15 research outputs found

    Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches

    Full text link
    Flexible needle insertion procedures are common for minimally-invasive surgeries for diagnosing and treating prostate cancer. Bevel-tip needles provide physicians the capability to steer the needle during long insertions to avoid vital anatomical structures in the patient and reduce post-operative patient discomfort. To provide needle placement feedback to the physician, sensors are embedded into needles for determining the real-time 3D shape of the needle during operation without needing to visualize the needle intra-operatively. Through expansive research in fiber optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors have been developed to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In this paper, we directly compare single-core fiber-based and multicore fiber-based needle shape-sensing through identically constructed, four-active area sensorized bevel-tip needles inserted into phantom and \exvivo tissue on the same experimental platform. In this work, we found that for shape-sensing in phantom tissue, the two needles performed identically with a pp-value of 0.164>0.050.164 > 0.05, but in \exvivo real tissue, the single-core fiber sensorized needle significantly outperformed the multicore fiber configuration with a pp-value of 0.0005<0.050.0005 < 0.05. This paper also presents the experimental platform and method for directly comparing these optical shape sensors for the needle shape-sensing task, as well as provides direction, insight and required considerations for future work in constructively optimizing sensorized needles

    Modelling the deformation of biologically inspired flexible structures for needle steering

    Get PDF
    Recent technical advances in minimally invasive surgery have been enabled by the development of new medical instruments and technologies. To date, the vast majority of mechanisms used within a clinical context are rigid, contrasting with the compliant nature of biological tissues. The field of robotics has seen an increased interest in flexible and compliant systems, and in this paper we investigate the behaviour of deformable multi-segment structures, which take their inspiration from the ovipositor design of parasitic wood wasps. These configurable structures have been shown to steer through highly compliant substrates, potentially enabling percutaneous access to the most delicate of tissues, such as the brain. The model presented here sheds light on how the deformation of the unique structure is related to its shape, and allows comparison between different potential designs. A finite element study is used to evaluate the proposed model, which is shown to provide a good fit (root-mean-square deviation 0.2636 mm for 4-segment case). The results show that both 3-segment and 4-segment designs are able to achieve deformation in all directions, however the magnitude of deformation is more consistent in the 4-segment case

    Full 3D motion control for programmable bevel-tip steerable needles

    Get PDF
    Minimally invasive surgery has been in the focus of many researchers due to its reduced intra- and post-operative risks when compared to an equivalent open surgery approach. In the context of minimally invasive surgery, percutaneous intervention, and particularly, needle insertions, are of great importance in tumour-related therapy and diagnosis. However, needle and tissue deformation occurring during needle insertion often results in misplacement of the needles, which leads to complications, such as unsuccessful treatment and misdiagnosis. To this end, steerable needles have been proposed to compensate for placement errors by allowing curvilinear navigation. A particular type of steerable needle is the programmable bevel-tip steerable needle (PBN), which is a bio-inspired needle that consists of relatively soft and slender segments. Due to its flexibility and bevel-tip segments, it can navigate through 3D curvilinear paths. In PBNs, steering in a desired direction is performed by actuating particular PBN segments. Therefore, the pose of each segment is needed to ensure that the correct segment is actuated. To this end, in this thesis, proprioceptive sensing methods for PBNs were investigated. Two novel methods, an electromagnetic (EM)-based tip pose estimation method and a fibre Bragg grating (FBG)-based full shape sensing method, were presented and evaluated. The error in position was observed to be less than 1.08 mm and 5.76 mm, with the proposed EM-based tip tracking and FBG-based shape reconstruction methods, respectively. Moreover, autonomous path-following controllers for PBNs were also investigated. A closed-loop, 3D path-following controller, which was closed via feedback from FBG-inscribed multi-core fibres embedded within the needle, was presented. The nonlinear guidance law, which is a well-known approach for path-following control of aerial vehicles, and active disturbance rejection control (ADRC), which is known for its robustness within hard-to-model environments, were chosen as the control methods. Both linear and nonlinear ADRC were investigated, and the approaches were validated in both ex vivo brain and phantom tissue, with some of the experiments involving moving targets. The tracking error in position was observed to be less than 6.56 mm.Open Acces

    Towards a procedure-optimised steerable catheter for deep-seated neurosurgery

    Get PDF
    In recent years, steerable needles have attracted significant interest in relation to minimally invasive surgery (MIS). Specifically, the flexible, programmable bevel-tip needle (PBN) concept was successfully demonstrated in vivo in an evaluation of the feasibility of convection-enhanced delivery (CED) for chemotherapeutics within the ovine model with a 2.5 mm PBN prototype. However, further size reductions are necessary for other diagnostic and therapeutic procedures and drug delivery operations involving deep-seated tissue structures. Since PBNs have a complex cross-section geometry, standard production methods, such as extrusion, fail, as the outer diameter is reduced further. This paper presents our first attempt to demonstrate a new manufacturing method for PBNs that employs thermal drawing technology. Experimental characterisation tests were performed for the 2.5 mm PBN and the new 1.3 mm thermally drawn (TD) PBN prototype described here. The results show that thermal drawing presents a significant advantage in miniaturising complex needle structures. However, the steering behaviour was affected due to the choice of material in this first attempt, a limitation which will be addressed in future work

