
Proceedings of the 2001 IEEE International
Conference on Control Applications
September 5-7,2001 Mexico City, Mexico

A structured approach to embedded control
systems implementation

Jan F. Broenink, Member, IEEE, and Gerald H . Hilderink, Student Member, IEEE

Control Laboratory, Faculty EE, University of Twente, Enschede, Netherlands, e-mail:
J.F.Broenink@el.utwente.nl

Abstract - The method presented here, aims at supporting the
development of control software for embedded control
systems. The method considers the implementation process as
a stepwise refinement from physical system models and
control laws to efficient control computer code, and that all
phases are verified by simulation. Simulation is also used as
verification tool during physical-system modeling and control
law development. Data flow diagrams are used to describe the
control software throughout the whole implementation
process.
Since we aim at heterogeneous distributed processors as target
hardware, we use a link driver library based on the CSP
channel concept. Communication peculiarities are encapsu-
lated by the link drivers.

Index terms - embedded control systems, multiparadigm
modeling, software implementation.

I . INTRODUCTION
Present-day requirements for reliable and efficiently ex-
tendable / updateable software for embedded systems,
stresses the availability of proper design software, assisting
the complete design stretch. Especially, when embedded
control systems are concerned, having the behavior of the
complete system available as dynamic model in the design
tool is crucial for effective design work.

We consider Embedded Control Systems (ECS) as a
separate class of embedded systems: the dynamic behavior
of the appliance (i.e. the ‘machine’-part of the embedded
system) is essential for the functionality of the ES (Figure
I). Furthermore, we separate the I/O interface boards from
the computer, because they are often dedicated to the ECS,
although not necessary specifically developed. The software
part consists of a layered structure of controllers and the
user interface [I] . The loop controllers implement the
control laws and are hard real-time, because missing
deadlines mean system failure. Sequence controllers
implement sequences of activities based on logical actions
in time, commanding the loop controllers. Supervisory
controllers contain optimization algorithms or expert
systems that adapt parameters of the lower controllers.

At an ECS, computational latency must be small compared
to the time constants of the appliance. Examples are robots,
production machines like wafer steppers, motor
management and traction control of automobiles.

The other class of ES is embedded data systems, where the
relevant behavior of the appliance can completely be de-

Appliance

Embedded Software

Figure 1 General architecture of embedded control systems

scribed by waiting times between subsequent commands
from the software. Missing deadlines decrease the quality of
service, but are not fatal: it are soft real-time systems.

The embedded computer system is considered heterogene-
ous and distributed, because modem systems are often
composed of existing subsystems, having their own control
software and processors 121. Furthermore, systems must be
easily scalable and adaptable, to support ever changing
functional specifications and evolution of computer
hardware.

Current research deals with the development of a design
framework and a tool to efficiently apply the building block
approach [3]. We plan to enhance our current modeling,
simulation and controller design package 20-SIM [4, 51. We
focus on applications in the field of robotics and
mechatronics. Furthermore, we are focusing on the use of
heterogeneous networked embedded systems.

The next section treats the different modeling formalisms of
the three parts of an ECS. Section three discusses the ECS
implementation approach: it is the core of this paper. In
section four, a case is presented briefly.

11. USED MODELING PARADIGMS
Since we adhere a mechatronic or systems approach while
designing software for embedded control systems, the
dynamic properties of the total system, and not only the
control software, plays a certain role. Thus, in order to
verify the control software, also the dynamics of the
appliance should be taken into account. This implies that in
an executable (i.e. simulate-able) model, both the control
software and the appliance need to be specified.
Furthermore, relevant aspects of the computer hardware and
interfaces need to be taken into account, to really forecast
the behavior of the system.

0-7803-6733-2/01/$10.00 0 2001 IEEE 761

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 07,2023 at 07:11:30 UTC from IEEE Xplore. Restrictions apply.

To support the adaptability of systems and to allow for
separate development of reusable parts, we use an object-
oriented approach at all the parts. Main reasons are the real
plug-and-play capabilities of the parts. Furthermore,
concurrent engineering is efficiently supported.

