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An adaptive Network-Oriented cognitive model for Major Depression and its
treatment
Marcia A. van der Poel, Jan Treur
Behavioural Informatics Group, Vrije Universiteit Amsterdam, Netherlands

A B S T R A C T

This paper presents an adaptive neurologically inspired cognitive model for Major Depressive Disorder. It is based on an (adaptive) temporal-causal network
modelling approach incorporating a dynamic perspective on mental states and causal relations. The adaptive network model addresses how a Deep Brain Stimulation
treatment used for this disorder can work by a Hebbian learning effect.

Introduction

Individuals can be in a depressed mood due to stressful experiences,
loss of a loved one or feeling guilty about something. This does not
necessarily mean that they are diagnosed with Major Depressive
Disorder (MDD). Major Depression is a common and also costly disorder
associated with severe and persistent symptoms, causing social im-
pairment, increased medical co-morbidity and mortality [7]. Over the
years, the development of animal models and genetics progressed in
order to investigate the etiology of Major Depressive Disorder; e.g.,
(Abelaira, Reus, & Quevedo, 2013; Kudryavtseva, Bakshtnovskaya, &
Koryakina, 1991; Nestler et al., 2002; Nestler & Hyman, 2010; Smoller,
2016). Although these models can provide understanding of beha-
vioural aspects, there are limitations. Symptoms used to establish the
disorder in humans, for example, hallucinations, guilt, sadness, cannot
be convincingly ascertained in animals. Knowledge about what the
exact pattern of structural brain alterations are when suffering Major
Depression Disorder (Schmaal, Veltman, & van Erp, 2016) is available
but still limited. It is important to get a better insight in mechanisms
that enable treatments to have their effect. Computational cognitive
modelling can contribute to this.

To develop a computational cognitive model it is important to
consider the network of mental states that play a role and in particular
also to address the dynamics and interaction within this network. These
dynamics also concern adaptivity, as network connections between
mental states usually change over time by learning. The Network-
Oriented Modelling approach described in (Treur, 2016a, 2016b, 2018)
enables to cover this. The basic (nonadaptive) cognitive model pre-
sented as a first step addresses three different types of subjects and their
behaviour: a healthy person where the mental processes do not have
alterations and the behaviour is normal, someone feeling depressed and
expressing it even though there are no real deficits, and a person

suffering Major Depression Disorder. The adaptive cognitive model
presented next shows how adaptivity of the strength of connections
between mental states by Hebbian learning (Hebb, 1949) plays a role
and can be affected by treatment, illustrated for a Deep Brain Stimu-
lation treatment. Such a treatment makes that some specific parts of the
brain get enhanced activation levels. By Hebbian learning such en-
hanced activations can lead to better learning.

This paper focuses on the type without mania (Carlson, 2014; Demic
& Cheng, 2014): Major Depression Disorder (MDD). Evidence indicates
(Schmaal et al., 2016) that a tendency of developing MDD is a heritable
characteristic; several genes have been found that relate to MDD. At the
level of the brain also alterations and deficits in pathways have been
found (Carlson, 2014). A number of brain areas and connections are
known to influence the onset of MDD (Belden et al., 2016; Carlson,
2014). Brain imaging studies have presented that deficits in reward
processing contribute to Major Depressive Disorder. Especially, the
dorsal lateral prefrontal cortex (DLPFC), Nucleus Accumbens and the
Amygdala play a part in this reward circuitry and emotion regulation
(Belden et al., 2016). The DLPFC is connected with the Amygdala and
plays an important role in inhibition of it, controlling expression of
negative emotional responses. However, people suffering Major De-
pression Disorder show a decreased activity of the DLPFC and therefore
less inhibition of the Amygdala, which leads to increased activity of the
Amygdala. Due to this impaired interaction, the inhibition is low re-
sulting in irregularity of the circuits and behaviour (Carlson, 2014;
Greg, Thompson, Carter, Steinhauer, & Thase, 2007). The computa-
tional cognitive models introduced in this paper take the bidirectional
connections between the DLPFC and Amygdala into account, as dis-
cussed above. The basic model shows the differences of the dynamic
mental processes occurring in healthy persons, persons feeling de-
pressed and persons suffering Major Depressive Disorder. The adaptive
computational cognitive model shows how stronger or weaker
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connections from Amygdala to DLPFC can evolve over time and affect
the MDD, and how a Deep Brain Stimulation treatment can strengthen
them.

