174 research outputs found

    Software development for analysis of stochastic petri nets using transfer functions

    Get PDF
    This thesis research is an implementation of a closed-form analytical technique for study, evaluation and analysis of Stochastic Petri Nets (SPN). The technique is based on a theorem that an isomorphism exists between an SPN and a Markov Chain. The procedure comprises five main steps: reachability graph generation of the underlying Petri net, transformation of the reachability graph to a state machine Petri net, calculation of transfer functions, computation of equivalent transfer functions via Mason\u27s rule, and computation of performance parameters of the SPN model from the equivalent transfer functions and their derivatives. The software is developed in UNIX using C and applied to various SPN models. Future research includes implementation of Mason\u27s rule for complex cases and symbolic derivation of equivalent transfer functions

    A flexible control system for flexible manufacturing systems

    Get PDF
    A flexible workcell controller has been developed using a three level control hierarchy (workcell, workstation, equipment). The cell controller is automatically generated from a model input by the user. The model consists of three sets of graphs. One set of graphs describes the process plans of the parts produced by the manufacturing system, one set describes movements into, out of and within workstations, and the third set describes movements of parts/transporters between workstations. The controller uses an event driven Petri net to maintain state information and to communicate with lower level controllers. The control logic is contained in an artificial neural network. The Petri net state information is used as the input to the neural net and messages that are Petri net events are output from the neural net. A genetic algorithm was used to search over alternative operation choices to find a "good" solution. The system was fully implemented and several test cases are described

    A petri-net based methodology for modeling, simulation, and control of flexible manufacturing systems

    Get PDF
    Global competition has made it necessary for manufacturers to introduce such advanced technologies as flexible and agile manufacturing, intelligent automation, and computer-integrated manufacturing. However, the application extent of these technologies varies from industry to industry and has met various degrees of success. One critical barrier leading to successful implementation of advanced manufacturing systems is the ever-increasing complexity in their modeling, analysis, simulation, and control. The purpose of this work is to introduce a set of Petri net-based tools and methods to address a variety of problems associated with the design and implementation of flexible manufacturing systems (FMSs). More specifically, this work proposes Petri nets as an integrated tool for modeling, simulation, and control of flexible manufacturing systems (FMSs). The contributions of this work are multifold. First, it demonstrates a new application of PNs for simulation by evaluating the performance of pull and push diagrams in manufacturing systems. Second, it introduces a class of PNs, Augmented-timed Petri nets (ATPNs) in order to increase the power of PNs to simulate and control flexible systems with breakdowns. Third, it proposes a new class of PNs called Realtime Petri nets (RTPNs) for discrete event control of FMS s. The detailed comparison between RTPNs and traditional discrete event methods such as ladder logic diagrams is presented to answer the basic question \u27Why is a PN better tool than ladder logic diagram?\u27 and to justify the PN method. Also, a conversion procedure that automatically generates PN models from a given class of logic control specifications is presented. Finally, a methodology that uses PNs for the development of object-oriented control software is proposed. The present work extends the PN state-of-the-art in two ways. First, it offers a wide scope for engineers and managers who are responsible for the design and the implementation of modem manufacturing systems to evaluate Petri nets for applications in their work. Second, it further develops Petri net-based methods for discrete event control of manufacturing systems

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Petri net approaches for modeling, controlling, and validating flexible manufacturing systems

    Get PDF
    In this dissertation, we introduce the fundamental ideas and constructs of Petri net models such as ordinary, timed, colored, stochastic, control, and neural, and present some studies that emphasize Petri nets theories and applications as extended research fields that provide suitable platforms in modeling, controlling, validating, and evaluating concurrent systems, information systems, and a versatile dynamic system and manufacturing systems;We then suggest some of extensions that help make Petri nets useful for modeling and analyzing discrete event systems and manufacturing systems models based on the context of a versatile manufacturing system, and applies extended Petri nets models to several manufacturing systems such as an assembly cell, an Automated Palletized Conveyor System, and a tooling machine to show increased modeling power and efficient analysis methods;Finally, Validation methods are presented for these models and results of a performance analysis from a deterministic and stochastic model are used to reorganize and re-evaluate a manufacturing system in order to increase its flexibility

    System simulation and modeling of electronics demanufacturing facilities

    Get PDF
    Over the last decade, pressure on the electronic industry has been increasing as concerns for product take-back, product stewardship and global warming have continued to grow. Various end-of-life management options are being expanded including recycling to recapture values from basic materials through reengineering and recovery of subassemblies and individual components for remanufacturing. While progress has been reported on life cycle assessment (LCA), disassembly planning, design for disassembly, and design for environment (DFE), very little research has been focused on demanufacturing from a systems perspective. The objective of this thesis is to build an interface between the user who knows the demanufacturing operation and a software engine, which performs the simulation, collects detailed operational data, and displays results. This thesis bridges the gap between the requirement of hard core simulation knowledge and demanufacturing terminology to present a computerized software tool. Arena, a commercially available discrete event simulation software, acts as an engine for performing these simulations. The developed software tool for demanufacturing contains objects necessary for facility layout, systematic workflow and simulation of the facility. Each object refers to a specific demanufacturing activity and uses detailed simulation logic behind its design to perform that activity. The user selects and locates these objects to layout the facility for a graphical representation of the demanufacturing operation. Objects provide a user screen to input necessary data for the complete description of the activity and its operational characteristics. By simulating the facility for various scenarios, the demanufacturer can compare different options for improving operations, resource utilization, equipment and layout changes. To examine improvement options from an economic perspective a first-order model of demanufacturing costs has been developed and integrated with the simulation software. An activity based unit cost model is used to identify fixed and variable costs associated with each product demanufactured. A small electronics demanufacturing facility was observed and evaluated to validate the simulation modeling and operational logic. The application illustrates the usefulness of demanufacturing system simulation tool to manage and improve the overall efficiency of facilities for economical operation. In summary, a computer-base tool for simulating demanufacturing facility from a systems perspective has been developed and validated. An activity based cost model has been integrated with the simulation to give demanufacturers the ability to examine the full operational and economic trade-offs associated with the business
    corecore