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Chapter 5
A Reified Network Model
for Adaptive Decision Making
Based on the Disconnect-Reconnect
Adaptation Principle

Abstract In recent literature from Neuroscience, the adaptive role of the effects of
stress on decision making is highlighted. In this chapter, it is addressed how that
role can be modelled computationally using a reified adaptive temporal-causal
network architecture. The presented network model addresses the so-called
disconnect-reconnect adaptation principle. In the first phase of the acute stress
suppression of the existing network connections takes place (disconnect), and then
in a second phase after some time there is a relaxation of the suppression. This
gives room to quickly get rid of old habits that are not applicable anymore in the
new stressful situation and start new learning (reconnect) of better decision making,
more adapted to this new stress-triggering context.

Keywords Network reification � Adaptive temporal-causal network model �
Hebbian learning � Stress � Decision making

5.1 Introduction

Stress has a strong impact on both cognitive and affective processes. This impact
can be experienced as disturbing, but recent findings suggest that its main goal is to
improve coping with challenging situations. Stress has bad health effects, as it may
cause disorders like depression, anxiety or schizophrenia. But from the positive
side, it supports individuals to respond to specific types of threats more adequately,
keeping an individual’s homeostasis up to date and ready for future threats of
similar types. In the very first moment of facing the acute stress, an emotional
response is triggered which elevates surveillance, perception, and attention on
threat-related stimuli (Quaedflieg et al. 2015). Humans initially experience that they
do not have the power to control the occurring stress. They are not able to change
the situation and make it better (Glass et al. 1971). But it turns out that stress also
has a positive effect on learning new decision making behaviour that is better
adapted to the new situations encountered. To get rid of old decision making, as a
first step existing connections are suppressed as a kind of reset by which more room
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is created for learning new connections (Sousa and Almeida 2012); this adaptation
principle is called the disconnect-reconnect principle. The current chapter addresses
the question of how this can be modelled by a reified adaptive network model.
Moreover, it is also explored how this principle works in conjunction with
second-order adaptation as described by metaplasticity.

The chapter is organized as follows. In Sect. 5.2 the neurological principles of
the suppressing and adaptive effects of stress and the parts of the brain which deal
with stress in that way are addressed. In Sect. 5.3 the reified adaptive
temporal-causal network model is introduced, and illustrated by simulation of two
example scenarios in Sect. 5.4: one for the disconnect-reconnect principle without
using metaplasticity and one in conjunction with metaplasticity. Section 5.5
addresses the verification of the reified network model by mathematical analysis.

5.2 Neurological Principles

Acute stress is considered to involve interaction with the amygdala (Quaedflieg
et al. 2015). The more activity in the amygdala, the more a human becomes sen-
sitive and respondent to the threat (Radley and Morrison 2005). Stress reactions on
stressors often deteriorate homeostasis in organisms (de Kloet et al. 2005). But
stressors also stimulate a constructive reaction which makes physiological and
psychological alterations in the body that are advantageous for the organism.
Recovery from a stressor is accompanied by a decreasing negative coupling
between the amygdala and the frontal Anterior Cingulate Cortex (ACC) and
pre-Supplementary Motor Area (preSMA) (Hermans et al. 2014). This has been
found, for example, in stress-related psychiatric disorders (Etkin et al. 2010;
Johnstone et al. 2007). It has been found that the left Prefrontal Cortex (PFC) is
relevant to stress adaptation, and individuals with stronger Hypothalamic Pituitary
Adrenal (HPA) axis reactivity show reduced amygdala-left dlPFC functional con-
nectivity (Quaedflieg et al. 2015). In a safe environment, it is advantageous that the
cortex can suppress the stress response but in a harmful environment, this may
cause a false idea of security (Reser 2016). The reaction of the amygdala to new
stressors makes animals behave the same as before the new stress arrived.

In Barsegyan et al. (2010), it is claimed that the executive control network is
suppressed in the very starting period of the inducing of stress (by dlPFC). Stress
handling is viewed as adaptive (e.g., Sousa and Almeida 2012), due to the fact that
when the decision making is improved, humans can learn how to handle the situ-
ations where the stress comes from. In the case of acute stress, at the very first
period of stress-induction, the salience network starts working and executive con-
trol is suppressed. After a while, executive control starts performing functionality
and suppress the salience network. Due to this, plasticity, for example, based on
Hebbian learning will work more efficiently; this is called the disconnect-reconnect
adaptation principle (Sousa and Almeida 2012).
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5.3 The Reified Adaptive Network Model

To simulate how stress adaptively affects decision making, the following scenario
is addressed here. Person A is working (performing action a1) in a convenient
condition with her colleague B until B’s context causes extreme stress for person A.
This condition disturbs her normal functioning. A’s brain has a neurocognitive
mechanism to overcome this by learning new decision making to cope with that
situation. By this mechanism, first as a form of resetting her existing connections
are suppressed to create more room for new learning of connections, better adapted
to the new conditions. Next, after some time, A’s suppression is ending, and new
Hebbian learning to cope with the new situation takes place. Finally, after this
learning how to cope with the situation has led to improved decision making,
person A decides for a different option (action a2) in which B and his context do not
play a dominant role anymore.