In this paper, the basic cognitive model is presented in Section “The
basic cognitive model for MDD”. Section “Simulation experiments for
the basic cognitive model” discusses some of the simulation results of
the model. In Section “An adaptive cognitive model for MDD and DBS-
treatment”, the adaptive cognitive model is introduced and the influ-
ence of a Deep Brain Stimulation treatment used by people suffering
Major Depression Disorder is shown. Simulation results of this are
shown in Section “Simulation experiments for the adaptive cognitive
model”. In Section “Verification” verification is addressed. Finally,
Section “Discussion” is a discussion.

The basic cognitive model for MDD

The basic and adaptive cognitive models have been designed using
the Network-Oriented Modelling approach described in (Treur, 2016a,
2016b); see also (Treur, 2018). The network can be designed at a
conceptual level (Treur, 2016b). A (graphical) conceptual representa-
tion displays in a graphical manner nodes for states and arrows for
connections indicating causal impacts from one state to another. The
model was designed by considering a few aspects of Major Depression,
based on the literature with focus on Prefrontal Cortex bi-directionally
connected with Amygdala, and preparations for actions to express a
particular (negative) feeling induced by a stimulus s (a negative event).
In Fig. 1 a graphical conceptual representation of the basic cognitive
model is depicted and in Table 1 the concepts used are explained.
Sensory representation states srss, srsint are used as internal re-
presentations for stimulus s and the body state that embodies the
emotional response state.

For stimulus s the sensor state sss is used to incorporate the sensing
from world state wss of s. The sensory representation of a stimulus has
an impact on the preparation state psint for a bodily response. By a
predictive as-if body loop this leads to sensory internal body re-
presentation state srsint, and subsequently this has impact on the pre-
paration state psint, which makes the process a recursive as-if body loop
(Treur, 2016b).

The execution state esint is included for expression of the prepared
body state. Both the preparation state and the actual execution are af-
fected by the control state css,int representing the role of the prefrontal
cortex. The following elements are the main elements of a conceptual
representation:

• For each connection from state X to state Y a weight ωX,Y (a number
between −1 and 1), for strength of impact (a negative weight is
used for suppression)

• For each state Y a speed factor ηY (a positive value) for timing of
impact

• For each state Y a combination function cY(…) used to aggregate
multiple impacts from different states on one state Y; see below for
some examples

For a numerical representation of the model the states Y get acti-
vation values indicated by Y(t): real numbers between 0 and 1 over time
points t, where the time variable t ranges over the real numbers.

A conceptual representation of as shown in Fig. 1 can be trans-
formed in a systematic or even automated manner into a numerical
representation as follows [20]:

• At each time point t state X connected to state Y has an impact on Y
defined as =t X timpact ( ) ( )X Y X Y, , . where X Y, . is the weight of
the connection from X to Y

• The aggregated impact of multiple states Xi on Y at t is determined
using a combination function cY(…):

= …

= …

( )
( )

t t t

X t X t

aggimpact c impact impact

c

( ) ( ), , ( )

( ), , ( )
Y Y X Y X Y

Y X Y X Y k

, ,

, 1 ,

k

k

1

1

where Xi are the states with outgoing connections to state Y

• The effect of taggimpact ( )Y . on Y is exerted over time gradually,
depending on speed factor ηY:

+ = +Y t t Y t t Y t taggimpact( ) ( ) [ ( ) ( )]Y Y

=dY t
dt

t Y taggimpact( ) [ ( ) ( )]Y Y

Thus the following difference and differential equation for Y are ob-
tained:

+ = + …[ ( ) ]Y t t Y t X t X t Y t tc( ) ( ) ( ), , ( ) ( )Y Y X Y X Y k, 1 ,k1

= …[ ( ) ]dY t
dt

X t X t Y tc( ) ( ), , ( ) ( )Y Y X Y X Y k, 1 ,k1

As an example, according to the numerical representation described
above, the difference and differential equation for the control state
css,int are as follows:

+ = +t t tcs ( ) cs ( )s int s int, ,

[ ( ) ]t t t tc srs ( ), ps ( ) cs ( )s int s intcs cs srs , cs ps , cs ,s int s int s s int int s, , , ,int

=
d t

dt
cs ( )s int,

Fig. 1. Conceptual representation of the basic cognitive model for MDD.

Table 1
Overview of the states used in the basic cognitive model.

