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Abstract - The method presented here, aims at supporting the 
development of control software for embedded control 
systems. The method considers the implementation process as 
a stepwise refinement from physical system models and 
control laws to efficient control computer code, and that all 
phases are verified by simulation. Simulation is also used as 
verification tool during physical-system modeling and control 
law development. Data flow diagrams are used to describe the 
control software throughout the whole implementation 
process. 
Since we aim at heterogeneous distributed processors as target 
hardware, we use a link driver library based on the CSP 
channel concept. Communication peculiarities are encapsu- 
lated by the link drivers. 

Index terms - embedded control systems, multiparadigm 
modeling, software implementation. 

I .  INTRODUCTION 
Present-day requirements for reliable and efficiently ex- 
tendable / updateable software for embedded systems, 
stresses the availability of proper design software, assisting 
the complete design stretch. Especially, when embedded 
control systems are concerned, having the behavior of the 
complete system available as dynamic model in the design 
tool is crucial for effective design work. 

We consider Embedded Control Systems (ECS) as a 
separate class of embedded systems: the dynamic behavior 
of the appliance (i.e. the ‘machine’-part of the embedded 
system) is essential for the functionality of the ES (Figure 
I). Furthermore, we separate the I/O interface boards from 
the computer, because they are often dedicated to the ECS, 
although not necessary specifically developed. The software 
part consists of a layered structure of controllers and the 
user interface [ I ] .  The loop controllers implement the 
control laws and are hard real-time, because missing 
deadlines mean system failure. Sequence controllers 
implement sequences of activities based on logical actions 
in time, commanding the loop controllers. Supervisory 
controllers contain optimization algorithms or expert 
systems that adapt parameters of the lower controllers. 

At an ECS, computational latency must be small compared 
to the time constants of the appliance. Examples are robots, 
production machines like wafer steppers, motor 
management and traction control of automobiles. 

The other class of ES is embedded data systems, where the 
relevant behavior of the appliance can completely be de- 

Appliance 

Embedded Software 

Figure 1 General architecture of embedded control systems 

scribed by waiting times between subsequent commands 
from the software. Missing deadlines decrease the quality of 
service, but are not fatal: it are soft real-time systems. 

The embedded computer system is considered heterogene- 
ous and distributed, because modem systems are often 
composed of existing subsystems, having their own control 
software and processors 121. Furthermore, systems must be 
easily scalable and adaptable, to support ever changing 
functional specifications and evolution of computer 
hardware. 

Current research deals with the development of a design 
framework and a tool to efficiently apply the building block 
approach [3]. We plan to enhance our current modeling, 
simulation and controller design package 20-SIM [4, 51. We 
focus on applications in the field of robotics and 
mechatronics. Furthermore, we are focusing on the use of 
heterogeneous networked embedded systems. 

The next section treats the different modeling formalisms of 
the three parts of an ECS. Section three discusses the ECS 
implementation approach: it is the core of this paper. In 
section four, a case is presented briefly. 

11. USED MODELING PARADIGMS 
Since we adhere a mechatronic or systems approach while 
designing software for embedded control systems, the 
dynamic properties of the total system, and not only the 
control software, plays a certain role. Thus, in order to 
verify the control software, also the dynamics of the 
appliance should be taken into account. This implies that in 
an executable (i.e. simulate-able) model, both the control 
software and the appliance need to be specified. 
Furthermore, relevant aspects of the computer hardware and 
interfaces need to be taken into account, to really forecast 
the behavior of the system. 
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To support the adaptability of systems and to allow for 
separate development of reusable parts, we use an object- 
oriented approach at all the parts. Main reasons are the real 
plug-and-play capabilities of the parts. Furthermore, 
concurrent engineering is efficiently supported. 

We have applied the following model paradigms to describe 
all three parts of embedded control systems: 

Communicating Sequential Processes (CSP) for the 
embedded software parts. The interprocess communi- 
cation is implemented by CSP-based channels [6,7]. 
VHDL for the specific I/O hardware parts, which 
remain configurable when using FPGA’s 
Bond Graphs (directed graphs describing both the 
dynamic structure and dynamic behavior of the device) 
for the appliance (i.e. the device to be controlled) [8, 

These model paradigms are all directed graphs, in which 
the activities occur in the vertices and the ideal (or 
idealized) connections are shown by the edges. It is, 
therefore, likely that combining them into one diagram, and 
also reasoning about such a combination can be done 
elegantly and naturally. In the following subsections, these 
modeling paradigms will be discussed briefly. 