The Network-Oriented Modeling approach based on multilevel reified
temporal-causal network models presented in Chap. 4 is used to model this process;
see also Treur (2018a, b). Recall that a temporal-causal network model in the first
place involves representing in a declarative manner states and connections between
them that represent (causal) impacts of states on each other, as assumed to hold for
the application domain addressed. The states are assumed to have (activation) levels
in the interval [0, 1] that vary over time. These three notions form the defining part
of a conceptual representation of a temporal-causal network model structure:

• Connectivity

– Each incoming connection of a state Y, from a state X has a connection
weight value xX,Y representing the strength of the connection.

• Aggregation

– For each state a combination function cY(..) is chosen to combine the causal
impacts state Y receives from other states.

• Timing

– For each state Y a speed factor ηY is used to represent how fast state Y is
changing upon causal impact.

In Figs. 5.1 and 5.2. the conceptual representation of the reified temporal-causal
network model is depicted. A brief explanation of the states used is shown in
Table 5.1.

5.3.1 The Base Network

The base states are as follows (see also Fig. 5.1). The state srss stands for the
sensory representation of stimulus s from the world. The state srsc is the sensory
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representation of the stressful context c. The sensory representation srss of the
stimulus is a trigger for the preparation state of one or both of two actions a1 or a2.
The sensory representation of the predicted feeling effects of the preparation states
psa1 and psa2 of the actions are represented by srse1 and srse2 , respectively.

Furthermore, psee is the preparation state of a stressful emotional response on the
sensory representation srsc of the disturbing context c, and fsee denotes the feeling
state associated to this extreme emotion. Finally, cs2 stands for a control state for
suppression of connections (here from srss to psa1 and to psa2 ) and cs1 for a control
state to limit this suppression in time.

psa2

srss

srsc

fsee

psa1

srse2

psee

cs2 cs1

srse1

Fig. 5.1 The base network model

psa2

srss

srsc

fsee

psa1

srse2

srse1
psee

cs2 cs1

Wsrss,psa2

Wsrss,psa1

HWsrss,psa2

HWsrss,psa1

Fig. 5.2 The reified network model with plasticity and metaplasticity
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The connections for the base network depicted in Fig. 5.1 are as follows.
Preparation state psa1 has three incoming connections from srss, srse1 , psa2 . The first
connection is for triggering preparation for action a1, based on stimulus s. The
second connection from srse1 amplifies the preparation due to a positive feeling for
the predicted effect of the action. The third connection from psa2 is a negative
connection to achieve that in general only one of the actions is chosen. Whether or
not this action a1 is actually chosen depends on these three connections and the
activation of the three connected states. From these three connections, the con-
nection from srss to psa1 is considered to be adaptive. Similarly, the other action
option a2 is handled (but with different values for the three connections). Note that
by the connections from srsc to srse1 and srse2 the stressful context c affects the
predicted effects of the two actions; also these connections will have different
weights as they represent how the actions differ in their suitability for this context.

The extreme stressful emotion is modeled by the as-if body loop between psee
and fsee, whereby psee is triggered by the context representation srsc. An effect of
these stress states goes via the connection from fsee to control state cs2. This control
state is limited in its value over time by another control state cs1 via the two mutual
links; to achieve that, the connection from cs1 to cs2 is negative, and activation of
cs1 is slower than of cs2.

Table 5.1 Explanation of the states in the model

State nr State name Explanation Level
X1 srss Sensory representation of stimulus s

Base
level

X2 srsc Sensory representation of context c
X3 srse1 Sensory representation of action effect e1

X4 srse2 Sensory representation of action effect e2

X5 fsee Feeling state for extreme emotion ee
X6 psa1 Preparation state for action a1

X7 psa2 Preparation state for action a2

X8 psee Preparation state for response of extreme emotion ee
X9 cs1 Control state for timing of suppression of connections
X10 cs2 Control state for suppression of connections