We have applied the following model paradigms to describe
all three parts of embedded control systems:

Communicating Sequential Processes (CSP) for the
embedded software parts. The interprocess communi-
cation is implemented by CSP-based channels [6,7].
VHDL for the specific I/O hardware parts, which
remain configurable when using FPGA’s
Bond Graphs (directed graphs describing both the
dynamic structure and dynamic behavior of the device)
for the appliance (i.e. the device to be controlled) [8,

These model paradigms are all directed graphs, in which
the activities occur in the vertices and the ideal (or
idealized) connections are shown by the edges. It is,
therefore, likely that combining them into one diagram, and
also reasoning about such a combination can be done
elegantly and naturally. In the following subsections, these
modeling paradigms will be discussed briefly.

91.

A . Communicating Sequential Processes (CSP)
To describe the software, we use Data Flow Diagrams
(DFD), and draw them as directed graphs. The vertices
denote the processes, and the edges denote the
communication of data. Such a data flow diagram shows
the structure of the software, and allows for hierarchy, i.e.
different levels of nesting can be used.

CSP is the process algebra by which the DFD is described
more formally. This allows for more formal checks on the
manipulations done with the DFD. The interpretation of the
DFD (i.e. code generation) can be checked formally [IO].
Furthermore, reasoning about correctness can also be done.

For the data communication, we exclusively use channels.
Channels control synchronization and scheduling of
processes [1 I] . The use of channels hides threads and
priority indexing from the user, thus alleviating the
distributed software-writing problem significantly.

We have developed the CTJ library (Communicating
Threads for JavaTM) delivering fundamental elements for
creating building blocks to implement a communication
framework using channels [12].

B. VHDL for Computer Hardware
We just use VHDL descriptions of the computer hardware.
Either realization can be done in specific circuits (ASIC) or,
to be more flexible, using FPGA chips (Field
Programmable Gate Arrays). The development of these
hardware components is like software: updates can easily
be made. Especially in the design phase, this is a real
advantage. Furthermore, it is the solution when the specific
chips are not available on the market anymore. However,

the performance of FPGA chips need to comply with the
demands.

C. Bond Graphs
For modeling the machine-part of the embedded system, i.e.
the appliance, we use Bond Graphs [8,9,13]. Bond Graphs
are directed graphs, showing the relevant dynamic behavior.
Vertices are the submodels and the edges denote the ideal
exchange of energy. They are physical-domain
independent, due to analogies between these domains on the
level of physics. Thus, mechanical, electrical, hydraulic, etc
system parts are all modeled with the same graphs.

Entry points of submodels to connect the energy flows
(edges) to, are of so-calledports, consisting of two
variables, whose product is the power exchanged through
the port. For each physical domain, such a pair can be
specified, for example voltage and current, force and
velocity. The submodel equations are specified as real
equalities, and not as assignments. These two properties are
essential and ensure true encapsulation.

Bond graphs may be mixed with block diagrams in a
natural way to cover the information domain part.

Differential equations are generated after model
compilation, where the port variables obtain a
computational direction (one as input, the other as output)
and the equations are rewritten to assignment statements.
This process is rather efficient, because computational
causal analysis on graph level is used. Thus the structure of
the graph is exploited, since the computational direction
depends on how the submodels are interconnected.

Simulation of bond-graph models to study the dynamic

statements.
behavior is in fact repeatedly executing the model

111. ECS IMPLEMENTATION

Since the above-mentioned model paradigms are used to
denote one total model of the system at hand, it is obvious
that they are also deployed in our design method. As
indicated in section 11, this total model is simulate-able, and
as such allows for tool support in the verification process.

Exploiting this simulate-ability of the models enables the
design work to be done as a stepwise refinement process.
This implies that the total model will gradually change from
a basic hnctional or conceptual model towards a detailed
model from which the code for the control-computer system
can straightforwardly be generated.