91. 

A .  Communicating Sequential Processes (CSP) 
To describe the software, we use Data Flow Diagrams 
(DFD), and draw them as directed graphs. The vertices 
denote the processes, and the edges denote the 
communication of data. Such a data flow diagram shows 
the structure of the software, and allows for hierarchy, i.e. 
different levels of nesting can be used. 

CSP is the process algebra by which the DFD is described 
more formally. This allows for more formal checks on the 
manipulations done with the DFD. The interpretation of the 
DFD (i.e. code generation) can be checked formally [IO]. 
Furthermore, reasoning about correctness can also be done. 

For the data communication, we exclusively use channels. 
Channels control synchronization and scheduling of 
processes [ 1 I ] .  The use of channels hides threads and 
priority indexing from the user, thus alleviating the 
distributed software-writing problem significantly. 

We have developed the CTJ library (Communicating 
Threads for JavaTM) delivering fundamental elements for 
creating building blocks to implement a communication 
framework using channels [12]. 

B. VHDL for Computer Hardware 
We just use VHDL descriptions of the computer hardware. 
Either realization can be done in specific circuits (ASIC) or, 
to be more flexible, using FPGA chips (Field 
Programmable Gate Arrays). The development of these 
hardware components is like software: updates can easily 
be made. Especially in the design phase, this is a real 
advantage. Furthermore, it is the solution when the specific 
chips are not available on the market anymore. However, 

the performance of FPGA chips need to comply with the 
demands. 

C. Bond Graphs 
For modeling the machine-part of the embedded system, i.e. 
the appliance, we use Bond Graphs [8,9,13]. Bond Graphs 
are directed graphs, showing the relevant dynamic behavior. 
Vertices are the submodels and the edges denote the ideal 
exchange of energy. They are physical-domain 
independent, due to analogies between these domains on the 
level of physics. Thus, mechanical, electrical, hydraulic, etc 
system parts are all modeled with the same graphs. 

Entry points of submodels to connect the energy flows 
(edges) to, are of so-calledports, consisting of two 
variables, whose product is the power exchanged through 
the port. For each physical domain, such a pair can be 
specified, for example voltage and current, force and 
velocity. The submodel equations are specified as real 
equalities, and not as assignments. These two properties are 
essential and ensure true encapsulation. 

Bond graphs may be mixed with block diagrams in a 
natural way to cover the information domain part. 

Differential equations are generated after model 
compilation, where the port variables obtain a 
computational direction (one as input, the other as output) 
and the equations are rewritten to assignment statements. 
This process is rather efficient, because computational 
causal analysis on graph level is used. Thus the structure of 
the graph is exploited, since the computational direction 
depends on how the submodels are interconnected. 

Simulation of bond-graph models to study the dynamic 

statements. 
behavior is in fact repeatedly executing the model 

111. ECS IMPLEMENTATION 

Since the above-mentioned model paradigms are used to 
denote one total model of the system at hand, it is obvious 
that they are also deployed in our design method. As 
indicated in section 11, this total model is simulate-able, and 
as such allows for tool support in the verification process. 

Exploiting this simulate-ability of the models enables the 
design work to be done as a stepwise refinement process. 
This implies that the total model will gradually change from 
a basic hnctional or conceptual model towards a detailed 
model from which the code for the control-computer system 
can straightforwardly be generated. 

Since we focus on embedded control systems, the dynamics 
of the controlled system in total should be used as a starting 
point for deriving the control-computer code. Therefore, a 
model structured as in Figure 1 should be used. 
Furthermore, because of the important role simulation will 
play in the verification procedures, the model of the 
appliance should be rather sophisticated as to serve as a real 
imitation of the appliance. 
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Figure 2 Design trajectory working order 

Considering the above, the design trajectory of Embedded 
Control Systems (ECS) is as follows (Figure 2): 

Physical Control Embedded 
System c.+ Law f-) Control System 

Modeling 

Physical Systems Modeling. 
The dynamic behavior of the system is object- 
orientedly modeled, using bond graphs as a main 
modeling paradigm. 
Control law Design. 
Using the model acquired in the previous step or a 
simplified version of it, control laws are designed. 
Embedded Control System Implementation 
Transforming the control laws to efficient concurrent 
algorithms (i.e. computer code) is guided via a stepwise 
refinement process. 
Realization 
The realization of the ECS is also worked on as a 
stepwise sequence. Parts of the system stay as models 
while other parts are coded on their target hardware. 
Besides catching variation in development time of parts 
of the system, also additional verification can be done. 