X11 Wsrss,psa1

Reification state for the weight of the connection 
from srss to psa1

First
reification

levelX12 Wsrss,psa2

Reification state for  the weight of the connection 
from srss to psa2

X13 HWsrss,psa1

Reification state for speed factor 
of  reification state Wsrss,psa1

Second
reification

levelX14 HWsrss,psa2

Reification state for speed factor 
of  reification state Wsrss,psa2
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5.3.2 Modeling First- and Second-Order Adaptation
of the Connection Weights by Reification States

Control state cs2 has an adaptive effect on the two network connections from srss in
the base network. This adaptive effect combines with the Hebbian learning effect
for the same adaptive connections. This is where the first reification level (see
Fig. 5.2) comes in with reification states Wsrss;psa1

and Wsrss;psa2
for the weights of

these two adaptive connections.
The blue upward links from cs2 model the effect of cs2 and the blue upward links

from srss, psa1 and psa2 model the Hebbian learning on the same connections. The
pink downward links from the reification states model the effect of the adaptive
connection weights on psa1 and psa2 .

Yet another adaptive effect is modeled by the second reification level in Fig. 5.2.
This is a form of metaplasticity that increases the adaptation speed of the two
adaptive connection weights, which is triggered by experiencing srss; also see:
‘Adaptation accelerates with increasing stimulus exposure’ (Robinson et al. 2016,
p. 2). Second-order reification states HWsrss ;psa1

and HWsrss ;psa2
achieve this

second-order effect, using the upward blue links from srss and the downward pink
links to Wsrss;psa1

and Wsrss;psa2
.

5.4 Combination Functions and Role Matrices
for the Reified Network Model

In this section, first, the combination functions used are discussed. Next, the role
matrices are presented.

5.4.1 The Combination Functions Used

For base states the following combination functions cY(…) were used:

ssumkðV1; . . .;VkÞ ¼ V1 þ � � � þVk

k
ð5:1Þ

eucln;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vn
1 þ � � � þVn

k

k
n

r

ð5:2Þ

alogisticr;s V1; . . .Vkð Þ ¼ 1
1þ e�r V1 þ ��� þVk�sð Þ �

1
1þ ersÞ

� �

1þ e�rsð Þ ð5:3Þ
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Similarly, for the reification states of the connection weights, the following
two combination functions were used. Hebbian learning of a connection from state
Xi to state Xj with connection weight reification state W makes use of:

hebblðV1;V2;WÞ ¼ V1V2ð1�WÞþ lW ð5:4Þ

where l is the persistence factor with value 1 as full persistence and 0 as none. For
state-connection modulation with control state cs2 for connection weight reification
state W:

scmaðV1;V2;W ;VÞ ¼ W þ aV Wð1�WÞ ð5:5Þ

where a (or acs2;W) is the modulation parameter for W from cs2, and V is the single
impact from cs2. Note that the first two variables of scma(V1, V2,W, V) are auxiliary
variables that are not used in Formula (5) for scma(V1, V2, W, V). These auxiliary
variables are included to be able to combine this function with the Hebbian learning
function while using the same sequence of variables (see 6 below). More specifi-
cally, this combination is done as follows. These two adaptive combination func-
tions are used as a weighted average with c1 and c2 as combination function
weights (with sum 1) for hebbl(V1, V2, W) and scma(V1, V2, W, V), respectively,
based on (4) and (5) as follows:

cWðV1;V2;W ;VÞ ¼ c1hebblðV1;V2;WÞþ c2scmaðV1;V2;W ;VÞ ð5:6Þ

5.4.2 The Role Matrices

Based on the graphical representations from Fig. 5.2 and the specific values for the
intended scenario the role matrices shown in Boxes 5.1 and 5.2 have been specified.
Note that the reification states Wsrss;psa1

and Wsrss;psa2
for the connection weights

also have a connection to themselves, as can be seen in role matrix mb. This is
because Hebbian learning needs that; these connections are not shown in Fig. 5.2.
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Box 5.1 Role matrices mb for base connections, mcw for connection
weights, mcfw for combination function weights, and mcfp for combination
function parameters.

mb  base connectivity 1 2 3 4

X1 srss X1

X2 srsc X 2

X3 srse1 X 2 X 6

X4 srse2 X 2 X 7

X5 fsee X 8

X6 psa1 X 1 X 3 X 7

X7 psa2 X 1 X 4 X 6

X8 psee X 5 X 2

X9 cs1 X 10

X10 cs2 X 5 X 9

X11 Wsrss,psa1 X 1 X 6 X 11 X 10

X12 Wsrss,psa2 X 1 X 7 X 12 X 10

X13 HWsrss,psa1 X 1 X 11

X14 HWsrss,psa2 X 1 X 12

mcfw combination
             function weights 

1 2 3 4

eucl alo-
gistic hebb scm

X1 srss 1
X2 srsc 1
X3 srse1 1
X4 srse2 1
X5 fsee 1
X6 psa1 1
X7 psa2 1
X8 psee 1
X9 cs1 1
X10 cs2 1
X11 Wsrss,psa1 0.85 0.15
X12 Wsrss,psa2 0.85 0.15

