a per band basis.
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NLMS Model -» Device: SyncroV2, Sentence: 651, Step-size: 1

Fig. 5.2: NLMS Averaged SER and MOS, Audiogram I

SER means for 64, 128, and 256 taps increase as the number of analysis bands 

implemented increases. With a small number of analysis bands, a larger SER mean 

is associated with fewer filter taps. As the number of analysis bands increases, this 

relationship deviates. At 16 and 20 bands, the mean SER value decreases with 128, 

256, and 64 taps, respectively.

There is a gradual decrease in the level of variability with additional analysis 

bands, as indicated by the error bars. There is significant overlap of the error bars 

when comparing model results in which the number of analysis bands is not large. 

However, a larger difference in the number of analysis bands provides greater separa­

tion with no overlap.

Fig. 5.4 illustrates the SER error mean and error bar for audiogram “I” . Like 

audiogram “F” trends, SER means for 64, 128, and 256 taps increase as the number 

of analysis bands implemented increases. However, the trends are more linear than 

asymptotic in nature.
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NLM S S E R  Error -> Device: SyncroV2, Sentence: 65F, Step-size: 1

Fig. 5.3: NLMS SER Mean with Error Bar, Audiogram F

Variability does not decrease as the number of analysis bands used increases. This 

trend occurs for all three taps values considered.

Fig. 5.5 illustrates the MOS error mean and error bar using one standard devia­

tion. This was obtained by averaging discrete MOS values over the 10 HINT sentences 

used on a per band basis.

The MOS means, for all number of taps, increase as the number of analysis bands 

increases. Like the SER results, the MOS trends exhibit asymptotic behaviour. How­

ever, it is more pronounced.

There is a significant decrease in variability with an associated increase in analysis 

bands.

Fig. 5.6 illustrates the MOS error mean and error bars for audiogram T \  Like 

audiogram “F” , MOS means increase with the number of analysis bands. However, in 

a similar fashion to the SER trends, they are more linear than asymptotic in nature.

A general decrease in variability does not exist and there is overlap of the error
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NLMS S E R  Error -*  Device: SyncroV2, Sentence: 651, Step-size: 1

Fig. 5.4: NLMS SER Mean with Error Bar, Audiogram I

NLMS MOS Error -> Device: SyncroV2, Sentence: 65F, Step-size: 1

Fig. 5.5: NLMS MOS Mean with Error Bar, Audiogram F
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bars right across the number of analysis bands.

NLMS MOS Error -» Device: SyncroV2, Sentence: 651, Step-size: 1

Fig. 5.6: NLMS MOS Mean with Error Bar, Audiograin I

Based on the above trends, it can be observed that a good correlation exists be­

tween modeling performance indicated by the SER metric and PESQ quality metric.

5.1.2 APA Results

The results in this section are for an APA step-size of 1 and a projection-order of 

15.

Fig. 5.7 illustrates the mean SER and mean MOS values obtained by averaging 

discrete SER and MOS results over the 10 HINT sentences used on a per band basis.

Both SER and MOS results exhibit an asymptotic trend. At 20 bands, the largest 

SER value is approximately 30 dB and the largest MOS value is approximately 4.4.

With respect to the number of taps used in the tap-delay filter, modeling perfor­

mance improves in a one-to-one relationship as the number of taps increases. This 

occurs across the number of analysis bands considered.
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A P A  Model -*  Device: SyncroV2, Sentence: 65F, Projection Order: 15, Step-size: 1

Fig. 5.7: APA Averaged SER and MOS, Audiogram F

Fig. 5.8 illustrates the mean SER and mean MOS values for audiogram “F . 

Asymptotic trends are present, but in relation to audiogram “F” trends, MOS mean 

values drop at 20 bands.

Like the averaged SER and MOS trends for audiogram “F” , With respect to the 

number of taps, modeling performance improves in a one-to-one relationship as the 

number of taps increases. This occurs across the number of analysis bands considered.

Fig. 5.9 illustrates the SER error mean and error bar using one standard deviation 

for audiogram “F” .

SER means for 64, 128, and 256 taps increase with an increase in number of 

analysis bands. Modeling performance improves in a one-to-one relationship as the 

number of taps increases. This occurs across the number of analysis bands considered.

There is a gradual decrease in the level of variability with additional analysis 

bands.

Fig. 5.10 illustrates the SER error mean and error bar for audiogram “F . Like
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A P A  Model -> Device: SyncroV2, Sentence: 651, Projection Order: 15, Step-size: 1

Fig. 5.8: APA Averaged SER and MOS, Audiogram I

APA SER Error -» Device: SyncroV2, Sentence: 65F, Projection Order: 15, Step-size: 1

Fig. 5.9: APA SER Mean with Error Bar, Audiogram F
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audiogram “F” trends, SER means for 64, 128, and 256 taps increase. However, 

trends are more linear than asymptotic in nature.

Variability does not decrease as the number of analysis bands used increases for 

64 taps. It does gradually decrease for 128 and 256 bands.

APA SER Error -> Device: SyncroV2, Sentence: 651, Projection Order: 15, Step-size: 1

Fig. 5.10: APA SER Mean with Error Bar, Audiogram I

Fig. 5.11 illustrates the MOS error mean and error bar for audiogram “F” .

MOS means increase with increasing number of analysis bands. Strong asymptotic 

behaviour is present across all number of taps considered.

There is significant decrease in variability with an associated increase in analysis 

bands.

Fig. 5.12 illustrates the MOS error mean and error bars for audiogram “I” .

All three trends exhibit strong asymptotic behaviour. Variability decreases with 

increase in the number of analysis bands.

As with the NLMS results, there is an observable correlation between the SER 

and MOS performances metrics.
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A P A  M O S Error -» Device: SyncroV2, Sentence: 65F, Projection Order: 15, Step-size: 1

. 5.11: APA MOS Mean with Error Bar, Audiogram F
'

APA MOS Error -> Device: SyncroV2, Sentence: 65F, Projection Order: 15, Step-size: 1

Fig. 5.12: APA MOS Mean with Error Bar, Audiogram I
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5.1.3 QRD RLS Results

The results in this section are for a QRD-RLS forgetting-factor of 1.

To reiterate, the QRD-RLS implementation of the recursive least-squares algo­

rithm was used because of numerical instability of the standard RLS algorithm.

Fig. 5.13 illustrates the mean SER and mean MOS values.

Both averaged SER and MOS values increase in an asymptotic manner. However, 

MOS trends reach a maximum value at 8 bands and decrease with further increases 

in the number of analysis bands, 16 and 20.

With respect to the number of taps, there is no observable general trend.

QRDRLS Model -» Device: SyncroV2, Sentence: 65F, Forgetting-factor: 0.5

Fig. 5.13: QRD RLS Averaged SER and MOS, Audiogram F

Fig. 5.14 illustrates the mean SER and mean MOS values for audiogram “I” . 

Both sets of trends have the same characteristics as the audiogram “F” trend sets. 

Again the MOS trends reach maximum values at 8 bands and decrease at 16 and 20 

bands.

Fig. 5.15 illustrates the SER error mean and error bar for audiogram “F” .
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Q R D R L S  Model -» Device: SyncroV2, Sentence: 651, Forgetting-factor: 0.5

8S

Fig. 5.14: QRD RLS Averaged SER and MOS, Audiogram I

SER means increase with the number of analysis bands and exhibit an asymptotic 

behaviour.

Variability decreases as the number of analysis bands increases.

Fig. 5.16 illustrates the SER mean and error bar for audiogram “I” . Like audiogram 

“F” , SER means increase and exhibit a slight asymptotic behaviour.

Variability appears to decrease across bands for both the 64 and 128 tap trends. 

However, variability increased for the 256 tap trend with additional increases in the 

number of bands.

Fig. 5.17 illustrates the MOS error mean and error bar for audiogram “F” .

MOS means increase with number of analysis bands. Asymptotic behaviour is 

present across all number of taps considered. However, there is a more pronounced 

plateau with higher band numbers. MOS means, for all tap values, converge to the 

upper limit of the MOS scale, 4.5 (best).

Variability decreases with increase in number of bands. However, for larger band
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Q R D R LS  S E R  Error -> Device: SyncroV2, Sentence: 65F, Forgetting-factor: 0.5

15: QRD RLS SER Mean with Error Bar, Audiogram F

QRDRLS SER Error - *  Device: SyncroV2, Sentence: 651, Forgetting-factor: 0.5

Fig. 5.16: QRD RLS SER Mean with Error Bar, Audiogram I
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numbers, variability is significantly small.

Q R D R L S  M O S Error -> Device: SyncroV2, Sentence: 65F, Forgetting-factor: 0.5

Fig. 5.17: QRD RLS MOS Mean with Error Bar, Audiogram F

Fig. 5.18 illustrates the MOS error mean and error bars for audiogram “I” .

All three trends exhibit strong asymptotic behaviour. All three trends exhibit the 

same behaviour with respect to variability.

As with the NLMS and APA results, there is an observable correlation between 

SER and MOS performance metrics.

5.2 Modeling Summary of the Oticon Syncro V2

5.2.1 Audiogram “F”

Tables 5.2, 5.3, and 5.4 summarize the NLMS, APA, and QRD RLS ’’ best” 

modeling performance results.

As stated earlier, for the NLMS and APA algorithms, modeling performance im­

proves with additional analysis bands for each considered number of taps. The QRD
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Q R D R L S  MOS Error -> Device: SyncroV2, Sentence: 651, Forgetting-factor: 0.5

Fig. 5.18: QRD RLS MOS Mean with Error Bar, Audiogram I

RLS algorithm, on the other hand, shows, in general, an increase in MOS score from 

1 to 8 bands, but then decreases with further increases to 16 and 20 bands.

For a fixed number of analysis bands, modeling performance increases with number 

of taps, with respect to the average MOS score, from NLMS to APA and finally the 

QRD RLS algorithm. For the QRD RLS algorithm this trend begins when the number 

of bands is 8 or greater. The QRD RLS algorithm has a lower mean MOS score than 

both the NLMS and APA algorithms for 1, 2, and 4 bands.

Standard deviations for 1, 2, and 4 bands, across algorithms and number of taps, 

are of the same order of magnitude. Standard deviations decrease with further in­

creases in analysis bands. The QRD RLS exhibits significant decreases for larger 

number of bands.
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i 2
Ba

4
nds

8 16 20

NLMS Mean 
Std. Dev.

2.719
0.172

2.750
0.175

3.653
0.173

3.961
0.134

4.184
0.095

4.217
0.080

APA Mean 
Std. Dev.

2.789
0.178

3.017
0.203

3.966
0.262

4.244
0.109

4.332
0.040

4.349
0.039

QRD RLS Mean 
Std. Dev.

1.439
0.141

2.434
0.400

3.888
0.300

4.470
0.0159

4.468
0.011

4.450
0.010

Table 5.2: Syncro V2 “Best” MOS Results Summary for 64 Taps, Audiogram “F”

i 2
Ba]

4
nds

8 16 20

NLMS Mean 
Std. Dev.

2.829
0.175

2.860
0.188

3.736
0.177

4.019
0.103

4.203
0.084

4.244
0.075

APA Mean 
Std. Dev.

2.899
0.195

3.132
0.189

4.076
0.251

4.313
0.075

4.377
0.028

4.379
0.021

QRD RLS Mean 
Std. Dev.

1.352
0.093

2.259
0.398

3.876
0.313

4.475
0.014

4.470
0.012

4.450
0.009

Table 5.3: Syncro V2 “Best” MOS Results Summary for 128 Taps, Audiogram “F” 

5.2.2 Audiogram “I”

Tables 5.5, 5.6 and 5.7 summarize the NLMS, APA, and QRD RLS “best” modeling 

performance results of the Syncro V2 in terms of MOS for 64, 128, and 256 taps, re­

spectively. As stated previously, these were obtained by averaging the 10 HINT 

sentences.

