139 research outputs found

    Structural dynamics branch research and accomplishments for fiscal year 1987

    Get PDF
    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications

    Model-Based Robot Control and Multiprocessor Implementation

    Get PDF
    Model-based control of robot manipulators has been gaining momentum in recent years. Unfortunately there are very few experimental validations to accompany simulation results and as such majority of conclusions drawn lack the credibility associated with the real control implementation

    Aspects of parallel processing and control engineering

    Get PDF
    The concept of parallel processing is not a new one, but the application of it to control engineering tasks is a relatively recent development, made possible by contemporary hardware and software innovation. It has long been accepted that, if properly orchestrated several processors/CPUs when combined can form a powerful processing entity. What prevented this from being implemented in commercial systems was the adequacy of the microprocessor for most tasks and hence the expense of a multi-processor system was not justified. With the advent of high demand systems, such as highly fault tolerant flight controllers and fast robotic controllers, parallel processing became a viable option. Nonetheless, the software interfacing of control laws onto parallel systems has remained somewhat of an impasse. There are no software compilers at present which allow a programmer to specify a control law in pure mathematical terminology and then decompose it into a flow diagram of concurrent processes which may then be implemented on, say, a target Transputer system, liiere are several parallel programming languages with which a programmer can generate parallel processes but, generally, in order to realise a control algorithm in parallel the programmer must have intimate knowledge of the algorithm. Therefore, efficiency is based on the ability of the programmer to recognise inherent parellelism. Some attempts are being made to create intelligent partition and scheduling compilers but this usually means significantly extra overheads on the multiprocessor system. In the absence of an automated technique control algorithms must be decomposed by inspection. The research presented in this thesis is founded upon the application of both parallel and pipelining techniques to particular control strategies. Parallelism is tackled objectively and by creating a tailored terminology it is defined mathematically, and consequently related concepts, such as bounded parallelism and algorithm speedup, are also quantified in a numerical sense. A pipelined explicit Self Tuning Regulator (STR) controller is developed and tested on systems of different order. Under the governance of the parallelism terminology the effectiveness of the parallel STR is evaluated and numerically quantified in terms of relevant performance indices. A parallel simulator is presented for the Puma 560 robotic manipulator. By exploiting parallelism and pipelinability in the robot model a significant increase in execution speed is achieved over the sequential model. The use of Transputers is examined and graphical results obtained for several performance indices, including speedup, processor efficiency and bounded parallelism. By the same analytical technique a parallel computed torque feedforward controller incorporating proportional derivative feedback control for the Puma 560 manipulator is developed and appraised. The performance of a Transputer system in hosting the controller is graphically analysed and as in the case of the parallel simulator the more important performance indices are examined under both optimal conditions and conditions of varying hardware constraints

    Literature Review For Networking And Communication Technology

    Get PDF
    Report documents the results of a literature search performed in the area of networking and communication technology

    Real-time and fault tolerance in distributed control software

    Get PDF
    Closed loop control systems typically contain multitude of spatially distributed sensors and actuators operated simultaneously. So those systems are parallel and distributed in their essence. But mapping this parallelism onto the given distributed hardware architecture, brings in some additional requirements: safe multithreading, optimal process allocation, real-time scheduling of bus and network resources. Nowadays, fault tolerance methods and fast even online reconfiguration are becoming increasingly important. All those often conflicting requirements, make design and implementation of real-time distributed control systems an extremely difficult task, that requires substantial knowledge in several areas of control and computer science. Although many design methods have been proposed so far, none of them had succeeded to cover all important aspects of the problem at hand. [1] Continuous increase of production in embedded market, makes a simple and natural design methodology for real-time systems needed more then ever

    State-of-the-art Assessment For Simulated Forces

    Get PDF
    Summary of the review of the state of the art in simulated forces conducted to support the research objectives of Research and Development for Intelligent Simulated Forces

    An intelligent, free-flying robot

    Get PDF
    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base

    A Model of Emotion as Patterned Metacontrol

    Get PDF
    Adaptive agents use feedback as a key strategy to cope with un- certainty and change in their environments. The information fed back from the sensorimotor loop into the control subsystem can be used to change four different elements of the controller: parameters associated to the control model, the control model itself, the functional organization of the agent and the functional realization of the agent. There are many change alternatives and hence the complexity of the agent’s space of potential configurations is daunting. The only viable alternative for space- and time-constrained agents —in practical, economical, evolutionary terms— is to achieve a reduction of the dimensionality of this configuration space. Emotions play a critical role in this reduction. The reduction is achieved by func- tionalization, interface minimization and by patterning, i.e. by selection among a predefined set of organizational configurations. This analysis lets us state how autonomy emerges from the integration of cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. Emotion-based morphofunctional systems are able to exhibit complex adaptation patterns at a reduced cognitive cost. In this article we show a general model of how emotion supports functional adaptation and how the emotional biological systems operate following this theoretical model. We will also show how this model is also of applicability to the construction of a wide spectrum of artificial systems1
    corecore