X13 HWsrss,psa1 1
X14 HWsrss,psa2 1

mcw  connection weights 1 2 3 4

X1 srss 1
X2 srsc 1
X3 srse1 -0.1 0.7
X4 srse2 0.3 0.7
X5 fsee 1
X6 psa1 X 11 0.7 -0.2
X7 psa2 X 12 0.7 -0.2
X8 psee 1 1
X9 cs1 1
X10 cs2 1 -0.9
X11 Wsrss,psa1 1 1 1 -0.7
X12 Wsrss,psa2 1 1 1 -0.7

X13 HWsrss,psa1 1 -0.4
X14 HWsrss,psa2 1 -0.4

mcfp                             function
     combination                      
            function 

   parameters 

1 2 3 4

eucl alo-
gistic hebb scm

parameter 1 2 1 2 1 2 1 2
n

X1 srss 1 1
X2 srsc 18 0.2
X3 srse1 1 0.7
X4 srse2 1 1
X5 fsee 1 1
X6 psa1 1 2
X7 psa2 1 2
X8 psee 1 2
X9 cs1 1 1
X10 cs2 1 1
X11 Wsrss,psa1 0.8 0.5
X12 Wsrss,psa2 0.8 0.5

X13 HWsrss,psa1 5 0.8
X14 HWsrss,psa2 5 0.8

In matrix mcfw in Box 5.1, it is indicated which states get which combination
functions. As shown, almost all base states get the Euclidean combination function.
The only exception is state srsc which only has a link to itself. The chosen logistic
sum combination function allows to get some pattern over time for the environment
in which the stressor occurs after some time. Also the second-order reification states
HWsrss ;psa1

and HWsrss ;psa2
have a logistic combination function. Note that the

first-order reification states Wsrss;psa1
and Wsrss;psa2

get a weighted average (with
weights c1 = 0.85 and c2 = 0.15) of two combination functions: hebbl(..) for
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Hebbian learning, and scma(..) for state-connection modulation as described in
(6) above. All other states have single combination functions. In role matrix mcfp
the parameter values for the chosen combination functions are shown. As can be
seen, all Euclidean combination functions have order 1, which actually makes them
scaled sum functions.

Box 5.2 Role matrix ms for speed factors and vector iv of initial values.

ms  speed factors 1

X1 srss 0
X2 srsc 0.05
X3 srse1 0.5
X4 srse2 0.5
X5 fsee 0.5
X6 psa1 0.5
X7 psa2 0.5
X8 psee 0.5
X9 cs1 0.02
X10 cs2 0.6
X11 Wsrss,psa1 X13

X12 Wsrss,psa2 X14

X13 HWsrss,psa1 0.5
X14 HWsrss,psa2 0.5

iv  initial values 1

X1 srss 1
X2 srsc 0.1
X3 srse1 0
X4 srse2 0
X5 fsee 0
X6 psa1 0
X7 psa2 0
X8 psee 0
X9 cs1 0
X10 cs2 0
X11 Wsrss,psa1 0.9

X12 Wsrss,psa2 0.3

X13 HWsrss,psa1 0.05
X14 HWsrss,psa2 0.05

In Box 5.2 the speed factors and the initial values for the chosen scenario are
shown. Note that initially the weight of the incoming connection for action a1 is
high and for a2 low. This models that initially the preferred action is a1.

5.5 Example Simulation Scenarios

Two example simulation scenarios of this process are shown in Figs. 5.3, 5.4, 5.5
and 5.6. Boxes 5.1 and 5.2 show the reified network characteristics used. The step
size was Dt = 0.4. In the two scenarios, coping with an extremely stressful con-
dition c (disturbing context due to person B) takes place. The trigger for doing one
of the actions is the sensory representation state srss (also denoted by X1), which has
value 1 all the time. In the first scenario, only first-order adaptation takes place
according to the disconnect-reconnect principle (Sousa and Almeida 2012). In the
second scenario, in addition, also metaplasticity is assumed, which leads to
second-order adaptation.
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5.5.1 Scenario 1: First-Order Adaptation; No Adaptive
Speed of Connection Weight Change

In Scenario 1, the speed factors for the second-order reification states for meta-
plasticity have been set at 0, so that the speed of adaptation of the connection
weights Wsrss;psa1