Since we focus on embedded control systems, the dynamics
of the controlled system in total should be used as a starting
point for deriving the control-computer code. Therefore, a
model structured as in Figure 1 should be used.
Furthermore, because of the important role simulation will
play in the verification procedures, the model of the
appliance should be rather sophisticated as to serve as a real
imitation of the appliance.

762

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 07,2023 at 07:11:30 UTC from IEEE Xplore. Restrictions apply.

Figure 2 Design trajectory working order

Considering the above, the design trajectory of Embedded
Control Systems (ECS) is as follows (Figure 2):

Physical Control Embedded
System c.+ Law f-) Control System

Modeling

Physical Systems Modeling.
The dynamic behavior of the system is object-
orientedly modeled, using bond graphs as a main
modeling paradigm.
Control law Design.
Using the model acquired in the previous step or a
simplified version of it, control laws are designed.
Embedded Control System Implementation
Transforming the control laws to efficient concurrent
algorithms (i.e. computer code) is guided via a stepwise
refinement process.
Realization
The realization of the ECS is also worked on as a
stepwise sequence. Parts of the system stay as models
while other parts are coded on their target hardware.
Besides catching variation in development time of parts
of the system, also additional verification can be done.

Realization

After each step, the results are verified by simulation, also
in the last phase (realization) when some parts are still a
model.

Note that besides this trajectory, there is also a trajectory on
the design of the appliance itself, i.e. its physical
appearance. It runs in parallel to the control law design and
embedded control system implementation parts, as shown
in Figure 3. Both parallel design lines, and also the first
modeling and realization phases use simulation as a
verification instrument.

- Validation

In the following subsections, the four phases of the design
trajectory are discussed.'Since the focus of this paper is on
the embedded control system software, the Embedded
Control System Implementation part and the Realization
part are discussed in more detail.

Embedded Control System
-a -a

bY
Simulation

J

and
Testing

Physical n 11
system Verification by Simulation

modeling II RY

A. Physical systems modeling
Obviously, the purpose is to create a competent model of
the appliance part of the system under study. So, only
relevant and dominant aspects with respect to the modeling
goals need to be considered. However, three main modeling
goals are the case here:

Understanding the dynamics of the physical system
Deriving control laws
Testing the system, while the appliance model is
involved instead of the appliance itself.

This clearly shows the refinement process of modeling
throughout the whole design trajectory. Actually, each
phase has its own model (the model in the test goal is used
in the last two design phases). Feedback does not only come
from verification via simulation, but also from other design
phases (Figure 1).
These models are mostly derived from each other via some
transformation process. Normally, the model used when
deriving control laws, is a simplified, often linearized
version of the model used for understanding the dynamics.

Realization

I Appliance Design I
Figure 3 Embedded control system design in the large

To be more concrete, we phrase the following, rather
common, procedure:

Generate a detailed model
This model is a rather detailed model of the physical
system, in order to understand the dynamic behavior of
that system. It can serve as a kind of physical-system
replacement: It is later used as a substitute for the
physical system when the control laws and control
algorithms are tested.
Verib the detailed model
Simulate the detailed model to check whether the
model satisfies its goals. If the total model is rather
complex, first parts of it may be tested separately. If
possible, the model can be validated (i.e. compared
with measurements on the real system), to check the
correctness, and also whether the assumptions are
applicable in the particular situation.

B. . Control law design
Using standard procedures, a control law is now designed,
using the model of the previous phase, or a simplified
version of it, as starting point. It is also possible to derive a
set of control laws, each having its own operating
conditions. This can make each individual control law more

763

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 07,2023 at 07:11:30 UTC from IEEE Xplore. Restrictions apply.

simple or give a better performance. Additionally,
switching from one control law to the other must be
designed, and should the system behave smoothly when
switching from one control law to another (so-called
bumpless transfer is necessary).