For the NLMS algorithm, modeling performance improves with additional analysis 

bands for each considered number of taps. The APA algorithm demonstrates the same 

trend, but the average MOS value for 20 bands is smaller than the value at 16 bands. 

As with audiogram “F” , the QRD RLS algorithm shows, in general, an increase in 

MOS score from 1 to 8 bands, but then decreases with further increases to 16 and 20 

bands.

For a fixed number of analysis bands, modeling performance increases with the

122



i 2
Ba]

4
ads

8 16 20

NLMS Mean 
Std. Dev.

2.834
0.181

2.862
0.192

3.671
0.156

3.996
0.104

4.227
0.082

4.259
0.072

APA Mean 
Std. Dev.

2.981
0.194

3.210
0.183

4.093
0.252

4.370
0.045

4.414
0.023

4.407
0.014

QRD RLS Mean 
Std. Dev.

1.20088
0.121

2.00795
0.430

3.60266
0.393

4.45260
0.025

4.46910
0.012

4.45106
0.009

Table 5.4: Syncro V2 “Best” MOS Results Summary for 256 Taps, Audiogram “F”

number of taps for the APA algorithm and, in general, the NLMS algorithm. For 

the QRD RLS algorithm, modeling performance decreases with an increase in the 

number of taps.

5.3 Fullband and Subband Model Summary

In order to compare modeling performance of the three adaptive algorithms across 

the five digital hearing aids, the parameters stated in Table 5.1, Best Modeling Pa­

rameters, are used in conjunction with results based on a 256-tap filter structure. 

Signal-to-error ratio (SER) and mean-opinion score (MOS) metrics are summarized 

for both audiogram data sets for a fullband and 20 band subband model.

i 2
B.

4
Etnds

8 16 20

NLMS Mean 
Std. Dev.

3.520
0.131

3.535
0.128

3.805
0.098

3.778
0.090

4.056
0.054

4.138
0.061

APA Mean 
Std. Dev.

3.518
0.080

3.573
0.099

4.055
0.088

4.245
0.020

4.340
0.022

4.306
0.0372

QRD RLS Mean 
Std. Dev.

1.597
0.130

2.491
0.101

4.324
0.050

4.484
0.013

4.427
0.0284

4.365
0.041

Table 5.5: Syncro V2 “Best” MOS Results Summary for 64 Taps, Audiogram “I”
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i 2
Ba

4
mds

8 16 20

NLMS Mean 
Std. Dev.

3.698
0.146

3.705
0.145

3.876
0.133

3.882
0.101

4.017
0.112

4.104
0.078

APA Mean 
Std. Dev.

3.669
0.135

3.743
0.152

4.129
0.107

4.3271
0.021

4.368
0.026

4.327
0.035

QRD RLS Mean 
Std. Dev.

1.450
0.153

2.229
0.144

4.234
0.078

4.485
0.014

4.427
0.028

4.365
0.041

Table 5.6: Syncro V2 “Best” MOS Results Summary for 128 Taps, Audiogram “I”

i 2
Bai

4
ads

8 16 20

NLMS Mean 
Std. Dev.

3.787
0.173

3.787
0.170

3.800
0.118

3.845
0.098

3.999
0.131

4.080
0.122

APA Mean 
Std. Dev.

0.173
0.198

0.170
0.222

0.118
0.146

0.098
0.055

0.131
0.023

0.122
0.034

QRD RLS Mean 
Std. Dev.

0.198
0.149

0.222
0.112

0.146
0.119

0.055
0.083

0.023
0.085

0.034
0.039

Table 5.7: Syncro V2 “Best” MOS Results Summary for 256 Taps, Audiogram “I” 

5.3.1 Subband Model

Results for audiogram ” F” and audiogram ” 1” are presented in the next two 

sections.

5.3.1.1 Audiogram “F”

Table 5.8 presents 20-band SER mean and standard deviation values obtained by 

averaging model responses for 10 HINT excitation sentences.

With respect to the adaptive algorithms, the QRD RLS algorithm had the largest 

SER, followed by the APA algorithm and finally the NLMS algorithm. This trend is 

consistent across the five hearing aids.

SER values for the Symbio 110 XT, Syncro V2, and the Perseo 311 dAZ Forte are 

approximately of the same order of magnitude for each respective adaptive algorithm.
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SER values for the Triano S and Natura 2 SE are also of the same order of magnitude, 

but smaller compared to the previous three hearing aids.

Standard deviations are of the same order of magnitude across all five hearing 

aids and three algorithms.

Symbio Syncro Perseo Triano Natura

NLMS Mean 19.06 20.22 25.22 3.53 7.19
Std. Dev. 2.08 1.87 1.68 1.41 2.80

APA Mean 27.54 30.10 35.74 15.14 16.93
Std. Dev. 3.43 3.21 0.87 2.60 2.68

QRD RLS Mean 53.70 57.38 61.25 35.58 41.29
Std. Dev. 2.94 1.98 1.58 2.86 3.60

Table 5.8: Modeling Comparison of all Instruments using 20 Band Subband Model 
SER Metric, Audiogram “F”

Table 5.9 presents the associated MOS mean and standard deviations for SER 

values presented in Table 5.8.

Similar to the SER results, the MOS value for the QRD RLS algorithm is the 

largest, followed by the APA and NLMS algorithms, respectively. This trend is con­

sistent across the five hearing aids.

With respect to the adaptive algorithms, the NLMS algorithm has a larger range 

of MOS values across the five hearing aids. The smallest MOS value is 3.53, for the 

Triano S instrument, while the Perseo 311 dAZ Forte has the largest MOS value at 

4.31. The range is approximately 0.73.

The range of averaged MOS values for the APA algorithm is approximately 0.15 

and 0.04 for the QRD RLS algorithm.

Standard deviations are on the same order of magnitude.

5.3.1.2 Audiogram “I”

Table 5.10 presents 20-band SER mean and standard deviations values.

With respect to the adaptive algorithms, the QRD RLS algorithm had the largest

125



Symbio Syncro Perseo Triano Natura

NLMS Mean 4.25 4.26 4.31 3.53 3.92
Std. Dev. 0.10 0.07 0.03 0.27 0.13

APA Mean 4.40 4.41 4.39 4.26 4.33
Std. Dev. 0.02 0.01 0.02 0.11 0.03

QRD RLS Mean 4.44 4.45 4.42 4.41 4.44
Std. Dev. 0.02 0.01 0.03 0.01 0.02

Table 5.9: Modeling Comparison of all Instruments using 20 Band Subband Model 
MOS Metric, Audiogram “F”

SER, followed by the APA algorithm and finally the NLMS algorithm. This trend is 

consistent across the five hearing aids and identical to that found for audiogram “F” .

SER values for the Symbio 110 XT, Syncro V2, and the Perseo 311 dAZ Forte are 

approximately of the same order of magnitude for each respective adaptive algorithm. 

SER values for the Triano S and Natura 2 SE are also of the same order of magnitude, 

but smaller compared to the previous three hearing aids.

Standard deviations are of the same order of magnitude across all five hearing 

aids and three algorithms.

Symbio Syncro Perseo Triano Natura

NLMS Mean 13.38 16.39 21.89 5.83 8.88
Std. Dev. 1.08 1.05 2.26 1.77 1.75

APA Mean 34.56 33.53 43.35 20.07 22.85
Std. Dev. 1.32 1.12 1.46 1.94 0.89

QRD RLS Mean 55.68 56.23 60.42 40.03 44.83
Std. Dev. 2.25 4.61 4.36 2.95 1.61

Table 5.10: Modeling Comparison of all Instruments using 20 Band Subband Model 
SER Metric, Audiogram “I”

Table 5.11 presents the associated MOS mean and standard deviations for SER 

values in Table 5.10.

As with the SER results, the MOS value for the QRD RLS algorithm is the largest, 

followed by the APA and NLMS algorithms, respectively. This trend is consistent 

across the five hearing aids.
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With respect to the adaptive algorithms, the NLMS algorithm has a larger range 

of MOS values across the five hearing aids. The smallest MOS value is 3.47, for the 

Triano S instrument, and the largest MOS value is 4.26, for the Perseo 311 dAZ Forte. 

The range is approximately 0.79.

The range of averaged MOS values for the APA algorithm is approximately 0.08 

and 0.06 for the QRD RLS algorithm.

Standard deviations are of the same order of magnitude.

Symbio Syncro Perseo Triano Natura

NLMS Mean 3.64 4.08 4.26 3.47 3.72
Std. Dev. 0.18 0.12 0.06 0.30 0.18

APA Mean 4.34 4.35 4.36 4.29 4.28
Std. Dev. 0.03 0.03 0.03 0.11 0.02

QRD RLS Mean 4.37 4.36 4.36 4.42 4.38
Std. Dev. 0.03 0.04 0.06 0.03 0.03

Table 5.11: Modeling Comparison of all Instruments using 20 Band Subband Model 
MOS Metric, Audiogram “I”

5.3.2 Fullband Model

Results for audiogram ” F” and audiogram ” P are presented in the next two 

sections.

5.3.2.1 Audiogram “F”

Table 5.12 presents fullband SER mean and standard deviation values obtained 

by averaging model responses for 10 HINT excitation sequences.

With respect to the adaptive algorithms, the APA algorithm had the largest SER 

values, followed by the NLMS algorithm and finally the QRD RLS algorithm. This 

trend is consistent across the five hearing aids.

SER values for the Symbio 110 XT and Syncro V2 are approximately of the same 

order of magnitude for each adaptive algorithm. SER values for the Triano S and
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Natura 2 SE are of the same magnitude. The Perseo 311 dAZ Forte has the larger 

SER results.

Standard deviations are of the same order of magnitude across all five hearing 

aids for each respective algorithm.

Symbio Syncro Perseo Triano Natura

NLMS Mean 4.85 3.19 15.01 1.33 0.83
Std. Dev. 3.34 2.96 1.61 0.35 1.45

APA Mean 12.22 12.35 22.75 4.52 5.97
Std. Dev. 5.62 4.72 1.27 2.68 2.52

QRD RLS Mean 0.71 0.33 6.59 0.06 0.07
Std. Dev. 0.92 0.30 1.58 0.06 0.10

Table 5.12: Modeling Comparison of all Instruments using Fullband Model SER 
Metric, Audiogram “F”

Table 5.13 presents the associated MOS mean and standard deviations for SER 

values presented in Table 5.12.

The MOS values for the Symbio XT 110, the Syncro V2, the Triano S, and the 

Natura 2 SE are of the same order of magnitude. The Perseo 311 dAZ Forte has the 

largest MOS value. These observations are present across the three algorithms.

Standard deviations are of the same order of magnitude across the five hearing 

aids and adaptive algorithms.

Symbio Syncro Perseo Triano Natura

NLMS Mean 2.88 2.83 4.06 3.60 3.66
Std. Dev. 0.25 0.18 0.15 0.16 0.36

APA Mean 3.11 2.98 4.25 3.30 3.58
Std. Dev. 0.22 0.19 0.03 0.41 0.21

QRD RLS Mean 1.33 1.20 2.32 1.18 1.63
Std. Dev. 0.15 0.12 0.13 0.14 0.17

Table 5.13: Modeling Comparison of all Instruments using Fullband Model MOS 
Metric, Audiogram “F”
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5.3.2.2 Audiogram “I”

Table 5.14 presents fullband SER mean and standard deviations values associated 

with audiogram “I” .

As with the audiogram “F” results, the APA algorithm had the largest SER values, 

followed by the NLMS algorithm and finally the QRD RLS algorithm. This trend 

holds across the five hearing aids.

SER values are significantly different across the five hearing aids and algorithms.