(X11) and Wsrss;psa2
(X12) was constant, equal to the initial values

0.05. Note that the initial preference for action a1 over a2 is shown by a high initial
value 0.9 for Wsrss;psa1

(X11) and a low initial value 0.3 for Wsrss;psa2
(X12); see

Fig. 5.4. At the early time of working, there is a convenient condition in the
working place. Therefore, as can be seen in Fig. 5.3, srsc (also denoted by X2) has a

0
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X2 srsc
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X5 fsee
X6 psa1

X7 psa2
X8 psee
X9 cs1
X10 cs2

Fig. 5.3 Simulation results of working under an extremely stressful condition without metaplas-
ticity: base states
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X13 HWsrss,psa1

X14 HWsrss,psa2

Fig. 5.4 Simulation results for state-connection modulation and Hebbian learning (without
metaplasticity) for X11 (connection weight reification Wsrss ;psa1

Þ and X12 (connection weight
reification Wsrss ;psa2

Þ
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low value, which, however, strongly increases after some time (around time point
30 in Fig. 5.3) when the disturbances start.

Sensory representation state srse1 (X3) shows that person A initially has a good
feeling for the effect of action a1, which strengthens the preparation psa1 (X6) for
this action in the first phase; see the purple line in Fig. 5.3 that steeply goes up to
0.6. However, after time point 30 when the acute stress occurs, this changes. Both
the feeling srse1 for the action effect and the preparation psa1 for the action a1
drop. Moreover, after this time point control state cs2 (X10), which stands for the
control state for suppression of the connections, starts to go up but after some time
the other control state cs1 (X9) in turn begins to play a role in suppressing cs2.
Therefore, the actual suppression of the connections mainly takes place between

0
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Fig. 5.5 Simulation results of working under an extremely stressful condition with metaplasticity:
base states
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Fig. 5.6 Simulation results for state-connection modulation and Hebbian learning (with
metaplasticity) for X11 (connection weight reification Wsrss ;psa1

Þ and X12 (connection weight
reification Wsrss ;psa2

Þ
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time points 50 and 150. During that time due to the acute stress, the control state cs2
has a suppressing effect on the two reification states Wsrss;psa1

(X11) and Wsrss;psa2
(X12) for the adaptive connections, which is illustrated in the graphs of these two
reification states in Fig. 5.4.

After some time the suppression is released, and by the Hebbian learning, the
person develops another decision to cope with her task under the extremely stressful
condition c. This is shown by increased activation of preparation state psa2 (X7),
shown as the red line in Fig. 5.3, and by an increasing Wsrss;psa2

(X12, for the

connection X1–X7) in Fig. 5.4, in contrast to the decrease of Wsrss;psa1
(for con-

nection X1–X6). Due to this, now the action a2 becomes dominating. This illustrates
the working of the disconnect-reconnect adaptation principle of Sousa and Almeida
(2012).

5.5.2 Scenario 2: Second-Order Adaptation; Adaptive Speed
of Connection Weight Change

In this second scenario, the speed factors of the connection weight adaptation are
themselves adaptive, so there is second-order adaptation. As in Scenario 1, it can be
seen in Fig. 5.5 that also for Scenario 2 after a while action a2 becomes dominant
over a1. However, as can be seen in Fig. 5.6, the change of the connection weights
is much earlier, so now after time point 60 the connection to psa2 is already stronger
than the connection to psa1 , whereas in Scenario 1 that point was only reached after
time point 180; see Fig. 5.4. This has also effect on the pattern for psa1 and psa2 in
Fig. 5.5. In Scenario 2, psa2 is already stronger than psa1 after time point 60,
whereas in Scenario 1 this is only the case after time point 110. So, in both cases the
initial preference for action a1 changes to a preference for action a2, but due to the
second-order adaptation, this adaptation happens much faster in Scenario 2, which
is an advantage in urgent, stressful situations. This illustrates once more the rele-
vance of second-order adaptation or metaplasticity.

5.6 Verification of the Network Model by Mathematical
Analysis

For temporal-causal network models, dedicated methods have been developed
enabling to verify whether the implemented model shows behavior as expected; see
Treur (2016a) or Treur (2016b), Chap. 12. In this section, in particular, the focus is
on equilibria: they are determined by Mathematical Analysis and then used for
verification by comparison to simulation results. First a definition
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Definition (stationary point and equilibrium)
A state Y in an adaptive temporal-causal network model has a stationary point at t if
dY(t)/dt = 0.
A temporal-causal network model is in an equilibrium state at t if all states have a
stationary point at t.
In that case, the above equations dY(t)/dt = 0 for all states Y provide the equilib-
rium equations.

