119,696 research outputs found

    Modeling document features for expert finding

    Get PDF
    We argue that expert finding is sensitive to multiple document features in an organization, and therefore, can benefit from the incorporation of these document features. We propose a unified language model, which integrates multiple document features, namely, multiple levels of associations, PageRank, indegree, internal document structure, and URL length. Our experiments on two TREC Enterprise Track collections, i.e., the W3C and CSIRO datasets, demonstrate that the natures of the two organizational intranets and two types of expert finding tasks, i.e., key contact finding for CSIRO and knowledgeable person finding for W3C, influence the effectiveness of different document features. Our work provides insights into which document features work for certain types of expert finding tasks, and helps design expert finding strategies that are effective for different scenarios

    Entity Ranking on Graphs: Studies on Expert Finding

    Get PDF
    Todays web search engines try to offer services for finding various information in addition to simple web pages, like showing locations or answering simple fact queries. Understanding the association of named entities and documents is one of the key steps towards such semantic search tasks. This paper addresses the ranking of entities and models it in a graph-based relevance propagation framework. In particular we study the problem of expert finding as an example of an entity ranking task. Entity containment graphs are introduced that represent the relationship between text fragments on the one hand and their contained entities on the other hand. The paper shows how these graphs can be used to propagate relevance information from the pre-ranked text fragments to their entities. We use this propagation framework to model existing approaches to expert finding based on the entity's indegree and extend them by recursive relevance propagation based on a probabilistic random walk over the entity containment graphs. Experiments on the TREC expert search task compare the retrieval performance of the different graph and propagation models

    Modeling Documents as Mixtures of Persons for Expert Finding

    Get PDF
    In this paper we address the problem of searching for knowledgeable persons within the enterprise, known as the expert finding (or expert search) task. We present a probabilistic algorithm using the assumption that terms in documents are produced by people who are mentioned in them.We represent documents retrieved to a query as mixtures of candidate experts language models. Two methods of personal language models extraction are proposed, as well as the way of combining them with other evidences of expertise. Experiments conducted with the TREC Enterprise collection demonstrate the superiority of our approach in comparison with the best one among existing solutions

    Broad expertise retrieval in sparse data environments

    Get PDF
    Expertise retrieval has been largely unexplored on data other than the W3C collection. At the same time, many intranets of universities and other knowledge-intensive organisations offer examples of relatively small but clean multilingual expertise data, covering broad ranges of expertise areas. We first present two main expertise retrieval tasks, along with a set of baseline approaches based on generative language modeling, aimed at finding expertise relations between topics and people. For our experimental evaluation, we introduce (and release) a new test set based on a crawl of a university site. Using this test set, we conduct two series of experiments. The first is aimed at determining the effectiveness of baseline expertise retrieval methods applied to the new test set. The second is aimed at assessing refined models that exploit characteristic features of the new test set, such as the organizational structure of the university, and the hierarchical structure of the topics in the test set. Expertise retrieval models are shown to be robust with respect to environments smaller than the W3C collection, and current techniques appear to be generalizable to other settings

    Unsupervised, Efficient and Semantic Expertise Retrieval

    Get PDF
    We introduce an unsupervised discriminative model for the task of retrieving experts in online document collections. We exclusively employ textual evidence and avoid explicit feature engineering by learning distributed word representations in an unsupervised way. We compare our model to state-of-the-art unsupervised statistical vector space and probabilistic generative approaches. Our proposed log-linear model achieves the retrieval performance levels of state-of-the-art document-centric methods with the low inference cost of so-called profile-centric approaches. It yields a statistically significant improved ranking over vector space and generative models in most cases, matching the performance of supervised methods on various benchmarks. That is, by using solely text we can do as well as methods that work with external evidence and/or relevance feedback. A contrastive analysis of rankings produced by discriminative and generative approaches shows that they have complementary strengths due to the ability of the unsupervised discriminative model to perform semantic matching.Comment: WWW2016, Proceedings of the 25th International Conference on World Wide Web. 201

    Comprehensive Review of Opinion Summarization

    Get PDF
    The abundance of opinions on the web has kindled the study of opinion summarization over the last few years. People have introduced various techniques and paradigms to solving this special task. This survey attempts to systematically investigate the different techniques and approaches used in opinion summarization. We provide a multi-perspective classification of the approaches used and highlight some of the key weaknesses of these approaches. This survey also covers evaluation techniques and data sets used in studying the opinion summarization problem. Finally, we provide insights into some of the challenges that are left to be addressed as this will help set the trend for future research in this area.unpublishednot peer reviewe

    Finding similar research papers using language models

    Get PDF
    The task of assessing the similarity of research papers is of interest in a variety of application contexts. It is a challenging task, however, as the full text of the papers is often not available, and similarity needs to be determined based on the papers' abstract, and some additional features such as authors, keywords, and journal. Our work explores the possibility of adapting language modeling techniques to this end. The basic strategy we pursue is to augment the information contained in the abstract by interpolating the corresponding language model with language models for the authors, keywords and journal of the paper. This strategy is then extended by finding topics and additionally interpolating with the resulting topic models. These topics are found using an adaptation of Latent Dirichlet Allocation (LDA), in which the keywords that were provided by the authors are used to guide the process

    Learning to Rank Academic Experts in the DBLP Dataset

    Full text link
    Expert finding is an information retrieval task that is concerned with the search for the most knowledgeable people with respect to a specific topic, and the search is based on documents that describe people's activities. The task involves taking a user query as input and returning a list of people who are sorted by their level of expertise with respect to the user query. Despite recent interest in the area, the current state-of-the-art techniques lack in principled approaches for optimally combining different sources of evidence. This article proposes two frameworks for combining multiple estimators of expertise. These estimators are derived from textual contents, from graph-structure of the citation patterns for the community of experts, and from profile information about the experts. More specifically, this article explores the use of supervised learning to rank methods, as well as rank aggregation approaches, for combing all of the estimators of expertise. Several supervised learning algorithms, which are representative of the pointwise, pairwise and listwise approaches, were tested, and various state-of-the-art data fusion techniques were also explored for the rank aggregation framework. Experiments that were performed on a dataset of academic publications from the Computer Science domain attest the adequacy of the proposed approaches.Comment: Expert Systems, 2013. arXiv admin note: text overlap with arXiv:1302.041

    Finding Academic Experts on a MultiSensor Approach using Shannon's Entropy

    Full text link
    Expert finding is an information retrieval task concerned with the search for the most knowledgeable people, in some topic, with basis on documents describing peoples activities. The task involves taking a user query as input and returning a list of people sorted by their level of expertise regarding the user query. This paper introduces a novel approach for combining multiple estimators of expertise based on a multisensor data fusion framework together with the Dempster-Shafer theory of evidence and Shannon's entropy. More specifically, we defined three sensors which detect heterogeneous information derived from the textual contents, from the graph structure of the citation patterns for the community of experts, and from profile information about the academic experts. Given the evidences collected, each sensor may define different candidates as experts and consequently do not agree in a final ranking decision. To deal with these conflicts, we applied the Dempster-Shafer theory of evidence combined with Shannon's Entropy formula to fuse this information and come up with a more accurate and reliable final ranking list. Experiments made over two datasets of academic publications from the Computer Science domain attest for the adequacy of the proposed approach over the traditional state of the art approaches. We also made experiments against representative supervised state of the art algorithms. Results revealed that the proposed method achieved a similar performance when compared to these supervised techniques, confirming the capabilities of the proposed framework
    corecore