Standard deviations are of the same order of magnitude across all five hearing 

aids and the adaptive algorithms.

Symbio Syncro Perseo Triano Natura

NLMS Mean 10.87 6.37 18.68 4.23 5.46
Std. Dev. 1.14 1.21 1.32 0.86 0.54

APA Mean 19.83 14.18 31.68 7.60 10.76
Std. Dev. 2.49 2.00 1.89 2.67 1.34

QRD RLS Mean 1.01 0.32 9.07 0.12 0.26
Std. Dev. 0.58 0.18 1.84 0.11 0.10

Table 5.14: Modeling Comparison of all Instruments using Fullband Model SER 
Metric, Audiogram “I”

Table 5.15 presents the associated MOS mean and standard deviations for SER 

values presented in Table 5.14.

The MOS values are of the same order of magnitude across the five hearing aids 

for the NLMS and APA results. The QRD RLS MOS values are lower.

Standard deviations are of the same order of magnitude across the five hearing 

aids and adaptive algorithms.

5.4 Summary

Fullband and subband modeling results for the Oticon Syncro V2 hearing aid 

were presented using the NLMS, APA, and QRD RLS parameters yielding the largest
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Symbio Syncro Perseo Triano Natura

NLMS Mean 3.32 3.79 4.05 3.50 3.58
Std. Dev. 0.13 0.17 0.13 0.19 0.19

APA Mean 3.60 3.68 4.28 3.38 3.82
Std. Dev. 0.23 0.20 0.04 0.37 0.20

QRD RLS Mean 1.26 1.33 2.15 1.18 1.81
Std. Dev. 0.10 0.15 0.12 0.12 0.14

Table 5.15: Modeling Comparison of all Instruments using Fullband Model MOS 
Metric, Audiogram “I”

signal-to-error ratio (SER). Corresponding PESQ MOS scores were also presented.

Plots of SER and MOS values as a function of the number of analysis bands demon­

strated linear to strong asymptotic behaviour. With poorer modeling performance, 

as demonstrated by the NLMS algorithm, there was a lower degree of correlation 

between these two trends. The APA and QRD-RLS algorithms demonstrated higher 

degrees of correlation. However,with larger number of analysis bands, PESQ MOS 

scores decreased with additional increases in the number of analysis bands for these 

two algorithms.

A 20-band subband model had larger SER and MOS values than a fullband model. 

This increase was consistent across the adaptive algorithms.
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Chapter 6

Discussion, Conclusions, and 

Future Work

In this thesis, the application of a uniform subband adaptive model to character­

ize the compression behaviour of five digital hearing aids has been examined. The 

motivation for this research is to advance the work done by (24) and (30) in the ap­

plication of objective measures, like the PESQ mean-opinion score (MOS), to predict 

subjective assessments of speech quality. It is hoped this research will lead to a timely 

and reliable clinical test procedure facilitating an appropriate ranking of hearing aids 

based on speech quality for a given sensorineural hearing loss.

6.1 Discussion

Results of this research confirm that a subband adaptive model is able to success­

fully characterize compression behaviour of a set of digital hearing aids taken from 

the current market. Expanding on the results found by (30), the subband model 

outperforms its equivalent fullband implementation.

With an appropriate level of modeling performance, it was possible to successfully

apply the PESQ mean-opinion score. Preliminary results suggest this approach holds
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the potential to rank hearing instruments based on the quality of speech processed 

by these devices.

The three adaptive algorithms examined demonstrated defined levels of perfor­

mance that were commensurate with their theoretical basis. General comments of 

these algorithms are made.

6.1.1 Subband Model Versus Fullband Model

Under all of the conditions examined in this research and the five hearing aids 

considered, subband modeling outperformed an equivalent fullband model. To un­

derstand the underlying reason for this result, we can look at a specific modeling 

example and compare the error residues of a subband and fullband model.

Considering the APA algorithm with a step-size of 1.0, a projection-order of 15, 

and 64 taps, we can plot the time-varying spectral content for both models using a 

single HINT sentence. Fig. 6.1(a) illustrates the Bark spectrogram of the HINT 1-1 

sentence, “A boy fell from the window. ”, which was one of the ten HINT sentences.

Fig. 6.1(b) illustrates the Bark spectrogram of the measured 2cc coupler Syn- 

cro V2 response for audiogram “F” . This figure shows the gain applied to higher 

frequencies in addition to the noise added by the hearing aid.

Fig. 6.1(c) illustrates the error residue of a fullband model. The fullband structure 

is not able to model a significant portion of the speech and noise components.

Fig. 6.1(d) illustrates the error residue of a 20-band uniform subband model. It is 

readily apparent that the subband model provides a better estimate of the measured 

hearing aid response.

6.1.2 Deviations on Subband Modeling Performance

In general, characterization of compression behaviour improved with additional

increases in the number of analysis bands. Linear to moderate-to-strong asymptotic

132



(a) Hearing Aid Input (b) Hearing Aid Output

Subband Modal Rasldua

(c) Fullband Model Error (d) Subband Model Error

Fig. 6.1: Bark Spectrograms
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SER trends were observed (associated with NLMS, APA, and QRD RLS algorithms, 

respectively) for algorithm parameters considered. However, characterization of the 

Siemens Triano S and Sonic Innovations Natura 2 SE instruments was less effective 

as indicated by lower overall SER values for both audiograms, as noted in Table 6.1 

and Table 6.2 for the 20-band model. These are repeated here for convenience.

Symbio Syncro Perseo Triano Natura

NLMS Mean 19.06 20.22 25.22 3.53 7.19
Std. Dev. 2.08 1.87 1.68 1.41 2.80

APA Mean 27.54 30.10 35.74 15.14 16.93
Std. Dev. 3.43 3.21 0.87 2.60 2.68

QRD RLS Mean 53.70 57.38 61.25 35.58 41.29
Std. Dev. 2.94 1.98 1.58 2.86 3.60

Table 6.1: Modeling Comparison of all Instruments using 20 Band Subband Model 
SER Metric, Audiogram “F”

Symbio Syncro Perseo Triano Natura

NLMS Mean 13.38 16.39 21.89 5.83 8.88
Std. Dev. 1.08 1.05 2.26 1.77 1.75

APA Mean 34.56 33.53 43.35 20.07 22.85
Std. Dev. 1.32 1.12 1.46 1.94 0.89

QRD RLS Mean 55.68 56.23 60.42 40.03 44.83
Std. Dev. 2.25 4.61 4.36 2.95 1.61

Table 6.2: Modeling Comparison of all Instruments using 20 Band Subband Model 
SER Metric, Audiogram “I”

With the range of hearing aid complexity examined and the large SER values 

associated with the other three devices, it is not readily known why SER results for the 

Triano and Natura devices are lower. It was originally thought that the application 

of audiograms with thresholds falling outside the manufacturer’s suggested fitting 

region for these devices was the root of the problem. However, three devices had 

thresholds outside their respective fitting regions illustrated in Appendix A, Hearing 

Aid Specifications.

One possible explanation for the low SER values for the Triano and Natura devices
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arc the small attack and release time constants shown in Table 4.2. As shown by the 

tracking analysis of Chapter 2, modeling performance is not as good for small time 

constants due to the inability of the adaptive algorithms to track significant signal 

changes. Despite the overall lower SER values, the MOS scores do not appear to 

be influenced, suggesting this does not impact spectral cues important to the PESQ 

perceptual model.

Several aspects associated with hearing aid performance and methodologies were 

also examined in efforts to find possible explanations for this observation.

6.1.2.1 ANSI S3.22 (2003) Test Results

With respect to hearing aid performance, each instrument (programmed using a 

“first-fit” option based on the DSL[i/o] fitting method and audiograms “F” and “I” ) 

had a set of standard ANSI S3.22 (2003) [ANSIS3.22] tests run to verify operation. 

These included, •

• Section 6.2, OSPL90 Curve, of Section 6, Recommend Measurements, Specifi­

cations, and Tolerances.

• Section 6.7, Reference Test Gain

• Section 6.11, Harmonic Distortion

• Section 6.12, Equivalent Input Noise Level

• Section 6.15.1, Input-Output Characteristics

Appendix B, ANSI S3.22 (2003) Test Results, illustrates results for all five devices. 

Because these results were not obtained using the manufacturer’s specific configura­

tion, it is not possible to make a direct comparison between them and the respective 

data-sheet results. However, it possible to suggest each device, as programmed, was 

working in an expected manner. No significant anomalies were observed.
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6.1.2.2 Methodology

The methodology used to collect and model hearing aid recordings was standard­

ized across all five hearing aids. Unless an inherent aspect of this process was the 

root of poor modeling of the Triano S and Natura 2 SE instruments, this process is 

likely not to be the source of the issue.

Reference and 2cc coupler recordings for all five devices were verified to ensure to 

potential artefacts, like clipping, were not present.

Further review is required.

6.1.3 PESQ Mean Opinion Score

Based on the data collected so far, it is not possible to comment fully on the po­

tential success of the PESQ mean-opinion score (MOS) to assess hearing aid speech 

quality when used in the subband model-based framework investigated in this re­

search. Comments are made with respect to its relationship to the signal-to-error 

ratio (SER), its potential to differentiate between the five hearings aids based on 

a preliminary one-way ANOVA analysis of data, and possible limitations with its 

application based on the context of this work and future advances in hearing aid 

technology.

6.1.3.1 MOS Correlation with SER

With review of the SER-MOS plots of Section 5.1, General Modeling Performance 

of the Oticon Syncro V2, and those of the other four hearing aids presented in Appen­

dix C, Modeling Results, it appears a certain, consistent level of modeling performance 

must occur before MOS trends correlates more closely with their respective asymp­

totic SER trends. Inadequate or inconsistent modeling performance, as indicated by 

the NLMS algorithm, or over-modeling performance, as indicated by the QRD RLS 

algorithm, degrades the level of correlation.
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NLMS

Fig. 5.1, NLMS Averaged SER and MOS, Audiogram F, shows a good correlation 

(for a step-size of 1.0) between the SER and MOS trends for the Oticon Syncro V2. 

However, Fig. 5.2, NLMS Average SER and MOS, Audiogram /, illustrates a lower 

level of correlation. With the application of audiogram I, more compression is applied 

to the speech sequences used to excite the hearing aids. The NLMS algorithm was 

not able to model this behaviour as it did for the type F audiogram, even with a 

maximum step-size of 1.

With the use of its best modeling parameters, a step-size of 1.0, the NLMS algo­

rithm was not able to produce well-defined asymptotic trends for both SER and MOS 

metrics. Other step-sizes were not able to provide adequate modeling performance as 

indicated by the linear to weak asymptotic SER and MOS trends.

APA

Fig. 5.7, APA Averaged SER and MOS, Audiogram F and Fig.5.8, APA Averaged 

SER and MOS, Audiogram /, show good correlation (for a projection-order of 15 

and step-size of 1.0) between the SER and MOS trends for the Oticon Syncro V2. 

Unlike the NLMS algorithm, the APA algorithm was able to model both audiogram 

conditions successfully.

With the use of its best modeling parameters, a projection-order of 15 and a step- 

size of 1.0, the APA algorithm produced moderate to strong asymptotic trends for 

both SER and MOS metrics across all hearing aids for all of the conditions considered.

On a portion of the MOS trends it was observed that the average MOS values 

decreased with a larger number of analysis bands. Fig. 6.2 illustrates this behaviour 

for the Syncro V2 instrument.
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A P A  M O S Error ->  Device: SyncroV2, Sentence: 651, Projection Order: 15, Step-size: 1

Fig. 6.2: APA MOS Mean with Error Bar, Audiogram “F”

This behaviour was not observed on a consistent basis across all of the hearing 

aids. It was observed for the Syncro V2, Natura 2 SE, and the Perseo 311 dAZ Forte 

(most pronounced), not the Triano S and Symbio 110 XT. It appears this behaviour 

may be associated with the band structure of the device in question.