We suggest the following, rather common procedure:

Derive a simplified model
Starting from the detailed model, either reduce it
automatically (e.g. by linearization and/or order
reduction) or diminish it by hand to obtain a model
suitable for control law design. It may be necessary that
more than one simplified model is needed to cover the
whole workspace of the control system.
VerifL the simplified model@)
Verify the simplified model by performing the same
simulations as with the detailed model. Results should
not differ significantly.
Derive the control law(s)
Derive control laws, using the simplified model(s)
acquired in the previous steps. This is common practice
in controller design. Currently, external software such
as Matlab is used.
VerifL the control law@)
Construct a test bed in which the control law is
connected to the detailed model. Verify the control
laws by performing simulations. Run such experiments
that the demands on the controller performance can be
checked.

Arriving at this stage, the control law(s) together with the
detailed model can be used in the process of embedded
system implementation.

C. Embedded control system implementation
After the control law(s) has been designed, and verified by
simulation, it needs to be implemented on the embedded
computer.

Classically, this implementation work is one single step in
the design process, thus resulting in a gap between the
control law design and the final product. This makes the
implementation phase error-prone, and often resulting in
wrong behavior of the system at hand. But even worse,
there is a break point in the way of working: the results of
the previous design phases cannot smoothly be used in the
implementation phase.

Therefore, we advocate a stepwise refinement procedure, in
order to gradually enhance the control laws towards a
description from which computer code can be generated,
such that it can be run directly on the chosen target
computer.

The starting point of this phase is that the control laws have
been tested using the detailed model, assuming ideal
devices for implementation: sensors, actuators and
algorithms do not have any effects on the performance of
the ECS.

The stepwise refinement procedure for the embedded
software consists of the following steps:

Integrate control laws
Combine the control law(s) with the sequence and
supervisory control layers.
Reaction to external commands, like from the operator
or from connected systems is taken into account.
Design and test the bumpless transfer when switching
from one control law to another.
Design and test protocols on machine level (e.g.
homing to ensure proper repeatability).
The implementation is still assumed to be ideal.
Capture non-ideal components
Those components, being considered ideal in the
previous step, are now modeled more precisely by
augmenting the specification with their relevant
dynamic effects (i.e. adding non-idealness of
components).
Also, add algorithms to process signals to obtain other
signals which could not be measured directly in the
practical situation (e.g. add an estimator to derive an
internal variable, for which no sensor will be
available).
Incorporate safety, error and maintenance facilities
Facilities for safety of the system are specified and
designed (like reaction on external events from
emergency stops and end switches, etc.).
Safety and error handling can be centralized in one
module or distributed among the components.
A centralized module enables easier assessment of the
safety measures, as is proposed in the Safety Kernel
Design Pattern [14]. Safety handling distributed among
the components allow for reusable components, which
are safe.
Furthermore, facilities for maintenance processing can
be added here.
The impact of these additions on the behavior of the
ECS can be checked by means of simulation.
Effects due to non-idealness of computer hardware
The control computer hardware and software
architecture are added. Effects of computational
latency and accuracy can be checked. Scheduling
techniques and / or algorithm optimization techniques
may be used to obtain a viable realization.

These steps need not be performed in the order specified
here. The designer has the freedom to tackle the individual
subproblems in any order. This is a major difference with
the traditional design methods, which are basically waterfall
like. For example, a top-down decomposition may be
applied first to define the global architecture of the system,
after which those control algorithms in which problems are
expected may be developed. Also parts of the controller can
be developed incrementally and combined to obtain the
description of the total controller. In short, the designer has
the option to apply the most appropriate technique to each
problem.

By stimulating an iterative approach, which is a quite
natural way of working, tool support becomes inevitable.
This motivates our research on the design framework and
tool development. Note that iterative ways of development
is also performed in the separate areas of software

764

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 07,2023 at 07:11:30 UTC from IEEE Xplore. Restrictions apply.

development for embedded systems [141 and controller
design.

D. Realization
After the control algorithms have been derived as a result of
the refinement procedure of the previous step, one can work
towards realization on the target computer and appliance.