The above definition is quite general. However, for adaptive temporal-causal net-
work models the following simple criterion was obtained in terms of the basic
characteristics defining the network structure, in particular (besides the
states Xi and Y), speed factor ηY, connection weights x and the combination
function c(..); see Treur, (2016a) or Treur, (2016b), Chap. 12.

Criterion for stationary points and equilibria in temporal-causal network
models A state Y in an adaptive temporal-causal network model has a stationary
point at t if and only if

gY ¼ 0 or cYðxX1;YðtÞX1ðtÞ; . . .;xXk ;YðtÞXkðtÞÞ ¼ YðtÞ

where X1, …, Xk are the states with outgoing connections to Y.
An adaptive temporal-causal network model is in an equilibrium state at t if and

only if for all states with nonzero speed factor, the above criteria hold at t.

Note that in the case of reification of characteristics ηY, xXk ;Y ; cYð::Þ that occur
in this criterion, in principle, the universal combination function c*Y(..) and
the related difference equation has to be considered. However, the universal dif-
ferential equation can be written in the following form, as has been mentioned in
Chap. 3, Sect. 3.5 (for more details, see also Chap. 10, Sect. 10.4.2 and 10.5):

dY=dt ¼ HY
C1;Ybcf1ðP1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXkÞþ � � � þCm;YbcfmðP1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXkÞ

C1;Y þ � � � þCm;Y
� Y

� �

The right hand side of this is 0 if and only if

HY ¼ 0 or

C1;Ybcf1ðP1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXkÞþ � � � þCm;YbcfmðP1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXkÞ
C1;Y þ � � � þCm;Y

¼ Y

where the left-hand side is the combination function. This shows that the above
criterion also can be used when some or all characteristics are adaptive.
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5.6.1 Solving the Linear Equilibrium Equations
for the Base Network

The criterion for an equilibrium for a scaled sum function

cYðxX1;YðtÞX1ðtÞ; . . .;xXk ;YðtÞXkðtÞÞ ¼ ðxX1;YðtÞX1ðtÞþ � � � þxXk ;YðtÞXkðtÞÞ=kY ¼ YðtÞ
ð5:7Þ

provides a linear equilibrium equation (leaving out t):

xX1;YX1 þ � � � þxXk ;YXk ¼ kYY ð5:8Þ

in the state values Xi(t) and Y(t) involved. In this way for the network model
introduced here the equilibrium equations for the states were obtained as shown in
Box 5.3, where the values for srss and srsc are indicated by A1 and A2 (here to
simplify notation the reference to t has been left out, and underlining is used to
indicate that this concerns state values, not state names). Moreover, the scaling
factor for state Xi is denoted by ki, and in Table 5.2 numbered connection weight
names are indicated.

Then the linear equilibrium equations are obtained as shown in Box 5.3, in the
left half in terms of the informative state names, and in the right half in terms of the
numbered Xi as state names; see Table 5.1.

Box 5.3 General equilibrium equations for the base network

srss ¼ A1 X1 ¼ A1

srsc ¼ A2 X2 ¼ A2

k3srse1 ¼ x7psa1 þx9srsc k3X3 ¼ x7X6 þx9X2

k4srse2 ¼ x8psa2 þx10srsc k4X4 ¼ x8X7 þx10X2

fsee ¼ x13psee X5 ¼ x13X8

k6psa1 ¼ x1srss þx3srse1 þx5psa2 k6X6 ¼ x1X1 þx3X3 þx5X7

k7psa2 ¼ x2srss þx4srse2 þx6psa1 k7X7 ¼ x2X1 þx4X4 þx6X6

k8psee ¼ x11srsc þx12fsee k8X8 ¼ x11X2 þx12X5

cs1 ¼ x14cs2 X9 ¼ x14X10

k10cs2 ¼ x15fsee þx16cs1 k10X10 ¼ x15X5 þx16X9
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Using the WIMS Linear Solver,1 the (unique) algebraic solution was obtained
for the general case of these equations as shown in Box 5.4.

Box 5.4 General solution of the equilibrium equations for the base network
as generated by the WIMS Linear Solver (see Footnote 1)

X1 ¼ A1

X2 ¼ A2

X3 ¼ �ðA2ðk6ðk4k7x9 � x4x8x9Þþx5ðx10x4x7 � k4x6x9ÞÞ
þA1ðx1ðk4k7x7 � x4x7x8Þþ k4x2x5x7ÞÞ
=ðx3ðk4k7x7 � x4x7x8Þþ k6ðk3x4x8 � k3k4k7Þþ k3k4x5x6Þ