The Natura 2 SE and the Perseo 311 dAZ Forte devices use a band structure based 

on critical bands. Unlike these instruments, the Triano S makes use of a uniform band 

structure, the Syncro V2 a non-uniform structure, while the Symbio 110 XT has no 

frequency-based, band structure.

QRD RLS

Fig. 5.13, QRD RLS Averaged SER and MOS, Audiogram F  and Fig. 5.14, QRD 

RLS Averaged SER and MOS, Audiogram /, show strong correlation (for a forgetting- 

factor of 0.5) between the SER and MOS trends. Like the APA algorithm, SER and 

MOS trends were highly correlated and demonstrate moderate to strong asymptotic
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behaviour across all hearing aids for all of the conditions considered.

As with the APA MOS error trends, the QRD RLS MOS error trends decreased 

in averaged MOS value with a larger number of analysis bands. This behaviour 

occurred across all of the instruments for both audiograms at a forgetting-factor of 

0.5. However, this behaviour was no longer present when the forgetting-factor was 

increased to a value of 0.95. Based on a preliminary one-way analysis of variance 

(ANOVA) test, presented in the next section, it appears a larger forgetting factor 

might be more beneficial for the application of the PESQ MOS metric.

6.1.3.2 One-Way ANOVA Analysis

A preliminary one-way ANOVA analysis provides initial insights to the possible 

benefits of this model-based assessment of speech quality. In this section results from 

this test will be presented for each adaptive algorithm. Best modeling parameters for 

both the NLMS and APA algorithms will be considered. Best modeling parameters 

for the QRD RLS algorithm will also be considered, but the analysis will also include 

the largest forgetting-factor used (0.95).
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N L M S  A N O V A  (p=0) - *  Bands = 20, Taps = 256, Step-size =  1

Fig. 6.3: NLMS One-Way ANOVA (20 Bands, 256 Taps, Step-size of 1.0)

Fig. 6.3 illustrates the one-way ANOVA results for the NLMS algorithm using the 

best modeling parameters for audiogram “F” . Fig. 6.4 illustrates the one-way ANOVA 

results for the APA algorithm using the best modeling parameters for audiogram “F” . 

Fig. 6.5 illustrate the one-way ANOVA results for the QRD RLS algorithm using the 

best modeling parameters for audiogram “F” .
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A P A  A N O V A  (p=1.7881e-007) -> Bands = 20, Taps =  256, Step-size =  1, Projection-order =  15

Fig. 6.4: APA One-Way ANOVA (20 Bands, 256 Taps, Step-size of 1.0, Projection- 
order of 15)
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Q R D R L S  A N O V A  (p=9.6321e-005) -> Bands =  20, Taps =  256, Forgetting-factor =  0.95

Fig. 6.5: QRD RLS One-Way ANOVA (20 Bands, 256 Taps, Forgetting-factor of 
0.95)
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Q R D R L S  A N O V A  (p=0.00047243) -> Bands =  20, Taps =  256, Forgetting-factor =  0.5

Fig. 6.6: QRD RLS One-Way ANOVA (20 Bands, 256 Taps, Forgetting-factor of 0.5)

For comparative purposes, Fig. 6.6 illustrates the one-way ANOVA box-whisker 

plot for the QRD RLS algorithm for a forgetting-factor of 0.5. Despite providing the 

best modeling performance as measured by the signal-to-error ratio, the associated de­

crease in mean and variability of the respective MOS scores (with additional analysis 

bands) appears to influence the ability to differentiate between the five instruments.

For all three algorithms the p-value was less than 0.05, indicating significant dif­

ferences of the mean MOS scores across the five hearing aids. Tukey’s Honestly 

Significant Difference criterion was applied to determine the significant differences in 

mean MOS score across the five hearing aids. Table 6.3 summarizes these results.

These results suggest the NLMS, APA, and QRD RLS (forgetting-factor of 0.95) 

algorithms might be able to differentiate between the five hearing aids.
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Natura Perseo Symbio Syncro Triano
Natura 2 SE, A X X X X

Perseo 311 dAZ Forte, B X X

NLMS Symbio 110 XT X X

Syncro V2, D X X

Triano S, E X X X X

Natura 2 SE, A 
Perseo 311 dAZ Forte, B

X X

X

APA Symbio 110 XT X X

Syncro V2, D 
Triano S, E

X

X X X

X

Natura 2 SE, A X

Perseo 311 dAZ Forte, B X

QRD RLS Symbio 110 XT X

(0.95) Syncro V2, D 
Triano S, E X X X X

X

Natura 2 SE, A 
Perseo 311 dAZ Forte, B X

QRD RLS Symbio 110 XT X

(0.50) Syncro V2, D 
Triano S, E

X

X X

X

Table 6.3: Results of Tukey’s Honestly Significant Difference Criterion

The QRD RLS multiple comparison results with a forgetting-factor of 0.5 show 

fewer significant mean differences than the other three sets of data. Unlike the SER 

metric, which increased in value with a larger number of analysis bands, the MOS 

scores saturated near the upper 4.5 limit. This suggests that the PESQ MOS score 

is not able to discriminate between these modeled sequences. However, confirma­

tion is not possible without subjective data and analysis. This idea requires further 

investigation.

6.1.3.3 Limitations

As indicated in (22), Section 8, Preparation of Processed Speech Material, key 

temporal and spectral properties of speech must be present in order to give meaningful
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results. The choice of speech signals must also represent the temporal structure 

(including silent intervals) and phonetic structure of real speech signals.

The 10 HINT sentences used in this research meet these two conditions are limited 

in the fact that only a male speaker sequences were used. For proper application of 

the metric, (22) recommends a minimum of two male talkers and two female talkers 

be used for each testing condition. This is in addition to guidelines given in Clause 7 

of the P.830 ITU-T standard, Subjective Performance Assessment of Telephone-band 

and Wide-band Digital Codecs”  (February, 1996).

6.1.3.4 Conclusions

Preliminary results suggest the PESQ MOS objective measure applied within a 

subband model framework has potential to rank hearing aids based on speech quality 

assessment. However, consideration of the limitations noted in the last section, in 

addition to subjective data collection and its analysis, are required to confirm its 

successful application.

6.1.4 General Comments on Algorithm Performance

The basis of derivation directly impacts an adaptive algorithm’s ability to per­

form in a given statistical environment. In this research, a complex non-stationary 

statistical environment is established with the application of speech sequences to ex­

cite hearing aids whose application of compression is dependent on the time varying 

spectral intensity of the speech signal. In light of the results presented in Chapter 

4, this section makes general comments on the performance of the Normalized Least 

Mean-Squares, the Affine Projection, and QRD Recursive Least-Squares algorithms.
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6.1.4.1 Normalized Least Mean-Squares (NLMS)

As noted in Chapter 3, Adaptive Algorithms, updates to the tap-weights are based 

on a normalized corrected instantaneous estimate of the steepest descent gradient. 

Without the consideration of information from prior samples, the NLMS algorithm 

is not suitable to modeling environments with significant statistical variations with 

time. Results found in this research support this statement.

The following generalizations, made from NLMS modeling results presented in 

Appendix C, Section 1, Normalized Least Mean Squares, can be made. These include,

• Both the mean SER and mean MOS metric values, plotted as a function of the 

number of analysis bands, demonstrated linear to weak asymptotic behaviour 

with SER values no larger than approximately 20 dB.

• Significant variability in MOS metric value with respect to the number of analy­

sis bands. This suggests adequate modeling was not occurring.

• In general, the degree of modeling performance was not directly associated with 

the number of taps or weights of the finite-impulse response transversal filter.

• Step-size had a weak to moderate impact on modeling performance.

Despite the poor modeling performance (based on SER values) and the limited 

number of speech sequences and audiograms applied, the one-way ANOVA results 

suggest it might be possible to use the NLMS algorithm in conjunction with PESQ 

MOS. Further work is required to confirm this point.

6.1.4.2 Affine Projection Algorithm (APA)

Unlike the NLMS algorithm, the APA algorithm extracts information from a set of 

prior samples to obtain more accurate approximations of the autocorrelation matrix 

of the tap inputs, Rx, and the cross-correlation between tap inputs and the desired
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sequence, R^. Because of this data re-use property, the APA algorithm demonstrated 

better overall modeling performance.

As with the NLMS algorithm, several generalizations based on modeling results 

can be made. The include,

• Both the mean SER and mean MOS metric values, plotted as a function of 

the number of analysis bands, demonstrated moderate to strong asymptotic 

behaviour.

• In general, variability of the MOS metric value decreased with increases in the 

number of analysis bands. This suggests adequate modeling was occurring.

• In general, the degree of modeling performance increased with the number of 

taps or weights of the finite-impulse response transversal filter.

APA modeling results are presented in Appendix C, Section 2, Affine Projection 

Algorithm.

6.1.4.3 QR-Decomposition Recursive Least Squares (QRD RLS)

Initial application of the conventional RLS algorithm failed due to the almost 

immediate occurrence of an ill-conditioned state of the input covariance matrix. This 

condition was observed for all pairs of reference and desired sequence sets applied to 

the adaptive filters of the subband adaptive model.

To address this numerical instability, a more robust, numerically stable RLS im­

plementation was applied. The QR-decomposition RLS (QRD-RLS) algorithm (46), 

(47), a square-root variant, was implemented.

Generalizations for this algorithm include,

• Both the mean SER and mean MOS metric values, plotted as a function of 

the number of analysis bands, demonstrated moderate to strong asymptotic 

behaviour.
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• In general, variability of the SER metric, and associated MOS metric, decreased 

with increases in the number of analysis bands. Like the APA algorithm, this 

suggests adequate modeling was occurring.

QRD-RLS modeling results are presented in Appendix C, Section 3, QR-Decomposition 

Recursive Least Squares.

6.2 Conclusions

From the Bernafon Symbio XT 110, using time-domain processing via the Contin­

uously Adaptive Speech Integrity process, to the Phonak Perseo 311 dAZ Forte, using 

frequency-domain processing in 20 bands, the applied technologies used by hearing aid 

manufacturer’s is diverse and complex. However, despite these significant differences, 

a uniform subband linear adaptive model is capable of successfully characterizing 

complex compression behaviour.

Preliminary results suggest it may be possible to rank hearing aids using speech 

quality through application of objective measures of speech quality found in other 

research areas. These measures are well researched and have a high level of corre­

lation to costly subjective assessments of speech quality. The PESQ mean-opinion 

score, applied extensively in the field of telecommunications, appears to hold promise 

in its ability to rank hearing aids in light of the preliminary one-way ANOVA re­

sults. However, it is not possible draw any conclusion without subject assessment 

and determination of any underlying correlations.

It appears a range of modeling performance must be in place for the application 

of an objective measure to be successful. In the context of this work, the NLMS 

algorithm under-modeled compression behaviour, while the QRD RLS algorithm, 

with smaller forgetting-factors, over-modeled it. The APA algorithm offers the most 

robust behaviour, confirming the work of (30; 24).
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6.3 Future Work

By establishing a framework to support further investigation of objective measures 

and linear adaptive algorithms (and their non-linear counterparts) and confirmation 

of the work by (30), future work in this area holds promise for the realization of 

a clinical test to aid in the selection of hearing instruments most appropriate for a 

patient.

Several problems need to be solved by the next round of research. These include,

• A multi-dimensional analysis-of-variance should be conducted to investigate 

sources of variability for the SER and PESQ MOS scores. Dimensions should in­

clude the number of analysis bands, APA and QRD RLS algorithm parameters, 

and the number of taps used in the transversal filter structure.