To make a stepwise approach possible, the real embedded
control system is divided into three parts, as indicated in
Figure 1.

The embedded computer and its software
This consists of all computer functionality, namely the
software developed in the previous step and the mostly
standard computer hardware on which this software
runs.
I/O interfacing
These are the interface boards to connect the appliance
to the computer system. Specific operating system
resources, like device drivers running on these boards
belong also to this part. The application-specific
software running on these boards, implementing a part
of the control algorithms is allotted to the software part.
The appliance itself
This is the physical device to be controlled: actuators
including power amplifiers, the appliance itself and the
sensors with their specific signal processing hardware
allocated on or close to the sensor.

In the procedure of transforming the results (i.e. models) of
the implementation phase to the real embedded system, any
of the three parts can be realized first, leaving the other two
as simulated models. This verification process is a form of
hardware-in-the-loop simulation. Which one to chose first,
depends on the specific situation of the project: Is the target
hardware available? Is the appliance or a prototype of it
ready? Etc.

A next step is to have two parts as real system parts and
only one simulated. It depends on the progress of this
realization phase whether this intermediate step is useful. It
must contribute to the realization phase either as an
efficiency enhancement or as an extra check to be sure that
the complete system will work right the first time.

In this protocol, simulation again plays a relevant role,
especially when the design project is set up in a concurrent
engineering fashion. Doing so, the different trajectories of
developing subsystems are decoupled (cf. Figure 3). The
first available part of an ECS can be tested together with the
other parts, which are still simulated models.

Some examples to illustrate different hardware-in-the-loop
simulation situations:

Appliance simulated
In a concurrent design setting, the device might not be
ready when the embedded software is available for
testing. Using the model of the device instead of the
device itself allows the control computer hardware and
software to be tested before the device is available.

Computer code simulated
In a situation where the embedded computer will be a
dedicated processor, or even an ASIC, the embedded
software needs to be optimal. Testing the embedded
software running on a ‘normal’ computer coupled to
the real I/O and the real appliance can be a step in fine-
tuning the embedded software before it actually gets
‘burned’ into the embedded computer. Often,
optimization of the code towards minimal size is
necessary to be able to use the smallest processor
possible.

Note that the test set up as used in the first example can also
be used in a training situation.

Iv. CASE STUDY

This example illustrates the stepwise refinement process,
while performing the embedded control system
implementation.

The robot is an industrial robot of SCARA type, controlled
by a digital controller, often used for pick and place tasks
[151. The I/O is embodied by a standard board. The robot
has two vertical revolute joints and one vertical
translational joint. It is driven by three servomotors. In this
case, a basic single-axis control scheme is used to control a
point-to-point motion, whereby the steering voltages are
limited to resemble the real situation. Figure 4 shows the
structure of the robot and its control. The content of the I/O
block is shown in Figure 5. Note that the figures are direct
copies of the models in 20-SIM.

Figure 4 Structure of the Robot case

stdn+-b Actuation
E441

Dataout*- Measurement
AD1

Figure 5 Contents of the I/O block of Figure 4

In the refinement process of embedded control system
implementation, the A/D and D/A converters can be
specialized as follows:

1. Essential behavior only
Only the time discretization resp. reconstruction
process is taken into account. The converters behave
like ideal elements.

2. Add functional behavior
The quantization (real -> integer) is added, thus the
accuracy of the converters. Note that a high accuracy
often means a high price.
Quantization effects can influence the behavior of the
control loop.

765

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 07,2023 at 07:11:30 UTC from IEEE Xplore. Restrictions apply.

Add nonlinearities
The windowing and nonlinear conversion effects are
added. Normally, the A/D converter will not clip
signals since the sensors deliver a limited signal. The
control algorithm has to take care of not sending too
large signals to the DIA converter.
Nonlinear conversion effects are generally rather small,
thus these additions are only useful when detailed
simulations are needed.
Unexpected clipping can severely influence the
behavior of the control loop, so it must be mastered.
Add conversion times
Especially, conversion times of A/D converters can be
considerable, and might consume a too large part of the
time budget.