X4 ¼ ðA2ðx3ðk7x10x7 � x6x8x9Þþ k3x10x5x6 � k3k6k7x10Þ
þA1ðx2x3x7x8 � k3x1x6x8 � k3k6x2x8ÞÞ
=ðx3ðk4k7x7 � x4x7x8Þþ k6ðk3x4x8 � k3k4k7Þþ k3k4x5x6Þ

X5 ¼ �A2x11x13=ðx12x13 � k8Þ
X6 ¼ �ðA2ðx3ðk4k7x9 � x4x8x9Þþ k3x10x4x5Þ

þA1ðx1ðk3k4k7 � k3x4x8Þþ k3k4x2x5ÞÞ
=ðx3ðk4k7x7 � x4x7x8Þþ k6ðk3x4x8 � k3k4k7Þþ k3k4x5x6Þ

X7 ¼ ðA2ðx3ðx10x4x7 � k4x6x9Þ � k3k6x10x4Þ
þA1ðk4x2x3x7 � k3k4x1x6 � k3k4k6x2ÞÞ
=ðx3ðk4k7x7 � x4x7x8Þþ k6ðk3x4x8 � k3k4k7Þþ k3k4x5x6Þ

Table 5.2 Numbering of connection weights

From To Connection weight From To Connection weight

srss psa1 x1 srsc srse1 x9

srss psa2 x2 srsc srse2 x10

srse1 psa1 x3 srsc psee x11

srse2 psa2 x4 fsee psee x12

psa2 psa1 x5 psee fsee x13

psa1 psa2 x6 fsee cs2 x14

psa1 srse1 x7 cs2 cs1 x15

psa2 srse2 x8 cs1 cs2 x16

1https://wims.unice.fr/wims/wims.cgi?session=K06C12840B.2&+lang=nl&+module=tool%
2Flinear%2Flinsolver.en.
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X8 ¼ �A2x11=ðx12x13 � k8Þ
X9 ¼ A2x11x13x14x15=ðx12x13ðx14x16 � k10Þþ k8ðk10 � x14x16ÞÞ
X10 ¼ A2x11x13x15=ðx12x13ðx14x16 � k10Þþ k8ðk10 � x14x16ÞÞ

To compare these outcomes with simulation outcomes, in particular, the ones
depicted in Figs. 5.3 and 5.4, that specific scenario has been addressed, with
parameter values as indicated in Sect. 4, and A1 = A2 = 1.

X1 ¼ 1 X6 ¼ �0:1040x2 þ 0:7852x1 � 0:1004
X2 ¼ 1 X7 ¼ 0:6760x2 � 0:1040x1 þ 0:1524
X3 ¼ �0:1040x2 þ 0:7852x1 � 0:2432 X8 ¼ 1
X4 ¼ 0:4732x2 � 0:07280x1 þ 0:4067 X9 ¼ 0:5263
X5 ¼ 1 X10 ¼ 0:5263

Now, from the simulation it turns out that in the equilibrium state x1 ¼
0:5025559926 and x2 ¼ 0:7428984649: Substituting this in the above expressions
provides:

X1 ¼ 1 X3 ¼ 0:0741 X5 ¼ 1 X7 ¼ 0:6023 X9 ¼ 0:5263
X2 ¼ 1 X4 ¼ 0:7216 X6 ¼ 0:2170 X8 ¼ 1 X10 ¼ 0:5263

For verification, these state values found by analysis have been compared (in
more precision) with the equilibrium state values found in the simulation for
Dt = 0.25. The results are shown in Table 5.3. As can be seen, all deviations
(differences between value from the simulation and value from the analysis) are in
absolute value less than 0.001, which provides evidence that the model does what is
expected.

Table 5.3 Comparing analysis and simulation

State srss
X1

srsc
X2

srse1
X3

srse2
X4

fsee
X5

Simulation 1.0000000000 0.9999866365 0.0750260707 0.7214675588 0.9999771825

Analysis 1.0000000000 1.0000000000 0.0741370620 0.7216223422 1.0000000000

Deviation 0 −1.33635E−05 0.000889009 0.000154783 −2.28175E-05

State psa1
X6

psa2
X7

psee
X8

cs1
X9

cs2
X10

Simulation 0.2175996003 0.6021532734 0.9999794070 0.5257977548 0.5267889246

Analysis 0.2169942048 0.6023176317 1.0000000000 0.5263157895 0.5263157895

Deviation 0.000605395 −0.000164358 −2.0593E−05 −0.000518035 0.000473135
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5.6.2 Addressing the Nonlinear Equilibrium Equations
for the Reification States

Also for the two reification states Wsrss;psa1
(now indicated by W1 with value W1)

and Wsrss;psa2
(now indicated by W2 with value W2) for the two adaptive con-

nection weights equilibrium equations can be found. They are (as long as the speed
factor of them is not 0):