• Assess modeling performance associated with a broadening of the speech exci­

tation sequences. This research used only ten, male-talker HINT sentences

• Subjective assessments by impaired and healthy hearing individuals should be 

completed. Work is presently underway to collect and analyze data by Dr. 

Parsa’s research group. This data will investigate possible correlations with the 

results provided by the experimental approach outlined in this thesis.

If the solutions to the above problems warrant continued work, several less critical 

questions and process refinements could be addressed and implemented, respectively. 

These items could include, •

• Despite the increased complexity in implementation, refinements to the subband 

model, which might include the use poly-phase filter bank structures, would help 

minimize processing time. A fast and easy analysis tool would be more readily 

acceptable in a clinical environment.
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• Research by (35; 34; 33) might improve modeling performance through the ap­

plication of time-varying, non-uniform analysis filter banks. This would include 

the use of one-third octave bands to more closely model the critical bands of 

the cochlea.

• The introduction of noise to the speech sentences used to excite the hearing 

aids to determine the robustness of this methodology.

• Further investigation of Kates’ Processing Type (27) using a swept-tone with 

broadband noise excitation.

• Investigate the effects of turning on other common complex hearing aid process­

ing features like digital noise reduction, directional processing, and feedback 

cancelation on modeling behavior.
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Appendix A

Hearing Aid Specifications

Section 1 

Section 2 

Section 3 

Section 4 

Section 5

Bernafon Symbio XT 110

Oticon Syncro V2

Phonak Pcrsco 311 dAZ Forte

Siemens Triano S

Sonic Innovations Natura 2 SE

Data sheets are published with the permission from each manufacturer.
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A .l  Bernafon Symbio X T  110
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Bemafon Canada - Symbio XT 110 BTE http://www.bemafon.ca/eprise/main/Bemafon/ca_cn/SEC_Professionals...

symbìoxT
; About Bernafon Canada Ltd. ; About Hearing jj Hearing Solutions Professionals ;N ew s

Products I Software ; Audio logy ! Grow your business ! Sem inars

S w is s E a r  

S ym b io  XT  

C h ann e l F re e ”* 

O p e n F it ” * 

S o u n d M a s te r” * 

F e a tu re s  

In s t ru m e n ts  

Sym bio XT 100 BTE 

Sym bio XT 110 BTE 

Sym bio XT 115 BTE DM 

Sym bio XT 200 ITE 

Sym bio XT 205 ITE DM 

Sym bio XT 320 ITC 

Sym bio XT 325 ITC DM 

Sym bio XT 400 CIC 

Sym bio XT 410 MC 

S m ile  P lu s

F la ir

Compact power BTE for moderate to severe hearing losses. Local 
M/T/O switch. Battery size 13.

Prod uct Fea ture s

•  ChannelFree™
•  OpenFit™ to avoid occlusion
•  Adaptive Feedback Canceller
•  OASIS plus 3.0
•  Soft Noise Management™

Virtual Tour ” Contact

jitem Bsearch
Bfle rnafon  w orldw ide

¡Download____________ |
I Product inform ation  
Sy m b io  XT  BTE ^  
(pdf. 187 KB)

W in

A u d io f le x  

D a h lb e rg  A n a log  

L e x is

Prod uct In fo rm a tio n

Full-On Gain, Peak 
Peak, OSPL 90 
Freq. Range, ANS 
Battery Type 
Local Controls 
Accessories 
Telecoil
Direct Audio Input

IE C  1 1 8 -7  (2 cc) IE C  1 1 8 -0  (Ea rs.)

62 dB 68 dB
131 dB SPL 135 dB SPL

100 - 5900 Hz 
13

M/T/O switch 
Audio shoe, FM 

Yes 
Yes

U se r benefits

•  Maximal speech understanding and clear, natural sound
•  Occlusion-free fitting
•  Less whistling
•  Unparalleled customization
•  Reduced annoying low-level noise

f lB a ck If lT o p I Copyright ©2004 by Bernafon Canada Ltd.

1 O f 1
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A .2 Oticon Syncro V2
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T E C H N I C A L  I N F O R M A T I O N

B T E Oticon ♦ Syncro

Ear simulator
Measured according to IEC publications 
118-0, -1, -2, -6, -13 (incl. amendments) and 711.

100 200 Hz 500 1000 2000 Hz 5000 10000

Frequency response  with magnetic and 
acoustic  Input

100 

90 

80 

70

100 200 Hz 500 1000 2000 Hz 5000 10000
--------- Acoustic input: 60 dB SPL
-  — -  -  Magnetic input: 31.6 mA/m

dB SPL Reference setting

1?

«

4+ft

-

-

*

1
f r f f" =

D a ta  a t a  g la n c e
Note: Measurement data obtained through 
standard pure tone measurements on advanced 
adaptive digital hearing aids may be misleading 
with regard to characteristics in normal use. For 
technical measurements special technical settings 
that disables all the adaptive features are used. 
Unless otherwise stated all measurements are in 
the Omnidirectional mode.

Ear Simulator_____________________ 2cc Coupler

O SPL90 Output, d B  S P L  O SP L90

122 Peak 112
115 1000 Hz 111
116 1600 Hz 109
114 Average (DIN) 109

HF Average (ANSI) 111

Full-on gain, d B

Input: 50 dB SPL
62 Peak 54
54 1000 Hz 49
56 1600 Hz 49
54 Average (DIN) 48

HF Average (ANSI) 51

Frequency Range, Hz
190-7300 DIN/ANSI 130-6900

Telecoil output, d B  S P L
87 1 mA/m field, 1600 Hz 80
107 10 mA/m field, 1600 Hz 100

SPLITS (ANSI), Right ear 94
SPLITS (ANSI), Left ear 93

Total harmonic distortion, %

Reference setting. Input: 70 dB SPL
IEC Hz AN SI
0.5 500, typical 0.5
0.5 800, typical 0.5
0.5 1600, typical 0.5

Equivalent input noise level (ANSI), d B  S P L
16 Typical/maximum, Omni 12/16
23 Typical/maximum, Dir 20/24

Battery consumption, m A

1.1 Quiescent, typical/maximum I.1/1.3
1.1 IEC 1.1

ANSI 1.1

Battery

Size 13 (IEC PR48)
Estimated life In hours Typ M in
1.4 V Zinc air 220 180

E M C  Immunity (IEC  118-13)

IRIL, d B  S P L  Field strength, (V/m) 
G SM /DECT GSM /DECT
-48/-8 Microphone (Omni) 3/2
-39/-5 Microphone (Dir) 3/2
-33/-3 Telecoil 3/2

2cc coupler
Measured according to IEC publications 118-7 
(incl. amendments) and 126 and to ANSI S3.22 
(2003) and S3.7 (1995).

dB. dB SPL

Frequency response  with magnetic and 
acoustic input

100 

90 

80

70

100 200 Hz 500 1000 2000 Hz 5000 10000
--------- Acoustic input: 60 dB SPL
-  — — -  Magnetic input: 31.6 mA/m

10
1 6 2



A .3 Phonak Perseo 311 dAZ Forte
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PHONAKPerseo“ 311 dAZ Forte
with Personal Logic

Highest power BTE Perseo personal, d ig ita l hearing instrument. Perseo 311 dAZ Forte com bines contemporary 

aesthetic design w ith innovative environm ental protection for re liab ility  and consistent performance.

Perseo provides personally  op tim ized  clarity, com fo rt, convenience and con tro l for easy listen ing  in all hearing 

s itu a t ion s  thanks to  Personal System M anagers, D PP2 in 20  critica l bands. F ine-sca le  Noise Cance le r in 20 bands, 

Adaptive  d ig ita l Aud ioZoom , w ith  rapid, s ilen t onset and au tom atic  L isten ing  S itua tion  M anager. Personal d irect 

and rem ote con tro l op tion s w ith  the TacTron ic Sw itch , W a tchP ilo t2  and SoundP ilo t and op tiona l in tegrated FM .

Key data

General
features

Options

Autom atic

Hearing
Programs

Processing

Technical
features

Software

Hardware

Ear S im ulator and tone hook HE4 330
Max. gain 72 dB
Max. power output 135 dB SPL
Frequency range <100-6000 Hz

-  BTE with battery size 13
-  Screw-on integrated hook
-  Telecoil
-  Moisture and wind noise resistant
-  TacTronic switch combining ON/OFF and program 

selection

WatehPilot2 or SoundPilot remote controls for 
binaural program selection and volume control 
Confirmation beeps for program selection 
FM Module 
Tone hook HE4 330
Left/Right identification on battery cover 
Tamperproof battery compartment

Listening Situation Manager for automatic soft 
switching between programs

©  Tone hook HE4 1000 (standard) 
®  Broadband receiver 
®  M in iature electret dual micro­

phones (protected inputs)
©  TacTronic switch 
®  Battery compartment (with 

serial number) including inte­
grated programming socket 

©  Battery cover and type identifi­
cation

-  Up to five hearing programs + mute mode
1. QuietSituations
2. NoisySituations
3. SpecialSituations (choices available)
4. FM or T (telecoil)
5. FM + M or MT

-  Digital Perception Processing': Clarity Component 
Enhancement in 20 critical bands

-  Personal System Managers
• Feedback Manager
• Occlusion Manager
• Experience Manager

-  Noise suppression technologies
• Adaptive digital AudioZoom (dAZ)
• Fine-scale Noise Canceler (FNC) in 20 bands
• Soft squelch

Fitting range dBHi
ö I

~~Ï5  I
20

Il25 I25O ¡500 ¡1000 ¡ 2000 ¡4000 Hz

Frequency / Hz

-  2Sigma/Delta AD converters, 14 bit resolution Moderate to profound hearing loss,
-  Sampling rate 20 kHz, 6 4 x oversampling all audiometrie configurations
-  128 point FFT processor

-  PFG software version 8.1 or later, NOAH compatible

-  Programmable with PC (IBM compatible) and 
HI-PRO interface

WARNING TO DISPENSERS:
This hearing instrument has an output sound pressure level that 
can exceed 132 dB SPL. Special care should be taken when 
fitting this instrument as there may be a risk o f impairing the 
residual hearing o f the user.

C€
0459

Digital Perseo
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Ear simulator data
EN/IEC 60118 and IEC 60711

2 cm3 coupler data
ANSI S3.22-1996

Output sound pressure level Output sound pressure level

(Input 90 dB SPL) i Maximum ; 1600 Hz (Input 90 dB SPL) i Maximum ; HFA
: 134 dB SPL ; I 28 dB SPL I25 dBSPL< 128dBSPL ; 123 dB SPL

Frequency response

-  Max. gain 
(Input 90 dB SPL)

dB SPL
1X0

130

120

110

100

I too I200 Imo  11000 12000 Isooo 110000 H/

Frequency response

•—  Max. gain
(Input 90 dB SPL)

dB SPL
140

130
'N

120

110

100

1100 1200 Im o  I1000 12000 15000 110000 Hi

Acoustic gain Acoustic gain

: Maximum 1600 Hz ; RTG (Input 50 dB SPL) : Maximum : HFA : RTG
172 dB 64 dB Ì53 dB 64 dB i 58 dB 46 dB

Frequency range (din  45605) < 100 -6500  Hz Frequency range < 10 0 -55 0 0  Hz

Total harmonic d istortion 5 0 0  H z  

1.0%
8 0 0  H z  

0 .5%
1 6 0 0  H z  

0.5%
Total harmonic distortion 5 0 0  H z  

1.0%  <4.09b
8 0 0  H z  1 6 0 0 H z  

0 .5%  <3.096 0.5 %<3.09b

Battery current Q u ie sc e n t  

1.30 mA
W o rk in g  

1.30 mA
Battery current Q u ie sc e n t  

1.30 mA
W o rk in g  

1.35 mA <1.6 mA

Equivalent input noise level 21 dB SPL Equivalent input noise level 20 dB SPL <23 dB SPL

Induction coil sensitivity Induction coil sensitivity

(Input 1 mA/m) j Maximum 1600 Hz (Input 31.6 mA/m) ; HFA-SPLIV ITLS
100 dB SPL 93 dB SPL : 108 dB SPL :+2dB

Frequency response
(Input 31.6 mA/m -RTG)

Dynamic Data Dynamic Data

Compression Attack time 
8 ms

Recovery time 
80 ms

Compression Attack time 
6 ms

Recovery time 
60 ms
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2 cm3 coupler data

Input/ Output characteristics at2000hz

P out dB SPI
Full-on-gain 

1 Reference test gain

I30 140 I50 160 170 Iso I90 1100 Pin dB«

Tone hook effects on output

(Input 90 dB SPL)

Frequency response

.  HE4 1000 (standard) 
mmmm HE4 330 (optional)

dB SPL

140

130 'N,
120

110

100

100 1200 1500 11000 12000 15000 110000 Hr

Tone hook effects on max. gain

(Input 50 dB SPL)

Test mode

Special program exclusively designed for coupler measurements with 
Perseo -  access in PFG (Main menu / Hearing instruments / Measure­
ment settings).