State Explanation

wss The current world state: the person is facing stimulus s (a negative event)
sss Sensory state which the person senses the world through
srss Sensory representation state of stimulus s
srsint Sensory representation state of internal body state of the amygdala
psint Preparation state for internal body state, characterizing the amygdala

responses
css,int Control state for stimulus s, characterizing the prefrontal cortex
esint Execution state for the internal body state
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[ ( ) ]t t tc srs ( ), ps ( ) cs ( )s int s intcs cs srs , cs ps , cs ,s int s int s s int int s int, , , ,

So, for every set of instances or values for the connection weights,
speed factors and combination functions, a difference or differential
equation is assigned to each state of the model. In the model considered
here, it makes a set of 6 coupled difference or differential equations,
that together describe the behaviour of the model when in mutual in-
teraction. For all states either the identity function id(…) or the advanced
logistic sum combination function alogisticσ,τ(…) is used as combination
function [20]:

= =V V Vc id( ) ( )Y

… = … = +
+ +…+ +V V V Vc alogistic( , , ) ( , , ) ( )(1 e )Y k k V Vk1 , 1

1
1 e ( 1 )

1
1 e Here

σ is a steepness parameter and τ a threshold parameter. The advanced
logistic sum combination function has the property that activation le-
vels 0 are mapped to 0 and it keeps values below 1. The function

…alogistic ( ), is used for 4 states with multiple impacts: css, psint, srsint,
esint. For example, for the control state css,int, the model is numerically
represented in difference and differential equation form as:

+ = +t t tcs ( ) cs ( )s int s int, ,

[ ( ) ]t t t talogistic srs ( ), ps ( ) cs ( )s int s intcs , srs , cs ps ,cs ,s int s s int int s int, , ,

= [ ( ) ]d t
dt

t t talogistic
cs ( )

srs ( ), ps ( ) cs ( )s int
s s s int s int s int int s int

,
cs ,int , srs , cs , ps , cs , ,

Simulation experiments for the basic cognitive model

The basic cognitive model described in Section “The basic cognitive
model for MDD” has been used to conduct a number of simulation
experiments to show three different types of person; healthy, feeling
depressed and suffering Major Depression. In order to show the pro-
cesses and behaviour in a realistic manner, according to the neuro-
biological background in Section “The basic cognitive model for MDD”,
the parameters for the connection weights will be different for a person
with MDD, especially those connecting the PFC with the Amygdala. In
the example discussed here these parameters have been chosen as
shown in Table 2. People who are healthy do not have any impairments
of connections between different brain area’s (e.g., relatively high
strengths for srs ,css s int, and ps ,csint s int, enabling a form of monitoring of
the emotional state). It is the same for people just feeling depressed;
although those people do not have any impairments like for Major
Depression, there are connections with lower impact due to a bad
feeling state they have. People suffering MDD have impairments of
connections; e.g., low srs ,css s int, and ps ,csint s int, resulting in less inhibition
of the Amygdala, even when the suppression connection from PFC to
Amygdala has a higher negative cs ,pss int int, . It has been found that higher
negative feeling levels usually co-occur with lower levels of PFC ac-
tivity; e.g., see (Treur, 2016b), p. 153 and the literature referred there.
To model this, for the MDD case the upward connection weight

ps ,csint s int, has been set at a low value, so that the PFC state is not ac-
tivated much by the negative feeling. Note that personal characteristics
as represented by the parameters used here always vary over persons.
This also applies to groups diagnosed for a certain disorder.

For the simulations the step size Δt was 0.5, all speed factors were
0.5, and all other connection weights were 1. Furthermore, for the
states that use the advanced logic combination function, the steepness σ

and threshold τ values used are as in Table 3.
The initial values of activation levels for all states have been

chosen 0, except the world state wss which had a constant value of 1 as
a form of input (a stressful circumstance) for the model. Fig. 2
shows the simulation results of a healthy person (e.g.,

= = =0.7, 0.3, 0.6cssrs , cs ,ps ps ,css s int s int int int s int, , , ; see Table 2, last
row).

