3,155 research outputs found

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Tree structure data change detection method

    Get PDF
    The new method, increasing efficiency and reliability of change detection in three structures in the Internet data under indetermination of data structure (DTD, XML-Schema) is proposed in this paper. The Boolean linear programming problem was solved in two exact methods – modified Balazs with filter and modified DP method and A modified method for selecting a neural network architecture was proposed. There is also considered publish/subscribe system description enhanced with core module, which provides notifications of changes to subscribers only in case they occurred

    Active Data: A Data-Centric Approach to Data Life-Cycle Management

    Get PDF
    International audienceData-intensive science offers new opportunities for innovation and discoveries, provided that large datasets can be handled efficiently. Data management for data-intensive science applications is challenging; requiring support for complex data life cycles, coordination across multiple sites, fault tolerance, and scalability to support tens of sites and petabytes of data. In this paper, we argue that data management for data-intensive science applications requires a fundamentally different management approach than the current ad-hoc task centric approach. We propose Active Data, a fundamentally novel paradigm for data life cycle management. Active Data follows two principles: data-centric and event-driven. We report on the Active Data programming model and its preliminary implementation, and discuss the benefits and limitations of the approach on recognized challenging data-intensive science use-cases.Les importants volumes de données produits par la science présentent de nouvelles opportunités d'innovation et de découvertes. Cependant ceci sera conditionné par notre capacité à gérer efficacement de très grands jeux de données. La gestion de données pour les applications scientifiques data-intensive présente un véritable défi~; elle requière le support de cycles de vie très complexes, la coordination de plusieurs sites, de la tolérance aux pannes et de passer à l'échelle sur des dizaines de sites avec plusieurs péta-octets de données. Dans cet article nous argumentons que la gestion des données pour les applications scientifiques data-intensive nécessite une approche fondamentalement différente de l'actuel paradigme centré sur les tâches. Nous proposons Active Data, un nouveau paradigme pour la gestion du cycle de vie des données. Active Data suit deux principes~: il est centré sur les données et à base d'événements. Nous présentons le modèle de programmation Active Data, un prototype d'implémentation et discutons des avantages et limites de notre approche à partir d'étude de cas d'applications scientifiques
    corecore