—■"i Max. gain and MPO 
(Input 90 dB SPL) 

i mu 2cc measurement 
settings
(Input 60 dB SPL)

dB SPL

Unless otherwise specified, a ll data obtained with the ear hook type HE4 1000. 
Furthermore, due to the complex digital signal processing o f this instrument, standard 
measurements as presented on this product information are only possible in a special 
program.

GB 0103 Data subject to change without notice.
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A .4 Siemens Triano S
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AppMcation/Technical Data T R IA N O ' S

TRIANO S

D e s c r ip t io n

• Programmable, mini BTE instrument with fully 
digital, 16-channel signal processing

• Appropriate for mild to moderately-severe 
hearing loss

• Adaptive directional microphone system 
(TwinMic”)

• Automatically adapts to most listening 
environments using its exclusive Speech 
Comfort System

• 4 individual listening programs, including Telecoil 
(T-coil) and audio input

• Automatic feedback suppression
• Highly recommended for pediatric fitting
• Easy fitting interface using CONNEXX 32-bit 

programming software

A m p l i f i e r

Fully digital, 16-channel device with Speech 
Comfort System

O p t io n s

• Standard colors are beige, tobacco, grey 
and granite

• Additional colors are red, green, blue 
and yellow

• CROS/BICROS

S ta n d a rd  f e a tu re s  * •

• Audio input
• Automatic detection of audio input boot
• Acoustic indicator when switching 

between programs
• Acoustic indicator warning of low battery
• Battery compartment door with lock and 

on/off switch
• Type 13 battery

e
13 3 PROG

4 L

O 4

0123

A c c e s s o r ie s

• Audio input boot
• Audio input cord
• Red and blue type plates to indicate right and 

left hearing instruments
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Application/Technical Data T R IA N O ' S

Batte ry

Battery voltage 1.3V

Battery current drain 
ANSI 1.2 mA

Battery life 
Type 13 zinc air 100-200 hrs

Standard ANSI S3.22 - 1996
2 cc 

coupler

Output sound pressure level 
Pea k 122 dB
H F  - a v e ra q e  O S P L 9 0 117 dB
Full-on gain (input 50 dB) 
Pea k 54 dB
H F  - a v e ra g e 48 dB
Reference  test qa in 40 dB
Frequency range 
L o w  freq u e n cy  lim it <100 Hz
H iq h  fre q u e n cy  limit 6100 Hz

Total harmonic distortion 
50 0  H z 3%
8 0 0  H z 2%

1 6 0 0  H z 2%
Equivalent input noise 18 dB
Telecoil sensitivity 
H  F A -S P L IT S * 98 dB

•SPLITS (Sound Pressure Level for Inductive Telecoil Simulator)

Compression characteristics

Output limiter
Type Attack Release

AGC-0 <0.5 ms 100 ms
Syllabic compression 9 ms 90 ms

Channel AGC
Dual fast 5 ms 90 ms
compression slow 900 ms 1.5 s
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2 cc coupler ANSI S3.22^1996 TRIANO' S

F itt in g  ran g e  - TR IAN O  S

ol------------ 1------1-----1— U — 1—1—
0.125 0.5 1 2 3 4 kHz8 12

M a x im u m  o u tp u t  le ve l

0.125 0.25 0.5 1 1.6 2 4 kHz 8

M a x im u m  g a in

D ire c t iv ity  in d e x
D irec t iv ity  da ta -  m easu rem en t on KEM AR
AI-DI
Articulation index (Al) 
Weighted directivity (Dl)

| 4.3 dB |

Front-side ratio 
(Average data at 90 ' and 270") | 9.8 dB |

Front-rear ratio 
(Average data at 180') | 7.2 dB |

D ire c t io n a l c h a ra c te r is tic s
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A .5 Sonic Innovations Natura 2 SE
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2cc coupler (ANSI S3.22-1996)

H a l f - S h e l l  ( H S )
Ear Simulator (IEC 118-0)

M ax  Output (OSPL90) (PI) 1 23  dB  SPL M a x  Output O SPL90  (P1) 1 13  dB  SPL
M ax  Output (OSPL90), 1 6 0 0 H z  (P1) 1 16  dB SPL H FA -O SPL90  (PI) 1 0 8  dB  SPL
Fu ll-O n  G a in  (PI ) 5 9  dB Peak G a in  (PI) 4 6  dB
Fu ll-O n  G a in . 1 6 0 0  H z  (PI) 5 3  dB HFA  Fu ll-O n  G a in  (PI) 4 4  dB
Reference Test G a in  (P2) 41 dB Reference Test G a in  (P2) 31 dB
Frequency Range (P2) 2 0 0  H z -  5 4 0 0  Hz Frequency Range (P2) 2 0 0  H z -  5 4 0 0  H z
Total H arm on ic  D istortion (P2) Total Harm on ic  D istortion (P2)
............  5 0 0  H z 2.5% ---------- 5 00  H z 2.5%
............8 0 0  H z 1.5% -...........8 0 0  Hz 1.5%
---------- 1 6 0 0  H z 1% ---------- 1 60 0  H z 1%
Equiva lent Input Noise* < 2 3  dB  SPL Equivalent Input Noise* < 23  dB  SPL
Telecoil Sensitivity** (P2)(31.6m A/m at 1600Hz) 101 dB  SPL Telecoil Sensitivity** (P2)(HFA-SPLITS) 92  dB  SPL
Battery Current (P2) 1.4 m A Battery Current (P2) 1.4 m A
Attack T im e (P2) 5  msec @ 2kH z A ttack Time (P2) 5 msec @ 2kH z
Recovery Time (P2) 11 msec @ 2kH z Release Time (P2) 11 msec @ 2kH z
E M C  IRIL (800  -  9 6 0  M H z  Peak) < 2 0  dB  SPL
E M C  IRIL (1 4 0 0  -  2 0 0 0  M H z  Peak) < 4 0  dB  SPL

(PI) = maxmun axnpresuDn program / (P2) = referente ted gam program
"  leletal respite is programmane
' iivoffia tests may sixm a laghei f IN ixriess «aed m an Aiednc chatrtxi MUi solaüan > 4CA from 100H; lo 10kHz. ano Measreimn Mcrophone none < 2bdB SFl wer 20Hz to 20kHi for mne irtonnation. contact otr (Uaumer Cae Dept

I n - t h e - E a r  ( I T E )  & I n - t h e - E a r - P o w e r  ( I T E - P )
Ea r S im u la to r  (IEC  1 1 8 - 0 ) 2cc c o u p le r  (A N S I S 3 .2 2 - 1 9 9 6 )

M a x  O utpu t O SPL90  (PI) 1 2 6 / 1 3 0  dB  SPL M a x  Output (OSPL90) (PI) 1 1 6 / 1 1 8  dB  SPL
M a x  Output (OSPL90), 1 6 0 0 H z  (PI) 1 1 8 / 1 2 5  dB  SPL H FA  - O SPL90  (PI) 1 1 1 /1 1 5  dB SPL
Full - O n  G a in  (PI) 5 8 / 6 3  dB Peak G a in  (PI) 4 7 / 5 3  dB
F u l l-O n  G a in , 1 6 0 0  H z  (PI) 5 3 / 5 9  dB H FA  Full - O n  G a in  (P I) 4 5 / 4 9  dB
Reference Test G a in  (P2) 4 3 / 5 0  dB Reference Test G a in  (P2) 3 4 / 3 8  dB
Frequency Range (P2) 2 0 0  H z -  5 4 0 0  H z Frequency Range (P2) 2 0 0  H z  -  5 4 0 0  Hz
Total H arm on ic  D istortion (P2) Total Harm on ic  D istortion (P2)
............  5 0 0  H z 2 .5 /3% ............ 5 00  Hz 2 .5 /3%
— ...... 8 0 0  H z 1 .5/2% ............8 0 0  H z 1 .5 /2%
---------- 1 6 0 0  H z 1% ---------- 1 6 0 0  H z 1%
Equiva lent Input No ise* < 23  dB  SPL Equivalent Input Noise* < 23  dB  SPL

1 Telecoil Sensitivity" (P2)(31.6 mA/m at 1600 Hz) 1 01 /105  dB SPL Telecoil Sensitivity’ * (P2)(HFA-SPLITS) 92 /9 6  dB SPL
1 Battery Curren t (P2) 1 .4  m A Battery Current (P2) 1.4 m A
I A ttack Time (P2) 5 msec @ 2kH z A ttack Time (P2) 5  msec @ 2kH z
1 Recovery Time (P2) 1 1 / 1 0  msec @ 2kH z Release Time (P2) 1 1 / 1 0  msec @ 2kH z  1

E M C  IRIL (800  -  9 6 0  M H z  Peak) < 2 0  dB  SPL
E M C  IRIL (1 4 0 0  -  2 0 0 0  M H z  Peak) < 4 0  dB  SPL

(Pi) = muanun compresion program / (R) = rdswa W g» pngram
” tetecoi rapane o pragrarmial*

I ' In-rffia tots may stow a higter [IN niess tested n an Anedioic chamber iMti solaboii > 40dB from lOQHt to lOMtz, and MeauenM Moophone nooe < SPI over 2CHi i  2044 Fa more irlcrmaion, tot» a i Cisomer Cm Dipt |

B e h i n d - t h e - E a r  ( B T E )
Ea r S im u la to r  (IEC  1 1 8 - 0 ) 2cc c o u p le r  (A N S I S 3 .2 2 - 1 9 9 6 )

M a x  O utpu t (OSPL90) (PI) 1 29  dB SPL M a x  O utpu t O SPL90  (PI) 1 19  dB  SPL
M a x  Output (OSPL90), 1 6 0 0 H z  (PI) 1 23  dB  SPL H FA -O SPL90  (PI) 1 14  dB  SPL
Fu ll-O n  G a in  (P I) 6 5  dB Peak G a in  (P I) 5 4  dB
Fu ll-O n  G a in , 1 6 0 0  H z  (PI) 61 dB H FA  Fu ll-O n  G a in  (PI) 5 2  dB
Reference Test G a in  (P2) 4 8  dB Reference Test G a in  (P2) 37  dB
Frequency Range (P2) 2 2 0  H z  -  5 0 0 0  H z Frequency Range (P2) 2 2 0  H z -  5 0 0 0  H z
Total H arm on ic  D istortion (P2) Total Harm on ic  D istortion (P2)
---------- 5 0 0  Hz 4% ---------- 5 00  H z 4%
----------8 0 0  H z 2% ----------8 0 0  H z 2%
---------- 1 6 0 0  H z 1% ---------- 1 60 0  H z 1%
Equ iva len t Input Noise* < 23  dB  SPL Equiva lent Input Noise* < 23  dB  SPL