Specialization step 1 is the starting point during control law
design (phase 2), although step 2 is often also taken into
account at control law design. Specialization step 2 and 3
belong to step 2 of the stepwise refinement procedure.
Specialization step 4 clearly is part of the last step of the
stepwise refinement procedure.

Clearly, when the type of converters are known, the
complete model (at least with quantization and windowing)
can be used in the control law design phase, in order to be
as precise as possible.

V. CONCLUSION
Embedded (control) systems can completely be described
by object-oriented techniques, using a building-block
approach: for all parts (software, hardware, and appliance)
we use such techniques, namely bond graphs, VHDL and
component based software using channels.

Advantages are the possibility to use a concurrent
engineering approach, to use simulation as a means for
verification, and to use a mechatronic or systems approach
during design. The latter truly supportsflexible hardware-
software co-design, which becomes crucial in modem
embedded system development.

Current research deals with the development of a design
framework and a tool to efficiently apply the building block
approach. We use applications in the field of robotics and
mechatronics. Currently we are focussing on the use of
heterogeneous networked embedded systems.

REFERENCES

S . Bennett, Real-Time Computer Control: A n Introduction. London,
UK: Prentice-Hall, 1988.
H. Kopetz, Real-Time Systems: design principles for distributed
embedded systems: Kluwer Academic Publishers, 1997.
J. F. Broenink and G. H. Hilderink, “Building blocks for control
system software,” presented at Proc. 3rd Workshop on European
Scientific and Industrial Collaboration WESIC2001, Enschede,
Netherlands, 2001.
J. F. Broenink, “Computer-aided physical-systems modeling and
simulation: a bondgraph approach,” in Faculty of Electrical
Engineering. Enschede, Netherlands: University of Twente, 1990.

J. v. Amerongen, “Modelling, Simulation and Controller Design for
Mechatronic Systems with 20-Sim 3.0,” presented at 1st IFAC
conference on Mechatronic Systems, Darmstadt, Germany, 2000.
C. A. R. Hoare, Communicating Sequential Processes: Prentice
Hall, 1985.
A. W. Roscoe, The Theory and Practice of Concurrency: Prentice
Hall, 1997.
D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System
dynamics, a unified approach, 2nd ed. New York, NY: J Wiley,
1990.
P. C. Breedveld, “Multibond-graph elements in physical systems
theory,” Journal of the Franklin Institute, vol. 3 19, pp. 1-36, 1985.
H. J. Volkerink, G. H. Hilderink, J. F. Broenink, W. A. Vervoort,
and A. W. P. Bakkers, “CSP Design Model and Tool Support,”
presented at Communicating Process Architectures 2000, WoTUG-
23, Canterbury, United Kingdom, 2000.
G. H. Hilderink, A. W. P. Bakkers, and J. F. Broenink, “A
distributed Real-Time Java system based on CSP,” presented at
Proc. Third IEEE Int. Symp. On Object Oriented Real-Time
Distributed Computing ISORC’2000, Newport Beach, CA, USA,
2000.
G. H. Hilderink, J. F. Broenink, and A. W. P. Bakkers,
“Communicating threads for Java,” presented at Proc. 22nd World
Occam and Transputer User Group Technical Meeting, Keele, UK,
1999.
J. F. Broenink, “Object-oriented modeling with bond graphs and
Modelica,” presented at Proc. 1999 Western Simulation
Multiconference, Conf. on Bond Graph Modeling and Simulation
ICBGM99, San Francisco, USA, 1999.
B. P. Douglass, Real-Time UML: developing efficient objects for
embedded systems: Addison Wesley Longman, 1998.
H. Ecker, ‘Comparison 11: Scam Robot - definition; solution in
ACSL,” Eurosim - Simulation News Europe, pp. 30-33, 1998.

766

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 07,2023 at 07:11:30 UTC from IEEE Xplore. Restrictions apply.