Realization 

After each step, the results are verified by simulation, also 
in the last phase (realization) when some parts are still a 
model. 

Note that besides this trajectory, there is also a trajectory on 
the design of the appliance itself, i.e. its physical 
appearance. It runs in parallel to the control law design and 
embedded control system implementation parts, as shown 
in Figure 3. Both parallel design lines, and also the first 
modeling and realization phases use simulation as a 
verification instrument. 

- Validation 

In the following subsections, the four phases of the design 
trajectory are discussed.'Since the focus of this paper is on 
the embedded control system software, the Embedded 
Control System Implementation part and the Realization 
part are discussed in more detail. 

Embedded Control System 
-a -a 

bY 
Simulation 

J 

and 
Testing 

Physical n 11 
system Verification by Simulation 

modeling II RY 

A.  Physical systems modeling 
Obviously, the purpose is to create a competent model of 
the appliance part of the system under study. So, only 
relevant and dominant aspects with respect to the modeling 
goals need to be considered. However, three main modeling 
goals are the case here: 

Understanding the dynamics of the physical system 
Deriving control laws 
Testing the system, while the appliance model is 
involved instead of the appliance itself. 

This clearly shows the refinement process of modeling 
throughout the whole design trajectory. Actually, each 
phase has its own model (the model in the test goal is used 
in the last two design phases). Feedback does not only come 
from verification via simulation, but also from other design 
phases (Figure 1). 
These models are mostly derived from each other via some 
transformation process. Normally, the model used when 
deriving control laws, is a simplified, often linearized 
version of the model used for understanding the dynamics. 

Realization 

I Appliance Design I 
Figure 3 Embedded control system design in the large 

To be more concrete, we phrase the following, rather 
common, procedure: 

Generate a detailed model 
This model is a rather detailed model of the physical 
system, in order to understand the dynamic behavior of 
that system. It can serve as a kind of physical-system 
replacement: It is later used as a substitute for the 
physical system when the control laws and control 
algorithms are tested. 
Verib the detailed model 
Simulate the detailed model to check whether the 
model satisfies its goals. If the total model is rather 
complex, first parts of it may be tested separately. If 
possible, the model can be validated (i.e. compared 
with measurements on the real system), to check the 
correctness, and also whether the assumptions are 
applicable in the particular situation. 

B. . Control law design 
Using standard procedures, a control law is now designed, 
using the model of the previous phase, or a simplified 
version of it, as starting point. It is also possible to derive a 
set of control laws, each having its own operating 
conditions. This can make each individual control law more 
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simple or give a better performance. Additionally, 
switching from one control law to the other must be 
designed, and should the system behave smoothly when 
switching from one control law to another (so-called 
bumpless transfer is necessary). 

We suggest the following, rather common procedure: 

Derive a simplified model 
Starting from the detailed model, either reduce it 
automatically (e.g. by linearization and/or order 
reduction) or diminish it by hand to obtain a model 
suitable for control law design. It may be necessary that 
more than one simplified model is needed to cover the 
whole workspace of the control system. 
VerifL the simplified model@) 
Verify the simplified model by performing the same 
simulations as with the detailed model. Results should 
not differ significantly. 
Derive the control law(s) 
Derive control laws, using the simplified model(s) 
acquired in the previous steps. This is common practice 
in controller design. Currently, external software such 
as Matlab is used. 
VerifL the control law@) 
Construct a test bed in which the control law is 
connected to the detailed model. Verify the control 
laws by performing simulations. Run such experiments 
that the demands on the controller performance can be 
checked. 

Arriving at this stage, the control law(s) together with the 
detailed model can be used in the process of embedded 
system implementation. 

C. Embedded control system implementation 
After the control law(s) has been designed, and verified by 
simulation, it needs to be implemented on the embedded 
computer. 