I  Telecoil Sensitivity** (P2)(31.6 mA/m at 1600 Hz) 1 05  dB  SPL Telecoil Sensitivity*’  (P2)(HFA-SPLITS) 9 6  dB  SPL
Battery Curren t (P2) 1 .5  m A Battery Current (P2) 1 .5  m A
Attack  Time (P2) 5 msec @ 2kH z Attack Time (P2) 5  msec @ 2kH z
Recovery T im e (P2) 10  msec @ 2kH z Release Time (P2) 10  msec @ 2kH z
E M C  IRIL (800  -  9 6 0  M H z  Peak) < 2 0  dB  SPL
E M C  IRIL (1 4 0 0  -  2 0 0 0  M H z  Peak) < 4 0  dB  SPL

I (PI) ̂  maximjn convrasnn program / (P2) = refera«* lea gam program
I letecorf mponse a prograrnmatXe
1 - iMtta lots nay shawalagtar IINiito MM n an Anertot clatter tft\ iMm  >«kB (ran lOQHi lo lOUto. ani MeauenM Ikioptac nos <2MSft(i« 2QHz to 20Hz for more nfonnatm aMUct ru CiAcmcr C» Oepi |

S  O  N  I C

Fitting Range

AVAILABLE OPTIONS
• Program 1 /  Program 2 Switch

• Directional /  O m ni Switch

• Programmable Telecoil

• O n /O ff Switch

• Volume Control

AVAILABLE OPTIONS
• Program 1 /Program 2 Switch

• Directional/Omni Switch (ITE Only)

• Directional/Telecoil/Omni (ITE only)

• Programmable Telecoil

• O n /O ff Switch

Fitting Range

AVAILABLE OPTIONS
• Program 1 /  Program 2  Switch

• Directional /  Om ni /  Switch

• On /  O ff Switch

• Programmable Telecoil

• Direct Aud io Input

5 0 0 0 4 5 9  Rev C
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Appendix B

Hearing Aid ANSI Measurements

Section 1 - Bernafon Symbio XT 110

Section 2 - Oticon Syncro V2

Section 3 - Phonak Perseo 311 dAZ Forte

Section 4 - Siemens Triano S

Section 5 - Sonic Innovations Natura 2 SE
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B .l Bernafon Symbio X T  110
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A N SI S3.22-2003 AGC - Single
120-,

110 -

1 0 0 -

70-

60-

50-

40

Presentation
Format
Scale________
I Start test

audiossutrii
Single view S O] 

Graph S£>j 
dB SPL

111
Volume control full on

OSPLBO curve —
Max OSPL90 (dB) 108 @>2240 Hz
Average OSPL90 95 dB
Average gain @>50dB 19 dB

Volume control at RTP
Response curve @>60dB —

Average gain @> 60dB 19 dB
Frequency range <200 - 7550 Hz
Battery drain N/A mA
Equivalent Input noise 36 dB
500 Hz distortion @>70dB 1 %
800 Hz distortion @>70dB 1 %
1600 Hz distortion @>6SdB 0 %

Frequency Attack Release
250Hz 10 40
500Hz 10 30
1000Hz 5 0
2000Hz 10 40
4000Hz 10 40

ms
ms
ms
ms
ms

250 500 1000 2000 4000 8000 HFA/SPA: 1000 1600 2500 Hz

( c l )  A u t o m a t i c  G a in  C o n tr o l

Fig. B .l: ANSI S3.22 (2003) Test Results for Bernafon Symbio 110 XT SE
(Audiogram ” F” )

175



ANSI S3.22-2003 AGC - Single view
120-1

110

100

70

60

40

I Presentation 
Format
Scale________
I Start test

audioisami
Single view SOj 

Graph l Oj 
dB SPL

■ Ql
Volume control full on

OSPL90 curve —
Max OSPL90 (dB) 85 @>2240 Hz
Average OSPL90 88 dB
Average gain @>50dB 18 dB

Volume control at RTP
Response curve @>60dB —

Average gain @> 60dB 15 dB
Frequency range <200 - 7550 HZ
Battery drain N/A mA
Equivalent Input noise 43 dB
500 Hz distortion @>70dB 0 %
800 Hz distortion @>70dB 0 %
1600 Hz distortion @>65dB 0 %

Frequency Attack Release
250Hz 10 0
500Hz 10 40
1000Hz 10 20
2000Hz 10 40
4000Hz 10 30

ms
ms
ms
ms
ms

250 500 1000 2000 4000 8000 HFA/SPA: 1000 1600 2500 Hz

( c l )  A u t o m a t i c  G a in  C o n tro l

Fig. B.2: ANSI S3.22 (2003) Test Results for Bernafon Symbio 110 XT SE
(Audiogram ” 1” )
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Oticon Syncro V2B .2
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ANSI S3.22-2003 AGC - Single view

100-

90

□  Presentation 
Format
Scale________
I Start test

audiogram
Single view SO; 

Graph SO 
dB SPL

' ° i
Volume control full on

OSPL90 curve —

Max OSPL90 (dB) 113 @>1335 Hz
Average OSPL90 111 dB
Average gain <§>50dB 51 dB

Volume control at RTP
Response curve <&60dB —

Average gain <§> 60dB 34 dB
Frequency range <200 - 6300 Hz
Battery drain N/A mA
Equivalent Input noise 26 dB
500 Hz distortion @>70dB 1 %
800 Hz distortion @>70dB 0 %
1600 Hz distortion @>65dB 0 %

Frequency Attack Release
250Hz 25 0
500Hz 20 0
1000Hz 20 0
2000Hz 20 30
4000Hz 5 30

ms
ms
ms
ms
ms

250 500 1000 2000 8000 HFA/SPA: 1000 1600 2500 Hz

(a) A u t o m a t i c  G a in  C o n tr o l

( b )  I n p u t \ O u t p u t

Fig. B.3: ANSI S3.22 (2003) Test Results for Oticon Syncro V2 (Audiogram ”F” )
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ANSI S3.22-2003 AGC - Single

110

100

□  Presentation 
Format 
Scale

audio§e?ru
Single view SO] 

Graph S O 
dB SPL

Start test

Volume control full on
OSPL90 curve —
Max OSPL90 (dB) 113 @ 1335 Hz
Average OSPL90 111 dB
Average gain @>50dB 52 dB

Volume control at RTP
Response curve <§>60dB —

Average gain <®> 60dB 33 dB
Frequency range <200 - 6300 Hz
Battery drain N/A mA
Equivalent Input noise 27 dB
500 Hz distortion @70dB 1 %
800 Hz distortion &70dB 0 %
1600 Hz distortion @>65dB 0 %

Frequency Attack Release
250Hz 20 0
500Hz 20 0
1000Hz 20 0
2000Hz 15 30
4000Hz 5 30

ms
ms
ms
ms
ms

250 500 1000 2000 4000 8000 HFA/SPA: 1000 1600 2500 Hz

( c l )  A u t o m a t i c  G a in  C o n tro l

(b) I n p u t \ O u t p u t

Fig. B.4: ANSI S3.22 (2003) Test Results for Oticon Syncro V2 (Audiogram ”1” )

179



B .3 Phonak Perseo 311 dAZ Forte
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ANSI S3.22-2003 AGC - Single
120

110

100 -

90-

80-

60

50-

I Presentation 
Format
Scale________
I Start test

audioasaim
Single viewS 0| 

Graph SO) 
dB SPL

Ql
Volume control full on 

OSPLBO curve 
Max OSPL90 (dB) 98 @>2380 Hz 
Average OSPL90 95 dB
Average gain @>50dB 14 dB

Volume control at RTP
Response curve @>60dB -----
Average gain @> 60dB 14 dB 
Frequency range i <200 - 7550 Hz 
Battery drain N/A mA
Equivalent Input noise 34 dB 
S00 Hz distortion @>70dB 0 %
800 Hz distortion &70dB 0 %
1600 Hz distortion @>6SdB 0 %

Frequency Attack Release
250Hz 5 0
500Hz 10 0
1000Hz 5 0
2000Hz 10 30
4000Hz 10 50

ms
ms
ms
ms
ms

250 500 1000 4000 8000 HFA/SPA: 1000 1600 2500 Hz

( c l )  A u t o m a t i c  G a in  C o n tr o l

Fig. B.5: ANSI S3.22 (2003) Test Results for Phonak Perseo 311 dAZ Forte
(Audiogram ”F” )
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ANSI S3.22-2003 AGC  - Single view

120

110

100

90

70-

50-

| Presentation 
Format
Scale________
I Start test

audiogssiira
Single view !O j 

Graph SOj
dB SPL

Volume control full on 
OSPLflO curve 
Max OSPL90 (dB) 120 @>1120 Hz 
Average OSPL90 115 dB
Average gain @>50dB 45 dB

Volume control at RTP
Response curve @60dB -----
Average gain @  60dB 42 dB 
Frequency range <200 - 5340 Hz 
Battery drain N/A mA
Equivalent Input noise 39 dB 
500 Hz distortion @>70dB 0 %
800 Hz distortion @70dB 0 %
1600 Hz distortion @>65dB 0 %

Frequency Attack Release
250Hz 10 0
500Hz 5 40
1000Hz 5 0
2000Hz 15 0
4000Hz 15 0

ms
ms
ms
ms
ms

2000 4000 8000 HFA/SPA: 1000 1600 2500 Hz

A u t o m a t i c  G a in  C o n tro l

Fig. B.6: ANSI S3.22 (2003) Test Results for Phonak Perseo 311 dAZ Forte
(Audiogram ” 1” )
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B .4 Siemens Triano S
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ANSI S3.22-2003 AGC - Single view

no -

100-

Presentation
Format
Scale________
I Start test

audio? os: j
Single view S OI 

Graph SOj 
dB SPL

ja
Volume control full on

OSPL90 curve —
Max OSPL90 (dB) 99 @>2500 Hz
Average OSPL90 95 dB
Average gain @>50dB 28 dB

Volume control at RTP
Response curve <&60dB —

Average gain @> 60dB 23 dB
Frequency range <200 - 6000 Hz
Battery drain N/A mA
Equivalent Input noise 30 dB
500 Hz distortion ®70dB 0 %
800 Hz distortion @>70dB 0 %
1600 Hz distortion &65dB 0 %

Frequency Attack Release
250Hz 15 880
500Hz 15 1120
1000Hz 455 1420
2000Hz 10 90
4000Hz 350 0

ms
ms
ms
ms
ms

250 500 1000 8000 HFA/SPA: 1000 1600 2500 Hz

(a) A u t o m a t i c  G a in  C o n tr o l

(b) I n p u t \ O u t p u t

Fig. B.7: ANSI S3.22 (2003) Test Results for Siemens Triano S (Audiogram ” F” )
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( c l )  A u t o m a t i c  G a in  C o n tro l

(b) I n p u t \ O u t p u t

Fig. B.8: ANSI S3.22 (2003) Test Results for Siemens Triano S (Audiogram ” 1” )
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B .5 Sonic Innovations Natura 2 SE
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ANSI S3.22-2003 AGC - Single view
120-1

50-

□  Presentation 
Format 
Scale

audfossani
Single view I Oj 

Graph : O 
dB SPL

n o  -
A  / \  A | Start test ___ _ Q|
A  V, Volume control full on100- /  \  1 \ 1 \ OSPL90 curve —-̂--V- J \ 1/ 0S  1 Max OSPL90 (dB) 114 @>2670 Hz

S 'y /  \j , { \ \ Average OSPL90 103 dB
9 0- • • ; \ t '\ Average gain <§>S0dB 40 dB