The control state becomes active to cope with the stressful stimulus.
In the first few steps, all values go up. Fig. 2 also shows that the sensory
representation state value of the internal process (srsint, Amygdala cir-
cuit) stays lower, as the activity of that area is less than others (Carlson,
2014). Fig. 3 shows the simulation of a person feeling depressed (see
Table 2, middle row). Again the control state becomes active. However,
there is slightly more activity of the srsint (Amygdala circuit) making
someone react stronger towards negative stimulus and expressing si-
milar symptoms of MDD. Fig. 4 shows the simulation of a person suf-
fering Major Depression Disorder (see Table 2, second row). In this case
there is lower activity of the control state. In the first few steps all
values go up. Time point 10 shows a fast decline of the expressive be-
haviour due to the strong suppressive effect of cs ,pss int int, . Because in the
simulation the stressful stimulus never fades away, the depression stays
too. The symptoms described in Section “Introduction” will be ex-
pressed by the person.

An adaptive cognitive model for MDD and DBS-treatment

In order to alleviate symptoms of MDD, most of the time doctors
prescribe antidepressants like selective serotonin reuptake inhibitors
(SSRI’s) (El Mansari et al., 2010; Nemeroff, 2002; Shirayama, Chen,
Nakagawa, Russell, & Duman, 2002). Even though these treatments
have proved to be successful, not every patient responds to it. There-
fore, a new treatment has been developed recently, called Deep Brain
Stimulation (DBS). In this treatment electrodes are placed at specific
brain area’s in order to stimulate the pathways between them
(Schlaepfer et al, 2008; Schlaepfer, Bewernick, Kayser, Hurlemann, &
Coenen, 2014). A principle that explains the effect of this treatment is
Hebbian learning (Hebb, 1949): when two connected neurons are ac-
tivated simultaneously, their connection will strengthen. So, when
these connected neurons are activated in an artificial manner by DBS it
may be expected that this DBS treatment will make their connection
stronger. An adaptive temporal-causal network modelling based on
Hebbian Learning was designed to cover this. The DBS-supported
Hebbian learning approach is applied to the upward connection from
Amygdala to PFC in the core part of the basic cognitive model, as it has
been found that lower PFC activity correlates to higher levels of ne-
gative feelings (see (Treur, 2016b), p. 153); see Fig. 5. Actually this
upward arrow stands for a pathway, parts of which are stimulated by
DBS. In Fig. 5 the solid curvy arrows indicate how the connection
weight ps ,csint s int, is affected by activation of the states psint and css,int

Table 2
Values of parameters used as connection weight.

Weight s s intsrs ,cs , s int intcs , ,ps int s intps ,cs , int s intsrs ,cs , s int intcs , ,es s intsrs ,ps int intsrs ,ps int intps ,srs int intes ,srs int intps ,es

MDD 0.2 −0.8 0.2 0.1 -0.6 0.9 0.8 0.6 0.4 0.6
Depressed 0.7 −0.3 0.6 0.8 -0.2 0.9 0.8 0.2 0.3 0.5
Healthy 0.7 −0.3 0.6 0.8 -0.2 0.7 0.4 0.1 0.2 0.7

Table 3
Steepness σ and threshold τ parameter values used in the model.

Person State σ τ

Healthy css,int, srsint, psint, esint 30 0.3
Feeling Depressed css,int, srsint, psint, esint 30 0.3
Major Depression css,int, srsint, psint, esint 40 0.4
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due to Hebbian learning (for more details of Hebbian learning in tem-
poral-causal networks, see (Treur, 2016b), Ch 2, Section 2.10). More-
over, tsDBS is the treatment state of the device inducing the DBS sti-
mulation and the dotted arrows indicate the effect of this device on
some of the brain states.

Note that because the connection weight is now considered a vari-
able, it can be modelled as a state in the network as well; for more
details, see also (Treur, 2016b), pp. 92–98. Numerically, the connection
weight ps ,csint s int, is adapted using the following specific Hebbian
learning rule (also see [20]), taking a maximal connection weight of 1
into account, a learning rate η > 0, and a persistence factor μ in the
interval [0, 1], and the activation levels psint(t) and css,int(t). The per-
sistence factor μ determines how much extinction takes place. When it
is 1 no extinction takes place, and the lower it is, the more extinction
takes place. The format is based on the combination function c(…)
defined by

= +X Y W X Y W Wc µ( , , ) (1 )

and filled with the states psint(t), css,int(t), t( )ps ,csint c int, for X, Y, W
considered here:

= +( )t t t t t t tc µ(ps ( ), cs ( ), , cs ( )) ps ( )cs ( ) 1 ( ) ( )int s int int s int int s int s int int s int, ps , , psint, cs , ps , cs ,

= +[ ( )
]

d t
dt

t t t t

t

µ
( )

ps ( )cs ( ) 1 ( ) ( )