W1 ¼ cW1ðX1;X6;W1;�0:7 cs2Þ
W2 ¼ cW2ðX1;X7;W2;�0:7 cs2Þ

ð5:9Þ

Or in terms of Xi:

X11 ¼ cW1ðX1;X6;X11;�0:7X10Þ
X12 ¼ cW2ðX1;X7;X12;�0:7X10Þ

Filling in cW1ð::Þ and cW2ð::Þ the two combination functions hebbl(..) and scma(..)
and combination function weights c1 and c2 provides:

X11 ¼ c1hebblðX1;X6;X11Þþ c2scmaðX1;X6;X11;�0:7X10Þ
X12 ¼ c1hebblðX1;X7;X12Þþ c2scmaðX1;X7;X12;�0:7X10Þ

X11 ¼ c1ðX1X6ð1� X11Þþ lX11Þþ c2ðX11 � 0:7 aX11ð1� X11ÞX10Þ
X12 ¼ c1ðX1X7ð1� X12Þþ lX12Þþ c2ðX12 � 0:7 aX12ð1� X12ÞX10Þ

However, these equations are not linear and more difficult to be solved alge-
braically. Nevertheless, they still can be used for verification by substitution of
values found in simulations. The values used are

c1 ¼ 0:85 c2 ¼ 0:15 l ¼ 0:8 a ¼ 0:5 X1 ¼ A1 ¼ 1

Then the instantiated equations are

X11 ¼ 0:85ðX6ð1� X11Þþ 0:8X11Þþ 0:15ðX11 � 0:35X11ð1� X11ÞX10Þ
X12 ¼ 0:85ðX7ð1� X12Þþ 0:8X12Þþ 0:15ðX12 � 0:35X12ð1� X12ÞX10Þ

The relevant equilibrium values obtained in the simulation are

X6 ¼ 0:217599600251934 X11 ¼ 0:502555992556694
X7 ¼ 0:602153273449135 X12 ¼ 0:742898464938841
X10 ¼ 0:526788924575543
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After substitution of these in the instantiated equations, the following is obtained:

0:502214624461369 ¼ 0:502555992556694

0:742915691976951 ¼ 0:742898464938841

The deviations of these equations are −0.0003413680953248120 and
0.0000172270381099127 respectively, which both are less than 0.001. This pro-
vides evidence that also for the reification states used for adaptation of the con-
nections the model does what is expected.

5.7 Discussion

In this chapter, a second-order adaptive reified temporal-causal network model was
presented for the adaptive role of stress in decision making based on the
disconnect-reconnect principle (Sousa and Almeida 2012). Parts of this chapter are
based on Treur and Mohammadi Ziabari (2018). In this computational network
model, connections developed in the past are suppressed due to acute stress as a
form of reset (disconnect) and Hebbian learning takes place to adapt the decision
making to the stressful conditions (reconnect). A number of simulations were
performed two of which were presented in the chapter. Findings from Neuroscience
were taken into account in the design of the adaptive model (Quaedflieg et al. 2015;
Hermans et al. 2014; Reser 2016; Sousa and Almeida 2012). This literature reports
experiments and measurements for stress-induced conditions as addressed from a
computational perspective in the current chapter. In addition to this, also meta-
plasticity has been incorporated in the adaptive network model. This makes it a
second-order adaptive network model. In the simulations, it has been shown how
this second-order adaptation accelerates the learning effect, on top of the
disconnect-reconnect principle, as also claimed in another context by Robinson
et al. (2016). Also, a precise mathematical analysis has been done to verify that
behaviour of the reified network model is as expected.

In other, more applied literature, such as Gok and Atsan (2016), not the
Neuroscience perspective is followed, but a more general psychological perspective
on decision making applied to a manager’s context. This may seem to contrast with
the Neuroscience perspective followed in the current chapter which is mainly based
on Sousa and Almeida (2012). However, the more refined approach on decision
making and its subprocesses in Gok and Atsan (2016), such as the generation of
decision options and selection of an option, may provide interesting inspiration for
future research in making a more refined version of the current model, and place it
in a more applied context. Another future extension may address an explicit role for
cortisol in the development of stress. The current states used to model the extreme
emotion (psee and fsee) can be seen as aggregate states for a number of brain states,
including the cortisol level. In a more refined approach different substates may be
distinguished, under which a separate state for the cortisol level.
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This network model can be used as the basis of a virtual agent model to get
insight in such processes and to consider certain support or treatment of individuals
to handle extreme emotions when they have to work in a stressful context condition
and prevent some stress-related disorders that otherwise might develop. In future
research, other scenarios will be addressed and simulated for individuals with
different characteristics.
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