; \J \ \ Volume control at RTP' ' ” ' • * \ Response curve <&60dB —
8 0 - -- j j \ Average gain @  60dB 34 dB• ; » Frequency range 1060 - 7100 HzV* \ Battery drain N/A rnA
70- .i t Equivalent Input noise 47 dB

500 Hz distortion @>70dB 7 %1 800 Hz distortion @>70dB 6 %
60- \ ■ 1600 Hz distortion @>65dB 3 %

Frequency Attack Release
250Hz 10 0
500Hz 10 0
1000Hz 10 0
2000Hz 5 20
4000Hz 5 0

ms
ms
ms
ms
ms

250 1000 2000 4000 8000 HFA/SPA: 1000 1600 2500 Hz

( c l )  A u t o m a t i c  G a in  C o n tr o l

Fig. B.9: ANSI S3.22 (2003) Test Results for Sonic Innovations Natura 2 SE
(Audiogram ” F” )
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A u t o m a t i c  G a in  C o n tr o l

Fig. B.10: ANSI S3.22 (2003) Test Results for Sonic Innovations Natura 2 SE
(Audiogram ” 1” )
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Appendix C

Modeling Results

Section 1 - Normalized Least Mean Squares (NLMS)

Section 2 - Affine Projecton Algorithm (APA)

Section 3 - QR-Decomposition Recursive Least Squares (QRD RLS)
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C .l Normalized Least Mean Squares (NLMS)

This section presents the signal-to-error ratio, PESQ mean-opinion score double­

vertical axis plots for each set of NLMS modeling parameters.
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NLMS Model Device: Symbio, Sentence: 65F, Step-size: 0.1 NLMS Model Device: Symbio, Sentence: 6SI, Step-size: 0.1

(a) S te p -s iz e  0 .1 ,  A u d io g r a m  F (b) S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) S te p -s iz e  0 .5 ,  A u d io g r a m  F (d) S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.l: NLMS Model, SER-MOS, Bernafon Symbio 110 XT SE
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î

(a) S te p -s iz e  0 .1 ,  A u d io g r a m  F (b) S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c ) S te p -s iz e  0 .5 ,  A u d io g r a m  F (d) S te p -s iz e  0 .5 ,  A u d io g ra m  I

( g )  S te p -s iz e  1 .0 ,  A u d io g ra m  F (0 S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.2: NLMS Model, SER-MOS, Oticon Syncro V2
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(a) S te p -s iz e  0 .1 ,  A u d io g r a m  F (b) S te p -s iz e  0 .1 ,  A u d io g ra m  I

NLMS Model Device: Perseo, Sentence: 6M, Step-size: 0.5

Number of Bands

(c) S te p -s iz e  0 .5 ,  A u d io g r a m  F (d) S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e ) S te p -s iz e  1 .0 ,  A u d io g r a m  F ( f ) S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.3: NLMS Model, SER-MOS, Phonak Perseo 311 dAZ Forte

193



!

( c l )  S te p -s iz e  0 .1 ,  A u d io g ra m  F

NLMS Model -  Device: Tríanos, Sentence: 65F, S t e p p e :  0.5

( b )  S te p -s iz e  0 .1 ,  A u d io g ra m  I

S  Model Device: Tríanos, Sentence: 651, Step-size: 0.5

(c) S te p -s iz e  0 .5 ,  A u d io g r a m  F (d) S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) S te p -s iz e  1 .0 ,  A u d io g r a m  F (0 S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.4: NLMS Model, SER-MOS, Siemens Triano S
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NLMS Model -  Device: Natura, Sentence: 651, Step-size: 0.1

(a) S te p -s iz e  0 .1 ,  A u d io g r a m  F (b) S te p -s iz e  0 .1 ,  A u d io g ra m  I

NLMS Model Device: Natura, Sentence: 65F, Step-size: 0.5 NLMS Model -» Device: Natura, Sentence: 651, Step-size: 0.5

(c) S te p -s iz e  0 .5 ,  A u d io g r a m  F ( d )  S te p -s iz e  0 .5 ,  A u d io g ra m  I

Fig. C.5: NLMS Model, SER-MOS, Sonic Innovations Natura 2 SE
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C.2 Affine Projection Algorithm (APA)

This section presents the signal-to-error ratio, PESQ mean-opinion score double­

vertical axis plots for each set of APA modeling parameters.
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Number of Bande

( c l )  P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

( g )  P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.6: APA Model, SER-MOS, PO 5, Bernafon Symbio 110 XT SE
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( c l )  P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c ) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 . 5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.7: APA Model, SER-MOS, PO 10, Bernafon Symbio 110 XT SE
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APA Modal -» Device: Symbio, Sentence: 651, Projection Order: 15, Step-size: 0.1

A .

4
..A

3.8

. O
JT

<►**
S . Í ' '

4 * 4

r "  ‘

-3.4 S

-3.2

----> SE R ,... MOS
•  -» 84 taps 
« -» 128 taps 
A - 256 taps

12 14 16 18 20'®

(a) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (f) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.8: APA Model, SER-MOS, PO 15, Bernafon Symbio 110 XT SE
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( c l )  P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  5 , S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  5 , S te p -s iz e  1 .0 ,  A u d io g ra m  F (0 P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.9: APA Model, SER-MOS, PO 5, Oticon Syncro V2
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(a) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 . 5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (f) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.10: APA Model, SER-MOS, PO 10, Oticon Syncro V2
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( c i )  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

( p )  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C .ll: APA Model, SER-MOS, PO 15, Oticon Syncro V2

2 0 2



I
i

APA Model Device: Perseo, Sentence: 65F, Projection Order: 5, Step-size: 0.1

Number of Bands

!
s

(a) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

APA Model Device: Perseo, Sentence: 6SF, Projection Order. 5, Step-size: 0.5

Number of Bands

(c) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

APA Model > Device: Perseo, Sentence: 651, Projection Order: 5, Step-size: 1

(e) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 , A u d io g ra m  I

Fig. C.12: APA Model, SER-MOS, PO 5, Phonak Perseo 311 dAZ Forte
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( 8.) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F

APA Model Device: Perseo, Sentence: 65F, Projection Order: 10, Step-size: 0.5

Number of Bands

(c) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

( g )  P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (0 P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.13: APA Model, SER-MOS, PO 10, Phonak Perseo 311 dAZ Forte
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( c l )  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

APA Model Device: Perseo, Sentence: 65F, Projection Order: 15, Step-size: 0.5

(c) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.14: APA Model, SER-MOS, PO 15, Phonak Perseo 311 dAZ Forte
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APA Model Device: TrianoS, Sentence: 651, Projection Order: 5, Step-size: 0.1

°0  2 4 6 8 10 12 14 16 18 20
Number of Bands

(a) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

APA Model Device: TrianoS, Sentence: 65F, Projection Order: 5, Step-size: 0.5

l

(c) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F ( d )  P r o je c t io n - o r d e r  5 , S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F ( f ) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.15: APA Model, SER-MOS, PO 5, Siemens Triano S
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I
ä !

Number of Bande

( c l )  P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 . 5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

( ö )  P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (O P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.16: APA Model, SER-MOS, PO 10, Siemens Triano S
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APA Modal -  Device: TrianoS, Sentence: 65F, Projection Order: 15, Step-size: 0.1

Number of Bands

(a) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

APA Model . Device: TrianoS, Sentence: 651, Projection Order: 15, Step-size: 1

( 0)  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (f) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.17: APA Model, SER-MOS, PO 15, Siemens Triano S
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APA Model -* Device: Nature, Sentence: 65F, Projection Order: 5, Step-size: 0.1 APA Model Device: Natura, Sentence: 651, Projection Order: 5, Step-size: 0.1

: . ' 'y  J.8

S

.k

A

• - SER,... MOS
•  64 taps 
x 128 laps 
A >256taps

Number of Bands

(a) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d) P r o je c t io n - o r d e r  5 , S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e ) P r o je c t io n - o r d e r  5 , S te p -s iz e  1 .0 ,  A u d io g ra m  F (f) P r o je c t io n - o r d e r  5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.18: APA Model, SER-MOS, PO 5, Sonic Innovations Natura 2 SE
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(a) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F (b) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

APA Model -  Device: Nalura, Sentence: 65F, Projection Order: 10, Step-size: O.S APA Model -» Device: Nature, Sentence: 6SI, Projection Order: 10, Step-size: 0.5

(c ) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 . 5 ,  A u d io g ra m  F (d ) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

(e) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (f) P r o je c t io n - o r d e r  1 0 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.19: APA Model, SER-MOS, PO 10, Sonic Innovations Natura 2 SE
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( f t )  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  F ( b )  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .1 ,  A u d io g ra m  I

(c) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  F (d ) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  0 .5 ,  A u d io g ra m  I

( p )  P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  F (f) P r o je c t io n - o r d e r  1 5 ,  S te p -s iz e  1 .0 ,  A u d io g ra m  I

Fig. C.20: APA Model, SER-MOS, PO 15, Sonic Innovations Natura 2 SE
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C.3 QRD Recursive Least Squares (QRD RLS)

This section presents the signal-to-error ratio, PESQ mean-opinion score double- 

vertical axis plots for each set of QRD RLS modeling parameters.
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(a) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  F (b) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  I

(c) F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g r a m  F (d ) F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g ra m  I

(e) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g ra m  F ( f ) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g ra m  I

Fig. C.21: QRDRLS Model, SER-MOS, Bernafon Symbio 110 XT SE
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(a) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  F (b) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  I

QRDRLS Model -» Device: SyncroV2, Sentence: 6SF, Forgetting-factor: 0.725 QRDRLS Model Device: SyncroV2, Sentence: 651, Forgetting-factor: 0.725

(c) F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g ra m  F  (d) F o r g e tt in g - fa c to r  0 .7 2 5 ,  A u d io g ra m  I

(e) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g r a m  F (0 F o r g e tt in g - fa c to r  0 . 9 5 ,  A u d io g ra m  I

Fig. C.22: QRDRLS Model, SER-MOS, Oticon Syncro V2
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(a) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  F (b) F o r g e tt in g - fa c to r  0 .5 ,  A u d io g ra m  I

( c )  F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g r a m  F ( d )  F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g ra m  I

(e) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g r a m  F (f) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g ra m  I

Fig. C.23: QRDRLS Model, SER-MOS, Phonak Perseo 311 dAZ Forte
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QRDRLS Modal _  Device: TrianoS, Sentence: 65F, Forgetting-factor: 0.5

Number of Bands

(a) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  F (b) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  I

QRDRLS Model Device: TrianoS, Sentence: 65F, Forgetting-factor: 0.725

Number of Band*

QRDRLS Model Device: TrianoS, Sentence: 651, Forgetting-factor: 0.725

Number of Band*

(c) F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g r a m  F (d ) F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g ra m  I

(e) F o r g e tt in g - fa c to r  0 . 9 5 ,  A u d io g r a m  F (f) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g ra m  I

Fig. C.24: QRDRLS Model, SER-MOS, Siemens Triano S
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(a) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  F (b) F o r g e tt in g - fa c t o r  0 .5 ,  A u d io g ra m  I

QRDRLS Model - . Device: Natura, Sentence: 65F, Forgetting-factor: 0.725

Number of Bands

f
I

QRDRLS Model Device: Natura, Sentence: 651, Forgetting-factor: 0.725

(C) F'o r g e tt in g - f a c to r  0 .7 2 5 ,  A u d io g ra m  F (d ) F o r g e tt in g - fa c t o r  0 .7 2 5 ,  A u d io g ra m  I

i

( g )  F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g r a m  F ( f ) F o r g e tt in g - fa c t o r  0 . 9 5 ,  A u d io g ra m  I

Fig. C.25: QRDRLS Model, SER-MOS, Sonic Innovations Natura 2 SE
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