    Challenges of continuum robots in clinical context: a review

    Get PDF
    With the maturity of surgical robotic systems based on traditional rigid-link principles, the rate of progress slowed as limits of size and controllable degrees of freedom were reached. Continuum robots came with the potential to deliver a step change in the next generation of medical devices, by providing better access, safer interactions and making new procedures possible. Over the last few years, several continuum robotic systems have been launched commercially and have been increasingly adopted in hospitals. Despite the clear progress achieved, continuum robots still suffer from design complexity hindering their dexterity and scalability. Recent advances in actuation methods have looked to address this issue, offering alternatives to commonly employed approaches. Additionally, continuum structures introduce significant complexity in modelling, sensing, control and fabrication; topics which are of particular focus in the robotics community. It is, therefore, the aim of the presented work to highlight the pertinent areas of active research and to discuss the challenges to be addressed before the potential of continuum robots as medical devices may be fully realised

    A mechanics-based model for 3D steering of programmable bevel-tip needles

    Get PDF
    We present a model for the steering of programmable bevel-tip needles, along with a set of experiments demonstrating the 3D steering performance of a new, clinically viable, 4-segment, pre-production prototype. A multi-beam approach, based on Euler-Bernoulli beam theory, is used to model the novel multi-segment design of these needles. Finite element simulations for known loads are used to validate the multi-beam deflection model. A clinically sized (2.5 mm outer diameter), 4-segment programmable bevel-tip needle, manufactured by extrusion of a medical-grade polymer, is used to conduct an extensive set of experimental trials to evaluate the steering model. For the first time, we demonstrate the ability of the 4-segment needle design to steer in any direction with a maximum achievable curvature of 0.0192±0.0014 mm⁻¹. Finite element simulations confirm that the multi-beam approach produces a good model fit for tip deflections, with a root-mean-square deviation (RMSD) in modeled tip deflection of 0.2636 mm. We perform a parameter optimization to produce a best-fit steering model for the experimental trials, with a RMSD in curvature prediction of 1.12×10⁻³ mm⁻¹

    Development of a fiber-based shape sensor for navigating flexible medical tools

    Get PDF
    Robot-assisted minimally invasive surgical procedure (RAMIS) is a subfield of minimally invasive surgeries with enhanced manual dexterity, manipulability, and intraoperative image guidance. In typical robotic surgeries, it is common to use rigid instruments with functional articulating tips. However, in some operations where no adequate and direct access to target anatomies is available, continuum robots can be more practical, as they provide curvilinear and flexible access. However, their inherent deformable design makes it difficult to accurately estimate their 3D shape during the operation in real-time. Despite extensive model-based research that relies on kinematics and mechanics, accurate shape sensing of continuum robots remains challenging. The state-of-the-art tracking technologies, including optical trackers, EM tracking systems, and intraoperative imaging modalities, are also unsuitable for this task, as they all have shortcomings. Optical fiber shape sensing solutions offer various advantages compared to other tracking modalities and can provide high-resolution shape measurements in real-time. However, commercially available fiber shape sensors are expensive and have limited accuracy. In this thesis, we propose two cost-effective fiber shape sensing solutions based on multiple single-mode fibers with FBG (fiber Bragg grating) arrays and eccentric FBGs. First, we present the fabrication and calibration process of two shape sensing prototypes based on multiple single-mode fibers with semi-rigid and super-elastic substrates. Then, we investigate the sensing mechanism of edge-FBGs, which are eccentric Bragg gratings inscribed off-axis in the fiber's core. Finally, we present a deep learning algorithm to model edge-FBG sensors that can directly predict the sensor's shape from its signal and does not require any calibration or shape reconstruction steps. In general, depending on the target application, each of the presented fiber shape sensing solutions can be used as a suitable tracking device. The developed fiber sensor with the semi-rigid substrate has a working channel in the middle and can accurately measure small deflections with an average tip error of 2.7 mm. The super-elastic sensor is suitable for measuring medium to large deflections, where a centimeter range tip error is still acceptable. The tip error in such super-elastic sensors is higher compared to semi-rigid sensors (9.9-16.2 mm in medium and large deflections, respectively), as there is a trade-off between accuracy and flexibility in substrate-based fiber sensors. Edge-FBG sensor, as the best performing sensing mechanism among the investigated fiber shape sensors, can achieve a tip accuracy of around 2 mm in complex shapes, where the fiber is heavily deflected. The developed edge-FBG shape sensing solution can compete with the state-of-the-art distributed fiber shape sensors that cost 30 times more

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces
    corecore