Classically, this implementation work is one single step in 
the design process, thus resulting in a gap between the 
control law design and the final product. This makes the 
implementation phase error-prone, and often resulting in 
wrong behavior of the system at hand. But even worse, 
there is a break point in the way of working: the results of 
the previous design phases cannot smoothly be used in the 
implementation phase. 

Therefore, we advocate a stepwise refinement procedure, in 
order to gradually enhance the control laws towards a 
description from which computer code can be generated, 
such that it can be run directly on the chosen target 
computer. 

The starting point of this phase is that the control laws have 
been tested using the detailed model, assuming ideal 
devices for implementation: sensors, actuators and 
algorithms do not have any effects on the performance of 
the ECS. 

The stepwise refinement procedure for the embedded 
software consists of the following steps: 

Integrate control laws 
Combine the control law(s) with the sequence and 
supervisory control layers. 
Reaction to external commands, like from the operator 
or from connected systems is taken into account. 
Design and test the bumpless transfer when switching 
from one control law to another. 
Design and test protocols on machine level (e.g. 
homing to ensure proper repeatability). 
The implementation is still assumed to be ideal. 
Capture non-ideal components 
Those components, being considered ideal in the 
previous step, are now modeled more precisely by 
augmenting the specification with their relevant 
dynamic effects (i.e. adding non-idealness of 
components). 
Also, add algorithms to process signals to obtain other 
signals which could not be measured directly in the 
practical situation (e.g. add an estimator to derive an 
internal variable, for which no sensor will be 
available). 
Incorporate safety, error and maintenance facilities 
Facilities for safety of the system are specified and 
designed (like reaction on external events from 
emergency stops and end switches, etc.). 
Safety and error handling can be centralized in one 
module or distributed among the components. 
A centralized module enables easier assessment of the 
safety measures, as is proposed in the Safety Kernel 
Design Pattern [14]. Safety handling distributed among 
the components allow for reusable components, which 
are safe. 
Furthermore, facilities for maintenance processing can 
be added here. 
The impact of these additions on the behavior of the 
ECS can be checked by means of simulation. 
Effects due to non-idealness of computer hardware 
The control computer hardware and software 
architecture are added. Effects of computational 
latency and accuracy can be checked. Scheduling 
techniques and / or algorithm optimization techniques 
may be used to obtain a viable realization. 

These steps need not be performed in the order specified 
here. The designer has the freedom to tackle the individual 
subproblems in any order. This is a major difference with 
the traditional design methods, which are basically waterfall 
like. For example, a top-down decomposition may be 
applied first to define the global architecture of the system, 
after which those control algorithms in which problems are 
expected may be developed. Also parts of the controller can 
be developed incrementally and combined to obtain the 
description of the total controller. In short, the designer has 
the option to apply the most appropriate technique to each 
problem. 

By stimulating an iterative approach, which is a quite 
natural way of working, tool support becomes inevitable. 
This motivates our research on the design framework and 
tool development. Note that iterative ways of development 
is also performed in the separate areas of software 
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development for embedded systems [ 141 and controller 
design. 

D. Realization 
After the control algorithms have been derived as a result of 
the refinement procedure of the previous step, one can work 
towards realization on the target computer and appliance. 

To make a stepwise approach possible, the real embedded 
control system is divided into three parts, as indicated in 
Figure 1. 

The embedded computer and its software 
This consists of all computer functionality, namely the 
software developed in the previous step and the mostly 
standard computer hardware on which this software 
runs. 
I/O interfacing 
These are the interface boards to connect the appliance 
to the computer system. Specific operating system 
resources, like device drivers running on these boards 
belong also to this part. The application-specific 
software running on these boards, implementing a part 
of the control algorithms is allotted to the software part. 
The appliance itself 
This is the physical device to be controlled: actuators 
including power amplifiers, the appliance itself and the 
sensors with their specific signal processing hardware 
allocated on or close to the sensor. 

In the procedure of transforming the results (i.e. models) of 
the implementation phase to the real embedded system, any 
of the three parts can be realized first, leaving the other two 
as simulated models. This verification process is a form of 
hardware-in-the-loop simulation. Which one to chose first, 
depends on the specific situation of the project: Is the target 
hardware available? Is the appliance or a prototype of it 
ready? Etc. 