( )

int s int
ps , cs

, ps , cs ps , cs

ps , cs

int s int
int s int int s int

int s int

,
, ,

,

+ = +

+

[ ( )
]

t t t t t t

t t tµ

( ) ( ) ps ( )cs ( ) 1 ( )

( ) ( )
int s int int s int int s int int s int

int s int int s int

ps , cs , ps , cs , , ps , cs ,

ps , cs , ps , cs ,

Simulation experiments for the adaptive cognitive model

The following Fig. 6 shows the learning of this weight ps ,csint s int,
using Hebbian learning, for different scenarios including one with a
treatment based on Deep Brain Stimulation. Fig. 6(a) (two upper
graphs) shows the response and connection weight for a healthy person.
The persistence parameter μ is 1 here. The top figure illustrates the
activity of the PFC (brown line) and Amygdala (pink line) during the
normal condition described in the previous section. The green line re-
presents the internal connection between the two brain areas. As can be
seen in the lower graph in the figure, the connection weight is raising
towards one. This means for this person the brain areas and reactions
are behaving according to normal standards.

The graphs in Fig. 6(b) illustrate the activity and learning effect of
person with MDD. The persistence parameter μ is 0.5 in this case. As
can be seen the Pre-Frontal Cortex does not have any or almost no

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 2. Simulation of a Healthy Person. Horizontal axis: time. Vertical axis: activation value. Orange: css.int (prefrontal cortex activity). Green: srsint (Amygdala
circuitry) Dark blue: esint (expressing normal behaviour).
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Fig. 3. Simulation of a Person feeling depressed. Orange: css,int (prefrontal cortex activity). Green: srsint (amygdala circuitry) Dark blue: esint (expressing behaviour).
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Fig. 4. Simulation of a Person with Major Depression. Orange: css,int (prefrontal cortex activity). Green: srsint (amygdala circuitry) Dark blue: esint (expressing).
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activity while the Amygdala is hyperactive [6].
There is no treatment applied in this case and therefore the con-

nection weight ps ,csint s int, is decreasing to zero due to extinction, as not
enough learning takes place to compensate for extinction. So, Fig. 6(a)
and (b) imply that there is a significant difference in activity and
learning effect between a healthy person and someone suffering from
Major Depression Disorder. Fig. 6(c) shows simulation results for the
adaptive network for a person with MDD undergoing a Deep Brain
Stimulation treatment. The persistence parameter μ is 0.5. The activ-
ities of the different brain areas, illustrated in the top figure, display
improvement regarding unhealthy people but not yet to normal stan-
dards (Carlson, 2014). The learning effect for the treatment is shown in
the bottom figure, there is an increase of this rate indicating some
persons, as described in Section “Introduction”, are improving and
therefore feeling less depressing and relieving symptoms. It is not the
same as a healthy person but it shows the persistent factor of treatment
is helpful for patients suffering Major Depression Disorder.

Fig. 5. Conceptual representation of part of the adaptive cognitive model in-
corporating Hebbian learning (the curvy arrows) and Deep Brain Stimulation
(DBS) treatment (by the state tsDBS and its connections indicated by dotted
arrows).

0.0
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0.4
0.6
0.8
1.0
1.2

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0
0.2
0.4
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0.8
1.0

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0

0.5
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0 5 10 15 20 25 30 35 40 45 50 55 60

0.0
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0.0
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0.6

0 5 10 15 20 25 30 35 40 45 50 55 60

Fig. 6. Adaptive Simulations (a) a Healthy Person. Topmost graph: Brown css (prefrontal cortex activity). Pink: srsint (amygdala circuitry) Green: srss (internal
connection). Second graph: effect of the learning on the connection weight int s intps ,cs , . (b) a Person suffering from MDD without treatment. Third graph: Brown: css
(prefrontal cortex activity). Pink: srsint (amygdala circuitry) Green: srss (internal connection). Fourth graph: effect of the lack of learning on the connection weight

int s intps ,cs , . (c) a Person suffering from MDD with Deep Brain Stimulation treatment. Fifth graph: Brown: css (prefrontal cortex activity). Pink: srsint (amygdala
circuitry) Green: srss (internal connection). Bottom graph: effect of the DBS-supported Hebbian learning on the connection weight int s intps ,cs , .
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Verification

