19,394 research outputs found

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    A network-oriented adaptive agent model for learning regulation of a highly sensitive person’s response

    Get PDF
    Inspired by the work of Elaine Aron, in this paper a human-like adaptive computational agent model of the internal processes of a highly sensitive person (HSP) is presented. This agent model was used to get a better understanding of what goes wrong in these internal processes once this person gets upset. A scenario is addressed where a highly sensitive person will get upset by an external stimulus and will not be able to calm down by herself. Yet in a social context the interaction with a second person (without high sensitivity) will calm the HSP down, thus contributing to regulation. To obtain an adaptive model a Hebbian learning connection was integrated. During interaction with a second person this Hebbian learning link will become stronger, which makes it possible for a HSP to become independent after some time and be able to regulate upsetting external stimuli all by herself

    Bayesian participatory-based decision analysis : an evolutionary, adaptive formalism for integrated analysis of complex challenges to social-ecological system sustainability

    Get PDF
    Includes bibliographical references (pages. 379-400).This dissertation responds to the need for integration between researchers and decision-makers who are dealing with complex social-ecological system sustainability and decision-making challenges. To this end, we propose a new approach, called Bayesian Participatory-based Decision Analysis (BPDA), which makes use of graphical causal maps and Bayesian networks to facilitate integration at the appropriate scales and levels of descriptions. The BPDA approach is not a predictive approach, but rather, caters for a wide range of future scenarios in anticipation of the need to adapt to unforeseeable changes as they occur. We argue that the graphical causal models and Bayesian networks constitute an evolutionary, adaptive formalism for integrating research and decision-making for sustainable development. The approach was implemented in a number of different interdisciplinary case studies that were concerned with social-ecological system scale challenges and problems, culminating in a study where the approach was implemented with decision-makers in Government. This dissertation introduces the BPDA approach, and shows how the approach helps identify critical cross-scale and cross-sector linkages and sensitivities, and addresses critical requirements for understanding system resilience and adaptive capacity

    A reified network model for adaptive decision making based on the disconnect-reconnect adaptation principle

    Get PDF

    An adaptive Network-Oriented cognitive model for Major Depression and its treatment

    Get PDF
    This paper presents an adaptive neurologically inspired cognitive model for Major Depressive Disorder. It is based on an (adaptive) temporal-causal network modelling approach incorporating a dynamic perspective on mental states and causal relations. The adaptive network model addresses how a Deep Brain Stimulation treatment used for this disorder can work by a Hebbian learning effect
    corecore