A next step is to have two parts as real system parts and 
only one simulated. It depends on the progress of this 
realization phase whether this intermediate step is useful. It 
must contribute to the realization phase either as an 
efficiency enhancement or as an extra check to be sure that 
the complete system will work right the first time. 

In this protocol, simulation again plays a relevant role, 
especially when the design project is set up in a concurrent 
engineering fashion. Doing so, the different trajectories of 
developing subsystems are decoupled (cf. Figure 3). The 
first available part of an ECS can be tested together with the 
other parts, which are still simulated models. 

Some examples to illustrate different hardware-in-the-loop 
simulation situations: 

Appliance simulated 
In a concurrent design setting, the device might not be 
ready when the embedded software is available for 
testing. Using the model of the device instead of the 
device itself allows the control computer hardware and 
software to be tested before the device is available. 

Computer code simulated 
In a situation where the embedded computer will be a 
dedicated processor, or even an ASIC, the embedded 
software needs to be optimal. Testing the embedded 
software running on a ‘normal’ computer coupled to 
the real I/O and the real appliance can be a step in fine- 
tuning the embedded software before it actually gets 
‘burned’ into the embedded computer. Often, 
optimization of the code towards minimal size is 
necessary to be able to use the smallest processor 
possible. 

Note that the test set up as used in the first example can also 
be used in a training situation. 

Iv. CASE STUDY 

This example illustrates the stepwise refinement process, 
while performing the embedded control system 
implementation. 

The robot is an industrial robot of SCARA type, controlled 
by a digital controller, often used for pick and place tasks 
[ 151. The I/O is embodied by a standard board. The robot 
has two vertical revolute joints and one vertical 
translational joint. It is driven by three servomotors. In this 
case, a basic single-axis control scheme is used to control a 
point-to-point motion, whereby the steering voltages are 
limited to resemble the real situation. Figure 4 shows the 
structure of the robot and its control. The content of the I/O 
block is shown in Figure 5. Note that the figures are direct 
copies of the models in 20-SIM. 

Figure 4 Structure of the Robot case 

stdn+-b Actuation 
E441 

Dataout*- Measurement 
AD1 

Figure 5 Contents of the I/O block of Figure 4 

In the refinement process of embedded control system 
implementation, the A/D and D/A converters can be 
specialized as follows: 

1. Essential behavior only 
Only the time discretization resp. reconstruction 
process is taken into account. The converters behave 
like ideal elements. 

2. Add functional behavior 
The quantization (real -> integer) is added, thus the 
accuracy of the converters. Note that a high accuracy 
often means a high price. 
Quantization effects can influence the behavior of the 
control loop. 
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Add nonlinearities 
The windowing and nonlinear conversion effects are 
added. Normally, the A/D converter will not clip 
signals since the sensors deliver a limited signal. The 
control algorithm has to take care of not sending too 
large signals to the DIA converter. 
Nonlinear conversion effects are generally rather small, 
thus these additions are only useful when detailed 
simulations are needed. 
Unexpected clipping can severely influence the 
behavior of the control loop, so it must be mastered. 
Add conversion times 
Especially, conversion times of A/D converters can be 
considerable, and might consume a too large part of the 
time budget. 

Specialization step 1 is the starting point during control law 
design (phase 2), although step 2 is often also taken into 
account at control law design. Specialization step 2 and 3 
belong to step 2 of the stepwise refinement procedure. 
Specialization step 4 clearly is part of the last step of the 
stepwise refinement procedure. 

Clearly, when the type of converters are known, the 
complete model (at least with quantization and windowing) 
can be used in the control law design phase, in order to be 
as precise as possible. 

V. CONCLUSION 
Embedded (control) systems can completely be described 
by object-oriented techniques, using a building-block 
approach: for all parts (software, hardware, and appliance) 
we use such techniques, namely bond graphs, VHDL and 
component based software using channels. 

Advantages are the possibility to use a concurrent 
engineering approach, to use simulation as a means for 
verification, and to use a mechatronic or systems approach 
during design. The latter truly supportsflexible hardware- 
software co-design, which becomes crucial in modem 
embedded system development. 

Current research deals with the development of a design 
framework and a tool to efficiently apply the building block 
approach. We use applications in the field of robotics and 
mechatronics. Currently we are focussing on the use of 
heterogeneous networked embedded systems. 
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