Usually dynamic properties of dynamic cognitive models can be
analysed by conducting simulation experiments. But sometimes, as a
kind of prediction properties can also be found by calculations in a
mathematical manner, without performing simulations. Such types of
properties found in an analytic mathematical manner can be used for
verification of the model by checking them for the values observed in
simulation experiments. This particular use of mathematical analysis as
discussed here focuses on stationary points: state Y has a stationary point
at t if dY(t)/dt= 0. In the graphs shown in the Fig. 6 it seems that
equilibria are reached. The question then is whether these observations
based on simulation experiments are in agreement with a mathematical
analysis based on the formal model specifications. If it is found out that
they are in agreement with the mathematical analysis, then this pro-
vides some extent of evidence that the implemented model is correct. If
they turn out not to be in agreement with the mathematical analysis,
then further inspection and correction has to be initiated. Within the
numerical representation of temporal-causal networks the differential
equations have a specific format, and then the following criterion ap-
plies:

Y has a stationary point at t ⇔ … =( )X t X t Y tc ( ), , ( ) ( )Y X Y Xk Y k1, 1 ,

with X1, …, Xk the states with outgoing connections to Y

Consider the adaptive connection from psint to css,int; the criterion
for stationary point is:

=( )t t t tc ps ( ), cs ( ), ( ) ( )int s int, ps , cs ps , csint s int int s int, ,

+ =( )t t t t tµps ( )cs ( ) 1 ( ) ( ) ( )int s int, ps , cs ps , cs ps , csint s int int s int int s int, , ,

Simplifying the notation by putting X= psint, Y= css,int,
ω = ps , csint s int, and leave out the time from the notation provides the
following criteria for ω:

ω stationary ⇔

+ =X Y µ(1 ) ⇔

=
+

X Y
X Yµ(1 )

The above criterion has been applied to verify whether the adaptive
cognitive model is correct with respect to its formal mathematical
specifications; see Table 4. In particular, the final stationary points have
been inspected for the three scenarios shown in Fig. 6. As seems in these
figures, in all three cases the model is heading to a joint stationary point
for all states and connections (also called an equilibrium state). In the
first three rows of Table 4 it is shown which values are reached at time
60 (the last time point shown in the Fig. 6) for css,int(t), t( )ps , csint s int, and

t( )ps , csint s int, . In the seventh column the criterion for t( )ps , csint s int, is
calculated and in column 8 the deviation of the criterion from the actual
value of t( )ps , csint s int, is determined. As can be seen in this last column,
the deviations are less than 10−2. To see how the situation is after a
longer time period, the simulations also have been done up till time

point 300. The results for this are shown in the last three rows of
Table 4. As can be seen, now the deviations are less than 10−11. These
results give evidence that the model does what is expected.

Discussion

The cognitive model presented in this paper provide neurologically
inspired computational models for the field of Major Depression, en-
abling to distinguish the differences in mental processes of different
types of subjects. The models were designed as networks of mental
states according to the temporal-causal network modelling approach
described in (Treur, 2016a, 2016b, 2018). Within the presented adap-
tive cognitive model Hebbian learning (Hebb, 1949) has been in-
corporated. Using proper values of parameters, such as connection
weights, the models can simulate the differences between a healthy
person, a person feeling depressed and a person suffering Major De-
pression. Persons whom were diagnosed with MDD and do not get
treatment were compared with the ones who do get treatment by Deep
Brain Stimulation; this comparison shows a significant difference in
behaviour and functioning of brain areas. Verification has been per-
formed to test whether the simulations are in accordance with what can
be predicted from the formal model specifications by mathematical
analysis.

The cognitive model presented here can be used to develop human-
aware intelligent systems (Azziz, Klein, & Treur, 2010; Bosse,
Callaghan, & Lukowicz, 2010) that can provide help getting more un-
derstanding of the deficits and impaired pathways, supporting persons
suffering from Major Depression Disorder. Treatments, especially Deep
Brain Stimulation, have proven to be effective (El Mansari et al., 2010;
Schlaepfer et al, 2008; Schlaepfer et al., 2014) and a computational
model can be of benefit to the research for treatments and biology of
MDD. In future work, the models may be extended with more char-
acteristics as the research in the field of Major Depression Disorder is
progressing. In addition, a focus can be set also on environmental and
social factors. Comparison with numerical empirical data would be
interesting, but such data were not available. Nevertheless, for now in
empirical literature qualitative empirical indications were found and
the model was able to generate behaviour that is in accordance with
them.
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