13,585 research outputs found

    Computational Simulation and 3D Virtual Reality Engineering Tools for Dynamical Modeling and Imaging of Composite Nanomaterials

    Full text link
    An adventure at engineering design and modeling is possible with a Virtual Reality Environment (VRE) that uses multiple computer-generated media to let a user experience situations that are temporally and spatially prohibiting. In this paper, an approach to developing some advanced architecture and modeling tools is presented to allow multiple frameworks work together while being shielded from the application program. This architecture is being developed in a framework of workbench interactive tools for next generation nanoparticle-reinforced damping/dynamic systems. Through the use of system, an engineer/programmer can respectively concentrate on tailoring an engineering design concept of novel system and the application software design while using existing databases/software outputs.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Filamentary Switching: Synaptic Plasticity through Device Volatility

    Full text link
    Replicating the computational functionalities and performances of the brain remains one of the biggest challenges for the future of information and communication technologies. Such an ambitious goal requires research efforts from the architecture level to the basic device level (i.e., investigating the opportunities offered by emerging nanotechnologies to build such systems). Nanodevices, or, more precisely, memory or memristive devices, have been proposed for the implementation of synaptic functions, offering the required features and integration in a single component. In this paper, we demonstrate that the basic physics involved in the filamentary switching of electrochemical metallization cells can reproduce important biological synaptic functions that are key mechanisms for information processing and storage. The transition from short- to long-term plasticity has been reported as a direct consequence of filament growth (i.e., increased conductance) in filamentary memory devices. In this paper, we show that a more complex filament shape, such as dendritic paths of variable density and width, can permit the short- and long-term processes to be controlled independently. Our solid-state device is strongly analogous to biological synapses, as indicated by the interpretation of the results from the framework of a phenomenological model developed for biological synapses. We describe a single memristive element containing a rich panel of features, which will be of benefit to future neuromorphic hardware systems

    Computing parametrized solutions for plasmonic nanogap structures

    Full text link
    The interaction of electromagnetic waves with metallic nanostructures generates resonant oscillations of the conduction-band electrons at the metal surface. These resonances can lead to large enhancements of the incident field and to the confinement of light to small regions, typically several orders of magnitude smaller than the incident wavelength. The accurate prediction of these resonances entails several challenges. Small geometric variations in the plasmonic structure may lead to large variations in the electromagnetic field responses. Furthermore, the material parameters that characterize the optical behavior of metals at the nanoscale need to be determined experimentally and are consequently subject to measurement errors. It then becomes essential that any predictive tool for the simulation and design of plasmonic structures accounts for fabrication tolerances and measurement uncertainties. In this paper, we develop a reduced order modeling framework that is capable of real-time accurate electromagnetic responses of plasmonic nanogap structures for a wide range of geometry and material parameters. The main ingredients of the proposed method are: (i) the hybridizable discontinuous Galerkin method to numerically solve the equations governing electromagnetic wave propagation in dielectric and metallic media, (ii) a reference domain formulation of the time-harmonic Maxwell's equations to account for geometry variations; and (iii) proper orthogonal decomposition and empirical interpolation techniques to construct an efficient reduced model. To demonstrate effectiveness of the models developed, we analyze geometry sensitivities and explore optimal designs of a 3D periodic annular nanogap structure.Comment: 28 pages, 9 figures, 4 tables, 2 appendice
    • …
    corecore